A 2D MTF approach to evaluate and guide dynamic imaging developments

As the number and complexity of partially sampled dynamic imaging methods continue to increase, reliable strategies to evaluate performance may prove most useful. In the present work, an analytical framework to evaluate given reconstruction methods is presented. A perturbation algorithm allows the p...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance in medicine Vol. 63; no. 2; pp. 407 - 418
Main Authors Chao, Tzu-Cheng, Chung, Hsiao-Wen, Hoge, W. Scott, Madore, Bruno
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.02.2010
Subjects
Online AccessGet full text
ISSN0740-3194
1522-2594
1522-2594
DOI10.1002/mrm.22219

Cover

Abstract As the number and complexity of partially sampled dynamic imaging methods continue to increase, reliable strategies to evaluate performance may prove most useful. In the present work, an analytical framework to evaluate given reconstruction methods is presented. A perturbation algorithm allows the proposed evaluation scheme to perform robustly without requiring knowledge about the inner workings of the method being evaluated. A main output of the evaluation process consists of a two‐dimensional modulation transfer function, an easy‐to‐interpret visual rendering of a method's ability to capture all combinations of spatial and temporal frequencies. Approaches to evaluate noise properties and artifact content at all spatial and temporal frequencies are also proposed. One fully sampled phantom and three fully sampled cardiac cine datasets were subsampled (R = 4 and 8) and reconstructed with the different methods tested here. A hybrid method, which combines the main advantageous features observed in our assessments, was proposed and tested in a cardiac cine application, with acceleration factors of 3.5 and 6.3 (skip factors of 4 and 8, respectively). This approach combines features from methods such as k‐t sensitivity encoding, unaliasing by Fourier encoding the overlaps in the temporal dimension‐sensitivity encoding, generalized autocalibrating partially parallel acquisition, sensitivity profiles from an array of coils for encoding and reconstruction in parallel, self, hybrid referencing with unaliasing by Fourier encoding the overlaps in the temporal dimension and generalized autocalibrating partially parallel acquisition, and generalized autocalibrating partially parallel acquisition–enhanced sensitivity maps for sensitivity encoding reconstructions. Magn Reson Med, 2010. © 2009 Wiley‐Liss, Inc.
AbstractList As the number and complexity of partially sampled dynamic imaging methods continue to increase, reliable strategies to evaluate performance may prove most useful. In the present work, an analytical framework to evaluate given reconstruction methods is presented. A perturbation algorithm allows the proposed evaluation scheme to perform robustly without requiring knowledge about the inner workings of the method being evaluated. A main output of the evaluation process consists of a two-dimensional modulation transfer function, an easy-to-interpret visual rendering of a method's ability to capture all combinations of spatial and temporal frequencies. Approaches to evaluate noise properties and artifact content at all spatial and temporal frequencies are also proposed. One fully sampled phantom and three fully sampled cardiac cine datasets were subsampled (R = 4 and 8) and reconstructed with the different methods tested here. A hybrid method, which combines the main advantageous features observed in our assessments, was proposed and tested in a cardiac cine application, with acceleration factors of 3.5 and 6.3 (skip factors of 4 and 8, respectively). This approach combines features from methods such as k-t sensitivity encoding, unaliasing by Fourier encoding the overlaps in the temporal dimension-sensitivity encoding, generalized autocalibrating partially parallel acquisition, sensitivity profiles from an array of coils for encoding and reconstruction in parallel, self, hybrid referencing with unaliasing by Fourier encoding the overlaps in the temporal dimension and generalized autocalibrating partially parallel acquisition, and generalized autocalibrating partially parallel acquisition-enhanced sensitivity maps for sensitivity encoding reconstructions. Magn Reson Med, 2010. [copy 2009 Wiley-Liss, Inc.
As the number and complexity of partially sampled dynamic imaging methods continue to increase, reliable strategies to evaluate performance may prove most useful. In the present work, an analytical framework to evaluate given reconstruction methods is presented. A perturbation algorithm allows the proposed evaluation scheme to perform robustly without requiring knowledge about the inner workings of the method being evaluated. A main output of the evaluation process consists of a two-dimensional modulation transfer function, an easy-to-interpret visual rendering of a method's ability to capture all combinations of spatial and temporal frequencies. Approaches to evaluate noise properties and artifact content at all spatial and temporal frequencies are also proposed. One fully sampled phantom and three fully sampled cardiac cine datasets were subsampled (R = 4 and 8) and reconstructed with the different methods tested here. A hybrid method, which combines the main advantageous features observed in our assessments, was proposed and tested in a cardiac cine application, with acceleration factors of 3.5 and 6.3 (skip factors of 4 and 8, respectively). This approach combines features from methods such as k-t sensitivity encoding, unaliasing by Fourier encoding the overlaps in the temporal dimension-sensitivity encoding, generalized autocalibrating partially parallel acquisition, sensitivity profiles from an array of coils for encoding and reconstruction in parallel, self, hybrid referencing with unaliasing by Fourier encoding the overlaps in the temporal dimension and generalized autocalibrating partially parallel acquisition, and generalized autocalibrating partially parallel acquisition-enhanced sensitivity maps for sensitivity encoding reconstructions.As the number and complexity of partially sampled dynamic imaging methods continue to increase, reliable strategies to evaluate performance may prove most useful. In the present work, an analytical framework to evaluate given reconstruction methods is presented. A perturbation algorithm allows the proposed evaluation scheme to perform robustly without requiring knowledge about the inner workings of the method being evaluated. A main output of the evaluation process consists of a two-dimensional modulation transfer function, an easy-to-interpret visual rendering of a method's ability to capture all combinations of spatial and temporal frequencies. Approaches to evaluate noise properties and artifact content at all spatial and temporal frequencies are also proposed. One fully sampled phantom and three fully sampled cardiac cine datasets were subsampled (R = 4 and 8) and reconstructed with the different methods tested here. A hybrid method, which combines the main advantageous features observed in our assessments, was proposed and tested in a cardiac cine application, with acceleration factors of 3.5 and 6.3 (skip factors of 4 and 8, respectively). This approach combines features from methods such as k-t sensitivity encoding, unaliasing by Fourier encoding the overlaps in the temporal dimension-sensitivity encoding, generalized autocalibrating partially parallel acquisition, sensitivity profiles from an array of coils for encoding and reconstruction in parallel, self, hybrid referencing with unaliasing by Fourier encoding the overlaps in the temporal dimension and generalized autocalibrating partially parallel acquisition, and generalized autocalibrating partially parallel acquisition-enhanced sensitivity maps for sensitivity encoding reconstructions.
