Host specificity of the ruminal bacterial community in the dairy cow following near-total exchange of ruminal contents
The purpose of this study was to examine the stability and host specificity of a cow's ruminal bacterial community following massive challenge with ruminal microflora from another cow. In each of 2 experiments, 1 pair of cows was selected on the basis of differences in ruminal bacterial communi...
Saved in:
Published in | Journal of dairy science Vol. 93; no. 12; pp. 5902 - 5912 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York, NY
Elsevier
01.12.2010
|
Subjects | |
Online Access | Get full text |
ISSN | 0022-0302 1525-3198 1525-3198 |
DOI | 10.3168/jds.2010-3500 |
Cover
Abstract | The purpose of this study was to examine the stability and host specificity of a cow's ruminal bacterial community following massive challenge with ruminal microflora from another cow. In each of 2 experiments, 1 pair of cows was selected on the basis of differences in ruminal bacterial community composition (BCC), determined by automated ribosomal intergenic spacer analysis (ARISA), a culture-independent “community fingerprinting” technique. Each pair of cows was then subjected to a 1-time exchange of >95% of ruminal contents without changing the composition of a corn silage/alfalfa haylage-based TMR. In experiment 1, the 2 cows differed (P<0.01) in prefeed ruminal pH (mean=6.88 vs. 6.14) and prefeed total VFA concentration (mean=57 vs. 77mM), averaged over 3 d. Following exchange of ruminal contents, ruminal pH and total VFA concentration in both cows returned to their preexchange values within 24h. Ruminal BCC also returned to near its original profile, but this change required 14 d for 1 cow and 61 d for the other cow. In experiment 2, the 2 other cows differed in prefeed ruminal pH (mean=6.69 vs. 6.20) and total VFA concentration (mean=101 vs. 136mM). Following exchange of ruminal contents, the first cow returned to its preexchange pH and VFA values within 24h; the second cow's rumen rapidly stabilized to a higher prefeed pH (mean=6.47) and lower prefeed VFA concentration (mean=120mM) that was retained over the 62-d test period. Both cows reached somewhat different BCC than before the exchange. However, the BCC of both cows remained distinct and were ultimately more similar to that of the preexchange BCC than of the donor animal BCC. The data indicate that the host animal can quickly reestablish its characteristic ruminal pH and VFA concentration despite dramatic perturbation of its ruminal microbial community. The data also suggest that ruminal BCC displays substantial host specificity that can reestablish itself with varying success when challenged with a microbial community optimally adapted to ruminal conditions of a different host animal. |
---|---|
AbstractList | The purpose of this study was to examine the stability and host specificity of a cow's ruminal bacterial community following massive challenge with ruminal microflora from another cow. In each of 2 experiments, 1 pair of cows was selected on the basis of differences in ruminal bacterial community composition (BCC), determined by automated ribosomal intergenic spacer analysis (ARISA), a culture-independent "community fingerprinting" technique. Each pair of cows was then subjected to a 1-time exchange of >95% of ruminal contents without changing the composition of a corn silage/alfalfa haylage-based TMR. In experiment 1, the 2 cows differed (P<0.01) in prefeed ruminal pH (mean = 6.88 vs. 6.14) and prefeed total VFA concentration (mean = 57 vs. 77 mM), averaged over 3 d. Following exchange of ruminal contents, ruminal pH and total VFA concentration in both cows returned to their preexchange values within 24h. Ruminal BCC also returned to near its original profile, but this change required 14 d for 1 cow and 61 d for the other cow. In experiment 2, the 2 other cows differed in prefeed ruminal pH (mean = 6.69 vs. 6.20) and total VFA concentration (mean = 101 vs. 136 mM). Following exchange of ruminal contents, the first cow returned to its preexchange pH and VFA values within 24h; the second cow's rumen rapidly stabilized to a higher prefeed pH (mean = 6.47) and lower prefeed VFA concentration (mean = 120 mM) that was retained over the 62-d test