A2AR Adenosine Signaling Suppresses Natural Killer Cell Maturation in the Tumor Microenvironment
Extracellular adenosine is a key immunosuppressive metabolite that restricts activation of cytotoxic lymphocytes and impairs antitumor immune responses. Here, we show that engagement of A2A adenosine receptor (A2AR) acts as a checkpoint that limits the maturation of natural killer (NK) cells. Both g...
Saved in:
Published in | Cancer research (Chicago, Ill.) Vol. 78; no. 4; pp. 1003 - 1016 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Association for Cancer Research, Inc
15.02.2018
American Association for Cancer Research |
Subjects | |
Online Access | Get full text |
ISSN | 0008-5472 1538-7445 1538-7445 |
DOI | 10.1158/0008-5472.CAN-17-2826 |
Cover
Abstract | Extracellular adenosine is a key immunosuppressive metabolite that restricts activation of cytotoxic lymphocytes and impairs antitumor immune responses. Here, we show that engagement of A2A adenosine receptor (A2AR) acts as a checkpoint that limits the maturation of natural killer (NK) cells. Both global and NK-cell–specific conditional deletion of A2AR enhanced proportions of terminally mature NK cells at homeostasis, following reconstitution, and in the tumor microenvironment. Notably, A2AR-deficient, terminally mature NK cells retained proliferative capacity and exhibited heightened reconstitution in competitive transfer assays. Moreover, targeting A2AR specifically on NK cells also improved tumor control and delayed tumor initiation. Taken together, our results establish A2AR-mediated adenosine signaling as an intrinsic negative regulator of NK-cell maturation and antitumor immune responses. On the basis of these findings, we propose that administering A2AR antagonists concurrently with NK cell–based therapies may heighten therapeutic benefits by augmenting NK cell–mediated antitumor immunity.
Significance: Ablating adenosine signaling is found to promote natural killer cell maturation and antitumor immunity and reduce tumor growth. Cancer Res; 78(4); 1003–16. ©2017 AACR. |
---|---|
AbstractList | Extracellular adenosine is a key immunosuppressive metabolite that restricts activation of cytotoxic lymphocytes and impairs antitumor immune responses. Here, we show that engagement of A2A adenosine receptor (A2AR) acts as a checkpoint that limits the maturation of natural killer (NK) cells. Both global and NK-cell-specific conditional deletion of A2AR enhanced proportions of terminally mature NK cells at homeostasis, following reconstitution, and in the tumor microenvironment. Notably, A2AR-deficient, terminally mature NK cells retained proliferative capacity and exhibited heightened reconstitution in competitive transfer assays. Moreover, targeting A2AR specifically on NK cells also improved tumor control and delayed tumor initiation. Taken together, our results establish A2AR-mediated adenosine signaling as an intrinsic negative regulator of NK-cell maturation and antitumor immune responses. On the basis of these findings, we propose that administering A2AR antagonists concurrently with NK cell-based therapies may heighten therapeutic benefits by augmenting NK cell-mediated antitumor immunity.Significance: Ablating adenosine signaling is found to promote natural killer cell maturation and antitumor immunity and reduce tumor growth. Cancer Res; 78(4); 1003-16. ©2017 AACR.Extracellular adenosine is a key immunosuppressive metabolite that restricts activation of cytotoxic lymphocytes and impairs antitumor immune responses. Here, we show that engagement of A2A adenosine receptor (A2AR) acts as a checkpoint that limits the maturation of natural killer (NK) cells. Both global and NK-cell-specific conditional deletion of A2AR enhanced proportions of terminally mature NK cells at homeostasis, following reconstitution, and in the tumor microenvironment. Notably, A2AR-deficient, terminally mature NK cells retained proliferative capacity and exhibited heightened reconstitution in competitive transfer assays. Moreover, targeting A2AR specifically on NK cells also improved tumor control and delayed tumor initiation. Taken together, our results establish A2AR-mediated adenosine signaling as an intrinsic negative regulator of NK-cell maturation and antitumor immune responses. On the basis of these findings, we propose that administering A2AR antagonists concurrently with NK cell-based therapies may heighten therapeutic benefits by augmenting NK cell-mediated antitumor immunity.Significance: Ablating adenosine signaling is found to promote natural killer cell maturation and antitumor immunity and reduce tumor growth. Cancer Res; 78(4); 1003-16. ©2017 AACR. Ablating adenosine signaling is found to promote natural killer cell maturation and antitumor immunity and reduce tumor growth.Extracellular adenosine is a key immunosuppressive metabolite that restricts activation of cytotoxic lymphocytes and impairs antitumor immune responses. Here, we show that engagement of A2A adenosine receptor (A2AR) acts as a checkpoint that limits the maturation of natural killer (NK) cells. Both global and NK-cell–specific conditional deletion of A2AR enhanced proportions of terminally mature NK cells at homeostasis, following reconstitution, and in the tumor microenvironment. Notably, A2AR-deficient, terminally mature NK cells retained proliferative capacity and exhibited heightened reconstitution in competitive transfer assays. Moreover, targeting A2AR specifically on NK cells also improved tumor control and delayed tumor initiation. Taken together, our results establish A2AR-mediated adenosine signaling as an intrinsic negative regulator of NK-cell maturation and antitumor immune