A2AR Adenosine Signaling Suppresses Natural Killer Cell Maturation in the Tumor Microenvironment

Extracellular adenosine is a key immunosuppressive metabolite that restricts activation of cytotoxic lymphocytes and impairs antitumor immune responses. Here, we show that engagement of A2A adenosine receptor (A2AR) acts as a checkpoint that limits the maturation of natural killer (NK) cells. Both g...

Full description

Saved in:
Bibliographic Details
Published inCancer research (Chicago, Ill.) Vol. 78; no. 4; pp. 1003 - 1016
Main Authors Young, Arabella, Ngiow, Shin Foong, Gao, Yulong, Patch, Ann-Marie, Barkauskas, Deborah S., Messaoudene, Meriem, Lin, Gene, Coudert, Jerome D., Stannard, Kimberley A., Zitvogel, Laurence, Degli-Esposti, Mariapia A., Vivier, Eric, Waddell, Nicola, Linden, Joel, Huntington, Nicholas D., Souza-Fonseca-Guimaraes, Fernando, Smyth, Mark J.
Format Journal Article
LanguageEnglish
Published United States American Association for Cancer Research, Inc 15.02.2018
American Association for Cancer Research
Subjects
Online AccessGet full text
ISSN0008-5472
1538-7445
1538-7445
DOI10.1158/0008-5472.CAN-17-2826

Cover

Abstract Extracellular adenosine is a key immunosuppressive metabolite that restricts activation of cytotoxic lymphocytes and impairs antitumor immune responses. Here, we show that engagement of A2A adenosine receptor (A2AR) acts as a checkpoint that limits the maturation of natural killer (NK) cells. Both global and NK-cell–specific conditional deletion of A2AR enhanced proportions of terminally mature NK cells at homeostasis, following reconstitution, and in the tumor microenvironment. Notably, A2AR-deficient, terminally mature NK cells retained proliferative capacity and exhibited heightened reconstitution in competitive transfer assays. Moreover, targeting A2AR specifically on NK cells also improved tumor control and delayed tumor initiation. Taken together, our results establish A2AR-mediated adenosine signaling as an intrinsic negative regulator of NK-cell maturation and antitumor immune responses. On the basis of these findings, we propose that administering A2AR antagonists concurrently with NK cell–based therapies may heighten therapeutic benefits by augmenting NK cell–mediated antitumor immunity. Significance: Ablating adenosine signaling is found to promote natural killer cell maturation and antitumor immunity and reduce tumor growth. Cancer Res; 78(4); 1003–16. ©2017 AACR.
AbstractList Extracellular adenosine is a key immunosuppressive metabolite that restricts activation of cytotoxic lymphocytes and impairs antitumor immune responses. Here, we show that engagement of A2A adenosine receptor (A2AR) acts as a checkpoint that limits the maturation of natural killer (NK) cells. Both global and NK-cell-specific conditional deletion of A2AR enhanced proportions of terminally mature NK cells at homeostasis, following reconstitution, and in the tumor microenvironment. Notably, A2AR-deficient, terminally mature NK cells retained proliferative capacity and exhibited heightened reconstitution in competitive transfer assays. Moreover, targeting A2AR specifically on NK cells also improved tumor control and delayed tumor initiation. Taken together, our results establish A2AR-mediated adenosine signaling as an intrinsic negative regulator of NK-cell maturation and antitumor immune responses. On the basis of these findings, we propose that administering A2AR antagonists concurrently with NK cell-based therapies may heighten therapeutic benefits by augmenting NK cell-mediated antitumor immunity.Significance: Ablating adenosine signaling is found to promote natural killer cell maturation and antitumor immunity and reduce tumor growth. Cancer Res; 78(4); 1003-16. ©2017 AACR.Extracellular adenosine is a key immunosuppressive metabolite that restricts activation of cytotoxic lymphocytes and impairs antitumor immune responses. Here, we show that engagement of A2A adenosine receptor (A2AR) acts as a checkpoint that limits the maturation of natural killer (NK) cells. Both global and NK-cell-specific conditional deletion of A2AR enhanced proportions of terminally mature NK cells at homeostasis, following reconstitution, and in the tumor microenvironment. Notably, A2AR-deficient, terminally mature NK cells retained proliferative capacity and exhibited heightened reconstitution in competitive transfer assays. Moreover, targeting A2AR specifically on NK cells also improved tumor control and delayed tumor initiation. Taken together, our results establish A2AR-mediated adenosine signaling as an intrinsic negative regulator of NK-cell maturation and antitumor immune responses. On the basis of these findings, we propose that administering A2AR antagonists concurrently with NK cell-based therapies may heighten therapeutic benefits by augmenting NK cell-mediated antitumor immunity.Significance: Ablating adenosine signaling is found to promote natural killer cell maturation and antitumor immunity and reduce tumor growth. Cancer Res; 78(4); 1003-16. ©2017 AACR.
Ablating adenosine signaling is found to promote natural killer cell maturation and antitumor immunity and reduce tumor growth.Extracellular adenosine is a key immunosuppressive metabolite that restricts activation of cytotoxic lymphocytes and impairs antitumor immune responses. Here, we show that engagement of A2A adenosine receptor (A2AR) acts as a checkpoint that limits the maturation of natural killer (NK) cells. Both global and NK-cell–specific conditional deletion of A2AR enhanced proportions of terminally mature NK cells at homeostasis, following reconstitution, and in the tumor microenvironment. Notably, A2AR-deficient, terminally mature NK cells retained proliferative capacity and exhibited heightened reconstitution in competitive transfer assays. Moreover, targeting A2AR specifically on NK cells also improved tumor control and delayed tumor initiation. Taken together, our results establish A2AR-mediated adenosine signaling as an intrinsic negative regulator of NK-cell maturation and antitumor immune responses. On the basis of these findings, we propose that administering A2AR antagonists concurrently with NK cell–based therapies may heighten therapeutic benefits by augmenting NK cell–mediated antitumor immunity.Significance: Ablating adenosine signaling is found to promote natural killer cell maturation and antitumor immunity and reduce tumor growth. Cancer Res; 78(4); 1003–16. ©2017 AACR.
Extracellular adenosine is a key immunosuppressive metabolite that restricts activation of cytotoxic lymphocytes and impairs antitumor immune responses. Here, we show that engagement of A2A adenosine receptor (A2AR) acts as a checkpoint that limits the maturation of natural killer (NK) cells. Both global and NK-cell-specific conditional deletion of A2AR enhanced proportions of terminally mature NK cells at homeostasis, following reconstitution, and in the tumor microenvironment. Notably, A2AR-deficient, terminally mature NK cells retained proliferative capacity and exhibited heightened reconstitution in competitive transfer assays. Moreover, targeting A2AR specifically on NK cells also improved tumor control and delayed tumor initiation. Taken together, our results establish A2AR-mediated adenosine signaling as an intrinsic negative regulator of NK-cell maturation and antitumor immune responses. On the basis of these findings, we propose that administering A2AR antagonists concurrently with NK cell-based therapies may heighten therapeutic benefits by augmenting NK cell-mediated antitumor immunity. Ablating adenosine signaling is found to promote natural killer cell maturation and antitumor immunity and reduce tumor growth. .
