AFARTICA: A Frequent Item-Set Mining Method Using Artificial Cell Division Algorithm

Frequent item-set mining has been exhaustively studied in the last decade. Several successful approaches have been made to identify the maximal frequent item-sets from a set of typical item-sets. The present work has introduced a novel pruning mechanism which has proved itself to be significant time...

Full description

Saved in:
Bibliographic Details
Published inJournal of database management Vol. 30; no. 3; pp. 71 - 93
Main Authors Paladhi, Saubhik, Chatterjee, Sankhadeep, Goto, Takaaki, Sen, Soumya
Format Journal Article
LanguageEnglish
Published Hershey IGI Global 01.07.2019
Subjects
Online AccessGet full text
ISSN1063-8016
1533-8010
DOI10.4018/JDM.2019070104

Cover

Abstract Frequent item-set mining has been exhaustively studied in the last decade. Several successful approaches have been made to identify the maximal frequent item-sets from a set of typical item-sets. The present work has introduced a novel pruning mechanism which has proved itself to be significant time efficient. The novel technique is based on the Artificial Cell Division (ACD) algorithm which has been found to be highly successful in solving tasks that involve a multi-way search of the search space. The necessity conditions of the ACD process have been modified accordingly to tackle the pruning procedure. The proposed algorithm has been compared with the apriori algorithm implemented in WEKA. Accurate experimental evaluation has been conducted and the experimental results have proved the superiority of AFARTICA over apriori algorithm. The results have also indicated that the proposed algorithm can lead to better performance when the support threshold value is more for the same set of item-sets.
AbstractList Frequent item-set mining has been exhaustively studied in the last decade. Several successful approaches have been made to identify the maximal frequent item-sets from a set of typical item-sets. The present work has introduced a novel pruning mechanism which has proved itself to be significant time efficient. The novel technique is based on the Artificial Cell Division (ACD) algorithm which has been found to be highly successful in solving tasks that involve a multi-way search of the search space. The necessity conditions of the ACD process have been modified accordingly to tackle the pruning procedure. The proposed algorithm has been compared with the apriori algorithm implemented in WEKA. Accurate experimental evaluation has been conducted and the experimental results have proved the superiority of AFARTICA over apriori algorithm. The results have also indicated that the proposed algorithm can lead to better performance when the support threshold value is more for the same set of item-sets.
Audience Academic
Author Paladhi, Saubhik
Sen, Soumya
Chatterjee, Sankhadeep
Goto, Takaaki
AuthorAffiliation University of Calcutta, Kolkata, India
Toyo University, Saitama, Japan
University of Kalyani, Kalyani, India
AuthorAffiliation_xml – name: Toyo University, Saitama, Japan
– name: University of Kalyani, Kalyani, India
– name: University of Calcutta, Kolkata, India
Author_xml – sequence: 1
  givenname: Saubhik
  surname: Paladhi
  fullname: Paladhi, Saubhik
  organization: University of Kalyani, Kalyani, India
– sequence: 2
  givenname: Sankhadeep
  surname: Chatterjee
  fullname: Chatterjee, Sankhadeep
  organization: University of Calcutta, Kolkata, India
– sequence: 3
  givenname: Takaaki
  surname: Goto
  fullname: Goto, Takaaki
  organization: Toyo University, Saitama, Japan
– sequence: 4
  givenname: Soumya
  surname: Sen
  fullname: Sen, Soumya
  organization: University of Calcutta, Kolkata, India