responses. On the basis of these findings, we propose that administering A2AR antagonists concurrently with NK cell–based therapies may heighten therapeutic benefits by augmenting NK cell–mediated antitumor immunity.Significance: Ablating adenosine signaling is found to promote natural killer cell maturation and antitumor immunity and reduce tumor growth. Cancer Res; 78(4); 1003–16. ©2017 AACR. Extracellular adenosine is a key immunosuppressive metabolite that restricts activation of cytotoxic lymphocytes and impairs antitumor immune responses. Here, we show that engagement of A2A adenosine receptor (A2AR) acts as a checkpoint that limits the maturation of natural killer (NK) cells. Both global and NK-cell-specific conditional deletion of A2AR enhanced proportions of terminally mature NK cells at homeostasis, following reconstitution, and in the tumor microenvironment. Notably, A2AR-deficient, terminally mature NK cells retained proliferative capacity and exhibited heightened reconstitution in competitive transfer assays. Moreover, targeting A2AR specifically on NK cells also improved tumor control and delayed tumor initiation. Taken together, our results establish A2AR-mediated adenosine signaling as an intrinsic negative regulator of NK-cell maturation and antitumor immune responses. On the basis of these findings, we propose that administering A2AR antagonists concurrently with NK cell-based therapies may heighten therapeutic benefits by augmenting NK cell-mediated antitumor immunity. Ablating adenosine signaling is found to promote natural killer cell maturation and antitumor immunity and reduce tumor growth. . Extracellular adenosine is a key immunosuppressive metabolite that restricts activation of cytotoxic lymphocytes and impairs antitumor immune responses. Here, we show that engagement of A2A adenosine receptor (A2AR) acts as a checkpoint that limits the maturation of natural killer (NK) cells. Both global and NK-cell–specific conditional deletion of A2AR enhanced proportions of terminally mature NK cells at homeostasis, following reconstitution, and in the tumor microenvironment. Notably, A2AR-deficient, terminally mature NK cells retained proliferative capacity and exhibited heightened reconstitution in competitive transfer assays. Moreover, targeting A2AR specifically on NK cells also improved tumor control and delayed tumor initiation. Taken together, our results establish A2AR-mediated adenosine signaling as an intrinsic negative regulator of NK-cell maturation and antitumor immune responses. On the basis of these findings, we propose that administering A2AR antagonists concurrently with NK cell–based therapies may heighten therapeutic benefits by augmenting NK cell–mediated antitumor immunity. Significance: Ablating adenosine signaling is found to promote natural killer cell maturation and antitumor immunity and reduce tumor growth. Cancer Res; 78(4); 1003–16. ©2017 AACR. |
Author | Barkauskas, Deborah S. Zitvogel, Laurence Waddell, Nicola Linden, Joel Souza-Fonseca-Guimaraes, Fernando Lin, Gene Gao, Yulong Degli-Esposti, Mariapia A. Young, Arabella Coudert, Jerome D. Vivier, Eric Ngiow, Shin Foong Huntington, Nicholas D. Smyth, Mark J. Messaoudene, Meriem Stannard, Kimberley A. Patch, Ann-Marie |
Author_xml | – sequence: 1 givenname: Arabella surname: Young fullname: Young, Arabella – sequence: 2 givenname: Shin Foong surname: Ngiow fullname: Ngiow, Shin Foong – sequence: 3 givenname: Yulong surname: Gao fullname: Gao, Yulong – sequence: 4 givenname: Ann-Marie surname: Patch fullname: Patch, Ann-Marie – sequence: 5 givenname: Deborah S. surname: Barkauskas fullname: Barkauskas, Deborah S. – sequence: 6 givenname: Meriem surname: Messaoudene fullname: Messaoudene, Meriem – sequence: 7 givenname: Gene surname: Lin fullname: Lin, Gene – sequence: 8 givenname: Jerome D. surname: Coudert fullname: Coudert, Jerome D. – sequence: 9 givenname: Kimberley A. surname: Stannard fullname: Stannard, Kimberley A. – sequence: 10 givenname: Laurence surname: Zitvogel fullname: Zitvogel, Laurence – sequence: 11 givenname: Mariapia A. surname: Degli-Esposti fullname: Degli-Esposti, Mariapia A. – sequence: 12 givenname: Eric surname: Vivier fullname: Vivier, Eric – sequence: 13 givenname: Nicola surname: Waddell fullname: Waddell, Nicola – sequence: 14 givenname: Joel surname: Linden fullname: Linden, Joel – sequence: 15 givenname: Nicholas D. surname: Huntington fullname: Huntington, Nicholas D. – sequence: 16 givenname: Fernando surname: Souza-Fonseca-Guimaraes fullname: Souza-Fonseca-Guimaraes, Fernando – sequence: 17 givenname: Mark J. surname: Smyth fullname: Smyth, Mark J. |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29229601$$D View this record in MEDLINE/PubMed https://amu.hal.science/hal-02024322$$DView record in HAL |
BookMark | eNp9kU9v1DAQxS1URLeFjwCyxAUOKf4Tx4k4RSugVbdFons3jjNpXTn2YieV-PY4u20PPSBZsmf0ezPyeyfoyAcPCL2n5IxSUX8hhNSFKCU7W7fXBZUFq1n1Cq2o4HUhy1IcodUzc4xOUrrPpaBEvEHHrGGsqQhdod8ta3_htgcfkvWAb-yt1876W3wz73YRUoKEr_U0R-3wpXUOIl6Dc_hq35ts8Nh6PN0B3s5jiPjKmhjAP9gY_Ah-eoteD9olePd4n6Lt92_b9Xmx-fnjYt1uClPW5VRwKQcjhTFc664yvRS6JjXvOilp2ZWkqXTV84FyA4xX0OfT9fnZ6WaoO-Cn6PNh7J12ahftqONfFbRV5-1GLT3CCCs5Yw80s58O7C6GPzOkSY02mfwp7SHMSdFGVoRUDSUZ_fgCvQ9zzA4lxfaIzHZn6sMjNXcj9M_7n2zOwNcDkL1JKcKgjJ325k1RW6coUUuoaglMLYGpHKqiUi2hZrV4oX5a8H_dPwWkpDw |