Extracellular adenosine is a key immunosuppressive metabolite that restricts activation of cytotoxic lymphocytes and impairs antitumor immune responses. Here, we show that engagement of A2A adenosine receptor (A2AR) acts as a checkpoint that limits the maturation of natural killer (NK) cells. Both global and NK-cell–specific conditional deletion of A2AR enhanced proportions of terminally mature NK cells at homeostasis, following reconstitution, and in the tumor microenvironment. Notably, A2AR-deficient, terminally mature NK cells retained proliferative capacity and exhibited heightened reconstitution in competitive transfer assays. Moreover, targeting A2AR specifically on NK cells also improved tumor control and delayed tumor initiation. Taken together, our results establish A2AR-mediated adenosine signaling as an intrinsic negative regulator of NK-cell maturation and antitumor immune responses. On the basis of these findings, we propose that administering A2AR antagonists concurrently with NK cell–based therapies may heighten therapeutic benefits by augmenting NK cell–mediated antitumor immunity. Significance: Ablating adenosine signaling is found to promote natural killer cell maturation and antitumor immunity and reduce tumor growth. Cancer Res; 78(4); 1003–16. ©2017 AACR.
Author Barkauskas, Deborah S.
Zitvogel, Laurence
Waddell, Nicola
Linden, Joel
Souza-Fonseca-Guimaraes, Fernando
Lin, Gene
Gao, Yulong
Degli-Esposti, Mariapia A.
Young, Arabella
Coudert, Jerome D.
Vivier, Eric
Ngiow, Shin Foong
Huntington, Nicholas D.
Smyth, Mark J.
Messaoudene, Meriem
Stannard, Kimberley A.
Patch, Ann-Marie
Author_xml – sequence: 1
  givenname: Arabella
  surname: Young
  fullname: Young, Arabella
– sequence: 2
  givenname: Shin Foong
  surname: Ngiow
  fullname: Ngiow, Shin Foong
– sequence: 3
  givenname: Yulong
  surname: Gao
  fullname: Gao, Yulong
– sequence: 4
  givenname: Ann-Marie
  surname: Patch
  fullname: Patch, Ann-Marie
– sequence: 5
  givenname: Deborah S.
  surname: Barkauskas
  fullname: Barkauskas, Deborah S.
– sequence: 6
  givenname: Meriem
  surname: Messaoudene
  fullname: Messaoudene, Meriem
– sequence: 7
  givenname: Gene
  surname: Lin
  fullname: Lin, Gene
– sequence: 8
  givenname: Jerome D.
  surname: Coudert
  fullname: Coudert, Jerome D.
– sequence: 9
  givenname: Kimberley A.
  surname: Stannard
  fullname: Stannard, Kimberley A.
– sequence: 10
  givenname: Laurence
  surname: Zitvogel
  fullname: Zitvogel, Laurence
– sequence: 11
  givenname: Mariapia A.
  surname: Degli-Esposti
  fullname: Degli-Esposti, Mariapia A.
– sequence: 12
  givenname: Eric
  surname: Vivier
  fullname: Vivier, Eric
– sequence: 13
  givenname: Nicola
  surname: Waddell
  fullname: Waddell, Nicola
– sequence: 14
  givenname: Joel
  surname: Linden
  fullname: Linden, Joel
– sequence: 15
  givenname: Nicholas D.
  surname: Huntington
  fullname: Huntington, Nicholas D.
– sequence: 16
  givenname: Fernando
  surname: Souza-Fonseca-Guimaraes
  fullname: Souza-Fonseca-Guimaraes, Fernando
– sequence: 17
  givenname: Mark J.
  surname: Smyth
  fullname: Smyth, Mark J.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29229601$$D View this record in MEDLINE/PubMed
https://amu.hal.science/hal-02024322$$DView record in HAL
BookMark eNp9kU9v1DAQxS1URLeFjwCyxAUOKf4Tx4k4RSugVbdFons3jjNpXTn2YieV-PY4u20PPSBZsmf0ezPyeyfoyAcPCL2n5IxSUX8hhNSFKCU7W7fXBZUFq1n1Cq2o4HUhy1IcodUzc4xOUrrPpaBEvEHHrGGsqQhdod8ta3_htgcfkvWAb-yt1876W3wz73YRUoKEr_U0R-3wpXUOIl6Dc_hq35ts8Nh6PN0B3s5jiPjKmhjAP9gY_Ah-eoteD9olePd4n6Lt92_b9Xmx-fnjYt1uClPW5VRwKQcjhTFc664yvRS6JjXvOilp2ZWkqXTV84FyA4xX0OfT9fnZ6WaoO-Cn6PNh7J12ahftqONfFbRV5-1GLT3CCCs5Yw80s58O7C6GPzOkSY02mfwp7SHMSdFGVoRUDSUZ_fgCvQ9zzA4lxfaIzHZn6sMjNXcj9M_7n2zOwNcDkL1JKcKgjJ325k1RW6coUUuoaglMLYGpHKqiUi2hZrV4oX5a8H_dPwWkpDw
CitedBy_id crossref_primary_10_1002_med_21796
crossref_primary_10_1016_j_bioactmat_2022_09_017
crossref_primary_10_1016_j_xcrm_2023_101188
crossref_primary_10_3390_cancers14194843
crossref_primary_10_1016_j_prp_2023_154423
crossref_primary_10_1007_s00284_022_03116_9
crossref_primary_10_1016_j_ymthe_2024_12_057
crossref_primary_10_1186_s40364_023_00500_w
crossref_primary_10_1002_advs_202104182
crossref_primary_10_1007_s11302_018_9641_4
crossref_primary_10_1021_acs_jafc_3c03851
crossref_primary_10_1007_s11302_023_09976_5
crossref_primary_10_1016_j_bbcan_2023_189023
crossref_primary_10_1093_cei_uxac099
crossref_primary_10_1016_j_trecan_2024_11_001
crossref_primary_10_3390_cancers11091217
crossref_primary_10_1021_acs_jmedchem_2c00101
crossref_primary_10_1016_j_jcms_2023_08_002
crossref_primary_10_1172_jci_insight_174675
crossref_primary_10_1002_iid3_826
crossref_primary_10_1038_s41423_024_01207_0
crossref_primary_10_1016_j_bbmt_2020_09_030
crossref_primary_10_1158_0008_5472_CAN_21_0340
crossref_primary_10_1186_s13287_021_02377_8
crossref_primary_10_1111_imcb_12045