As the number and complexity of partially sampled dynamic imaging methods continue to increase, reliable strategies to evaluate performance may prove most useful. In the present work, an analytical framework to evaluate given reconstruction methods is presented. A perturbation algorithm allows the proposed evaluation scheme to perform robustly without requiring knowledge about the inner workings of the method being evaluated. A main output of the evaluation process consists of a two‐dimensional modulation transfer function, an easy‐to‐interpret visual rendering of a method's ability to capture all combinations of spatial and temporal frequencies. Approaches to evaluate noise properties and artifact content at all spatial and temporal frequencies are also proposed. One fully sampled phantom and three fully sampled cardiac cine datasets were subsampled ( R = 4 and 8) and reconstructed with the different methods tested here. A hybrid method, which combines the main advantageous features observed in our assessments, was proposed and tested in a cardiac cine application, with acceleration factors of 3.5 and 6.3 (skip factors of 4 and 8, respectively). This approach combines features from methods such as k‐t sensitivity encoding, unaliasing by Fourier encoding the overlaps in the temporal dimension‐sensitivity encoding, generalized autocalibrating partially parallel acquisition, sensitivity profiles from an array of coils for encoding and reconstruction in parallel, self, hybrid referencing with unaliasing by Fourier encoding the overlaps in the temporal dimension and generalized autocalibrating partially parallel acquisition, and generalized autocalibrating partially parallel acquisition–enhanced sensitivity maps for sensitivity encoding reconstructions. Magn Reson Med, 2010. © 2009 Wiley‐Liss, Inc.
As the number and complexity of partially sampled dynamic imaging methods continue to increase, reliable strategies to evaluate performance may prove most useful. In the present work, an analytical framework to evaluate given reconstruction methods is presented. A perturbation algorithm allows the proposed evaluation scheme to perform robustly without requiring knowledge about the inner workings of the method being evaluated. A main output of the evaluation process consists of a two-dimensional modulation transfer function, an easy-to-interpret visual rendering of a method's ability to capture all combinations of spatial and temporal frequencies. Approaches to evaluate noise properties and artifact content at all spatial and temporal frequencies are also proposed. One fully sampled phantom and three fully sampled cardiac cine datasets were subsampled (R = 4 and 8) and reconstructed with the different methods tested here. A hybrid method, which combines the main advantageous features observed in our assessments, was proposed and tested in a cardiac cine application, with acceleration factors of 3.5 and 6.3 (skip factors of 4 and 8, respectively). This approach combines features from methods such as k-t sensitivity encoding, unaliasing by Fourier encoding the overlaps in the temporal dimension-sensitivity encoding, generalized autocalibrating partially parallel acquisition, sensitivity profiles from an array of coils for encoding and reconstruction in parallel, self, hybrid referencing with unaliasing by Fourier encoding the overlaps in the temporal dimension and generalized autocalibrating partially parallel acquisition, and generalized autocalibrating partially parallel acquisition-enhanced sensitivity maps for sensitivity encoding reconstructions.
As the number and complexity of partially sampled dynamic imaging methods continue to increase, reliable strategies to evaluate performance may prove most useful. In the present work, an analytical framework to evaluate given reconstruction methods is presented. A perturbation algorithm allows the proposed evaluation scheme to perform robustly without requiring knowledge about the inner workings of the method being evaluated. A main output of the evaluation process consists of a two‐dimensional modulation transfer function, an easy‐to‐interpret visual rendering of a method's ability to capture all combinations of spatial and temporal frequencies. Approaches to evaluate noise properties and artifact content at all spatial and temporal frequencies are also proposed. One fully sampled phantom and three fully sampled cardiac cine datasets were subsampled (R = 4 and 8) and reconstructed with the different methods tested here. A hybrid method, which combines the main advantageous features observed in our assessments, was proposed and tested in a cardiac cine application, with acceleration factors of 3.5 and 6.3 (skip factors of 4 and 8, respectively). This approach combines features from methods such as k‐t sensitivity encoding, unaliasing by Fourier encoding the overlaps in the temporal dimension‐sensitivity encoding, generalized autocalibrating partially parallel acquisition, sensitivity profiles from an array of coils for encoding and reconstruction in parallel, self, hybrid referencing with unaliasing by Fourier encoding the overlaps in the temporal dimension and generalized autocalibrating partially parallel acquisition, and generalized autocalibrating partially parallel acquisition–enhanced sensitivity maps for sensitivity encoding reconstructions. Magn Reson Med, 2010. © 2009 Wiley‐Liss, Inc.