CitedBy_id | crossref_primary_10_1002_med_21796 crossref_primary_10_1016_j_bioactmat_2022_09_017 crossref_primary_10_1016_j_xcrm_2023_101188 crossref_primary_10_3390_cancers14194843 crossref_primary_10_1016_j_prp_2023_154423 crossref_primary_10_1007_s00284_022_03116_9 crossref_primary_10_1016_j_ymthe_2024_12_057 crossref_primary_10_1186_s40364_023_00500_w crossref_primary_10_1002_advs_202104182 crossref_primary_10_1007_s11302_018_9641_4 crossref_primary_10_1021_acs_jafc_3c03851 crossref_primary_10_1007_s11302_023_09976_5 crossref_primary_10_1016_j_bbcan_2023_189023 crossref_primary_10_1093_cei_uxac099 crossref_primary_10_1016_j_trecan_2024_11_001 crossref_primary_10_3390_cancers11091217 crossref_primary_10_1021_acs_jmedchem_2c00101 crossref_primary_10_1016_j_jcms_2023_08_002 crossref_primary_10_1172_jci_insight_174675 crossref_primary_10_1002_iid3_826 crossref_primary_10_1038_s41423_024_01207_0 crossref_primary_10_1016_j_bbmt_2020_09_030 crossref_primary_10_1158_0008_5472_CAN_21_0340 crossref_primary_10_1186_s13287_021_02377_8 crossref_primary_10_1111_imcb_12045 crossref_primary_10_3389_fimmu_2022_1016817 crossref_primary_10_3389_fimmu_2020_01295 crossref_primary_10_1186_s12943_021_01492_7 crossref_primary_10_3389_fcell_2024_1471072 crossref_primary_10_1080_08923973_2020_1742733 crossref_primary_10_3389_fcell_2022_876510 crossref_primary_10_3390_cancers13133225 crossref_primary_10_1016_j_jbc_2025_108206 crossref_primary_10_1016_j_biomaterials_2024_123000 crossref_primary_10_3389_fimmu_2023_1212209 crossref_primary_10_3389_fonc_2022_821578 crossref_primary_10_1038_s41586_024_08290_3 crossref_primary_10_3389_fimmu_2020_00508 crossref_primary_10_3390_ijms19123837 crossref_primary_10_1186_s13045_021_01179_y crossref_primary_10_3390_cancers12040852 crossref_primary_10_3389_fimmu_2019_02278 crossref_primary_10_3389_fonc_2022_887257 crossref_primary_10_1016_j_bcp_2023_116006 crossref_primary_10_3389_fonc_2022_1101503 crossref_primary_10_62347_XVFP6530 crossref_primary_10_1038_s41568_020_0273_y crossref_primary_10_1007_s11033_024_09382_z crossref_primary_10_1038_s41423_020_00632_1 crossref_primary_10_1016_j_bbcan_2023_189005 crossref_primary_10_3390_cancers13020217 crossref_primary_10_1136_jitc_2019_000417 crossref_primary_10_1093_jleuko_qiad126 crossref_primary_10_3390_cancers13040711 crossref_primary_10_1007_s10142_023_01281_z crossref_primary_10_3390_ijms252212223 crossref_primary_10_3390_ijms24108871 crossref_primary_10_1002_cti2_1238 crossref_primary_10_1007_s12262_020_02396_4 crossref_primary_10_3390_vaccines10071033 crossref_primary_10_3389_fimmu_2020_607131 crossref_primary_10_1080_17460441_2018_1534825 crossref_primary_10_3390_cimb47010024 crossref_primary_10_1515_phys_2022_0013 crossref_primary_10_1002_cbf_3784 crossref_primary_10_1038_s41467_023_42734_0 crossref_primary_10_3390_biology12020218 crossref_primary_10_1007_s00262_022_03219_z crossref_primary_10_3389_fimmu_2023_1149622 crossref_primary_10_1038_s41573_019_0052_1 crossref_primary_10_3390_ijms23137030 crossref_primary_10_1038_s41392_024_02005_w crossref_primary_10_3390_cancers13174263 crossref_primary_10_1016_j_critrevonc_2021_103541 crossref_primary_10_1021_acsnano_9b10103 crossref_primary_10_1111_bph_15103 crossref_primary_10_1038_s41401_020_0424_4 crossref_primary_10_1016_j_cej_2022_138139 crossref_primary_10_1016_j_tips_2023_08_009 crossref_primary_10_1007_s11302_020_09701_6 crossref_primary_10_1186_s40164_023_00431_0 crossref_primary_10_1002_med_21765 crossref_primary_10_3389_fimmu_2021_707542 crossref_primary_10_3389_fonc_2020_594782 crossref_primary_10_3390_cells10071621 crossref_primary_10_3389_fimmu_2020_570041 crossref_primary_10_1002_advs_202417357 crossref_primary_10_3390_cancers13020229 crossref_primary_10_1371_journal_pone_0301223 crossref_primary_10_3390_ijms22052550 crossref_primary_10_1007_s12609_023_00492_4 crossref_primary_10_1186_s13287_022_02769_4 crossref_primary_10_1186_s12935_020_01195_x crossref_primary_10_1186_s40001_023_01383_1 crossref_primary_10_3389_fimmu_2020_01633 crossref_primary_10_1007_s10555_022_10060_4 crossref_primary_10_1016_j_biopha_2023_114601 crossref_primary_10_1038_s41577_022_00732_1 crossref_primary_10_1186_s13023_023_02953_6 crossref_primary_10_1007_s00109_018_1679_9 crossref_primary_10_1186_s13046_022_02457_4 crossref_primary_10_1021_acs_jmedchem_4c00250 crossref_primary_10_15252_embj_2021108130 crossref_primary_10_3389_fimmu_2020_01989 crossref_primary_10_1186_s13287_021_02277_x crossref_primary_10_1016_j_smim_2020_101417 crossref_primary_10_3390_cancers12123851 crossref_primary_10_1038_s41392_020_00348_8 crossref_primary_10_3390_cancers13040872 crossref_primary_10_1038_s41571_020_0382_2 crossref_primary_10_3390_cells9071578 crossref_primary_10_1016_j_biopha_2023_115004 crossref_primary_10_1186_s13046_022_02579_9 crossref_primary_10_1016_j_biopha_2023_115123 crossref_primary_10_1186_s13048_022_01022_z crossref_primary_10_1016_j_bmcl_2018_12_062 crossref_primary_10_1016_j_trecan_2021_04_008 crossref_primary_10_1016_j_mam_2021_100985 crossref_primary_10_1039_C9NR07725A crossref_primary_10_3389_fimmu_2022_1061959 crossref_primary_10_1186_s40425_018_0441_8 crossref_primary_10_1158_0008_5472_CAN_22_0770 crossref_primary_10_1016_j_intimp_2022_109567 crossref_primary_10_3389_fimmu_2023_1130358 crossref_primary_10_3389_fimmu_2023_1192907 crossref_primary_10_3389_fimmu_2020_621254 crossref_primary_10_4103_egjp_egjp_36_21 crossref_primary_10_1016_j_intimp_2022_109193 crossref_primary_10_1016_j_semcancer_2023_05_003 crossref_primary_10_1016_j_smim_2019_04_004 crossref_primary_10_3389_fimmu_2022_982821 crossref_primary_10_3389_fimmu_2022_844142 crossref_primary_10_1016_j_cellsig_2024_111281 crossref_primary_10_3390_cancers17010155 crossref_primary_10_1016_j_ctrv_2019_101931 crossref_primary_10_1038_s41577_020_0376_4 crossref_primary_10_3389_fimmu_2024_1478506 crossref_primary_10_1186_s12943_020_01238_x crossref_primary_10_1158_2326_6066_CIR_22_0113 crossref_primary_10_1016_j_tcb_2021_05_008 crossref_primary_10_17352_2455_8591_000028 crossref_primary_10_1007_s10555_023_10119_w