crossref_primary_10_3389_fimmu_2022_1016817
crossref_primary_10_3389_fimmu_2020_01295
crossref_primary_10_1186_s12943_021_01492_7
crossref_primary_10_3389_fcell_2024_1471072
crossref_primary_10_1080_08923973_2020_1742733
crossref_primary_10_3389_fcell_2022_876510
crossref_primary_10_3390_cancers13133225
crossref_primary_10_1016_j_jbc_2025_108206
crossref_primary_10_1016_j_biomaterials_2024_123000
crossref_primary_10_3389_fimmu_2023_1212209
crossref_primary_10_3389_fonc_2022_821578
crossref_primary_10_1038_s41586_024_08290_3
crossref_primary_10_3389_fimmu_2020_00508
crossref_primary_10_3390_ijms19123837
crossref_primary_10_1186_s13045_021_01179_y
crossref_primary_10_3390_cancers12040852
crossref_primary_10_3389_fimmu_2019_02278
crossref_primary_10_3389_fonc_2022_887257
crossref_primary_10_1016_j_bcp_2023_116006
crossref_primary_10_3389_fonc_2022_1101503
crossref_primary_10_62347_XVFP6530
crossref_primary_10_1038_s41568_020_0273_y
crossref_primary_10_1007_s11033_024_09382_z
crossref_primary_10_1038_s41423_020_00632_1
crossref_primary_10_1016_j_bbcan_2023_189005
crossref_primary_10_3390_cancers13020217
crossref_primary_10_1136_jitc_2019_000417
crossref_primary_10_1093_jleuko_qiad126
crossref_primary_10_3390_cancers13040711
crossref_primary_10_1007_s10142_023_01281_z
crossref_primary_10_3390_ijms252212223
crossref_primary_10_3390_ijms24108871
crossref_primary_10_1002_cti2_1238
crossref_primary_10_1007_s12262_020_02396_4
crossref_primary_10_3390_vaccines10071033
crossref_primary_10_3389_fimmu_2020_607131
crossref_primary_10_1080_17460441_2018_1534825
crossref_primary_10_3390_cimb47010024
crossref_primary_10_1515_phys_2022_0013
crossref_primary_10_1002_cbf_3784
crossref_primary_10_1038_s41467_023_42734_0
crossref_primary_10_3390_biology12020218
crossref_primary_10_1007_s00262_022_03219_z
crossref_primary_10_3389_fimmu_2023_1149622
crossref_primary_10_1038_s41573_019_0052_1
crossref_primary_10_3390_ijms23137030
crossref_primary_10_1038_s41392_024_02005_w
crossref_primary_10_3390_cancers13174263
crossref_primary_10_1016_j_critrevonc_2021_103541
crossref_primary_10_1021_acsnano_9b10103
crossref_primary_10_1111_bph_15103
crossref_primary_10_1038_s41401_020_0424_4
crossref_primary_10_1016_j_cej_2022_138139
crossref_primary_10_1016_j_tips_2023_08_009
crossref_primary_10_1007_s11302_020_09701_6
crossref_primary_10_1186_s40164_023_00431_0
crossref_primary_10_1002_med_21765
crossref_primary_10_3389_fimmu_2021_707542
crossref_primary_10_3389_fonc_2020_594782
crossref_primary_10_3390_cells10071621
crossref_primary_10_3389_fimmu_2020_570041
crossref_primary_10_1002_advs_202417357
crossref_primary_10_3390_cancers13020229
crossref_primary_10_1371_journal_pone_0301223
crossref_primary_10_3390_ijms22052550
crossref_primary_10_1007_s12609_023_00492_4
crossref_primary_10_1186_s13287_022_02769_4
crossref_primary_10_1186_s12935_020_01195_x
crossref_primary_10_1186_s40001_023_01383_1
crossref_primary_10_3389_fimmu_2020_01633
crossref_primary_10_1007_s10555_022_10060_4
crossref_primary_10_1016_j_biopha_2023_114601
crossref_primary_10_1038_s41577_022_00732_1
crossref_primary_10_1186_s13023_023_02953_6
crossref_primary_10_1007_s00109_018_1679_9
crossref_primary_10_1186_s13046_022_02457_4
crossref_primary_10_1021_acs_jmedchem_4c00250
crossref_primary_10_15252_embj_2021108130
crossref_primary_10_3389_fimmu_2020_01989
crossref_primary_10_1186_s13287_021_02277_x
crossref_primary_10_1016_j_smim_2020_101417
crossref_primary_10_3390_cancers12123851
crossref_primary_10_1038_s41392_020_00348_8
crossref_primary_10_3390_cancers13040872
crossref_primary_10_1038_s41571_020_0382_2
crossref_primary_10_3390_cells9071578
crossref_primary_10_1016_j_biopha_2023_115004
crossref_primary_10_1186_s13046_022_02579_9
crossref_primary_10_1016_j_biopha_2023_115123
crossref_primary_10_1186_s13048_022_01022_z
crossref_primary_10_1016_j_bmcl_2018_12_062
crossref_primary_10_1016_j_trecan_2021_04_008
crossref_primary_10_1016_j_mam_2021_100985
crossref_primary_10_1039_C9NR07725A
crossref_primary_10_3389_fimmu_2022_1061959
crossref_primary_10_1186_s40425_018_0441_8
crossref_primary_10_1158_0008_5472_CAN_22_0770
crossref_primary_10_1016_j_intimp_2022_109567
crossref_primary_10_3389_fimmu_2023_1130358
crossref_primary_10_3389_fimmu_2023_1192907
crossref_primary_10_3389_fimmu_2020_621254
crossref_primary_10_4103_egjp_egjp_36_21
crossref_primary_10_1016_j_intimp_2022_109193
crossref_primary_10_1016_j_semcancer_2023_05_003
crossref_primary_10_1016_j_smim_2019_04_004
crossref_primary_10_3389_fimmu_2022_982821
crossref_primary_10_3389_fimmu_2022_844142
crossref_primary_10_1016_j_cellsig_2024_111281
crossref_primary_10_3390_cancers17010155
crossref_primary_10_1016_j_ctrv_2019_101931
crossref_primary_10_1038_s41577_020_0376_4
crossref_primary_10_3389_fimmu_2024_1478506
crossref_primary_10_1186_s12943_020_01238_x
crossref_primary_10_1158_2326_6066_CIR_22_0113