BookMark eNp1klFr2zAQx8XoYG231z0LBnuaU0mWZWdvJlnWloZBlz4LRZacK7acSUph335yszULpAikO_H73x13d4HO3OAMQh8pmXBCq6vb-XLCCJ2SklDC36BzWuR5ViXnLNlEPNviHboI4ZEQWtCSnaNVvajvVzez-iuu8cKbXzvjIr6Jps9-moiX4MC1eGniZmjwQxid2kewoEF1eGa6Ds_hCQIMDtddO3iIm_49emtVF8yHv-8lelh8W82us7sf31Oqu0zzisdMVWtGC0GtZkQLbm3TCDpVTSm0yHOthFFUkaI0VlDOLakYscIWlcr1el2KIr9En_Zxt35IhYcoH4eddymlZNOCC85ywg5UqzojwdkheqV7CFrWZTFljDI2xspOUK1xxqsuNdpC-j7iJyf4dBrTgz4p-PKfYL1LvTQhXQHaTQyt2oVwjPM9rv0QgjdWaogqpj6nPNBJSuQ4dZmmLg9TP5T1Itt66JX__brg814ALRzadwzJbWMTOD8Bjqsja_lvc-S4OTJtzivZSP4HN3zNXg
CitedBy_id crossref_primary_10_3390_app11198971
crossref_primary_10_4018_JDM_318450
crossref_primary_10_3233_JIFS_221672
crossref_primary_10_3390_app112110399
Cites_doi 10.1109/4434.806975
10.1145/276305.276313
10.4018/JDM.2015100102
10.1007/3-540-62222-5_47
10.4018/jdm.2006070102
10.1109/ICCIE.2009.5223866
10.1109/ISCC.2013.6754923
10.1016/j.jocs.2014.02.006
10.1016/j.eswa.2011.03.042
10.1137/1.9781611972726.27
10.4018/JDM.2018040104
10.1109/ICDE.2001.914857
10.1145/502512.502572
10.1006/jpdc.2000.1693
10.1007/BFb0100980
10.1145/335191.335372
10.4018/jdm.2002010103
10.1016/j.knosys.2013.02.003
10.1145/347090.347101
ContentType Journal Article
Copyright COPYRIGHT 2019 IGI Global
Copyright © 2019, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.
Copyright_xml – notice: COPYRIGHT 2019 IGI Global
– notice: Copyright © 2019, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.
DBID AAYXX
CITATION
N95
3V.
7SC
7WY
7WZ
7XB
87Z
88K
8AL
8AO
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
ALSLI
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
CNYFK
DWQXO
E3H
F2A
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M1O
M2T
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PRQQA
PTHSS
PYYUZ
Q9U
DOI 10.4018/JDM.2019070104
DatabaseName CrossRef
Gale Business: Insights
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Telecommunications (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Social Science Premium Collection
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One
Library & Information Science Collection
ProQuest Central Korea
Library & Information Sciences Abstracts (LISA)
Library & Information Science Abstracts (LISA)
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Proquest Library Science Database
Telecommunications Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Social Sciences
Engineering Collection
ABI/INFORM Collection China
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Computer Science Database
ProQuest Central Student
Library and Information Science Abstracts (LISA)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest Telecommunications
ProQuest One Applied & Life Sciences
Library & Information Science Collection
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
Social Science Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Telecommunications (Alumni Edition)
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Library Science
ProQuest Engineering Collection
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ProQuest One Social Sciences
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ABI/INFORM China
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ProQuest Business Collection (Alumni Edition)
CrossRef


Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1533-8010
EndPage 93
ExternalDocumentID A759221225
10_4018_JDM_2019070104
TICA_A_Frequent_Item_Set10_4018_JDM_201907010430
GeographicLocations Japan
India
GeographicLocations_xml – name: India
– name: Japan
GroupedDBID 0R
29K
5GY
77K
7WY
8FL
AAIKC
ABEPT
ADEKF
AENEX
ALMA_UNASSIGNED_HOLDINGS
BAAKF
CAG
COF
COVLG
D-I
EBS
EJD
GROUPED_ABI_INFORM_COMPLETE
HZ
IAO
ICD
IEA
IGG
IOF
JRD
K6
K60
MS
MV1
N95
NEEBM
O9-
P2P
RIF
TN5
U5U
XH6
XI7
.DC
0R~
4.4
4R4
77I
8AO
8FE
8FG
8R4
8R5
AAMNW
AAYVP
AAYXX
ABJCF
ABPHS
ABUWG
ABYXR
ACGFO
ACOJC
ADMLS
AFKRA
ALQIE
ALSLI
ALVAV
ALWMV
AMQEU
ARAPS
AXETE
AXMGO
AZQEC
BAWSF
BDBYZ
BENPR
BEZIV
BGLVJ
BLRFH
BPHCQ
BTFVE
BYHXH
CBWLS
CCPQU
CDTDJ
CIGCI
CITATION
CKMBR
CNQXE
CNYFK
CTSEY
DWQXO
FRNLG
GNUQQ
GROUPED_ABI_INFORM_RESEARCH
H13
HCIFZ
HZ~
H~9
IIORA
ITC
K6V
K6~
K7-
M0C
M1O
M7S
MS~
P62
PHGZM
PHGZT
PQBIZ
PQBZA
PQGLB
PQQKQ
PROAC
PRQQA
PTHSS
PUEGO
Q2X
3V.