crossref_primary_10_1080_14728222_2020_1758667 crossref_primary_10_3390_ijms242216065 crossref_primary_10_1016_j_ejmech_2020_113040 crossref_primary_10_2217_bmm_2023_0202 crossref_primary_10_3390_biomedicines12071568 crossref_primary_10_1016_j_biopha_2022_113066 crossref_primary_10_1016_j_tranon_2020_100930 crossref_primary_10_1080_2162402X_2019_1593809 crossref_primary_10_1016_j_critrevonc_2022_103592 crossref_primary_10_3389_fmolb_2019_00060 crossref_primary_10_1007_s12185_021_03209_4 crossref_primary_10_3390_cancers16020308 crossref_primary_10_1016_j_nantod_2023_101831 crossref_primary_10_1172_JCI168670 crossref_primary_10_1016_j_intimp_2018_07_023 crossref_primary_10_3389_fonc_2023_1058371 crossref_primary_10_3390_ijms23010164 crossref_primary_10_1155_2018_5837235 crossref_primary_10_3389_fimmu_2024_1434118 crossref_primary_10_1038_s41392_022_01058_z crossref_primary_10_3389_fimmu_2022_953849 crossref_primary_10_1007_s00262_020_02569_w crossref_primary_10_1007_s11302_024_09997_8 crossref_primary_10_1016_j_smim_2022_101709 crossref_primary_10_3390_molecules27154676 crossref_primary_10_1038_s41423_021_00727_3 crossref_primary_10_1016_j_apsb_2023_12_004 crossref_primary_10_1186_s12943_022_01672_z crossref_primary_10_1016_j_ejca_2025_115332 crossref_primary_10_1016_j_imbio_2019_11_010 crossref_primary_10_1186_s12967_024_05033_w crossref_primary_10_3390_cancers16183142 crossref_primary_10_1002_JLB_5MR0920_198RR crossref_primary_10_3389_fmed_2023_1147782 crossref_primary_10_1016_j_jpha_2022_05_006 crossref_primary_10_3390_ijms20174131 crossref_primary_10_29413_ABS_2024_9_5_6 crossref_primary_10_1126_sciimmunol_abq3015 crossref_primary_10_1158_1078_0432_CCR_22_1681 crossref_primary_10_3389_fimmu_2019_00925 crossref_primary_10_3390_cancers14164032 crossref_primary_10_3390_ijms24076688 crossref_primary_10_3390_cancers11040461 crossref_primary_10_1080_21645515_2025_2458936 crossref_primary_10_3390_cancers12123542 crossref_primary_10_1007_s13577_023_00957_9 crossref_primary_10_1159_000531798 crossref_primary_10_3390_cancers15102718 crossref_primary_10_1136_jitc_2021_004089 crossref_primary_10_1038_s41467_021_24902_2 crossref_primary_10_1158_1078_0432_CCR_19_2183 crossref_primary_10_3389_fimmu_2018_02517 crossref_primary_10_3390_ijms242417634 crossref_primary_10_1038_s41388_022_02562_w crossref_primary_10_1038_s41375_020_0811_3 crossref_primary_10_14348_molcells_2021_0044 crossref_primary_10_2147_DDDT_S374672 crossref_primary_10_3390_cancers12113452 crossref_primary_10_1016_j_semcancer_2019_08_002 crossref_primary_10_1091_mbc_E19_03_0136 crossref_primary_10_1038_s41568_022_00491_0 crossref_primary_10_1080_10837450_2023_2214201 crossref_primary_10_3390_ijms24065545 crossref_primary_10_1007_s00262_020_02717_2 crossref_primary_10_1038_s41571_021_00518_9 crossref_primary_10_1038_s41568_020_0272_z crossref_primary_10_1002_mco2_422 crossref_primary_10_3389_fonc_2023_1199105 crossref_primary_10_1002_1873_3468_14017 crossref_primary_10_3389_fimmu_2020_00275 crossref_primary_10_3390_cancers14030644 crossref_primary_10_3389_fimmu_2022_813218 crossref_primary_10_3389_fimmu_2021_743938 crossref_primary_10_3389_fonc_2022_872017 crossref_primary_10_3389_fimmu_2021_813832 crossref_primary_10_1146_annurev_cancerbio_030518_055817 crossref_primary_10_3389_fimmu_2019_01999 crossref_primary_10_1186_s12943_023_01733_x crossref_primary_10_2139_ssrn_4192018 crossref_primary_10_3390_ijms22147685 crossref_primary_10_3389_fimmu_2021_683381 crossref_primary_10_1124_pharmrev_120_000269 crossref_primary_10_5306_wjco_v13_i9_729 crossref_primary_10_1016_j_pharmthera_2022_108300 crossref_primary_10_3390_vaccines9101178 crossref_primary_10_1007_s10528_023_10345_5 crossref_primary_10_1080_09712119_2020_1735396 crossref_primary_10_3390_ijms222312919 crossref_primary_10_3390_ijms22031258 crossref_primary_10_3390_ijms241914928 crossref_primary_10_1038_s41392_024_01765_9 crossref_primary_10_1007_s13402_020_00523_7 crossref_primary_10_1111_bjh_17186 crossref_primary_10_3389_fimmu_2020_00940 crossref_primary_10_1038_s41598_022_11050_w crossref_primary_10_1111_imr_13333 crossref_primary_10_1016_j_addr_2021_114003 crossref_primary_10_3389_fimmu_2018_02533 crossref_primary_10_3390_cancers13040904 crossref_primary_10_1007_s12032_023_02066_x crossref_primary_10_1016_j_ctrv_2022_102379 crossref_primary_10_3390_brainsci14121286 crossref_primary_10_3390_cells9071612 crossref_primary_10_1002_cam4_6619 crossref_primary_10_3390_ijms22189878 crossref_primary_10_1126_scisignal_abb1269 crossref_primary_10_1158_2159_8290_CD_20_0556 crossref_primary_10_1016_j_bioactmat_2023_08_001 crossref_primary_10_1186_s13046_022_02430_1 crossref_primary_10_3390_ijms241411759 crossref_primary_10_1158_1535_7163_MCT_23_0843 crossref_primary_10_3390_jpm11111182 crossref_primary_10_1158_2159_8290_CD_19_0980 crossref_primary_10_3389_fimmu_2019_03038 crossref_primary_10_1007_s12672_022_00567_1 crossref_primary_10_1074_jbc_REV119_005601 crossref_primary_10_1136_jitc_2023_008594 crossref_primary_10_1016_j_jare_2024_06_014 crossref_primary_10_1158_2326_6066_CIR_19_0833 crossref_primary_10_1016_j_carbpol_2022_119452 crossref_primary_10_1016_j_coph_2020_07_005 crossref_primary_10_3390_ijms20225698 crossref_primary_10_3389_fimmu_2023_1201632 crossref_primary_10_1038_s41573_024_01098_w crossref_primary_10_1016_j_coph_2020_07_001 crossref_primary_10_1016_j_coph_2020_07_002 |