crossref_primary_10_1016_j_tcb_2021_05_008
crossref_primary_10_17352_2455_8591_000028
crossref_primary_10_1007_s10555_023_10119_w
crossref_primary_10_1080_14728222_2020_1758667
crossref_primary_10_3390_ijms242216065
crossref_primary_10_1016_j_ejmech_2020_113040
crossref_primary_10_2217_bmm_2023_0202
crossref_primary_10_3390_biomedicines12071568
crossref_primary_10_1016_j_biopha_2022_113066
crossref_primary_10_1016_j_tranon_2020_100930
crossref_primary_10_1080_2162402X_2019_1593809
crossref_primary_10_1016_j_critrevonc_2022_103592
crossref_primary_10_3389_fmolb_2019_00060
crossref_primary_10_1007_s12185_021_03209_4
crossref_primary_10_3390_cancers16020308
crossref_primary_10_1016_j_nantod_2023_101831
crossref_primary_10_1172_JCI168670
crossref_primary_10_1016_j_intimp_2018_07_023
crossref_primary_10_3389_fonc_2023_1058371
crossref_primary_10_3390_ijms23010164
crossref_primary_10_1155_2018_5837235
crossref_primary_10_3389_fimmu_2024_1434118
crossref_primary_10_1038_s41392_022_01058_z
crossref_primary_10_3389_fimmu_2022_953849
crossref_primary_10_1007_s00262_020_02569_w
crossref_primary_10_1007_s11302_024_09997_8
crossref_primary_10_1016_j_smim_2022_101709
crossref_primary_10_3390_molecules27154676
crossref_primary_10_1038_s41423_021_00727_3
crossref_primary_10_1016_j_apsb_2023_12_004
crossref_primary_10_1186_s12943_022_01672_z
crossref_primary_10_1016_j_ejca_2025_115332
crossref_primary_10_1016_j_imbio_2019_11_010
crossref_primary_10_1186_s12967_024_05033_w
crossref_primary_10_3390_cancers16183142
crossref_primary_10_1002_JLB_5MR0920_198RR
crossref_primary_10_3389_fmed_2023_1147782
crossref_primary_10_1016_j_jpha_2022_05_006
crossref_primary_10_3390_ijms20174131
crossref_primary_10_29413_ABS_2024_9_5_6
crossref_primary_10_1126_sciimmunol_abq3015
crossref_primary_10_1158_1078_0432_CCR_22_1681
crossref_primary_10_3389_fimmu_2019_00925
crossref_primary_10_3390_cancers14164032
crossref_primary_10_3390_ijms24076688
crossref_primary_10_3390_cancers11040461
crossref_primary_10_1080_21645515_2025_2458936
crossref_primary_10_3390_cancers12123542
crossref_primary_10_1007_s13577_023_00957_9
crossref_primary_10_1159_000531798
crossref_primary_10_3390_cancers15102718
crossref_primary_10_1136_jitc_2021_004089
crossref_primary_10_1038_s41467_021_24902_2
crossref_primary_10_1158_1078_0432_CCR_19_2183
crossref_primary_10_3389_fimmu_2018_02517
crossref_primary_10_3390_ijms242417634
crossref_primary_10_1038_s41388_022_02562_w
crossref_primary_10_1038_s41375_020_0811_3
crossref_primary_10_14348_molcells_2021_0044
crossref_primary_10_2147_DDDT_S374672
crossref_primary_10_3390_cancers12113452
crossref_primary_10_1016_j_semcancer_2019_08_002
crossref_primary_10_1091_mbc_E19_03_0136
crossref_primary_10_1038_s41568_022_00491_0
crossref_primary_10_1080_10837450_2023_2214201
crossref_primary_10_3390_ijms24065545
crossref_primary_10_1007_s00262_020_02717_2
crossref_primary_10_1038_s41571_021_00518_9
crossref_primary_10_1038_s41568_020_0272_z
crossref_primary_10_1002_mco2_422
crossref_primary_10_3389_fonc_2023_1199105
crossref_primary_10_1002_1873_3468_14017
crossref_primary_10_3389_fimmu_2020_00275
crossref_primary_10_3390_cancers14030644
crossref_primary_10_3389_fimmu_2022_813218
crossref_primary_10_3389_fimmu_2021_743938
crossref_primary_10_3389_fonc_2022_872017
crossref_primary_10_3389_fimmu_2021_813832
crossref_primary_10_1146_annurev_cancerbio_030518_055817
crossref_primary_10_3389_fimmu_2019_01999
crossref_primary_10_1186_s12943_023_01733_x
crossref_primary_10_2139_ssrn_4192018
crossref_primary_10_3390_ijms22147685
crossref_primary_10_3389_fimmu_2021_683381
crossref_primary_10_1124_pharmrev_120_000269
crossref_primary_10_5306_wjco_v13_i9_729
crossref_primary_10_1016_j_pharmthera_2022_108300
crossref_primary_10_3390_vaccines9101178
crossref_primary_10_1007_s10528_023_10345_5
crossref_primary_10_1080_09712119_2020_1735396
crossref_primary_10_3390_ijms222312919
crossref_primary_10_3390_ijms22031258
crossref_primary_10_3390_ijms241914928
crossref_primary_10_1038_s41392_024_01765_9
crossref_primary_10_1007_s13402_020_00523_7
crossref_primary_10_1111_bjh_17186
crossref_primary_10_3389_fimmu_2020_00940
crossref_primary_10_1038_s41598_022_11050_w
crossref_primary_10_1111_imr_13333
crossref_primary_10_1016_j_addr_2021_114003
crossref_primary_10_3389_fimmu_2018_02533
crossref_primary_10_3390_cancers13040904
crossref_primary_10_1007_s12032_023_02066_x
crossref_primary_10_1016_j_ctrv_2022_102379
crossref_primary_10_3390_brainsci14121286
crossref_primary_10_3390_cells9071612
crossref_primary_10_1002_cam4_6619
crossref_primary_10_3390_ijms22189878
crossref_primary_10_1126_scisignal_abb1269
crossref_primary_10_1158_2159_8290_CD_20_0556
crossref_primary_10_1016_j_bioactmat_2023_08_001
crossref_primary_10_1186_s13046_022_02430_1
crossref_primary_10_3390_ijms241411759
crossref_primary_10_1158_1535_7163_MCT_23_0843
crossref_primary_10_3390_jpm11111182