7SC
7XB
88K
8AL
8FD
8FK
E3H
F2A
JQ2
L.-
L6V
L7M
L~C
L~D
M0N
M2T
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c484t-a8b21561fc20c64ffdd619ad76c633ca6ea1a057ef6144f0820f6f58a3cbb7653
IEDL.DBID BENPR
ISSN 1063-8016
IngestDate Sun Jul 13 05:36:58 EDT 2025
Mon Oct 20 22:16:58 EDT 2025
Fri Jun 13 00:15:01 EDT 2025
Mon Oct 20 17:23:30 EDT 2025
Fri May 23 02:18:48 EDT 2025
Wed Oct 01 02:47:29 EDT 2025
Thu Apr 24 23:06:57 EDT 2025
Fri Jan 15 00:06:43 EST 2021
Tue Jan 05 23:27:06 EST 2021
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c484t-a8b21561fc20c64ffdd619ad76c633ca6ea1a057ef6144f0820f6f58a3cbb7653
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2954642302
PQPubID 3752
PageCount 23
ParticipantIDs gale_infotracmisc_A759221225
gale_infotracgeneralonefile_A759221225
igi_journals_TICA_A_Frequent_Item_Set10_4018_JDM_201907010430
gale_infotracacademiconefile_A759221225
crossref_citationtrail_10_4018_JDM_2019070104
crossref_primary_10_4018_JDM_2019070104
proquest_journals_2954642302
gale_businessinsightsgauss_A759221225
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-07-01
PublicationDateYYYYMMDD 2019-07-01
PublicationDate_xml – month: 07
  year: 2019
  text: 2019-07-01
  day: 01
PublicationDecade 2010
PublicationPlace Hershey
PublicationPlace_xml – name: Hershey
PublicationTitle Journal of database management
PublicationYear 2019
Publisher IGI Global
Publisher_xml – name: IGI Global
References JDM.2019070104-3
JDM.2019070104-2
JDM.2019070104-1
JDM.2019070104-0
JDM.2019070104-7
JDM.2019070104-6
JDM.2019070104-5
JDM.2019070104-4
W. B. A.Karaa (JDM.2019070104-10) 2015
JDM.2019070104-9
JDM.2019070104-8
JDM.2019070104-21
JDM.2019070104-20
JDM.2019070104-14
JDM.2019070104-13
JDM.2019070104-12
JDM.2019070104-23
JDM.2019070104-11
JDM.2019070104-22
JDM.2019070104-18
JDM.2019070104-17
JDM.2019070104-16
JDM.2019070104-15
JDM.2019070104-19
References_xml – ident: JDM.2019070104-18
  doi: 10.1109/4434.806975
– ident: JDM.2019070104-2
  doi: 10.1145/276305.276313
– ident: JDM.2019070104-9
– ident: JDM.2019070104-6
  doi: 10.4018/JDM.2015100102
– ident: JDM.2019070104-7
  doi: 10.1007/3-540-62222-5_47
– ident: JDM.2019070104-22
  doi: 10.4018/jdm.2006070102
– ident: JDM.2019070104-16
  doi: 10.1109/ICCIE.2009.5223866
– ident: JDM.2019070104-13
  doi: 10.1109/ISCC.2013.6754923
– ident: JDM.2019070104-14
  doi: 10.1016/j.jocs.2014.02.006
– ident: JDM.2019070104-4
– ident: JDM.2019070104-1
– ident: JDM.2019070104-17
  doi: 10.1016/j.eswa.2011.03.042
– ident: JDM.2019070104-21