period. Both cows reached somewhat different BCC than before the exchange. However, the BCC of both cows remained distinct and were ultimately more similar to that of the preexchange BCC than of the donor animal BCC. The data indicate that the host animal can quickly reestablish its characteristic ruminal pH and VFA concentration despite dramatic perturbation of its ruminal microbial community. The data also suggest that ruminal BCC displays substantial host specificity that can reestablish itself with varying success when challenged with a microbial community optimally adapted to ruminal conditions of a different host animal.The purpose of this study was to examine the stability and host specificity of a cow's ruminal bacterial community following massive challenge with ruminal microflora from another cow. In each of 2 experiments, 1 pair of cows was selected on the basis of differences in ruminal bacterial community composition (BCC), determined by automated ribosomal intergenic spacer analysis (ARISA), a culture-independent "community fingerprinting" technique. Each pair of cows was then subjected to a 1-time exchange of >95% of ruminal contents without changing the composition of a corn silage/alfalfa haylage-based TMR. In experiment 1, the 2 cows differed (P<0.01) in prefeed ruminal pH (mean = 6.88 vs. 6.14) and prefeed total VFA concentration (mean = 57 vs. 77 mM), averaged over 3 d. Following exchange of ruminal contents, ruminal pH and total VFA concentration in both cows returned to their preexchange values within 24h. Ruminal BCC also returned to near its original profile, but this change required 14 d for 1 cow and 61 d for the other cow. In experiment 2, the 2 other cows differed in prefeed ruminal pH (mean = 6.69 vs. 6.20) and total VFA concentration (mean = 101 vs. 136 mM). Following exchange of ruminal contents, the first cow returned to its preexchange pH and VFA values within 24h; the second cow's rumen rapidly stabilized to a higher prefeed pH (mean = 6.47) and lower prefeed VFA concentration (mean = 120 mM) that was retained over the 62-d test period. Both cows reached somewhat different BCC than before the exchange. However, the BCC of both cows remained distinct and were ultimately more similar to that of the preexchange BCC than of the donor animal BCC. The data indicate that the host animal can quickly reestablish its characteristic ruminal pH and VFA concentration despite dramatic perturbation of its ruminal microbial community. The data also suggest that ruminal BCC displays substantial host specificity that can reestablish itself with varying success when challenged with a microbial community optimally adapted to ruminal conditions of a different host animal. The purpose of this study was to examine the stability and host specificity of a cow's ruminal bacterial community following massive challenge with ruminal microflora from another cow. In each of 2 experiments, 1 pair of cows was selected on the basis of differences in ruminal bacterial community composition (BCC), determined by automated ribosomal intergenic spacer analysis (ARISA), a culture-independent “community fingerprinting” technique. Each pair of cows was then subjected to a 1-time exchange of >95% of ruminal contents without changing the composition of a corn silage/alfalfa haylage-based TMR. In experiment 1, the 2 cows differed (P<0.01) in prefeed ruminal pH (mean=6.88 vs. 6.14) and prefeed total VFA concentration (mean=57 vs. 77mM), averaged over 3 d. Following exchange of ruminal contents, ruminal pH and total VFA concentration in both cows returned to their preexchange values within 24h. Ruminal BCC also returned to near its original profile, but this change required 14 d for 1 cow and 61 d for the other cow. In experiment 2, the 2 other cows differed in prefeed ruminal pH (mean=6.69 vs. 6.20) and total VFA concentration (mean=101 vs. 136mM). Following exchange of ruminal contents, the first cow returned to its preexchange pH and VFA values within 24h; the second cow's rumen rapidly stabilized to a higher prefeed pH (mean=6.47) and lower prefeed VFA concentration (mean=120mM) that was retained over the 62-d test period. Both cows reached somewhat different BCC than before the exchange. However, the BCC of both cows remained