crossref_primary_10_1158_2159_8290_CD_19_0980
crossref_primary_10_3389_fimmu_2019_03038
crossref_primary_10_1007_s12672_022_00567_1
crossref_primary_10_1074_jbc_REV119_005601
crossref_primary_10_1136_jitc_2023_008594
crossref_primary_10_1016_j_jare_2024_06_014
crossref_primary_10_1158_2326_6066_CIR_19_0833
crossref_primary_10_1016_j_carbpol_2022_119452
crossref_primary_10_1016_j_coph_2020_07_005
crossref_primary_10_3390_ijms20225698
crossref_primary_10_3389_fimmu_2023_1201632
crossref_primary_10_1038_s41573_024_01098_w
crossref_primary_10_1016_j_coph_2020_07_001
crossref_primary_10_1016_j_coph_2020_07_002
Cites_doi 10.1002/eji.201343448
10.1016/j.celrep.2015.03.006
10.4049/jimmunol.166.11.6477
10.1016/j.ccell.2016.06.025
10.1158/0008-5472.CAN-11-3379
10.1084/jem.20062512
10.1158/0008-5472.CAN-13-3581
10.1084/jem.20150809
10.1158/0008-5472.CAN-08-3807
10.1186/1471-2105-12-323
10.1158/1078-0432.CCR-11-1347
10.1158/0008-5472.CAN-13-3583
10.1007/s00262-011-1040-4
10.3389/fimmu.2012.00190
10.1038/ni.3518
10.4049/jimmunol.175.7.4383
10.1158/0008-5472.CAN-06-0478
10.1038/ni.3800
10.1038/ni.3470
10.1016/j.immuni.2016.03.007
10.1038/414916a
10.1007/s00109-014-1189-3
10.1096/fj.08-107458
10.1016/S1471-4906(01)02060-9
10.1002/(SICI)1096-9861(19981116)401:2<163::AID-CNE2>3.0.CO;2-D
10.1158/0008-5472.CAN-11-2837
10.15252/embj.201487900
10.1172/JCI66236
10.1007/s00262-011-1155-7
10.1126/scitranslmed.aaa1260
10.1016/j.immuni.2015.12.007
10.1093/bioinformatics/bts635
10.1093/intimm/13.4.459
10.1016/j.clim.2015.10.001
10.1084/jem.20130249
10.1038/emboj.2012.155
10.4049/jimmunol.176.3.1517
10.1002/eji.201344272
10.1038/ni.2850
10.4049/jimmunol.178.8.4764
10.1073/pnas.1308209110
10.1111/j.1365-2567.2009.03075.x
10.1158/0008-5472.CAN-14-0957
10.4161/onci.23080
10.1182/blood-2007-09-077438
10.3389/fimmu.2012.00319
10.1093/bioinformatics/btp616
10.1016/j.bcp.2015.08.092
10.1073/pnas.0605251103
10.1038/ncomms5539
10.3389/fimmu.2016.00426
10.1182/blood-2013-09-524827
10.1158/2159-8290.CD-14-0341
10.1016/j.immuni.2015.02.006
10.1073/pnas.1112064108
ContentType Journal Article
Copyright 2017 American Association for Cancer Research.
Copyright American Association for Cancer Research, Inc. Feb 15, 2018
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2017 American Association for Cancer Research.
– notice: Copyright American Association for Cancer Research, Inc. Feb 15, 2018
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
NPM
7T5
7TM
7TO
7U9
8FD
FR3
H94
P64
RC3
7X8
1XC
DOI 10.1158/0008-5472.CAN-17-2826
DatabaseName CrossRef
PubMed
Immunology Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Engineering Research Database
AIDS and Cancer Research Abstracts
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
PubMed
Genetics Abstracts
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
AIDS and Cancer Research Abstracts
Immunology Abstracts
Engineering Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Genetics Abstracts
PubMed
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1538-7445
EndPage 1016
ExternalDocumentID oai_HAL_hal_02024322v1
29229601
10_1158_0008_5472_CAN_17_2826
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: R01 HL111969
GroupedDBID ---
-ET
18M
29B
2WC
34G
39C
53G
5GY
5RE
5VS
6J9
AAFWJ
AAJMC
AAYXX
ABOCM
ACGFO
ACIWK
ACPRK
ACSVP
ADBBV
ADCOW
ADNWM
AENEX
AETEA
AFHIN
AFOSN
AFRAH
AFUMD
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BTFSW
CITATION
CS3
DIK
DU5
EBS
EJD
F5P
FRP
GX1
H13
IH2
KQ8
L7B
LSO
OK1
P0W
P2P
PQQKQ
RCR
RHI
RNS
SJN
TR2
W2D
W8F
WH7
WOQ
YKV
YZZ
NPM
7T5
7TM
7TO
7U9
8FD
FR3
H94
P64
RC3
7X8
1XC
ID FETCH-LOGICAL-c484t-377fc75cc3aab6cd75a8083bb7714b4096a6d3f13ce236ed6edbde23ba9f8be3
ISSN 0008-5472
1538-7445
IngestDate Wed Sep 17 06:25:50 EDT 2025
Thu Sep 04 18:35:44 EDT 2025
Sun Jul 13 02:49:27 EDT 2025
Thu Apr 03 07:05:39 EDT 2025
Thu Apr 24 22:57:58 EDT 2025
Tue Jul 01 01:19:14 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License 2017 American Association for Cancer Research.
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c484t-377fc75cc3aab6cd75a8083bb7714b4096a6d3f13ce236ed6edbde23ba9f8be3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1596-0998
0000-0001-6081-8494
0000-0001-7022-8287
OpenAccessLink https://cancerres.aacrjournals.org/content/canres/78/4/1003.full.pdf
PMID 29229601
PQID 2006917538
PQPubID 105549
PageCount 14
ParticipantIDs hal_primary_oai_HAL_hal_02024322v1
proquest_miscellaneous_1976006910
proquest_journals_2006917538
pubmed_primary_29229601
crossref_citationtrail_10_1158_0008_5472_CAN_17_2826
crossref_primary_10_1158_0008_5472_CAN_17_2826
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-02-15
PublicationDateYYYYMMDD 2018-02-15
PublicationDate_xml – month: 02
  year: 2018
  text: 2018-02-15
  day: 15
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Baltimore
PublicationTitle Cancer research (Chicago, Ill.)