Cites_doi | 10.1002/eji.201343448 10.1016/j.celrep.2015.03.006 10.4049/jimmunol.166.11.6477 10.1016/j.ccell.2016.06.025 10.1158/0008-5472.CAN-11-3379 10.1084/jem.20062512 10.1158/0008-5472.CAN-13-3581 10.1084/jem.20150809 10.1158/0008-5472.CAN-08-3807 10.1186/1471-2105-12-323 10.1158/1078-0432.CCR-11-1347 10.1158/0008-5472.CAN-13-3583 10.1007/s00262-011-1040-4 10.3389/fimmu.2012.00190 10.1038/ni.3518 10.4049/jimmunol.175.7.4383 10.1158/0008-5472.CAN-06-0478 10.1038/ni.3800 10.1038/ni.3470 10.1016/j.immuni.2016.03.007 10.1038/414916a 10.1007/s00109-014-1189-3 10.1096/fj.08-107458 10.1016/S1471-4906(01)02060-9 10.1002/(SICI)1096-9861(19981116)401:2<163::AID-CNE2>3.0.CO;2-D 10.1158/0008-5472.CAN-11-2837 10.15252/embj.201487900 10.1172/JCI66236 10.1007/s00262-011-1155-7 10.1126/scitranslmed.aaa1260 10.1016/j.immuni.2015.12.007 10.1093/bioinformatics/bts635 10.1093/intimm/13.4.459 10.1016/j.clim.2015.10.001 10.1084/jem.20130249 10.1038/emboj.2012.155 10.4049/jimmunol.176.3.1517 10.1002/eji.201344272 10.1038/ni.2850 10.4049/jimmunol.178.8.4764 10.1073/pnas.1308209110 10.1111/j.1365-2567.2009.03075.x 10.1158/0008-5472.CAN-14-0957 10.4161/onci.23080 10.1182/blood-2007-09-077438 10.3389/fimmu.2012.00319 10.1093/bioinformatics/btp616 10.1016/j.bcp.2015.08.092 10.1073/pnas.0605251103 10.1038/ncomms5539 10.3389/fimmu.2016.00426 10.1182/blood-2013-09-524827 10.1158/2159-8290.CD-14-0341 10.1016/j.immuni.2015.02.006 10.1073/pnas.1112064108 |
ContentType | Journal Article |
Copyright | 2017 American Association for Cancer Research. Copyright American Association for Cancer Research, Inc. Feb 15, 2018 Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2017 American Association for Cancer Research. – notice: Copyright American Association for Cancer Research, Inc. Feb 15, 2018 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION NPM 7T5 7TM 7TO 7U9 8FD FR3 H94 P64 RC3 7X8 1XC |
DOI | 10.1158/0008-5472.CAN-17-2826 |
DatabaseName | CrossRef PubMed Immunology Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Engineering Research Database AIDS and Cancer Research Abstracts Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef PubMed Genetics Abstracts Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts AIDS and Cancer Research Abstracts Immunology Abstracts Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Genetics Abstracts PubMed CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1538-7445 |
EndPage | 1016 |
ExternalDocumentID | oai_HAL_hal_02024322v1 29229601 10_1158_0008_5472_CAN_17_2826 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NHLBI NIH HHS grantid: R01 HL111969 |
GroupedDBID | --- -ET 18M 29B 2WC 34G 39C 53G 5GY 5RE 5VS 6J9 AAFWJ AAJMC AAYXX ABOCM ACGFO ACIWK ACPRK ACSVP ADBBV ADCOW ADNWM AENEX AETEA AFHIN AFOSN AFRAH AFUMD ALMA_UNASSIGNED_HOLDINGS BAWUL BTFSW CITATION CS3 DIK DU5 EBS EJD F5P FRP GX1 H13 IH2 KQ8 L7B LSO OK1 P0W P2P PQQKQ RCR RHI RNS SJN TR2 W2D W8F WH7 WOQ YKV YZZ NPM 7T5 7TM 7TO 7U9 8FD FR3 H94 P64 RC3 7X8 1XC |
ID | FETCH-LOGICAL-c484t-377fc75cc3aab6cd75a8083bb7714b4096a6d3f13ce236ed6edbde23ba9f8be3 |
ISSN | 0008-5472 1538-7445 |
IngestDate | Wed Sep 17 06:25:50 EDT 2025 Thu Sep 04 18:35:44 EDT 2025 Sun Jul 13 02:49:27 EDT 2025 Thu Apr 03 07:05:39 EDT 2025 Thu Apr 24 22:57:58 EDT 2025 Tue Jul 01 01:19:14 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | 2017 American Association for Cancer Research. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c484t-377fc75cc3aab6cd75a8083bb7714b4096a6d3f13ce236ed6edbde23ba9f8be3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-1596-0998 0000-0001-6081-8494 0000-0001-7022-8287 |
OpenAccessLink | https://cancerres.aacrjournals.org/content/canres/78/4/1003.full.pdf |
PMID | 29229601 |
PQID | 2006917538 |
PQPubID | 105549 |
PageCount | 14 |
ParticipantIDs | hal_primary_oai_HAL_hal_02024322v1 proquest_miscellaneous_1976006910 proquest_journals_2006917538 pubmed_primary_29229601 crossref_citationtrail_10_1158_0008_5472_CAN_17_2826 crossref_primary_10_1158_0008_5472_CAN_17_2826 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-02-15 |
PublicationDateYYYYMMDD | 2018-02-15 |
PublicationDate_xml | – month: 02 year: 2018 text: 2018-02-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Baltimore |
PublicationTitle | Cancer research (Chicago, Ill.) |
PublicationTitleAlternate | Cancer Res |
PublicationYear | 2018 |
Publisher | American Association for Cancer Research, Inc American Association for Cancer Research |
Publisher_xml | – name: American Association for Cancer Research, Inc – name: American Association for Cancer Research |
References | Young (2022061706043350800_bib6) 2016; 30 Chaput (2022061706043350800_bib41) 2013; 2 Chan (2022061706043350800_bib26) 2014; 15 van Helden (2022061706043350800_bib24) 2015; 212 Narni-Mancinelli (2022061706043350800_bib27) 2011; 108 Campbell (2022061706043350800_bib55) 2001; 166 Martinet (2022061706043350800_bib18) 2015; 11 Ohta (2022061706043350800_bib9) 2012; 3 Cekic (2022061706043350800_bib11) 2013; 210 Raskovalova (2022061706043350800_bib13) 2005; 175 Cekic (2022061706043350800_bib46) 2014; 74 Ohta (2022061706043350800_bib3) 2006; 103 Cortez (2022061706043350800_bib53) 2016; 44 Lokshin (2022061706043350800_bib12) 2006; 66 Waickman (2022061706043350800_bib51) 2012; 61 Hatfield (2022061706043350800_bib5) 2014; 92 Dobin (2022061706043350800_bib32) 2013; 29 Eini (2022061706043350800_bib40) 2015; 98 Rosin (2022061706043350800_bib30) 1998; 401 Terme (2022061706043350800_bib38) 2012; 72 Hayakawa (2022061706043350800_bib16) 2006; 176 Delconte (2022061706043350800_bib21) 2016; 44 Vitale (2022061706043350800_bib44) 2014; 44 Beavis (2022061706043350800_bib4) 2013; 110 Hausler (2022061706043350800_bib52) 2011; 60 Guillerey (2022061706043350800_bib15) 2016; 17 Knight (2022061706043350800_bib28) 2013; 123 Revilla (2022061706043350800_bib36) 2012; 31 Balsamo (2022061706043350800_bib50) 2013; 43 Luevano (2022061706043350800_bib22) 2012; 3 Menard (2022061706043350800_bib42) 2009; 69 Cekic (2022061706043350800_bib7) 