distinct and were ultimately more similar to that of the preexchange BCC than of the donor animal BCC. The data indicate that the host animal can quickly reestablish its characteristic ruminal pH and VFA concentration despite dramatic perturbation of its ruminal microbial community. The data also suggest that ruminal BCC displays substantial host specificity that can reestablish itself with varying success when challenged with a microbial community optimally adapted to ruminal conditions of a different host animal. The purpose of this study was to examine the stability and host specificity of a cow's ruminal bacterial community following massive challenge with ruminal microflora from another cow. In each of 2 experiments, 1 pair of cows was selected on the basis of differences in ruminal bacterial community composition (BCC), determined by automated ribosomal intergenic spacer analysis (ARISA), a culture-independent "community fingerprinting" technique. Each pair of cows was then subjected to a 1-time exchange of >95% of ruminal contents without changing the composition of a corn silage/alfalfa haylage-based TMR. In experiment 1, the 2 cows differed (P<0.01) in prefeed ruminal pH (mean = 6.88 vs. 6.14) and prefeed total VFA concentration (mean = 57 vs. 77 mM), averaged over 3 d. Following exchange of ruminal contents, ruminal pH and total VFA concentration in both cows returned to their preexchange values within 24h. Ruminal BCC also returned to near its original profile, but this change required 14 d for 1 cow and 61 d for the other cow. In experiment 2, the 2 other cows differed in prefeed ruminal pH (mean = 6.69 vs. 6.20) and total VFA concentration (mean = 101 vs. 136 mM). Following exchange of ruminal contents, the first cow returned to its preexchange pH and VFA values within 24h; the second cow's rumen rapidly stabilized to a higher prefeed pH (mean = 6.47) and lower prefeed VFA concentration (mean = 120 mM) that was retained over the 62-d test period. Both cows reached somewhat different BCC than before the exchange. However, the BCC of both cows remained distinct and were ultimately more similar to that of the preexchange BCC than of the donor animal BCC. The data indicate that the host animal can quickly reestablish its characteristic ruminal pH and VFA concentration despite dramatic perturbation of its ruminal microbial community. The data also suggest that ruminal BCC displays substantial host specificity that can reestablish itself with varying success when challenged with a microbial community optimally adapted to ruminal conditions of a different host animal. |
Author | Mantovani, H.C Man, S.L.C Weimer, P.J Stevenson, D.M |
Author_xml | – sequence: 1 fullname: Weimer, P.J – sequence: 2 fullname: Stevenson, D.M – sequence: 3 fullname: Mantovani, H.C – sequence: 4 fullname: Man, S.L.C |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23460392$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/21094763$$D View this record in MEDLINE/PubMed |
BookMark | eNqF0U1v1DAQBmALFdFt4cgVckGc0nr8kcRHVAFFqtQD7TlyvOOtq8RebKdl_z0OuwUJCfXkr2dG1rwn5MgHj4S8BXrGoenO79fpjFGgNZeUviArkEzWHFR3RFaUMlZTTtkxOUnpvhyBUfmKHDOgSrQNX5GHy5BylbZonHXG5V0VbJXvsIrz5Lweq0GbjNGVnQnTNPuFOP-brLWLu3L9WNkwjuHR-U3lUcc6h1w8_jR32m9w6fjUzQSf0ef0mry0ekz45rCektsvn28uLuur66_fLj5d1UZ0PNdrrZSUQ2tbSYUUjaUKEFsFbDAgDMjB8ha7Fo1QYqC8MUUa0EpIyQyj_JR83PfdxvBjxpT7ySWD46g9hjn1XdMwITqQz0tgwIG1UOS7g5yHCdf9NrpJx13_NNQCPhyATkaPNmpvXPrruGgoV6y4eu9MDClFtH8I0H4Jty_h9ku4_RJu8fwfXwLT2ZWZRu3G_1a931dZHXq9ieUnt9_LM6egQAnO-S_xmrEx |
CODEN | JDSCAE |
CitedBy_id | crossref_primary_10_3389_fmicb_2016_02032 crossref_primary_10_3168_jds_2018_15730 crossref_primary_10_1016_j_cvfa_2014_07_003 crossref_primary_10_1007_s11250_024_04025_8 crossref_primary_10_3390_ani10081397 crossref_primary_10_5333_KGFS_2019_39_4_227 crossref_primary_10_3389_fmicb_2015_01133 crossref_primary_10_1371_journal_pone_0029392 crossref_primary_10_3168_jds_2024_25050 crossref_primary_10_1177_1535370219830075 crossref_primary_10_1016_j_animal_2021_100316 crossref_primary_10_1016_j_smallrumres_2020_106283 crossref_primary_10_2527_jas_2015_0056 crossref_primary_10_3389_fgene_2022_795717 crossref_primary_10_1186_s40168_017_0274_6 crossref_primary_10_1017_S0007114514000932 crossref_primary_10_3390_ani12010093 