PublicationTitleAlternate Cancer Res
PublicationYear 2018
Publisher American Association for Cancer Research, Inc
American Association for Cancer Research
Publisher_xml – name: American Association for Cancer Research, Inc
– name: American Association for Cancer Research
References Young (2022061706043350800_bib6) 2016; 30
Chaput (2022061706043350800_bib41) 2013; 2
Chan (2022061706043350800_bib26) 2014; 15
van Helden (2022061706043350800_bib24) 2015; 212
Narni-Mancinelli (2022061706043350800_bib27) 2011; 108
Campbell (2022061706043350800_bib55) 2001; 166
Martinet (2022061706043350800_bib18) 2015; 11
Ohta (2022061706043350800_bib9) 2012; 3
Cekic (2022061706043350800_bib11) 2013; 210
Raskovalova (2022061706043350800_bib13) 2005; 175
Cekic (2022061706043350800_bib46) 2014; 74
Ohta (2022061706043350800_bib3) 2006; 103
Cortez (2022061706043350800_bib53) 2016; 44
Lokshin (2022061706043350800_bib12) 2006; 66
Waickman (2022061706043350800_bib51) 2012; 61
Hatfield (2022061706043350800_bib5) 2014; 92
Dobin (2022061706043350800_bib32) 2013; 29
Eini (2022061706043350800_bib40) 2015; 98
Rosin (2022061706043350800_bib30) 1998; 401
Terme (2022061706043350800_bib38) 2012; 72
Hayakawa (2022061706043350800_bib16) 2006; 176
Delconte (2022061706043350800_bib21) 2016; 44
Vitale (2022061706043350800_bib44) 2014; 44
Beavis (2022061706043350800_bib4) 2013; 110
Hausler (2022061706043350800_bib52) 2011; 60
Guillerey (2022061706043350800_bib15) 2016; 17
Knight (2022061706043350800_bib28) 2013; 123
Revilla (2022061706043350800_bib36) 2012; 31
Balsamo (2022061706043350800_bib50) 2013; 43
Luevano (2022061706043350800_bib22) 2012; 3
Menard (2022061706043350800_bib42) 2009; 69
Cekic (2022061706043350800_bib7) 2014; 74
Linnemann (2022061706043350800_bib10) 2009; 128
Gao (2022061706043350800_bib31) 2017; 18
Deng (2022061706043350800_bib25) 2015; 42
Parkhurst (2022061706043350800_bib47) 2011; 17
Mittal (2022061706043350800_bib37) 2014; 74
Hatfield (2022061706043350800_bib49) 2015; 7
Csoka (2022061706043350800_bib8) 2008; 22
Sathe (2022061706043350800_bib20) 2014; 5
Smyth (2022061706043350800_bib39) 2001; 13
Robinson (2022061706043350800_bib34) 2010; 26
Young (2022061706043350800_bib2) 2014; 4
Delconte (2022061706043350800_bib35) 2016; 17
Holmes (2022061706043350800_bib23) 2014; 33
Krasnova (2022061706043350800_bib43) 2017; 177
Koya (2022061706043350800_bib29) 2012; 72
Huntington (2022061706043350800_bib17) 2007; 178
Ohta (2022061706043350800_bib1) 2001; 414
Cooper (2022061706043350800_bib54) 2001; 22
Jiao (2022061706043350800_bib14) 2016; 7
Caligiuri (2022061706043350800_bib19) 2008; 112
Chatterjee (2022061706043350800_bib48) 2014; 123
Li (2022061706043350800_bib33) 2011; 12
Deaglio (2022061706043350800_bib45) 2007; 204
References_xml – volume: 43
  start-page: 2756
  year: 2013
  ident: 2022061706043350800_bib50
  article-title: Hypoxia downregulates the expression of activating receptors involved in NK-cell-mediated target cell killing without affecting ADCC
  publication-title: Eur J Immunol
  doi: 10.1002/eji.201343448
– volume: 11
  start-page: 85
  year: 2015
  ident: 2022061706043350800_bib18
  article-title: DNAM-1 expression marks an alternative program of NK cell maturation
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2015.03.006
– volume: 166
  start-page: 6477
  year: 2001
  ident: 2022061706043350800_bib55
  article-title: Unique subpopulations of CD56+ NK and NK-T peripheral blood lymphocytes identified by chemokine receptor expression repertoire
  publication-title: J Immunol
  doi: 10.4049/jimmunol.166.11.6477
– volume: 30
  start-page: 391
  year: 2016
  ident: 2022061706043350800_bib6
  article-title: Co-inhibition of CD73 and A2AR Adenosine signaling improves anti-tumor immune responses
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2016.06.025
– volume: 72
  start-page: 2757
  year: 2012
  ident: 2022061706043350800_bib38
  article-title: Cancer-induced immunosuppression: IL-18-elicited immunoablative NK cells
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-11-3379
– volume: 204
  start-page: 1257
  year: 2007
  ident: 2022061706043350800_bib45
  article-title: Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression
  publication-title: J Exp Med
  doi: 10.1084/jem.20062512
– volume: 74
  start-page: 7239
  year: 2014
  ident: 2022061706043350800_bib46
  article-title: Adenosine A2A receptors intrinsically regulate CD8+ T cells in the tumor microenvironment
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-13-3581
– volume: 212
  start-page: 2015
  year: 2015
  ident: 2022061706043350800_bib24
  article-title: Terminal NK cell maturation is controlled by concerted actions of T-bet and Zeb2 and is essential for melanoma rejection
  publication-title: J Exp Med
  doi: 10.1084/jem.20150809
– volume: 69
  start-page: 3563
  year: 2009
  ident: 2022061706043350800_bib42
  article-title: Natural killer cell IFN-gamma levels predict long-term survival with imatinib mesylate therapy in gastrointestinal stromal tumor-bearing patients
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-08-3807
– volume: 12
  start-page: 323
  year: 2011
  ident: 2022061706043350800_bib33
  article-title: RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome
  publication-title: BMC Bioinform
  doi: 10.1186/1471-2105-12-323
– volume: 17
  start-page: 6287
  year: 2011
  ident: 2022061706043350800_bib47
  article-title: Adoptive transfer of autologous natural killer cells leads to high levels of circulating natural killer cells but does not mediate tumor regression
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.CCR-11-1347
– volume: 74
  start-page: 7250
  year: 2014
  ident: 2022061706043350800_bib7
  article-title: Myeloid expression of adenosine A2A receptor suppresses T and NK cell responses in the solid tumor microenvironment
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-13-3583
– volume: 60
  start-page: 1405
  year: 2011
  ident: 2022061706043350800_bib52
  article-title: Ectonucleotidases CD39 and CD73 on OvCA cells are potent adenosine-generating enzymes responsible for adenosine receptor 2A-dependent suppression of T cell function and NK cell cytotoxicity
  publication-title: Cancer Immunol Immunother
  doi: 10.1007/s00262-011-1040-4
– volume: 3
  start-page: 190
  year: 2012
  ident: 2022061706043350800_bib9
  article-title: The development and immunosuppressive functions of CD4(+) CD25(+) FoxP3(+) regulatory T cells are under influence of the adenosine-A2A adenosine receptor pathway