  doi: 10.1137/1.9781611972726.27
– ident: JDM.2019070104-5
  doi: 10.4018/JDM.2018040104
– ident: JDM.2019070104-3
  doi: 10.1109/ICDE.2001.914857
– ident: JDM.2019070104-23
  doi: 10.1145/502512.502572
– ident: JDM.2019070104-0
  doi: 10.1006/jpdc.2000.1693
– ident: JDM.2019070104-11
  doi: 10.1007/BFb0100980
– ident: JDM.2019070104-20
– ident: JDM.2019070104-8
  doi: 10.1145/335191.335372
– ident: JDM.2019070104-12
  doi: 10.4018/jdm.2002010103
– ident: JDM.2019070104-15
  doi: 10.1016/j.knosys.2013.02.003
– year: 2015
  ident: JDM.2019070104-10
  publication-title: Biomedical image analysis and mining techniques for improved health outcomes
– ident: JDM.2019070104-19
  doi: 10.1145/347090.347101
SSID ssj0015172
Score 2.1795907
Snippet Frequent item-set mining has been exhaustively studied in the last decade. Several successful approaches have been made to identify the maximal frequent...
SourceID proquest
gale
crossref
igi
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 71
SubjectTerms Algorithms
Analysis
Cell division
Methods
Title AFARTICA: A Frequent Item-Set Mining Method Using Artificial Cell Division Algorithm
URI http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/JDM.2019070104
https://www.proquest.com/docview/2954642302
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1533-8010
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015172
  issn: 1063-8016
  databaseCode: ADMLS
  dateStart: 19970701
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1533-8010
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015172
  issn: 1063-8016
  databaseCode: BENPR
  dateStart: 19900101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Proquest Library Science Database
  customDbUrl:
  eissn: 1533-8010
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015172
  issn: 1063-8016
  databaseCode: M1O
  dateStart: 19900101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/libraryscience
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELa62wsX3oiFUnzgcbKap5NFqlDYNpRKWRC0Um-W48d2pWW7NOn_Z8ZxugoULpGiTBxnxjOescffEPImy8NUhSZlMLcZlsS1YjI1inGjZJ1YHoUOdrGa85Pz5PQivdgh8_4sDKZV9jbRGWp9pXCN_AD3o8BXjoPo4-YXw6pRuLval9CQvrSCPnQQYyOyGyEy1pjsfjqef_t-u6-Qhlm3_8ljtM28g3GEGCM_OD2qMNMLgkUMUQbTlDfWo-Vi-ZfJdvNQ-ZDc9w4kLTqJPyI7Zv2YPOiLM1Cvq0_IWVGCr_plVnygBS2vXcZ0S3Flnv0wLa1cYQhauQLS1CUOuDY7QAk6M6sVPVp2J89psVoAK9rLn0_JeXl8NjthvoQCU0metEzmNczpPLQqChRPrNUaIiapM654HCvJjQwluGzGYmBo0R-w3Ka5jFVdZzyNn5Hx-mptnhMaBApeq_U0CmtcjpvGuc211Vwjqlw4nRDWc0wojy-OZS5WAuIM5LAADosthyfk_S39pkPW-CflWxSA8GU54dLgwkWzkDdNI4osnUYg7SiFFh0dqiZ8WUl_wgD6jyBXA8p3A8pFB_F9F-HegBB0Tw0ev4YxIbzaN3_0W2y0nZDDAQXKXRSiF7tAsQsQ-91_HgfQgX68bRvZ6sKL_z9-Se5hY1168R4Zt9c35hU4UW29T0Z5-Xnf6wfcVeHX32MEFcE