2014; 74 Linnemann (2022061706043350800_bib10) 2009; 128 Gao (2022061706043350800_bib31) 2017; 18 Deng (2022061706043350800_bib25) 2015; 42 Parkhurst (2022061706043350800_bib47) 2011; 17 Mittal (2022061706043350800_bib37) 2014; 74 Hatfield (2022061706043350800_bib49) 2015; 7 Csoka (2022061706043350800_bib8) 2008; 22 Sathe (2022061706043350800_bib20) 2014; 5 Smyth (2022061706043350800_bib39) 2001; 13 Robinson (2022061706043350800_bib34) 2010; 26 Young (2022061706043350800_bib2) 2014; 4 Delconte (2022061706043350800_bib35) 2016; 17 Holmes (2022061706043350800_bib23) 2014; 33 Krasnova (2022061706043350800_bib43) 2017; 177 Koya (2022061706043350800_bib29) 2012; 72 Huntington (2022061706043350800_bib17) 2007; 178 Ohta (2022061706043350800_bib1) 2001; 414 Cooper (2022061706043350800_bib54) 2001; 22 Jiao (2022061706043350800_bib14) 2016; 7 Caligiuri (2022061706043350800_bib19) 2008; 112 Chatterjee (2022061706043350800_bib48) 2014; 123 Li (2022061706043350800_bib33) 2011; 12 Deaglio (2022061706043350800_bib45) 2007; 204 |
References_xml | – volume: 43 start-page: 2756 year: 2013 ident: 2022061706043350800_bib50 article-title: Hypoxia downregulates the expression of activating receptors involved in NK-cell-mediated target cell killing without affecting ADCC publication-title: Eur J Immunol doi: 10.1002/eji.201343448 – volume: 11 start-page: 85 year: 2015 ident: 2022061706043350800_bib18 article-title: DNAM-1 expression marks an alternative program of NK cell maturation publication-title: Cell Rep doi: 10.1016/j.celrep.2015.03.006 – volume: 166 start-page: 6477 year: 2001 ident: 2022061706043350800_bib55 article-title: Unique subpopulations of CD56+ NK and NK-T peripheral blood lymphocytes identified by chemokine receptor expression repertoire publication-title: J Immunol doi: 10.4049/jimmunol.166.11.6477 – volume: 30 start-page: 391 year: 2016 ident: 2022061706043350800_bib6 article-title: Co-inhibition of CD73 and A2AR Adenosine signaling improves anti-tumor immune responses publication-title: Cancer Cell doi: 10.1016/j.ccell.2016.06.025 – volume: 72 start-page: 2757 year: 2012 ident: 2022061706043350800_bib38 article-title: Cancer-induced immunosuppression: IL-18-elicited immunoablative NK cells publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-11-3379 – volume: 204 start-page: 1257 year: 2007 ident: 2022061706043350800_bib45 article-title: Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression publication-title: J Exp Med doi: 10.1084/jem.20062512 – volume: 74 start-page: 7239 year: 2014 ident: 2022061706043350800_bib46 article-title: Adenosine A2A receptors intrinsically regulate CD8+ T cells in the tumor microenvironment publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-13-3581 – volume: 212 start-page: 2015 year: 2015 ident: 2022061706043350800_bib24 article-title: Terminal NK cell maturation is controlled by concerted actions of T-bet and Zeb2 and is essential for melanoma rejection publication-title: J Exp Med doi: 10.1084/jem.20150809 – volume: 69 start-page: 3563 year: 2009 ident: 2022061706043350800_bib42 article-title: Natural killer cell IFN-gamma levels predict long-term survival with imatinib mesylate therapy in gastrointestinal stromal tumor-bearing patients publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-08-3807 – volume: 12 start-page: 323 year: 2011 ident: 2022061706043350800_bib33 article-title: RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome publication-title: BMC Bioinform doi: 10.1186/1471-2105-12-323 – volume: 17 start-page: 6287 year: 2011 ident: 2022061706043350800_bib47 article-title: Adoptive transfer of autologous natural killer cells leads to high levels of circulating natural killer cells but does not mediate tumor regression publication-title: Clin Cancer Res doi: 10.1158/1078-0432.CCR-11-1347 – volume: 74 start-page: 7250 year: 2014 ident: 2022061706043350800_bib7 article-title: Myeloid expression of adenosine A2A receptor suppresses T and NK cell responses in the solid tumor microenvironment publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-13-3583 – volume: 60 start-page: 1405 year: 2011 ident: 2022061706043350800_bib52 article-title: Ectonucleotidases CD39 and CD73 on OvCA cells are potent adenosine-generating enzymes responsible for adenosine receptor 2A-dependent suppression of T cell function and NK cell cytotoxicity publication-title: Cancer Immunol Immunother doi: 10.1007/s00262-011-1040-4 – volume: 3 start-page: 190 year: 2012 ident: 2022061706043350800_bib9 article-title: The development and immunosuppressive functions of CD4(+) CD25(+) FoxP3(+) regulatory T cells are under influence of the adenosine-A2A adenosine receptor pathway publication-title: Front Immunol doi: 10.3389/fimmu.2012.00190 – volume: 17 start-page: 1025 year: 2016 ident: 2022061706043350800_bib15 article-title: Targeting natural killer cells in cancer immunotherapy publication-title: Nat Immunol doi: 10.1038/ni.3518 – volume: 175 start-page: 4383 year: 2005 ident: 2022061706043350800_bib13 article-title: Gs protein-coupled adenosine receptor signaling and lytic function of activated NK cells publication-title: J Immunol doi: 10.4049/jimmunol.175.7.4383 – volume: 66 start-page: 7758 year: 2006 ident: 2022061706043350800_bib12 article-title: Adenosine-mediated inhibition of the cytotoxic activity and cytokine production by activated natural killer cells publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-06-0478 – volume: 18 start-page: 1004 year: 2017 ident: 2022061706043350800_bib31 article-title: Tumor immunoevasion by the conversion of effector NK cells into type 1 innate lymphoid cells publication-title: Nat Immunol doi: 10.1038/ni.3800 – volume: 