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2012.00190
– volume: 17
  start-page: 1025
  year: 2016
  ident: 2022061706043350800_bib15
  article-title: Targeting natural killer cells in cancer immunotherapy
  publication-title: Nat Immunol
  doi: 10.1038/ni.3518
– volume: 175
  start-page: 4383
  year: 2005
  ident: 2022061706043350800_bib13
  article-title: Gs protein-coupled adenosine receptor signaling and lytic function of activated NK cells
  publication-title: J Immunol
  doi: 10.4049/jimmunol.175.7.4383
– volume: 66
  start-page: 7758
  year: 2006
  ident: 2022061706043350800_bib12
  article-title: Adenosine-mediated inhibition of the cytotoxic activity and cytokine production by activated natural killer cells
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-06-0478
– volume: 18
  start-page: 1004
  year: 2017
  ident: 2022061706043350800_bib31
  article-title: Tumor immunoevasion by the conversion of effector NK cells into type 1 innate lymphoid cells
  publication-title: Nat Immunol
  doi: 10.1038/ni.3800
– volume: 17
  start-page: 816
  year: 2016
  ident: 2022061706043350800_bib35
  article-title: CIS is a potent checkpoint in NK cell-mediated tumor immunity
  publication-title: Nat Immunol
  doi: 10.1038/ni.3470
– volume: 44
  start-page: 1127
  year: 2016
  ident: 2022061706043350800_bib53
  article-title: Transforming growth factor-beta signaling guides the differentiation of innate lymphoid cells in salivary glands
  publication-title: Immunity
  doi: 10.1016/j.immuni.2016.03.007
– volume: 414
  start-page: 916
  year: 2001
  ident: 2022061706043350800_bib1
  article-title: Role of G-protein-coupled adenosine receptors in downregulation of inflammation and protection from tissue damage
  publication-title: Nature
  doi: 10.1038/414916a
– volume: 92
  start-page: 1283
  year: 2014
  ident: 2022061706043350800_bib5
  article-title: Systemic oxygenation weakens the hypoxia and hypoxia inducible factor 1alpha-dependent and extracellular adenosine-mediated tumor protection
  publication-title: J Mol Med
  doi: 10.1007/s00109-014-1189-3
– volume: 22
  start-page: 3491
  year: 2008
  ident: 2022061706043350800_bib8
  article-title: Adenosine A2A receptor activation inhibits T helper 1 and T helper 2 cell development and effector function
  publication-title: FASEB J
  doi: 10.1096/fj.08-107458
– volume: 22
  start-page: 633
  year: 2001
  ident: 2022061706043350800_bib54
  article-title: The biology of human natural killer-cell subsets
  publication-title: Trends Immunol
  doi: 10.1016/S1471-4906(01)02060-9
– volume: 401
  start-page: 163
  year: 1998
  ident: 2022061706043350800_bib30
  article-title: Immunohistochemical localization of adenosine A2A receptors in the rat central nervous system
  publication-title: J Comp Neurol
  doi: 10.1002/(SICI)1096-9861(19981116)401:2<163::AID-CNE2>3.0.CO;2-D
– volume: 72
  start-page: 3928
  year: 2012
  ident: 2022061706043350800_bib29
  article-title: BRAF inhibitor vemurafenib improves the antitumor activity of adoptive cell immunotherapy
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-11-2837
– volume: 33
  start-page: 2721
  year: 2014
  ident: 2022061706043350800_bib23
  article-title: Peripheral natural killer cell maturation depends on the transcription factor Aiolos
  publication-title: EMBO J
  doi: 10.15252/embj.201487900
– volume: 123
  start-page: 1371
  year: 2013
  ident: 2022061706043350800_bib28
  article-title: Host immunity contributes to the anti-melanoma activity of BRAF inhibitors
  publication-title: J Clin Invest
  doi: 10.1172/JCI66236
– volume: 61
  start-page: 917
  year: 2012
  ident: 2022061706043350800_bib51
  article-title: Enhancement of tumor immunotherapy by deletion of the A2A adenosine receptor
  publication-title: Cancer Immunol Immunother
  doi: 10.1007/s00262-011-1155-7
– volume: 7
  start-page: 277ra30
  year: 2015
  ident: 2022061706043350800_bib49
  article-title: Immunological mechanisms of the antitumor effects of supplemental oxygenation
  publication-title: Sci Transl Med
  doi: 10.1126/scitranslmed.aaa1260
– volume: 44
  start-page: 103
  year: 2016
  ident: 2022061706043350800_bib21
  article-title: The Helix-Loop-Helix Protein ID2 governs NK cell fate by tuning their sensitivity to interleukin-15
  publication-title: Immunity
  doi: 10.1016/j.immuni.2015.12.007
– volume: 29
  start-page: 15
  year: 2013
  ident: 2022061706043350800_bib32
  article-title: STAR: ultrafast universal RNA-seq aligner
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts635
– volume: 13
  start-page: 459
  year: 2001
  ident: 2022061706043350800_bib39
  article-title: NK cells and NKT cells collaborate in host protection from methylcholanthrene-induced fibrosarcoma
  publication-title: Int Immunol
  doi: 10.1093/intimm/13.4.459
– volume: 177
  start-page: 50
  year: 2017
  ident: 2022061706043350800_bib43
  article-title: Bench to bedside: NK cells and control of metastasis
  publication-title: Clin Immunol
  doi: 10.1016/j.clim.2015.10.001
– volume: 210
  start-page: 2693
  year: 2013
  ident: 2022061706043350800_bib11
  article-title: Extracellular adenosine regulates naive T cell development and peripheral maintenance
  publication-title: J Exp Med
  doi: 10.1084/jem.20130249
– volume: 31
  start-page: 3130
  year: 2012
  ident: 2022061706043350800_bib36
  article-title: The B-cell identity factor Pax5 regulates distinct transcriptional programmes in early and late B lymphopoiesis
  publication-title: EMBO J
  doi: 10.1038/emboj.2012.155
– volume: 176
  start-page: 1517
  year: 2006
  ident: 2022061706043350800_bib16
  article-title: CD27 dissects mature NK cells into two subsets with distinct responsiveness and migratory capacity
  publication-title: J Immunol
  doi: 10.4049/jimmunol.176.3.1517
– volume: 44
  start-page: 1582
  year: 2014
  ident: 2022061706043350800_bib44
  article-title: Effect of tumor cells and tumor microenvironment on NK-cell function
  publication-title: Eur J Immunol
  doi: 10.1002/eji.201344272
– volume: 15
  start-page: 431
  year: 2014
  ident: 2022061706043350800_bib26
  article-title: The receptors CD96 and CD226 oppose each other in the regulation of natural killer cell functions
  publication-title: Nat Immunol
  doi: 10.1038/ni.2850
– volume: 178
  start-page: 4764
  year: 2007
  ident: 2022061706043350800_bib17