As the number and complexity of partially sampled dynamic imaging methods continue to increase, reliable strategies to evaluate performance may prove most useful. In the present work, an analytical framework to evaluate given reconstruction methods is presented. A perturbation algorithm allows the proposed evaluation scheme to perform robustly without requiring knowledge about the inner workings of the method being evaluated. A main output of the evaluation process consists of a 2D modulation transfer function (MTF), an easy-to-interpret visual rendering of a method’s ability to capture all combinations of spatial and temporal frequencies. Approaches to evaluate noise properties and artifact content at all spatial and temporal frequencies are also proposed. One fully sampled phantom and three fully sampled cardiac cine datasets were subsampled (R=4 and 8), and reconstructed with the different methods tested here. A hybrid method, which combines the main advantageous features observed in our assessments, was proposed and tested in a cardiac cine application, with acceleration factors of 3.5 and 6.3 (skip factor of 4 and 8, respectively). This approach combines features from methods such as k-t sensitivity-encoding (k-t SENSE), unaliasing by Fourier encoding the overlaps in the temporal dimension-SENSE (UNFOLD-SENSE), generalized autocalibrating partially parallel acquisition (GRAPPA), sensitivity profiles from an array of coils for encoding and reconstruction in parallel (SPACE-RIP), self, hybrid referencing with UNFOLD and GRAPPA (SHRUG) and GRAPPA-enhanced sensitivity maps for SENSE reconstructions (GEYSER).
Author Chao, Tzu-Cheng
Madore, Bruno
Hoge, W. Scott
Chung, Hsiao-Wen
AuthorAffiliation 2 Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan
1 Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
AuthorAffiliation_xml – name: 1 Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
– name: 2 Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan
Author_xml – sequence: 1
  givenname: Tzu-Cheng
  surname: Chao
  fullname: Chao, Tzu-Cheng
  email: f92921116@ntu.edu.tw
  organization: Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
– sequence: 2
  givenname: Hsiao-Wen
  surname: Chung
  fullname: Chung, Hsiao-Wen
  organization: Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan
– sequence: 3
  givenname: W. Scott
  surname: Hoge
  fullname: Hoge, W. Scott
  organization: Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
– sequence: 4
  givenname: Bruno
  surname: Madore
  fullname: Madore, Bruno
  organization: Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/19877276$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtv1DAUhS1URKctC_4A8g4VKa1fie0NUjV9gNShEiqapXUTe6aGJE7tZMr8-6adgQISZXUt3e8cnXu8h3ba0DqE3lByRAlhx01sjhhjVL9AE5ozlrFcix00IVKQjFMtdtFeSt8IIVpL8QrtUq2kZLKYoNMTzE7x7PocQ9fFANUN7gN2K6gH6B2G1uLl4K3Ddt1C4yvsG1j6domtW7k6dI1r-3SAXi6gTu71du6jr-dn19OP2eXVxafpyWVWCSV0pogAVsmCEGuVgNwVTgJYocsS1ILrki90Qahm1pbF-Mw5LZyuOJeUElCW76P3G9-h7WB9B3VtujgGimtDiXmowoxVmMcqRvjDBu6GsnG2GoNGeBIE8ObPTetvzDKsDNNESylGg3dbgxhuB5d60_hUubqG1oUhGaX4GJYS-l9Scq6UkHkxkm9_D_UUf_shI3C4AaoYUopu8eyFx3-xle-h9-HhHl8_p7jztVv_29rMvsx-KrKNwqfe_filgPjdFJLL3Mw_X5iczcR0LuaG8ns5VMhN
CitedBy_id crossref_primary_10_1002_mrm_24919
crossref_primary_10_1186_s12968_015_0162_9
crossref_primary_10_1016_j_mri_2011_01_003
crossref_primary_10_1002_mrm_25386
crossref_primary_10_1002_mrm_22795
crossref_primary_10_1002_mrm_26163
crossref_primary_10_1186_s12968_017_0324_z
crossref_primary_10_1118_1_4728223
crossref_primary_10_1002_mrm_24738
crossref_primary_10_1002_mrm_25606
crossref_primary_10_1186_s12968_015_0174_5
Cites_doi 10.1002/(SICI)1522-2594(199911)42:5<813::AID-MRM1>3.0.CO;2-S
10.1002/mrm.20430
10.1002/mrm.10171
10.1002/mrm.21222
10.1002/mrm.1910360304
10.1002/mrm.21008
10.1002/mrm.20734
10.1002/jmri.1880030419
10.1002/mrm.10694
10.1016/j.mri.2006.11.003
10.1002/mrm.10247
10.1002/mrm.10229
10.1002/mrm.21634
10.1002/mrm.20133
10.1002/mrm.10611
10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S
10.1002/mrm.1113
10.1002/mrm.20713
ContentType Journal Article
Copyright Copyright © 2009 Wiley‐Liss, Inc.