crossref_primary_10_1139_cjas_2020_0022 crossref_primary_10_3168_jds_2017_13179 crossref_primary_10_1016_j_jia_2024_01_026 crossref_primary_10_1128_AEM_00861_20 crossref_primary_10_3168_jds_2017_13057 crossref_primary_10_1016_j_livsci_2014_01_005 crossref_primary_10_1016_j_livsci_2015_05_027 crossref_primary_10_3168_jds_2016_11620 crossref_primary_10_3389_fgene_2018_00062 crossref_primary_10_1016_j_aninu_2022_03_002 crossref_primary_10_1590_1519_6984_288025 crossref_primary_10_2527_jas_2015_9415 crossref_primary_10_1016_j_imlet_2014_05_009 crossref_primary_10_1038_s41598_022_11959_2 crossref_primary_10_1186_s42523_021_00142_z crossref_primary_10_1038_s41598_021_82084_9 crossref_primary_10_1038_s41598_024_74988_z crossref_primary_10_3389_fvets_2023_1272835 crossref_primary_10_3390_agriculture13020326 crossref_primary_10_3168_jds_2011_4492 crossref_primary_10_3390_ani10040712 crossref_primary_10_3389_fmicb_2020_01403 crossref_primary_10_1007_s11274_024_04080_1 crossref_primary_10_3168_jds_2022_22564 crossref_primary_10_1017_S1751731118001957 crossref_primary_10_3168_jds_2022_22573 crossref_primary_10_1016_j_anifeedsci_2019_01_005 crossref_primary_10_1016_j_anaerobe_2019_102145 crossref_primary_10_3390_fermentation9020186 crossref_primary_10_1146_annurev_animal_013020_020412 crossref_primary_10_3168_jds_2015_9721 crossref_primary_10_1038_s41598_022_17445_z crossref_primary_10_3389_fmicb_2017_00848 crossref_primary_10_3389_fmicb_2017_01656 crossref_primary_10_2527_jas_2014_7811 crossref_primary_10_4137_BBI_S15389 crossref_primary_10_1016_j_scitotenv_2018_11_180 crossref_primary_10_3168_jds_2017_14334 crossref_primary_10_3389_fmicb_2015_01272 crossref_primary_10_1016_j_anaerobe_2018_07_013 crossref_primary_10_3168_jds_2014_8049 crossref_primary_10_1038_s42003_022_03293_0 crossref_primary_10_1371_journal_pone_0192256 crossref_primary_10_3390_microorganisms10010144 crossref_primary_10_3389_fmicb_2016_00274 crossref_primary_10_3168_jds_2015_10271 crossref_primary_10_1007_s13762_023_05320_x crossref_primary_10_3390_ani11082192 crossref_primary_10_3389_fmicb_2018_02161 crossref_primary_10_1016_j_anifeedsci_2015_06_013 crossref_primary_10_3168_jds_2012_5392 crossref_primary_10_3389_fmicb_2020_531404 crossref_primary_10_2527_jas_2016_1059 crossref_primary_10_3168_jds_2015_9975 crossref_primary_10_1093_jas_sky332 crossref_primary_10_1016_j_smallrumres_2018_03_005 crossref_primary_10_3168_jds_2017_14200 crossref_primary_10_3168_jds_2016_11246 crossref_primary_10_1038_s41598_020_59974_5 crossref_primary_10_1186_s42523_021_00089_1 crossref_primary_10_1016_j_livsci_2017_11_009 crossref_primary_10_1186_s40168_018_0447_y crossref_primary_10_3389_fmicb_2021_710914 crossref_primary_10_1016_j_csbj_2021_01_035 crossref_primary_10_3389_fmicb_2019_01846 crossref_primary_10_1371_journal_pone_0016731 crossref_primary_10_3168_jds_2016_12206 crossref_primary_10_3390_ani10071127 crossref_primary_10_1038_s41598_022_15155_0 crossref_primary_10_1186_s40064_015_1201_6 crossref_primary_10_1007_s00253_013_5143_z crossref_primary_10_1038_srep40864 crossref_primary_10_1038_srep05892 crossref_primary_10_15212_ijafr_2022_0014 crossref_primary_10_3168_jds_2016_11198 crossref_primary_10_3168_jds_2024_25797 crossref_primary_10_3390_microorganisms11010001 crossref_primary_10_1371_journal_pone_0129174 crossref_primary_10_1186_s12711_024_00887_6 crossref_primary_10_1186_s42523_021_00155_8 crossref_primary_10_3389_fmicb_2020_01311 crossref_primary_10_1093_femsec_fiw059 crossref_primary_10_2527_jas_2015_9225 crossref_primary_10_3168_jdsc_2020_0002 crossref_primary_10_1093_femsec_fiz203 crossref_primary_10_1093_nar_gkv973 crossref_primary_10_1096_fj_201802456R crossref_primary_10_3168_jds_2016_12514 crossref_primary_10_1038_s41598_018_21440_8 crossref_primary_10_3168_jds_2012_5772 crossref_primary_10_3168_jds_2022_22084 crossref_primary_10_1007_s00248_012_0024_z crossref_primary_10_3168_jds_2013_7164 crossref_primary_10_1017_S1751731118002276 crossref_primary_10_3389_fmicb_2018_00004 crossref_primary_10_1128_AEM_02657_18 crossref_primary_10_2527_jas_2017_1403 crossref_primary_10_1038_s41598_024_70770_3 crossref_primary_10_1016_j_scitotenv_2024_175732 crossref_primary_10_1093_jas_skac275 crossref_primary_10_3168_jds_2022_22407 crossref_primary_10_1016_j_aninu_2023_02_001 