  article-title: NK cell maturation and peripheral homeostasis is associated with KLRG1 up-regulation
  publication-title: J Immunol
  doi: 10.4049/jimmunol.178.8.4764
– volume: 110
  start-page: 14711
  year: 2013
  ident: 2022061706043350800_bib4
  article-title: Blockade of A2A receptors potently suppresses the metastasis of CD73+ tumors
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1308209110
– volume: 128
  start-page: e728
  year: 2009
  ident: 2022061706043350800_bib10
  article-title: Adenosine regulates CD8 T-cell priming by inhibition of membrane-proximal T-cell receptor signalling
  publication-title: Immunology
  doi: 10.1111/j.1365-2567.2009.03075.x
– volume: 74
  start-page: 3652
  year: 2014
  ident: 2022061706043350800_bib37
  article-title: Antimetastatic effects of blocking PD-1 and the adenosine A2A receptor
  publication-title: Cancer Res
  doi: 10.1158/0008-5472.CAN-14-0957
– volume: 2
  start-page: e23080
  year: 2013
  ident: 2022061706043350800_bib41
  article-title: Phase I clinical trial combining imatinib mesylate and IL-2: HLA-DR+ NK cell levels correlate with disease outcome
  publication-title: Oncoimmunology
  doi: 10.4161/onci.23080
– volume: 112
  start-page: 461
  year: 2008
  ident: 2022061706043350800_bib19
  article-title: Human natural killer cells
  publication-title: Blood
  doi: 10.1182/blood-2007-09-077438
– volume: 3
  start-page: 319
  year: 2012
  ident: 2022061706043350800_bib22
  article-title: Transcription factors involved in the regulation of natural killer cell development and function: an update
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2012.00319
– volume: 26
  start-page: 139
  year: 2010
  ident: 2022061706043350800_bib34
  article-title: edgeR: a Bioconductor package for differential expression analysis of digital gene expression data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp616
– volume: 98
  start-page: 110
  year: 2015
  ident: 2022061706043350800_bib40
  article-title: Caffeine promotes anti-tumor immune response during tumor initiation: Involvement of the adenosine A2A receptor
  publication-title: Biochem Pharmacol
  doi: 10.1016/j.bcp.2015.08.092
– volume: 103
  start-page: 13132
  year: 2006
  ident: 2022061706043350800_bib3
  article-title: A2A adenosine receptor protects tumors from antitumor T cells
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0605251103
– volume: 5
  start-page: 4539
  year: 2014
  ident: 2022061706043350800_bib20
  article-title: Innate immunodeficiency following genetic ablation of Mcl1 in natural killer cells
  publication-title: Nat Commun
  doi: 10.1038/ncomms5539
– volume: 7
  start-page: 426
  year: 2016
  ident: 2022061706043350800_bib14
  article-title: Type 1 innate lymphoid cell biology: lessons learnt from natural killer cells
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2016.00426
– volume: 123
  start-page: 594
  year: 2014
  ident: 2022061706043350800_bib48
  article-title: Natural killer cells acquire CD73 expression upon exposure to mesenchymal stem cells
  publication-title: Blood
  doi: 10.1182/blood-2013-09-524827
– volume: 4
  start-page: 879
  year: 2014
  ident: 2022061706043350800_bib2
  article-title: Targeting cancer-derived adenosine: new therapeutic approaches
  publication-title: Cancer Discov
  doi: 10.1158/2159-8290.CD-14-0341
– volume: 42
  start-page: 457
  year: 2015
  ident: 2022061706043350800_bib25
  article-title: Transcription factor Foxo1 is a negative regulator of natural killer cell maturation and function
  publication-title: Immunity
  doi: 10.1016/j.immuni.2015.02.006
– volume: 108
  start-page: 18324
  year: 2011
  ident: 2022061706043350800_bib27
  article-title: Fate mapping analysis of lymphoid cells expressing the NKp46 cell surface receptor
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1112064108
SSID ssj0005105
Score 2.6571116
Snippet Extracellular adenosine is a key immunosuppressive metabolite that restricts activation of cytotoxic lymphocytes and impairs antitumor immune responses. Here,...
Ablating adenosine signaling is found to promote natural killer cell maturation and antitumor immunity and reduce tumor growth.Extracellular adenosine is a key...
SourceID hal
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1003
SubjectTerms Adenosine
Antagonists
Antitumor activity
Cancer
Cell activation
Clonal deletion
Cytotoxicity
Homeostasis
Immune response
Immunosuppression
Life Sciences
Lymphocytes
Maturation
Natural killer cells
T cell receptors
Title A2AR Adenosine Signaling Suppresses Natural Killer Cell Maturation in the Tumor Microenvironment
URI https://www.ncbi.nlm.nih.gov/pubmed/29229601
https://www.proquest.com/docview/2006917538
https://www.proquest.com/docview/1976006910
https://amu.hal.science/hal-02024322
Volume 78
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bjtMwELW6i4R4Qdy3sCCDeItSmsSJnceo2qqCtly2K5WnYCfOtlJJVm0DEr_FDzKTpKmBcpWqKHITu_KczsU-MybkeRLKTGM2jlAut9Hi2yKT0kZiE9fcdbWL-c6TaTC6YC_n_rzT-Wqwlsqt6iVfDuaV_I9UoQ3kilmy_yDZtlNogHuQL1xBwnD9KxlHbvTOilKs943O4vnyEt1qLLFdXlUEV71BNnJVWeNVlfRnDXCtblK1mTTHWfmxWCOHfl0YqW-m5zpAeKytpjjQotr9rWkclZpZrXrGokKrQ6K1xJ2NVvdPL5fFZ-t8AcMOi6Kxmkj_kYX1vlwZLW_ARiysKM_tCYbz5uqEI5DQXOdnGgkBoKkMsFX8yeZH7-iFPxE_0TexfVYf69PTe-XMWV1-cqe9uTBQygxV7PT7nmHWcZXisMnwRc2xrMfrDaKpDZYbQtEDJbqnr-PhxXgcz87msyNyzeXgsCET4O2-RL3f8GZ3HTZpYzDMi4ODfOcQHS2QjvurWKfyeWa3yM0mWKFRjbzbpKPzO-T6pKFj3CUfEIC0BSBtAUj3AKQNAGkNQIoApHsA0mVOAYC0AiD9EYD3yGx4NhuM7ObIDjthgm3BXPEs4X6SeFKqIEm5LwU4-Upx7jDFIF6WQepljpdo1wt0Ch-Vwq2SYSaU9u6T47zI9QmhSag8rG7mhIlkKpXC99G3ZjLjXDFHdgnbTVucNOXs8VSVVVyFtb5AWoWIcbZjmO3Y4THOdpf02teu6nouf3rhGcikfRarsY-icYxtEGm5DAziJ6dLTnciixv9sMEDXoMQC-GKLnnafg3aG7fkZK6LchM7IW6Mw2P9LnlQi7odyg1dNwz6zsPfd_6I3Nj_8U7J8XZd6sfgKG_VkwqY3wDl47qf
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A2AR+Adenosine+Signaling+Suppresses+Natural+Killer+Cell+Maturation+in+the+Tumor+Microenvironment&rft.jtitle=Cancer+research+%28Chicago%2C+Ill.%29&rft.au=Young%2C+Arabella&rft.au=Ngiow+Shin+Foong&rft.au=Gao+Yulong&rft.au=Patch+Ann-Marie&rft.date=2018-02-15&rft.pub=American+Association+for+Cancer+Research%2C+Inc&rft.issn=0008-5472&rft.eissn=1538-7445&rft.volume=78&rft.issue=4&rft.spage=1003&rft.epage=1016&rft_id=info:doi/10.1158%2F0008-5472.CAN-17-2826&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-5472&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-5472&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-5472&client=summon