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6V9gAX3ohAoXugcLIav9Y2UoRM0yh9OEKQSr1t1_sIkUIaaleIP8dvY2a9bmQo3HrJxePNemZ3vpmd2RlC3iSpH0tfxx5gm_aisJSeiLX0mJaijAwLfFt2sZiw8Wl0dBafbZBf7V0YTKtsdaJV1OpC4hn5HsajwFYO-8GH1XcPu0ZhdLVtoSFcawU1sCXG3MWOY_3zB7hw1eBwCPLeDYLRwXR_7LkuA56M0qj2RFoC7DHfyKAvWWSMUuBUCJUwycJQCqaFL8Cq0QZ9J4OQaZiJUxHKskwYdo0ACNiKwigD52_r48Hk0-frOEbsJ028lYWIBawpGwk-Tbp3NCwwswycU3SJOrDowOHOfDb_CyIs7o0ekvvOYKV5s8IekQ29fEwetM0gqNMNT8g0H4FtDF_8nuZ0dGkztGuKkQDvi65pYRtR0MI2rKY2UcGO2RSwoPt6saDDeXPTneaLGbC-_vrtKTm9FWY-I5vLi6V-Tmi_L-G1UmWBX-LxXxamJlVGMYVV7PysR7yWY1y6eubYVmPBwa9BDnPgMF9zuEfeXdOvmkoe_6TcRQFw1wYUfio8KKlm4qqqeJ7EWQCAH8QwoqVDVQD_LIW70QDzx6JaHcq3HcpZU1L8JsLtDiHsddl5vANrgjs1U_0xb75SpkcGHQqUO895K3aOYucg9pu_POzDBNr1th5kvfde_P_xDrk7nhYn_ORwcvyS3MOBm9TmbbJZX17pV2DA1eVrt0soOb_tjfkbITlRXw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1R3LbtQw0CpFQlwoT7FQqA8UTu7m6WSRKhR1ifpgCxKt1JvrOPayYtkuTVYIPo1f4WeYsZOuUgq3Hrjkkolje96e8QwhL5LUj5WvYwa6TbMoLBSTsVaMayWLyPDAt2UXR4d89zjaP4lPVsjP9i4MplW2MtEK6vJM4Rl5H-NRYCuHXtA3TVrEh2H-Zv6VYQcpjLS27TQciRzo79_Afau294aA680gyN8e7eyypsMAU1Ea1UymBag87hsVeIpHxpQlOBSyTLjiYagk19KXYNFog36TQXVpuIlTGaqiSDh2jADxfzNBNwLTBv33FxGM2E9cpJWHqAW4KxgJ3kza3x-OMKcM3FJ0hjoKsVELNybjyR_KwWq8fI38avfKJbp83lrUxZb6camM5P-5mXfJncYQp5njnHtkRc_uk7W2yQVtZN4DcpTlYPPDBF7TjObnNvO8phjhYB91TUe2wQYd2Ubc1CZg2DFdYQ66o6dTOpy4G_w0m45h5fWnLw_J8bWs7RFZnZ3N9GNCPU_BZ0U5CPwCjzUHYWrS0pS8xOp8_qBHWEsPQjV12rFdyFSAv4b0I4B-xJJ-euTVBfzcVSj5K-Qmkpdo2pvCo8IDoGosF1UlsiQeBGDIBDGMaOFQxMGflWxuasD8sVhYB_JlB3LsSqVfBbjeAQQZpjqvN4DiRSM-q0vzFvPS9Mh2BwLxLjLRol0g2gWg_eqVhx5MoOWE5SBLNnjy79cb5Bbwh3i3d3jwlNzGcV3G9jpZrc8X-hnYpXXx3AoASk6vm0l-A0p5lrw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=AFARTICA%3A+A+Frequent+Item-Set+Mining+Method+Using+Artificial+Cell+Division+Algorithm&rft.jtitle=Journal+of+database+management&rft.au=Paladhi%2C+Saubhik&rft.au=Chatterjee%2C+Sankhadeep&rft.au=Goto%2C+Takaaki&rft.au=Sen%2C+Soumya&rft.date=2019-07-01&rft.pub=IGI+Global&rft.issn=1063-8016&rft.eissn=1533-8010&rft.volume=30&rft.issue=3&rft.spage=71&rft.epage=93&rft_id=info:doi/10.4018%2FJDM.2019070104&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-8016&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-8016&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-8016&client=summon