Copyright_xml – notice: Copyright © 2009 Wiley‐Liss, Inc.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
8FD
FR3
P64
5PM
ADTOC
UNPAY
DOI 10.1002/mrm.22219
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitleList Engineering Research Database
MEDLINE - Academic
CrossRef
MEDLINE


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1522-2594
EndPage 418
ExternalDocumentID 10.1002/mrm.22219
PMC2909774
19877276
10_1002_mrm_22219
MRM22219
ark_67375_WNG_52M4CW4W_1
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NSC
  funderid: NSC‐96‐2628‐E‐002‐006‐MY3
– fundername: NIH
  funderid: U41‐RR019703; R01 HL073319
– fundername: NCRR NIH HHS
  grantid: U41-RR019703
– fundername: NHLBI NIH HHS
  grantid: R01 HL073319
– fundername: NCRR NIH HHS
  grantid: U41 RR019703
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHQN
AAIPD
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHMBA
AIACR
AIAGR
AIDQK
AIDYY
AIQQE
AITYG
AIURR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
24P
AAHHS
ACCFJ
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
RGB
RWI
WRC
WUP
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
8FD
FR3
P64
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c4849-804a2c7600dd84a5e6e7aad49bba8f39b3f960192ddb6f965316e9c337110a8d3
IEDL.DBID UNPAY
ISSN 0740-3194
1522-2594
IngestDate Sun Oct 26 03:58:27 EDT 2025
Thu Aug 21 13:38:50 EDT 2025
Mon Oct 06 18:10:05 EDT 2025
Fri Sep 05 08:37:29 EDT 2025
Mon Jul 21 05:59:12 EDT 2025
Wed Oct 01 02:04:58 EDT 2025
Thu Apr 24 23:08:47 EDT 2025
Wed Jan 22 16:29:49 EST 2025
Sun Sep 21 06:18:50 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4849-804a2c7600dd84a5e6e7aad49bba8f39b3f960192ddb6f965316e9c337110a8d3
Notes ArticleID:MRM22219
istex:B4C29F88F951455C61154F4FDDD2EAD96B377A18
NSC - No. NSC-96-2628-E-002-006-MY3
ark:/67375/WNG-52M4CW4W-1
NIH - No. U41-RR019703; No. R01 HL073319
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mrm.22219
PMID 19877276
PQID 733884756
PQPubID 23479
PageCount 12
ParticipantIDs unpaywall_primary_10_1002_mrm_22219
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2909774
proquest_miscellaneous_883019101
proquest_miscellaneous_733884756
pubmed_primary_19877276
crossref_primary_10_1002_mrm_22219
crossref_citationtrail_10_1002_mrm_22219
wiley_primary_10_1002_mrm_22219_MRM22219
istex_primary_ark_67375_WNG_52M4CW4W_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2010
PublicationDateYYYYMMDD 2010-02-01
PublicationDate_xml – month: 02
  year: 2010
  text: February 2010
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: United States
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn. Reson. Med
PublicationYear 2010
Publisher Wiley Subscription Services, Inc., A Wiley Company
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
References Brummer ME, Moratal-Perez D, Hong CY, Pettigrew RI, Millet-Roig J, Dixon WT. Nyquist: reduced field-of-view imaging by direct Fourier inversion. Magn Reson Med 2004; 51: 331-342.
Kellman P, McVeigh ER. Image reconstruction in SNR units: a general method for SNR measurement. Magn Reson Med 2005; 54: 1439-1447.
van Vaals JJ, Brummer ME, Dixon WT, Tuithof HH, Engels H, Nelson RC, Gerety BM, Chezmar JL, den Boer JA. "Keyhole" method for accelerating imaging of contrast agent uptake. J Magn Reson Imaging 1993; 3: 671-675.
Madore B. Using UNFOLD to remove artifacts in parallel imaging and in partial-Fourier imaging. Magn Reson Med 2002; 48: 493-501.
Kellman P, Epstein FH, McVeigh ER. Adaptive sensitivity encoding incorporating temporal filtering (TSENSE). Magn Reson Med 2001; 45: 846-852.
Wu Y, Jeong EK, Parker DL, Alexander AL. UNFOLD using a temporal subtraction and spectral energy comparison technique. Magn Reson Med 2002; 48: 559-564.
Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. SENSE: sensitivity encoding for fast MRI. Magn Reson Med 1999; 42: 952-962.
Madore B, Glover GH, Pelc NJ. Unaliasing by Fourier-encoding the overlaps using the temporal dimension (UNFOLD), applied to cardiac imaging and fMRI. Magn Reson Med 1999; 42: 813-828.
Griswold MA, Jakob PM, Heidemann RM, Nittka M, Jellus V, Wang J, Kiefer B, Haase A. Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 2002; 47: 1202-1210.
Tsao J, Boesiger P, Pruessmann KP. k-t BLAST and k-t SENSE: dynamic MRI with high frame rate exploiting spatiotemporal correlations. Magn Reson Med 2003; 50: 1031-1042.
Prieto C, Batchelor PG, Hill DL, Hajnal JV, Guarini M, Irarrazaval P. Reconstruction of undersampled dynamic images by modeling the motion of object elements. Magn Reson Med 2007; 57: 939-949.
Breuer FA, Kellman P, Griswold MA, Jakob PM. Dynamic autocalibrated parallel imaging using temporal GRAPPA (TGRAPPA). Magn Reson Med 2005; 53: 981-985.
Korosec FR, Frayne R, Grist TM, Mistretta CA. Time-resolved contrast-enhanced 3D MR angiography. Magn Reson Med 1996; 36: 345-351.
Thunberg P, Zetterberg P. Noise distribution in SENSE- and GRAPPA-reconstructed images: a computer simulation study. Magn Reson Imaging 2007; 25: 1089-1094.