crossref_primary_10_2527_jas_2016_1339 crossref_primary_10_3168_jds_2018_15829 crossref_primary_10_1139_cjas_2019_0193 crossref_primary_10_3168_jds_2019_17514 crossref_primary_10_2527_af_2016_0019 crossref_primary_10_1007_s00253_019_10239_w crossref_primary_10_1093_femsec_fiu026 crossref_primary_10_1186_s12866_020_1716_z crossref_primary_10_1016_j_anifeedsci_2016_10_009 crossref_primary_10_1371_journal_pone_0091864 crossref_primary_10_1186_s13104_021_05726_1 crossref_primary_10_3389_fcimb_2018_00079 crossref_primary_10_1080_1828051X_2018_1462110 crossref_primary_10_3389_fmicb_2014_00689 crossref_primary_10_1186_s40168_022_01352_6 crossref_primary_10_3390_ani12151901 crossref_primary_10_1017_S1751731119003161 crossref_primary_10_1016_j_anifeedsci_2016_05_001 crossref_primary_10_1071_AN20344 crossref_primary_10_3390_toxins12100633 crossref_primary_10_1016_j_anaerobe_2019_05_003 crossref_primary_10_1186_s12866_015_0369_9 crossref_primary_10_3389_fmicb_2017_02147 crossref_primary_10_1016_j_livsci_2023_105171 crossref_primary_10_1080_1828051X_2019_1698979 crossref_primary_10_1111_jam_12958 crossref_primary_10_1186_s40104_016_0135_3 crossref_primary_10_3168_jds_2023_23486 crossref_primary_10_3389_fmicb_2019_01116 crossref_primary_10_1017_S0021859618001053 crossref_primary_10_1371_journal_pgen_1007580 crossref_primary_10_3168_jds_2014_8003 crossref_primary_10_3390_ani9080498 crossref_primary_10_1128_AEM_02141_18 crossref_primary_10_1186_s40168_023_01620_z crossref_primary_10_3389_fmicb_2016_01839 crossref_primary_10_1007_s00248_018_1234_9 crossref_primary_10_3168_jds_2017_12746 crossref_primary_10_3168_jds_2024_24817 crossref_primary_10_1093_tas_txab051 crossref_primary_10_2527_jas_2014_8754 crossref_primary_10_3168_jds_2013_7342 crossref_primary_10_1016_j_anifeedsci_2019_03_004 crossref_primary_10_1186_s12711_019_0464_8 crossref_primary_10_3168_jds_2013_6775 crossref_primary_10_14405_kjvr_2021_61_e2 crossref_primary_10_3389_fmicb_2016_02143 crossref_primary_10_1038_s41598_018_37033_4 crossref_primary_10_1093_tas_txac148 crossref_primary_10_3390_microorganisms7100410 crossref_primary_10_1038_s41598_017_01269_3 crossref_primary_10_1038_s41598_022_16052_2 crossref_primary_10_2527_jas_2015_9839 crossref_primary_10_1371_journal_pone_0083424 crossref_primary_10_3389_fmicb_2021_769438 crossref_primary_10_1021_acs_jafc_3c04632 crossref_primary_10_1292_jvms_13_0370 crossref_primary_10_1016_j_anifeedsci_2020_114562 crossref_primary_10_1038_s41598_024_65685_y crossref_primary_10_3168_jds_2016_11832 crossref_primary_10_3389_frmbi_2023_1204988 crossref_primary_10_3168_jds_2015_10352 crossref_primary_10_3168_jds_2017_13328 crossref_primary_10_1093_jas_skx056 crossref_primary_10_3389_fmicb_2016_01206 crossref_primary_10_3168_jds_2018_15691 crossref_primary_10_3389_fnut_2018_00080 crossref_primary_10_1186_s40104_017_0141_0 crossref_primary_10_3168_jds_2013_6766 crossref_primary_10_3389_fmicb_2022_804562 crossref_primary_10_3389_fmicb_2024_1431063 |
Cites_doi | 10.1111/j.1740-0929.2007.00470.x 10.1007/s002489901006 10.3168/jds.2009-2206 10.1128/AEM.65.10.4630-4636.1999 10.1016/j.anaerobe.2009.07.002 10.2527/1998.76123114x 10.1073/pnas.0801925105 10.3945/jn.109.108506 10.1111/j.1462-2920.2005.00835.x 10.3168/jds.S0022-0302(96)76506-2 10.1111/j.1442-9993.1993.tb00438.x 10.1128/AEM.64.9.3496-3498.1998 10.2307/1307321 10.1007/s00253-006-0802-y 10.1016/j.anifeedsci.2004.01.010 10.1128/AEM.61.3.1116-1119.1995 10.1111/j.1462-2920.2007.01527.x 10.2527/1991.6941795x 10.1111/j.1751-0813.1986.tb02990.x 10.1007/BF00164416 10.4141/A06-066 10.3168/jds.S0022-0302(69)86840-2 |
ContentType | Journal Article |
Copyright | 2015 INIST-CNRS Copyright © 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2015 INIST-CNRS – notice: Copyright © 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved. |
DBID | FBQ AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.3168/jds.2010-3500 |
DatabaseName | AGRIS CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
EISSN | 1525-3198 |
EndPage | 5912 |