17 start-page: 816 year: 2016 ident: 2022061706043350800_bib35 article-title: CIS is a potent checkpoint in NK cell-mediated tumor immunity publication-title: Nat Immunol doi: 10.1038/ni.3470 – volume: 44 start-page: 1127 year: 2016 ident: 2022061706043350800_bib53 article-title: Transforming growth factor-beta signaling guides the differentiation of innate lymphoid cells in salivary glands publication-title: Immunity doi: 10.1016/j.immuni.2016.03.007 – volume: 414 start-page: 916 year: 2001 ident: 2022061706043350800_bib1 article-title: Role of G-protein-coupled adenosine receptors in downregulation of inflammation and protection from tissue damage publication-title: Nature doi: 10.1038/414916a – volume: 92 start-page: 1283 year: 2014 ident: 2022061706043350800_bib5 article-title: Systemic oxygenation weakens the hypoxia and hypoxia inducible factor 1alpha-dependent and extracellular adenosine-mediated tumor protection publication-title: J Mol Med doi: 10.1007/s00109-014-1189-3 – volume: 22 start-page: 3491 year: 2008 ident: 2022061706043350800_bib8 article-title: Adenosine A2A receptor activation inhibits T helper 1 and T helper 2 cell development and effector function publication-title: FASEB J doi: 10.1096/fj.08-107458 – volume: 22 start-page: 633 year: 2001 ident: 2022061706043350800_bib54 article-title: The biology of human natural killer-cell subsets publication-title: Trends Immunol doi: 10.1016/S1471-4906(01)02060-9 – volume: 401 start-page: 163 year: 1998 ident: 2022061706043350800_bib30 article-title: Immunohistochemical localization of adenosine A2A receptors in the rat central nervous system publication-title: J Comp Neurol doi: 10.1002/(SICI)1096-9861(19981116)401:2<163::AID-CNE2>3.0.CO;2-D – volume: 72 start-page: 3928 year: 2012 ident: 2022061706043350800_bib29 article-title: BRAF inhibitor vemurafenib improves the antitumor activity of adoptive cell immunotherapy publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-11-2837 – volume: 33 start-page: 2721 year: 2014 ident: 2022061706043350800_bib23 article-title: Peripheral natural killer cell maturation depends on the transcription factor Aiolos publication-title: EMBO J doi: 10.15252/embj.201487900 – volume: 123 start-page: 1371 year: 2013 ident: 2022061706043350800_bib28 article-title: Host immunity contributes to the anti-melanoma activity of BRAF inhibitors publication-title: J Clin Invest doi: 10.1172/JCI66236 – volume: 61 start-page: 917 year: 2012 ident: 2022061706043350800_bib51 article-title: Enhancement of tumor immunotherapy by deletion of the A2A adenosine receptor publication-title: Cancer Immunol Immunother doi: 10.1007/s00262-011-1155-7 – volume: 7 start-page: 277ra30 year: 2015 ident: 2022061706043350800_bib49 article-title: Immunological mechanisms of the antitumor effects of supplemental oxygenation publication-title: Sci Transl Med doi: 10.1126/scitranslmed.aaa1260 – volume: 44 start-page: 103 year: 2016 ident: 2022061706043350800_bib21 article-title: The Helix-Loop-Helix Protein ID2 governs NK cell fate by tuning their sensitivity to interleukin-15 publication-title: Immunity doi: 10.1016/j.immuni.2015.12.007 – volume: 29 start-page: 15 year: 2013 ident: 2022061706043350800_bib32 article-title: STAR: ultrafast universal RNA-seq aligner publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts635 – volume: 13 start-page: 459 year: 2001 ident: 2022061706043350800_bib39 article-title: NK cells and NKT cells collaborate in host protection from methylcholanthrene-induced fibrosarcoma publication-title: Int Immunol doi: 10.1093/intimm/13.4.459 – volume: 177 start-page: 50 year: 2017 ident: 2022061706043350800_bib43 article-title: Bench to bedside: NK cells and control of metastasis publication-title: Clin Immunol doi: 10.1016/j.clim.2015.10.001 – volume: 210 start-page: 2693 year: 2013 ident: 2022061706043350800_bib11 article-title: Extracellular adenosine regulates naive T cell development and peripheral maintenance publication-title: J Exp Med doi: 10.1084/jem.20130249 – volume: 31 start-page: 3130 year: 2012 ident: 2022061706043350800_bib36 article-title: The B-cell identity factor Pax5 regulates distinct transcriptional programmes in early and late B lymphopoiesis publication-title: EMBO J doi: 10.1038/emboj.2012.155 – volume: 176 start-page: 1517 year: 2006 ident: 2022061706043350800_bib16 article-title: CD27 dissects mature NK cells into two subsets with distinct responsiveness and migratory capacity publication-title: J Immunol doi: 10.4049/jimmunol.176.3.1517 – volume: 44 start-page: 1582 year: 2014 ident: 2022061706043350800_bib44 article-title: Effect of tumor cells and tumor microenvironment on NK-cell function publication-title: Eur J Immunol doi: 10.1002/eji.201344272 – volume: 15 start-page: 431 year: 2014 ident: 2022061706043350800_bib26 article-title: The receptors CD96 and CD226 oppose each other in the regulation of natural killer cell functions publication-title: Nat Immunol doi: 10.1038/ni.2850 – volume: 178 start-page: 4764 year: 2007 ident: 2022061706043350800_bib17 article-title: NK cell maturation and peripheral homeostasis is associated with KLRG1 up-regulation publication-title: J Immunol doi: 10.4049/jimmunol.178.8.4764 – volume: 110 start-page: 14711 year: 2013 ident: 2022061706043350800_bib4 article-title: Blockade of A2A receptors potently suppresses the metastasis of CD73+ tumors publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1308209110 – volume: 128 start-page: e728 year: 2009 ident: 2022061706043350800_bib10 article-title: Adenosine regulates CD8 T-cell priming by inhibition of membrane-proximal T-cell receptor signalling publication-title: Immunology doi: 10.1111/j.1365-2567.2009.03075.x – volume: 74 start-page: 3652 year: 2014 ident: 2022061706043350800_bib37 article-title: Antimetastatic effects of blocking PD-1 and the adenosine A2A receptor publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-14-0957 – volume: 2 start-page: e23080 year: 2013 ident: 2022061706043350800_bib41 article-title: Phase I clinical trial combining imatinib mesylate and IL-2: HLA-DR+ NK cell levels correlate with disease outcome publication-title: Oncoimmunology doi: 10.4161/onci.23080 – volume: 112 start-page: 461 year: 2008 ident: 2022061706043350800_bib19 article-title: Human natural killer cells publication-title: Blood doi: 10.1182/blood-2007-09-077438 – volume: 3 start-page: 319 year: 2012 ident: 2022061706043350800_bib22 article-title: Transcription factors involved in the regulation of natural killer cell development and function: an update publication-title: Front Immunol doi: 10.3389/fimmu.2012.00319 – volume: 26 start-page: 139 year: 2010 ident: 2022061706043350800_bib34 article-title: edgeR: a Bioconductor package for differential expression analysis of digital gene expression data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp616 – volume: 98 start-page: 110 year: 2015 ident: 2022061706043350800_bib40 article-title: Caffeine promotes anti-tumor immune response during tumor initiation: Involvement of the adenosine A2A receptor publication-title: Biochem Pharmacol doi: 10.1016/j.bcp.2015.08.092 – volume: 103 start-page: 13132 year: 2006 ident: 2022061706043350800_bib3 article-title: A2A adenosine receptor protects tumors from antitumor T cells publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0605251103 – volume: 5 start-page: 4539 year: 2014 ident: 2022061706043350800_bib20 article-title: Innate immunodeficiency following genetic ablation of Mcl1 in natural killer cells publication-title: Nat Commun doi: 10.1038/ncomms5539 – volume: 7 start-page: 426 year: 2016 ident: 2022061706043350800_bib14 article-title: Type 1 innate lymphoid cell biology: lessons learnt from natural killer cells publication-title: Front Immunol doi: 10.3389/fimmu.2016.00426 – volume: 123 start-page: 594 year: 2014 ident: 2022061706043350800_bib48 article-title: Natural killer cells acquire CD73 expression upon exposure to mesenchymal stem cells publication-title: Blood doi: 10.1182/blood-2013-09-524827 – volume: 4 start-page: 879 year: 2014 ident: 2022061706043350800_bib2 article-title: Targeting cancer-derived adenosine: new therapeutic approaches publication-title: Cancer Discov doi: 10.1158/2159-8290.CD-14-0341 – volume: 42 start-page: 457 year: 2015 ident: 2022061706043350800_bib25 article-title: Transcription factor Foxo1 is a negative regulator of natural killer cell maturation and function publication-title: Immunity doi: 10.1016/j.immuni.2015.02.006 – volume: 108 start-page: 18324 year: 2011 ident: 2022061706043350800_bib27 article-title: Fate mapping analysis of lymphoid cells expressing the NKp46 cell surface receptor publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1112064108 |
SSID | ssj0005105 |
Score | 2.6571116 |
Snippet | Extracellular adenosine is a key immunosuppressive metabolite that restricts activation of cytotoxic lymphocytes and impairs antitumor immune responses. Here,... Ablating adenosine signaling is found to promote natural killer cell maturation and antitumor immunity and reduce tumor growth.Extracellular adenosine is a key... |
SourceID | hal proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1003 |
SubjectTerms | Adenosine Antagonists Antitumor activity Cancer Cell activation Clonal deletion Cytotoxicity Homeostasis Immune response Immunosuppression Life Sciences Lymphocytes Maturation Natural killer cells T cell receptors |
Title | A2AR Adenosine Signaling Suppresses Natural Killer Cell Maturation in the Tumor Microenvironment |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29229601 https://www.proquest.com/docview/2006917538 https://www.proquest.com/docview/1976006910 https://amu.hal.science/hal-02024322 |
Volume | 78 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bjtMwELW6i4R4Qdy3sCCDeItSmsSJnceo2qqCtly2K5WnYCfOtlJJVm0DEr_FDzKTpKmBcpWqKHITu_KczsU-MybkeRLKTGM2jlAut9Hi2yKT0kZiE9fcdbWL-c6TaTC6YC_n_rzT-Wqwlsqt6iVfDuaV_I9UoQ3kilmy_yDZtlNogHuQL1xBwnD9KxlHbvTOilKs943O4vnyEt1qLLFdXlUEV71BNnJVWeNVlfRnDXCtblK1mTTHWfmxWCOHfl0YqW-m5zpAeKytpjjQotr9rWkclZpZrXrGokKrQ6K1xJ2NVvdPL5fFZ-t8AcMOi6Kxmkj_kYX1vlwZLW_ARiysKM_tCYbz5uqEI5DQXOdnGgkBoKkMsFX8yeZH7-iFPxE_0TexfVYf69PTe-XMWV1-cqe9uTBQygxV7PT7nmHWcZXisMnwRc2xrMfrDaKpDZYbQtEDJbqnr-PhxXgcz87msyNyzeXgsCET4O2-RL3f8GZ3HTZpYzDMi4ODfOcQHS2QjvurWKfyeWa3yM0mWKFRjbzbpKPzO-T6pKFj3CUfEIC0BSBtAUj3AKQNAGkNQIoApHsA0mVOAYC0AiD9EYD3yGx4NhuM7ObIDjthgm3BXPEs4X6SeFKqIEm5LwU4-Upx7jDFIF6WQepljpdo1wt0Ch-Vwq2SYSaU9u6T47zI9QmhSag8rG7mhIlkKpXC99G3ZjLjXDFHdgnbTVucNOXs8VSVVVyFtb5AWoWIcbZjmO3Y4THOdpf02teu6nouf3rhGcikfRarsY-icYxtEGm5DAziJ6dLTnciixv9sMEDXoMQC-GKLnnafg3aG7fkZK6LchM7IW6Mw2P9LnlQi7odyg1dNwz6zsPfd_6I3Nj_8U7J8XZd6sfgKG_VkwqY3wDl47qf |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A2AR+Adenosine+Signaling+Suppresses+Natural+Killer+Cell+Maturation+in+the+Tumor+Microenvironment&rft.jtitle=Cancer+research+%28Chicago%2C+Ill.%29&rft.au=Young%2C+Arabella&rft.au=Ngiow+Shin+Foong&rft.au=Gao+Yulong&rft.au=Patch+Ann-Marie&rft.date=2018-02-15&rft.pub=American+Association+for+Cancer+Research%2C+Inc&rft.issn=0008-5472&rft.eissn=1538-7445&rft.volume=78&rft.issue=4&rft.spage=1003&rft.epage=1016&rft_id=info:doi/10.1158%2F0008-5472.CAN-17-2826&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-5472&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-5472&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-5472&client=summon |