Hansen MS, Baltes C, Tsao J, Kozerke S, Pruessmann KP, Eggers H. k-t BLAST reconstruction from non-Cartesian k-t space sampling. Magn Reson Med 2006; 55: 85-91.
Hoge WS, Brooks DH. Using GRAPPA to improve autocalibrated coil sensitivity estimation for the SENSE family of parallel imaging reconstruction algorithms. Magn Reson Med 2008; 60: 462-467.
Malik SJ, Schmitz S, O'Regan D, Larkman DJ, Hajnal JV. x-f Choice: reconstruction of undersampled dynamic MRI by data-driven alias rejection applied to contrast-enhanced angiography. Magn Reson Med 2006; 56: 811-823.
Madore B. UNFOLD-SENSE: a parallel MRI method with self-calibration and artifact suppression. Magn Reson Med 2004; 52: 310-320.
2004; 52
2002; 47
2002; 48
2004; 51
2006; 56
2001
2006; 55
2009
2008
2007
2005; 53
2005; 54
2006
1999; 42
1996; 36
2003; 50
2001; 45
2008; 60
2007; 57
1993; 3
2007; 25
e_1_2_8_16_2
e_1_2_8_17_2
e_1_2_8_18_2
e_1_2_8_19_2
e_1_2_8_12_2
e_1_2_8_23_2
e_1_2_8_13_2
e_1_2_8_24_2
e_1_2_8_14_2
e_1_2_8_15_2
e_1_2_8_9_2
e_1_2_8_2_2
e_1_2_8_4_2
e_1_2_8_3_2
e_1_2_8_6_2
e_1_2_8_5_2
e_1_2_8_8_2
e_1_2_8_7_2
e_1_2_8_20_2
e_1_2_8_10_2
e_1_2_8_21_2
e_1_2_8_11_2
e_1_2_8_22_2
References_xml – reference: Thunberg P, Zetterberg P. Noise distribution in SENSE- and GRAPPA-reconstructed images: a computer simulation study. Magn Reson Imaging 2007; 25: 1089-1094.
– reference: Malik SJ, Schmitz S, O'Regan D, Larkman DJ, Hajnal JV. x-f Choice: reconstruction of undersampled dynamic MRI by data-driven alias rejection applied to contrast-enhanced angiography. Magn Reson Med 2006; 56: 811-823.
– reference: Breuer FA, Kellman P, Griswold MA, Jakob PM. Dynamic autocalibrated parallel imaging using temporal GRAPPA (TGRAPPA). Magn Reson Med 2005; 53: 981-985.
– reference: Wu Y, Jeong EK, Parker DL, Alexander AL. UNFOLD using a temporal subtraction and spectral energy comparison technique. Magn Reson Med 2002; 48: 559-564.
– reference: Prieto C, Batchelor PG, Hill DL, Hajnal JV, Guarini M, Irarrazaval P. Reconstruction of undersampled dynamic images by modeling the motion of object elements. Magn Reson Med 2007; 57: 939-949.
– reference: van Vaals JJ, Brummer ME, Dixon WT, Tuithof HH, Engels H, Nelson RC, Gerety BM, Chezmar JL, den Boer JA. "Keyhole" method for accelerating imaging of contrast agent uptake. J Magn Reson Imaging 1993; 3: 671-675.
– reference: Griswold MA, Jakob PM, Heidemann RM, Nittka M, Jellus V, Wang J, Kiefer B, Haase A. Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 2002; 47: 1202-1210.
– reference: Hansen MS, Baltes C, Tsao J, Kozerke S, Pruessmann KP, Eggers H. k-t BLAST reconstruction from non-Cartesian k-t space sampling. Magn Reson Med 2006; 55: 85-91.
– reference: Madore B. UNFOLD-SENSE: a parallel MRI method with self-calibration and artifact suppression. Magn Reson Med 2004; 52: 310-320.
– reference: Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. SENSE: sensitivity encoding for fast MRI. Magn Reson Med 1999; 42: 952-962.
– reference: Kellman P, McVeigh ER. Image reconstruction in SNR units: a general method for SNR measurement. Magn Reson Med 2005; 54: 1439-1447.
– reference: Kellman P, Epstein FH, McVeigh ER. Adaptive sensitivity encoding incorporating temporal filtering (TSENSE). Magn Reson Med 2001; 45: 846-852.
– reference: Madore B. Using UNFOLD to remove artifacts in parallel imaging and in partial-Fourier imaging. Magn Reson Med 2002; 48: 493-501.
– reference: Tsao J, Boesiger P, Pruessmann KP. k-t BLAST and k-t SENSE: dynamic MRI with high frame rate exploiting spatiotemporal correlations. Magn Reson Med 2003; 50: 1031-1042.
– reference: Madore B, Glover GH, Pelc NJ. Unaliasing by Fourier-encoding the overlaps using the temporal dimension (UNFOLD), applied to cardiac imaging and fMRI. Magn Reson Med 1999; 42: 813-828.
– reference: Brummer ME, Moratal-Perez D, Hong CY, Pettigrew RI, Millet-Roig J, Dixon WT. Nyquist: reduced field-of-view imaging by direct Fourier inversion. Magn Reson Med 2004; 51: 331-342.
– reference: Korosec FR, Frayne R, Grist TM, Mistretta CA. Time-resolved contrast-enhanced 3D MR angiography. Magn Reson Med 1996; 36: 345-351.
– reference: Hoge WS, Brooks DH. Using GRAPPA to improve autocalibrated coil sensitivity estimation for the SENSE family of parallel imaging reconstruction algorithms. Magn Reson Med 2008; 60: 462-467.