ExternalDocumentID | 21094763 23460392 10_3168_jds_2010_3500 US201301919433 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- --K -~X .GJ 0R~ 0SF 186 18M 1B1 29K 2WC 36B 3V. 4.4 457 4G. 53G 5GY 5VS 7-5 7X2 7X7 7XC 88E 8FE 8FG 8FH 8FI 8FJ 8FW 8R4 8R5 8VB AABVA AAEDT AAEDW AAFTH AAIAV AALRI AAQFI AAQXK AAWRB AAXUO ABCQX ABJCF ABJNI ABPTK ABUWG ABVKL ACGFO ACGFS ACIWK ADBBV ADMUD ADPAM AEGXH AENEX AESVU AFKRA AFKWA AFRAH AFTJW AGZHU AHMBA AI. AIAGR AITUG AKVCP ALMA_UNASSIGNED_HOLDINGS ALXNB AMRAJ ASPBG ATCPS AVWKF AZFZN BELOY BENPR BGLVJ BHPHI BPHCQ BVXVI C1A CCPQU CS3 D-I DU5 E3Z EBS EBU EDH EJD EMB F5P FBQ FDB FEDTE FGOYB FYUFA GBLVA GROUPED_DOAJ GX1 HCIFZ HMCUK HVGLF HZ~ K1G L6V L7B M0K M1P M41 M7S N9A NCXOZ NHB O9- OK1 P2P PATMY PQQKQ PROAC PSQYO PTHSS PYCSY Q2X QII QWB R2- ROL RWL S0X SEL SES SSZ SV3 TAE TDS TWZ U5U UHB UKHRP VH1 WOQ XH2 XOL ZGI ZL0 ZXP ~KM AAFWJ AAHBH AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADMHG ADNMO ADVLN AEUPX AEUYN AFJKZ AFPKN AFPUW AGQPQ AIGII AKBMS AKRWK AKYEP ALIPV APXCP CITATION PHGZM PHGZT IQODW CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c483t-da9955b7f7504546f091ee7912bc14c15bf37e87ec494b036cf75c1a94552c203 |
ISSN | 0022-0302 1525-3198 |
IngestDate | Fri Sep 05 02:52:03 EDT 2025 Thu Sep 04 21:54:40 EDT 2025 Mon Jul 21 05:38:22 EDT 2025 Wed Apr 02 07:17:10 EDT 2025 Thu Apr 24 22:51:43 EDT 2025 Tue Jul 01 04:20:45 EDT 2025 Wed Dec 27 19:11:13 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | Farming animal rumen pH Digestive system Dairy cattle Rumen Vertebrata Specificity Mammalia Content Dairy industry Volatile fatty acid pH bacterial community Artiodactyla Ungulata |
Language | English |
License | http://www.elsevier.com/open-access/userlicense/1.0 https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 Copyright © 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c483t-da9955b7f7504546f091ee7912bc14c15bf37e87ec494b036cf75c1a94552c203 |
Notes | http://hdl.handle.net/10113/48596 http://dx.doi.org/10.3168/jds.2010-3500 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | http://www.journalofdairyscience.org/article/S0022030210006417/pdf |
PMID | 21094763 |
PQID | 812131271 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_866244815 proquest_miscellaneous_812131271 pubmed_primary_21094763 pascalfrancis_primary_23460392 crossref_primary_10_3168_jds_2010_3500 crossref_citationtrail_10_3168_jds_2010_3500 fao_agris_US201301919433 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2010-12-01 |
PublicationDateYYYYMMDD | 2010-12-01 |
PublicationDate_xml | – month: 12 year: 2010 text: 2010-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York, NY |
PublicationPlace_xml | – name: New York, NY – name: United States |
PublicationTitle | Journal of dairy science |
PublicationTitleAlternate | J Dairy Sci |
PublicationYear | 2010 |
Publisher | Elsevier |
Publisher_xml | – name: Elsevier |
References | Allison (10.3168/jds.2010-3500_bib0005) 2008; 105 Jones (10.3168/jds.2010-3500_bib0045) 1986; 63 Shade (10.3168/jds.2010-3500_bib0085) 2008; 10 Hungate (10.3168/jds.2010-3500_bib0040) 1966 Fisher (10.3168/jds.2010-3500_bib0030) 1999; 63 Penner (10.3168/jds.2010-3500_bib0070) 2009; 139 Gregg (10.3168/jds.2010-3500_bib0035) 1998; 64 Paul (10.3168/jds.2010-3500_bib0065) 2007; 115 Krause (10.3168/jds.2010-3500_bib0055) 1999; 38 Weimer (10.3168/jds.2010-3500_bib0105) 1998; 76 Weimer (10.3168/jds.2010-3500_bib0110) 1991; 36 Brown (10.3168/jds.2010-3500_bib0010) 2005; 7 Chiquette (10.3168/jds.2010-3500_bib0015) 2007; 87 Stevenson (10.3168/jds.2010-3500_bib0090) 2007; 75 Cole (10.3168/jds.2010-3500_bib0025) 1991; 69 Ludwig (10.3168/jds.2010-3500_bib0060) 1988 Krause (10.3168/jds.2010-3500_bib0050) 1996; 79 Clarke (10.3168/jds.2010-3500_bib0020) 1993; 17 Russell (10.3168/jds.2010-3500_bib0075) 2002 Satter (10.3168/jds.2010-3500_bib0080) 1969; 52 Weimer (10.3168/jds.2010-3500_bib0115) 2010; 93 Tatsuoka (10.3168/jds.2010-3500_bib0095) 2007; 78 Varel (10.3168/jds.2010-3500_bib0100) 1995; 61 Welkie (10.3168/jds.2010-3500_bib0120) 2010; 16 Westman (10.3168/jds.2010-3500_bib0125) 1978; 28 |