– volume: 54
  start-page: 1439
  year: 2005
  end-page: 1447
  article-title: Image reconstruction in SNR units: a general method for SNR measurement
  publication-title: Magn Reson Med
– volume: 42
  start-page: 952
  year: 1999
  end-page: 962
  article-title: SENSE: sensitivity encoding for fast MRI
  publication-title: Magn Reson Med
– volume: 50
  start-page: 1031
  year: 2003
  end-page: 1042
  article-title: k‐t BLAST and k‐t SENSE: dynamic MRI with high frame rate exploiting spatiotemporal correlations
  publication-title: Magn Reson Med
– volume: 57
  start-page: 939
  year: 2007
  end-page: 949
  article-title: Reconstruction of undersampled dynamic images by modeling the motion of object elements
  publication-title: Magn Reson Med
– volume: 56
  start-page: 811
  year: 2006
  end-page: 823
  article-title: x‐f Choice: reconstruction of undersampled dynamic MRI by data‐driven alias rejection applied to contrast‐enhanced angiography
  publication-title: Magn Reson Med
– volume: 53
  start-page: 981
  year: 2005
  end-page: 985
  article-title: Dynamic autocalibrated parallel imaging using temporal GRAPPA (TGRAPPA)
  publication-title: Magn Reson Med
– volume: 60
  start-page: 462
  year: 2008
  end-page: 467
  article-title: Using GRAPPA to improve autocalibrated coil sensitivity estimation for the SENSE family of parallel imaging reconstruction algorithms
  publication-title: Magn Reson Med
– start-page: 763
  year: 2006
– volume: 52
  start-page: 310
  year: 2004
  end-page: 320
  article-title: UNFOLD‐SENSE: a parallel MRI method with self‐calibration and artifact suppression
  publication-title: Magn Reson Med
– volume: 3
  start-page: 671
  year: 1993
  end-page: 675
  article-title: “Keyhole” method for accelerating imaging of contrast agent uptake
  publication-title: J Magn Reson Imaging
– volume: 48
  start-page: 559
  year: 2002
  end-page: 564
  article-title: UNFOLD using a temporal subtraction and spectral energy comparison technique
  publication-title: Magn Reson Med
– start-page: 1771
  year: 2001
– start-page: 4566
  year: 2009
– start-page: 1496
  year: 2008
– volume: 55
  start-page: 85
  year: 2006
  end-page: 91
  article-title: k‐t BLAST reconstruction from non‐Cartesian k‐t space sampling
  publication-title: Magn Reson Med
– volume: 48
  start-page: 493
  year: 2002
  end-page: 501
  article-title: Using UNFOLD to remove artifacts in parallel imaging and in partial‐Fourier imaging
  publication-title: Magn Reson Med
– volume: 47
  start-page: 1202
  year: 2002
  end-page: 1210
  article-title: Generalized autocalibrating partially parallel acquisitions (GRAPPA)
  publication-title: Magn Reson Med
– volume: 25
  start-page: 1089
  year: 2007
  end-page: 1094
  article-title: Noise distribution in SENSE‐ and GRAPPA‐reconstructed images: a computer simulation study
  publication-title: Magn Reson Imaging
– volume: 36
  start-page: 345
  year: 1996
  end-page: 351
  article-title: Time‐resolved contrast‐enhanced 3D MR angiography
  publication-title: Magn Reson Med
– volume: 45
  start-page: 846
  year: 2001
  end-page: 852
  article-title: Adaptive sensitivity encoding incorporating temporal filtering (TSENSE)
  publication-title: Magn Reson Med
– volume: 42
  start-page: 813
  year: 1999
  end-page: 828
  article-title: Unaliasing by Fourier‐encoding the overlaps using the temporal dimension (UNFOLD), applied to cardiac imaging and fMRI
  publication-title: Magn Reson Med
– start-page: 151
  year: 2007
– volume: 51
  start-page: 331
  year: 2004
  end-page: 342
  article-title: Nyquist: reduced field‐of‐view imaging by direct Fourier inversion
  publication-title: Magn Reson Med
– ident: e_1_2_8_2_2
  doi: 10.1002/(SICI)1522-2594(199911)42:5<813::AID-MRM1>3.0.CO;2-S
– ident: e_1_2_8_21_2
  doi: 10.1002/mrm.20430
– ident: e_1_2_8_22_2
  doi: 10.1002/mrm.10171
– ident: e_1_2_8_7_2
  doi: 10.1002/mrm.21222
– ident: e_1_2_8_11_2
  doi: 10.1002/mrm.1910360304
– ident: e_1_2_8_9_2
  doi: 10.1002/mrm.21008
– ident: e_1_2_8_24_2
– ident: e_1_2_8_6_2
– ident: e_1_2_8_20_2
– ident: e_1_2_8_19_2
  doi: 10.1002/mrm.20734
– ident: e_1_2_8_8_2
  doi: 10.1002/jmri.1880030419
– ident: e_1_2_8_10_2
  doi: 10.1002/mrm.10694
– ident: e_1_2_8_13_2
  doi: 10.1016/j.mri.2006.11.003
– ident: e_1_2_8_12_2
  doi: 10.1002/mrm.10247
– ident: e_1_2_8_15_2
  doi: 10.1002/mrm.10229
– ident: e_1_2_8_14_2
– ident: e_1_2_8_23_2
  doi: 10.1002/mrm.21634
– ident: e_1_2_8_5_2
  doi: 10.1002/mrm.20133
– ident: e_1_2_8_3_2
  doi: 10.1002/mrm.10611
– ident: e_1_2_8_16_2
  doi: 10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S
– ident: e_1_2_8_4_2
  doi: 10.1002/mrm.1113
– ident: e_1_2_8_17_2
  doi: 10.1002/mrm.20713
– ident: e_1_2_8_18_2
SSID ssj0009974
Score 2.0156002
Snippet As the number and complexity of partially sampled dynamic imaging methods continue to increase, reliable strategies to evaluate performance may prove most...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 407
SubjectTerms 2D-MTF
Algorithms
dynamic imaging
fast imaging approach
Humans
hybrid-SENSE
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Magnetic Resonance Imaging - instrumentation
Magnetic Resonance Imaging - methods
partially sampled methods
Phantoms, Imaging
Reproducibility of Results
Sensitivity and Specificity
SummonAdditionalLinks – databaseName: Wiley Online Library - Core collection (SURFmarket)
  dbid: DR2
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD6aNnF54TIYlJssQGgv6VLbiWPxNG2UCSl7mDZ1D0iWHSdQrU2nttEYv55j51IVNoR4i5TjKHbO8flO_PkzwHtT6JAWchAUmNwDblkYGC6wSjEIbqVxci9uc3J6HB-d8S_n0fkGfGz3wtT6EN0PNxcZfr52Aa7NYm8lGjqdT_uY3Lzk54DFvpw6WUlHSVkrMAvu5hnJW1WhkO51Lddy0ZYb1h83Ac0_-ZL3qvJSX1_pyWQd0_qkNHwIX9vu1FyUi361NP3s529Kj__Z30fwoAGrZL_2rsewkZfbcDdtluO34Y7nj2aLJ3C4T-ghSU-HpBUpJ8sZaaTEc6JLS75VY5sTe13q6Tgj46k_HonYFWlp8RTOhp9OD46C5oCGIOMJl5jduKaZW9qzNuE6yuNcaG25NEYnBZOGFVggIYa0brOfjDHe41xmjAkEHTqxbAc2y1mZPwdCmWUJwkFeCMR0odRS0CLTOnJiNFHEerDbfiqVNerl7hCNiap1l6nC8VF-fHrwtjO9rCU7bjL64L93Z6HnF47jJiI1Ov6sIprygxEfqUEPSOsQCiPPLafoMp9VCyWwusfcHsW3myQJzp8IyPApz2oXWr2RTLCwEdhYrDlXZ-B0v9fvlOPvXv-bytCh9h6869zwbx3d9V51u4VKT1J_8eLfTV_C_ZpG4Xg9r2BzOa_y14jOluaND8Nf-0ky_w
  priority: 102
  providerName: Wiley-Blackwell
Title A 2D MTF approach to evaluate and guide dynamic imaging developments
URI https://api.istex.fr/ark:/67375/WNG-52M4CW4W-1/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.22219
https://www.ncbi.nlm.nih.gov/pubmed/19877276
https://www.proquest.com/docview/733884756
https://www.proquest.com/docview/883019101
https://pubmed.ncbi.nlm.nih.gov/PMC2909774
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mrm.22219
UnpaywallVersion publishedVersion
Volume 63
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1522-2594
  databaseCode: DR2
  dateStart: 19990101
  customDbUrl:
  isFulltext: true
  eissn: 1522-2594
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009974