References_xml | – volume: 78 start-page: 512 year: 2007 ident: 10.3168/jds.2010-3500_bib0095 article-title: Analysis of methanogens in the bovine rumen by polymerase chain reaction single-strand conformation polymorphism publication-title: Anim. Sci. J. doi: 10.1111/j.1740-0929.2007.00470.x – volume: 38 start-page: 365 year: 1999 ident: 10.3168/jds.2010-3500_bib0055 article-title: Use of 16S-RNA based techniques to investigate the succession of microbial populations in the immature lamb rumen: Tracking of a specific strain of inoculated Ruminococcus and interactions with other microbial populations in vivo publication-title: Microb. Ecol. doi: 10.1007/s002489901006 – volume: 93 start-page: 265 year: 2010 ident: 10.3168/jds.2010-3500_bib0115 article-title: Shifts in bacterial community composition in the rumen of lactating dairy cows under conditions of milk fat depression publication-title: J. Dairy Sci. doi: 10.3168/jds.2009-2206 – volume: 63 start-page: 4630 year: 1999 ident: 10.3168/jds.2010-3500_bib0030 article-title: Automated approach for ribosomal intergenic spacer analysis of microbial diversity and its application to freshwater environments publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.65.10.4630-4636.1999 – volume: 16 start-page: 94 year: 2010 ident: 10.3168/jds.2010-3500_bib0120 article-title: ARISA analysis of ruminal bacterial community dynamics in lactating dairy cows during the feeding cycle publication-title: Anaerobe doi: 10.1016/j.anaerobe.2009.07.002 – volume: 76 start-page: 3114 year: 1998 ident: 10.3168/jds.2010-3500_bib0105 article-title: Manipulating ruminal fermentation: A microbial ecological perspective publication-title: J. Anim. Sci. doi: 10.2527/1998.76123114x – volume: 105 start-page: 11512 year: 2008 ident: 10.3168/jds.2010-3500_bib0005 article-title: Resistance, resilience, and redundancy in microbial communities publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0801925105 – volume: 139 start-page: 1714 year: 2009 ident: 10.3168/jds.2010-3500_bib0070 article-title: Epithelial capacity for apical uptake of short chain fatty acids is a key determinant of intraruminal pH and the susceptibility to subacute ruminal acidosis in sheep publication-title: J. Nutr. doi: 10.3945/jn.109.108506 – volume: 7 start-page: 1466 year: 2005 ident: 10.3168/jds.2010-3500_bib0010 article-title: Coupling of 16S-ITS-rDNA clone libraries and automated ribosomal interspecies spacer analysis to show marine microbial diversity: Development and application of a time series publication-title: Environ. Microbiol. doi: 10.1111/j.1462-2920.2005.00835.x – volume: 79 start-page: 1467 year: 1996 ident: 10.3168/jds.2010-3500_bib0050 article-title: How many ruminal bacteria are there? publication-title: J. Dairy Sci. doi: 10.3168/jds.S0022-0302(96)76506-2 – volume: 17 start-page: 117 year: 1993 ident: 10.3168/jds.2010-3500_bib0020 article-title: Non-parmetric multivariate analysis of changes in community structure publication-title: Aust. J. Ecol. doi: 10.1111/j.1442-9993.1993.tb00438.x – volume: 64 start-page: 3496 year: 1998 ident: 10.3168/jds.2010-3500_bib0035 article-title: Genetically modified ruminal bacteria protect sheep from fluoroacetate poisoning publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.64.9.3496-3498.1998 – year: 1966 ident: 10.3168/jds.2010-3500_bib0040 – volume: 28 start-page: 705 year: 1978 ident: 10.3168/jds.2010-3500_bib0125 article-title: Measuring the inertia and resilience of ecosystems publication-title: Bioscience doi: 10.2307/1307321 – year: 1988 ident: 10.3168/jds.2010-3500_bib0060 article-title: Community ordination – volume: 75 start-page: 165 year: 2007 ident: 10.3168/jds.2010-3500_bib0090 article-title: Dominance of Prevotella and low abundance of classical ruminal bacterial species in the bovine rumen revealed by relative quantification real-time PCR publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-006-0802-y – year: 2002 ident: 10.3168/jds.2010-3500_bib0075 – volume: 115 start-page: 143 year: 2007 ident: 10.3168/jds.2010-3500_bib0065 article-title: Effect of administration of an anaerobic gut fungus isolated from wild blue bull (Boselaphus tragocameulus) to buffaloes (Bubalus bubalis) on in vivo ruminal fermentation and digestion of nutrients publication-title: Anim. Feed Sci. Technol. doi: 10.1016/j.anifeedsci.2004.01.010 – volume: 61 start-page: 1116 year: 1995 ident: 10.3168/jds.2010-3500_bib0100 article-title: Addition of cellulolytic clostridia to the bovine rumen and pig intestinal tract publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.61.3.1116-1119.1995 – volume: 10 start-page: 1057 year: 2008 ident: 10.3168/jds.2010-3500_bib0085 article-title: The influence of habitat heterogeneity on bacterial community composition and dynamics publication-title: Environ. Microbiol. doi: 10.1111/j.1462-2920.2007.01527.x – volume: 69 start-page: 1795 year: 1991 ident: 10.3168/jds.2010-3500_bib0025 article-title: Effects of animal-to-animal exchange of ruminal contents on the feed intake and ruminal characteristics of fed and fasted lambs publication-title: J. Anim. Sci. doi: 10.2527/1991.6941795x – volume: 63 start-page: 259 year: 1986 ident: 10.3168/jds.2010-3500_bib0045 article-title: Successful transfer of DHP-degrading bacteria from Hawaiian goats to Australian ruminants to overcome the toxicity of Leucaena publication-title: Aust. Vet. J. doi: 10.1111/j.1751-0813.1986.tb02990.x – volume: 36 start-page: 178 year: 1991 ident: 10.3168/jds.2010-3500_bib0110 article-title: A segmented gas/liquid delivery system for continuous culture of microorganisms on solid substrates, and its use for growth of Ruminococcus flavefaciens on cellulose publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/BF00164416 – volume: 87 start-page: 237 year: 2007 ident: 10.3168/jds.2010-3500_bib0015 article-title: Repeated ruminal dosing of Ruminococcus flavefaciens NJ along with a probiotic mixture in forage or concentrate-fed dairy cows: Effect on ruminal fermentation, cellulolytic populations and in sacco digestibility publication-title: Can. J. Anim. Sci. doi: 10.4141/A06-066 – volume: 52 start-page: 1776 year: 1969 ident: 10.3168/jds.2010-3500_bib0080 article-title: The effect of abrupt ration changes on milk and blood components publication-title: J. Dairy Sci. doi: 10.3168/jds.S0022-0302(69)86840-2 |
SSID | ssj0021205 |
Score | 2.4518197 |
Snippet | The purpose of this study was to examine the stability and host specificity of a cow's ruminal bacterial community following massive challenge with ruminal... |
SourceID | proquest pubmed pascalfrancis crossref fao |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 5902 |
SubjectTerms | Animal productions Animals Biological and medical sciences Cattle - metabolism Cattle - microbiology dairy cows digesta Fatty Acids, Volatile - metabolism Food industries Fundamental and applied biological sciences. Psychology Host Specificity Hydrogen-Ion Concentration microbial ecology Milk and cheese industries. Ice creams Rumen - chemistry Rumen - metabolism Rumen - microbiology rumen bacteria rumen microorganisms Terrestrial animal productions Vertebrates volatile fatty acids |
Title | Host specificity of the ruminal bacterial community in the dairy cow following near-total exchange of ruminal contents |
URI | https://www.ncbi.nlm.nih.gov/pubmed/21094763 https://www.proquest.com/docview/812131271 https://www.proquest.com/docview/866244815 |
Volume | 93 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbY7gUOiPeWx8oHxKVkiR07j2MFu6rYdkHQir1FduqgSihBbbpl-fXMxE7SSl1el6h1R5Mq3xd77HkR8lL7scp4Lr2cR9ITRiWe0j58DWOtYmV4Psfk5MlFOJqJ95fysnPF1NkllT7Jfu7NK_kfVGEMcMUs2X9AtlUKA_AZ8IUrIAzXv8J4VK6qAeZKYryPi62oQwbXtlWXtqWY6xIgdR5Idd3ENc7VYnkNw5tBDkwoN3hiUADrvarE9Ejzw2YEo8ZGG0a1N5Wf9tizVqNbUTuHz8K1Z_m45YCqO6m5VK933XnsBBsaX9kmU4NRd347cYe0g7Ebc6cUOxEfbmLl6HG3HadPzJ4xNxvbfokN6_jW3IqFZvZN-th6Cyf9-aqO1PMC6fvd6tZ49C8-pGez8Tidnl5OD8ghj8DU6pHD4fmnL-ftDp3xOua1_WO2KCve4M2O-h0j5iBXJYbUqhW8Vblth3LzfqW2W6b3yF0HEB1a9twnt0zxgNwZfl26oivmIblCHtEtHtEyp0AS6pCnLY9oyyO6KGqRGnUY3tCWR7TjEW14hBobbQ2PHpHZ2en07chz_Ti8TMRB5c1VkkipoxxbAkgR5mBrGhMljOuMiYxJnQeRiSOTiURoMI0ykMyYSoSUPON-8Jj0irIwR4QqZXxtWAbWYi58kJd-kGkTxhGP4TfRJ6-bB5xmrlg99kz5lsKmFfFIAY8U8UgRjz551Yp_t1VabhI8ArRSBQ95lc4-c_Tbs4QlIgj65HgHwlYRD0TowzaiT2iDaQpzMDrWVGHK9SqNsS4i4xH7jUgYgiEdM9knTywdOv3MTwQs80__rP8Zud29XM9Jr1quzQswiit97Kj8C-E3uhk |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Host+specificity+of+the+ruminal+bacterial+community+in+the+dairy+cow+following+near-total+exchange+of+ruminal+contents&rft.jtitle=Journal+of+dairy+science&rft.au=Weimer%2C+P+J&rft.au=Stevenson%2C+D+M&rft.au=Mantovani%2C+H+C&rft.au=Man%2C+S+L+C&rft.date=2010-12-01&rft.issn=1525-3198&rft.eissn=1525-3198&rft.volume=93&rft.issue=12&rft.spage=5902&rft_id=info:doi/10.3168%2Fjds.2010-3500&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-0302&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-0302&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-0302&client=summon |