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdQK2AvfIyPlY_JAoT2kq71Rxw_VhtlQkqFplUdT8aJE6jWplXbCMZfz9lOMgobQuItUs5WbN_5fs6df4fQmyTXPZLLfpCDcw-Yob0gYQJOKQmAW5lYuhd7OTkehSdj9uGcn1d1Tu1dGM8P0fxws5bh9mtr4EuT-32-iu6Tw_lq3gUHZ2k_2yEHMN5C7fHo4-CTJ9-0O4wrhdi3HwJAn9XcQr-23fJIbTu536-Dm39mTd4ti6W-_KZns21k61zT8D76XA_KZ6RcdMtN0k1__Mb3-B-jfoDuVbAVD7yePUS3smIX3YmrwPwuuu0ySdP1I3Q8wOQYx2dDXNOV480CV6TiGdaFwV_KqcmwuSz0fJri6dwVSsLmKn1p_RiNh-_Ojk6CqlRDkLKISfBzTJPUBvmMiZjmWZgJrQ2TSaKjnMqE5rA6gCaNvfYnQ7D8MJMppQLgh44MfYJaxaLI9hAm1NAIgCHLBaC7ntRSkDzVmltaGs5pBx3Uy6XSisfcltOYKc_ATBTMj3Lz00GvGtGlJ--4TuitW_NGQq8ubLab4Goyeq84idnRhE1Uv4NwrRQKbNAGVnSRLcq1EnDOBy_Pw5tFogh2UoBm0MtTr0ZXXyQjOOIIaCy2FKwRsAzg22-K6VfHBE5kz-L3DnrdqOLfBnrgNOtmCRWfxu7h2T91-Bzt-FwKm9zzArU2qzJ7CRBtk-zD4eSU7FfG-BOJUjhP
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED9Nm2C88DG-yqcFCO0lXWY7cSzxMm2UAksfpk7dC7KcOIFqbTq1jWD89Zydj6qwIcRbpJyj2L7z_c53_hngTZJrn-Zy38vRuXvcMN9LuMAoJUFwKxNL92IPJ8eDsH_KP50FZxvwrjkLU_FDtBtu1jLcem0N3G5I761YQ6fzaRe9m-X83OIhxikWEp2syKOkrDiYBbcrjeQNr5BP99qma95oyw7sj6ug5p8Vk9tlcaEvv-vJZB3VOrfUuwNfmg5V1Sjn3XKZdNOfv3E9_m-P78LtGq-Sg0rB7sFGVuzAzbjOyO_ADVdCmi7uw9EBoUckHvZIw1NOljNSs4lnRBeGfC3HJiPmstDTcUrGU3dDEjGruqXFAzjtvR8e9r36jgYv5RGX6OC4pqnN7hkTcR1kYSa0NlwmiY5yJhOWY4yEMNLY834yRJMPM5kyJhB36Miwh7BZzIrsMRDKDIsQEfJcIKzzpZaC5qnWgeWjCQLWgd1mrlRaE5jbezQmqqJepgrHR7nx6cCrVvSiYu24Suitm_BWQs_PbZmbCNRo8EEFNOaHIz5S-x0gjUYoND6bUdFFNisXSmCAj-49CK8XiSJcQhGT4VceVTq0-iMZYWwjsLFY065WwFJ_r78pxt8cBTiVvgXuHXjd6uHfOrrr1Op6CRWfxO7hyb-LvoTt_jA-VscfB5-fwq2qqsKW-TyDzeW8zJ4jWFsmL5xN_gIiQjcg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD6aNjF44TJu5WoBQntJl8VOHEu8TCtlXFKhaVP3giwndqBam1ZtIxi_nmPnUhU2hHiLlOMods7x-U78-TPAqzRXfpCLfS_H5O4xTX0vZRyrlBTBrUit3IvdnJwMoqNT9uEsPNuAN81emEofov3hZiPDzdc2wM1M53sr1dDJfNLF7GY1P7dYKGJL6Osdr8SjhKg0mDmzM41gja6QH-y1Tdey0ZYd2B-XQc0_GZPXy2KmLr6r8Xgd1bq01L8FX5oOVWyU8265TLvZz9-0Hv-3x7fhZo1XyUHlYHdgwxQ7sJ3UK_I7cM1RSLPFXegdkKBHkpM-aXTKyXJKajVxQ1ShyddypA3RF4WajDIymrgTkohe8ZYW9-C0__bk8Mirz2jwMhYzgQmOqSCzq3tax0yFJjJcKc1Emqo4pyKlOdZICCO13e8nIgz5yIiMUo64Q8Wa3ofNYlqYh0ACqmmMiJDlHGGdL5TgQZ4pFVo9mjCkHdhtvpXMagFze47GWFbSy4HE8ZFufDrwojWdVaodlxm9dh-8tVDzc0tz46EcDt7JMEjY4ZAN5X4HSOMREoPPrqiowkzLheRY4GN6D6OrTeIYp1DEZPiUB5UPrd5IxFjbcGzM17yrNbDS3-t3itE3JwEeCN8C9w68bP3wbx3ddW51tYVMjhN38ejfTZ_D9udeX356P_j4GG5UpArL8nkCm8t5aZ4iVlumz1xI_gKApzak
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELdQKz5eGIyvsoEsQGgv6drYTuLHaluZkFIhtKrjyThxAtXatGobwfjrubOTjMKGkHiLlLMV23e-n3Pn3xHyJsl1z89l38vBuXvcsJ6X8BBOKQmAW5kg3QteTo5HwemYvz8X51WdU7wL4_ghmh9uaBl2v0YDX5rc7fNVdN8_nK_mXXBwSPvZDgSA8RZpj0cfBp8c-SbuMLYUYh8_BIA-r7mFfm275ZHaOLnfr4Obf2ZN3i2Lpb78pmezbWRrXdNwh3yuB-UyUi665Sbppj9-43v8j1E_IPcr2EoHTs8ekltZsUvuxFVgfpfctpmk6foROR5Q_5jGZ0Na05XTzYJWpOIZ1YWhX8qpyai5LPR8mtLp3BZKouYqfWn9mIyHJ2dHp15VqsFLecQl-Dmu_RSDfMZEXIssyEKtDZdJoqOcyYTlsDqAJg1e-5MBWH6QyZSxEOCHjgx7QlrFosieEeozwyIAhjwPAd31pJahn6daC6SlEYJ1yEG9XCqteMyxnMZMOQZmX8H8KDs_HfKqEV068o7rhN7aNW8k9OoCs91CoSajd0r4MT-a8InqdwitlUKBDWJgRRfZolyrEM754OVFcLNIFMFOCtAMennq1Ojqi2QER5wQGodbCtYIIAP49pti-tUygfuyh_i9Q143qvi3gR5YzbpZQsUfY_vw_J863CP3XC4FJvfsk9ZmVWYvAKJtkpeVGf4EPVU3Zg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+2D+MTF+approach+to+evaluate+and+guide+dynamic+imaging+developments&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=Chao%2C+Tzu-Cheng&rft.au=Chung%2C+Hsiao-Wen&rft.au=Hoge%2C+W.+Scott&rft.au=Madore%2C+Bruno&rft.date=2010-02-01&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=63&rft.issue=2&rft.spage=407&rft.epage=418&rft_id=info:doi/10.1002%2Fmrm.22219&rft_id=info%3Apmid%2F19877276&rft.externalDocID=PMC2909774
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon