Host specificity of the ruminal bacterial community in the dairy cow following near-total exchange of ruminal contents

The purpose of this study was to examine the stability and host specificity of a cow's ruminal bacterial community following massive challenge with ruminal microflora from another cow. In each of 2 experiments, 1 pair of cows was selected on the basis of differences in ruminal bacterial communi...

Full description

Saved in:
Bibliographic Details
Published inJournal of dairy science Vol. 93; no. 12; pp. 5902 - 5912
Main Authors Weimer, P.J, Stevenson, D.M, Mantovani, H.C, Man, S.L.C
Format Journal Article
LanguageEnglish
Published New York, NY Elsevier 01.12.2010
Subjects
Online AccessGet full text
ISSN0022-0302
1525-3198
1525-3198
DOI10.3168/jds.2010-3500

Cover

Abstract The purpose of this study was to examine the stability and host specificity of a cow's ruminal bacterial community following massive challenge with ruminal microflora from another cow. In each of 2 experiments, 1 pair of cows was selected on the basis of differences in ruminal bacterial community composition (BCC), determined by automated ribosomal intergenic spacer analysis (ARISA), a culture-independent “community fingerprinting” technique. Each pair of cows was then subjected to a 1-time exchange of >95% of ruminal contents without changing the composition of a corn silage/alfalfa haylage-based TMR. In experiment 1, the 2 cows differed (P<0.01) in prefeed ruminal pH (mean=6.88 vs. 6.14) and prefeed total VFA concentration (mean=57 vs. 77mM), averaged over 3 d. Following exchange of ruminal contents, ruminal pH and total VFA concentration in both cows returned to their preexchange values within 24h. Ruminal BCC also returned to near its original profile, but this change required 14 d for 1 cow and 61 d for the other cow. In experiment 2, the 2 other cows differed in prefeed ruminal pH (mean=6.69 vs. 6.20) and total VFA concentration (mean=101 vs. 136mM). Following exchange of ruminal contents, the first cow returned to its preexchange pH and VFA values within 24h; the second cow's rumen rapidly stabilized to a higher prefeed pH (mean=6.47) and lower prefeed VFA concentration (mean=120mM) that was retained over the 62-d test period. Both cows reached somewhat different BCC than before the exchange. However, the BCC of both cows remained distinct and were ultimately more similar to that of the preexchange BCC than of the donor animal BCC. The data indicate that the host animal can quickly reestablish its characteristic ruminal pH and VFA concentration despite dramatic perturbation of its ruminal microbial community. The data also suggest that ruminal BCC displays substantial host specificity that can reestablish itself with varying success when challenged with a microbial community optimally adapted to ruminal conditions of a different host animal.
AbstractList The purpose of this study was to examine the stability and host specificity of a cow's ruminal bacterial community following massive challenge with ruminal microflora from another cow. In each of 2 experiments, 1 pair of cows was selected on the basis of differences in ruminal bacterial community composition (BCC), determined by automated ribosomal intergenic spacer analysis (ARISA), a culture-independent "community fingerprinting" technique. Each pair of cows was then subjected to a 1-time exchange of >95% of ruminal contents without changing the composition of a corn silage/alfalfa haylage-based TMR. In experiment 1, the 2 cows differed (P<0.01) in prefeed ruminal pH (mean = 6.88 vs. 6.14) and prefeed total VFA concentration (mean = 57 vs. 77 mM), averaged over 3 d. Following exchange of ruminal contents, ruminal pH and total VFA concentration in both cows returned to their preexchange values within 24h. Ruminal BCC also returned to near its original profile, but this change required 14 d for 1 cow and 61 d for the other cow. In experiment 2, the 2 other cows differed in prefeed ruminal pH (mean = 6.69 vs. 6.20) and total VFA concentration (mean = 101 vs. 136 mM). Following exchange of ruminal contents, the first cow returned to its preexchange pH and VFA values within 24h; the second cow's rumen rapidly stabilized to a higher prefeed pH (mean = 6.47) and lower prefeed VFA concentration (mean = 120 mM) that was retained over the 62-d test period. Both cows reached somewhat different BCC than before the exchange. However, the BCC of both cows remained distinct and were ultimately more similar to that of the preexchange BCC than of the donor animal BCC. The data indicate that the host animal can quickly reestablish its characteristic ruminal pH and VFA concentration despite dramatic perturbation of its ruminal microbial community. The data also suggest that ruminal BCC displays substantial host specificity that can reestablish itself with varying success when challenged with a microbial community optimally adapted to ruminal conditions of a different host animal.The purpose of this study was to examine the stability and host specificity of a cow's ruminal bacterial community following massive challenge with ruminal microflora from another cow. In each of 2 experiments, 1 pair of cows was selected on the basis of differences in ruminal bacterial community composition (BCC), determined by automated ribosomal intergenic spacer analysis (ARISA), a culture-independent "community fingerprinting" technique. Each pair of cows was then subjected to a 1-time exchange of >95% of ruminal contents without changing the composition of a corn silage/alfalfa haylage-based TMR. In experiment 1, the 2 cows differed (P<0.01) in prefeed ruminal pH (mean = 6.88 vs. 6.14) and prefeed total VFA concentration (mean = 57 vs. 77 mM), averaged over 3 d. Following exchange of ruminal contents, ruminal pH and total VFA concentration in both cows returned to their preexchange values within 24h. Ruminal BCC also returned to near its original profile, but this change required 14 d for 1 cow and 61 d for the other cow. In experiment 2, the 2 other cows differed in prefeed ruminal pH (mean = 6.69 vs. 6.20) and total VFA concentration (mean = 101 vs. 136 mM). Following exchange of ruminal contents, the first cow returned to its preexchange pH and VFA values within 24h; the second cow's rumen rapidly stabilized to a higher prefeed pH (mean = 6.47) and lower prefeed VFA concentration (mean = 120 mM) that was retained over the 62-d test period. Both cows reached somewhat different BCC than before the exchange. However, the BCC of both cows remained distinct and were ultimately more similar to that of the preexchange BCC than of the donor animal BCC. The data indicate that the host animal can quickly reestablish its characteristic ruminal pH and VFA concentration despite dramatic perturbation of its ruminal microbial community. The data also suggest that ruminal BCC displays substantial host specificity that can reestablish itself with varying success when challenged with a microbial community optimally adapted to ruminal conditions of a different host animal.
The purpose of this study was to examine the stability and host specificity of a cow's ruminal bacterial community following massive challenge with ruminal microflora from another cow. In each of 2 experiments, 1 pair of cows was selected on the basis of differences in ruminal bacterial community composition (BCC), determined by automated ribosomal intergenic spacer analysis (ARISA), a culture-independent “community fingerprinting” technique. Each pair of cows was then subjected to a 1-time exchange of >95% of ruminal contents without changing the composition of a corn silage/alfalfa haylage-based TMR. In experiment 1, the 2 cows differed (P<0.01) in prefeed ruminal pH (mean=6.88 vs. 6.14) and prefeed total VFA concentration (mean=57 vs. 77mM), averaged over 3 d. Following exchange of ruminal contents, ruminal pH and total VFA concentration in both cows returned to their preexchange values within 24h. Ruminal BCC also returned to near its original profile, but this change required 14 d for 1 cow and 61 d for the other cow. In experiment 2, the 2 other cows differed in prefeed ruminal pH (mean=6.69 vs. 6.20) and total VFA concentration (mean=101 vs. 136mM). Following exchange of ruminal contents, the first cow returned to its preexchange pH and VFA values within 24h; the second cow's rumen rapidly stabilized to a higher prefeed pH (mean=6.47) and lower prefeed VFA concentration (mean=120mM) that was retained over the 62-d test period. Both cows reached somewhat different BCC than before the exchange. However, the BCC of both cows remained distinct and were ultimately more similar to that of the preexchange BCC than of the donor animal BCC. The data indicate that the host animal can quickly reestablish its characteristic ruminal pH and VFA concentration despite dramatic perturbation of its ruminal microbial community. The data also suggest that ruminal BCC displays substantial host specificity that can reestablish itself with varying success when challenged with a microbial community optimally adapted to ruminal conditions of a different host animal.
The purpose of this study was to examine the stability and host specificity of a cow's ruminal bacterial community following massive challenge with ruminal microflora from another cow. In each of 2 experiments, 1 pair of cows was selected on the basis of differences in ruminal bacterial community composition (BCC), determined by automated ribosomal intergenic spacer analysis (ARISA), a culture-independent "community fingerprinting" technique. Each pair of cows was then subjected to a 1-time exchange of >95% of ruminal contents without changing the composition of a corn silage/alfalfa haylage-based TMR. In experiment 1, the 2 cows differed (P<0.01) in prefeed ruminal pH (mean = 6.88 vs. 6.14) and prefeed total VFA concentration (mean = 57 vs. 77 mM), averaged over 3 d. Following exchange of ruminal contents, ruminal pH and total VFA concentration in both cows returned to their preexchange values within 24h. Ruminal BCC also returned to near its original profile, but this change required 14 d for 1 cow and 61 d for the other cow. In experiment 2, the 2 other cows differed in prefeed ruminal pH (mean = 6.69 vs. 6.20) and total VFA concentration (mean = 101 vs. 136 mM). Following exchange of ruminal contents, the first cow returned to its preexchange pH and VFA values within 24h; the second cow's rumen rapidly stabilized to a higher prefeed pH (mean = 6.47) and lower prefeed VFA concentration (mean = 120 mM) that was retained over the 62-d test period. Both cows reached somewhat different BCC than before the exchange. However, the BCC of both cows remained distinct and were ultimately more similar to that of the preexchange BCC than of the donor animal BCC. The data indicate that the host animal can quickly reestablish its characteristic ruminal pH and VFA concentration despite dramatic perturbation of its ruminal microbial community. The data also suggest that ruminal BCC displays substantial host specificity that can reestablish itself with varying success when challenged with a microbial community optimally adapted to ruminal conditions of a different host animal.
Author Mantovani, H.C
Man, S.L.C
Weimer, P.J
Stevenson, D.M
Author_xml – sequence: 1
  fullname: Weimer, P.J
– sequence: 2
  fullname: Stevenson, D.M
– sequence: 3
  fullname: Mantovani, H.C
– sequence: 4
  fullname: Man, S.L.C
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23460392$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/21094763$$D View this record in MEDLINE/PubMed
BookMark eNqF0U1v1DAQBmALFdFt4cgVckGc0nr8kcRHVAFFqtQD7TlyvOOtq8RebKdl_z0OuwUJCfXkr2dG1rwn5MgHj4S8BXrGoenO79fpjFGgNZeUviArkEzWHFR3RFaUMlZTTtkxOUnpvhyBUfmKHDOgSrQNX5GHy5BylbZonHXG5V0VbJXvsIrz5Lweq0GbjNGVnQnTNPuFOP-brLWLu3L9WNkwjuHR-U3lUcc6h1w8_jR32m9w6fjUzQSf0ef0mry0ekz45rCektsvn28uLuur66_fLj5d1UZ0PNdrrZSUQ2tbSYUUjaUKEFsFbDAgDMjB8ha7Fo1QYqC8MUUa0EpIyQyj_JR83PfdxvBjxpT7ySWD46g9hjn1XdMwITqQz0tgwIG1UOS7g5yHCdf9NrpJx13_NNQCPhyATkaPNmpvXPrruGgoV6y4eu9MDClFtH8I0H4Jty_h9ku4_RJu8fwfXwLT2ZWZRu3G_1a931dZHXq9ieUnt9_LM6egQAnO-S_xmrEx
CODEN JDSCAE
CitedBy_id crossref_primary_10_3389_fmicb_2016_02032
crossref_primary_10_3168_jds_2018_15730
crossref_primary_10_1016_j_cvfa_2014_07_003
crossref_primary_10_1007_s11250_024_04025_8
crossref_primary_10_3390_ani10081397
crossref_primary_10_5333_KGFS_2019_39_4_227
crossref_primary_10_3389_fmicb_2015_01133
crossref_primary_10_1371_journal_pone_0029392
crossref_primary_10_3168_jds_2024_25050
crossref_primary_10_1177_1535370219830075
crossref_primary_10_1016_j_animal_2021_100316
crossref_primary_10_1016_j_smallrumres_2020_106283
crossref_primary_10_2527_jas_2015_0056
crossref_primary_10_3389_fgene_2022_795717
crossref_primary_10_1186_s40168_017_0274_6
crossref_primary_10_1017_S0007114514000932
crossref_primary_10_3390_ani12010093
crossref_primary_10_1139_cjas_2020_0022
crossref_primary_10_3168_jds_2017_13179
crossref_primary_10_1016_j_jia_2024_01_026
crossref_primary_10_1128_AEM_00861_20
crossref_primary_10_3168_jds_2017_13057
crossref_primary_10_1016_j_livsci_2014_01_005
crossref_primary_10_1016_j_livsci_2015_05_027
crossref_primary_10_3168_jds_2016_11620
crossref_primary_10_3389_fgene_2018_00062
crossref_primary_10_1016_j_aninu_2022_03_002
crossref_primary_10_1590_1519_6984_288025
crossref_primary_10_2527_jas_2015_9415
crossref_primary_10_1016_j_imlet_2014_05_009
crossref_primary_10_1038_s41598_022_11959_2
crossref_primary_10_1186_s42523_021_00142_z
crossref_primary_10_1038_s41598_021_82084_9
crossref_primary_10_1038_s41598_024_74988_z
crossref_primary_10_3389_fvets_2023_1272835
crossref_primary_10_3390_agriculture13020326
crossref_primary_10_3168_jds_2011_4492
crossref_primary_10_3390_ani10040712
crossref_primary_10_3389_fmicb_2020_01403
crossref_primary_10_1007_s11274_024_04080_1
crossref_primary_10_3168_jds_2022_22564
crossref_primary_10_1017_S1751731118001957
crossref_primary_10_3168_jds_2022_22573
crossref_primary_10_1016_j_anifeedsci_2019_01_005
crossref_primary_10_1016_j_anaerobe_2019_102145
crossref_primary_10_3390_fermentation9020186
crossref_primary_10_1146_annurev_animal_013020_020412
crossref_primary_10_3168_jds_2015_9721
crossref_primary_10_1038_s41598_022_17445_z
crossref_primary_10_3389_fmicb_2017_00848
crossref_primary_10_3389_fmicb_2017_01656
crossref_primary_10_2527_jas_2014_7811
crossref_primary_10_4137_BBI_S15389
crossref_primary_10_1016_j_scitotenv_2018_11_180
crossref_primary_10_3168_jds_2017_14334
crossref_primary_10_3389_fmicb_2015_01272
crossref_primary_10_1016_j_anaerobe_2018_07_013
crossref_primary_10_3168_jds_2014_8049
crossref_primary_10_1038_s42003_022_03293_0
crossref_primary_10_1371_journal_pone_0192256
crossref_primary_10_3390_microorganisms10010144
crossref_primary_10_3389_fmicb_2016_00274
crossref_primary_10_3168_jds_2015_10271
crossref_primary_10_1007_s13762_023_05320_x
crossref_primary_10_3390_ani11082192
crossref_primary_10_3389_fmicb_2018_02161
crossref_primary_10_1016_j_anifeedsci_2015_06_013
crossref_primary_10_3168_jds_2012_5392
crossref_primary_10_3389_fmicb_2020_531404
crossref_primary_10_2527_jas_2016_1059
crossref_primary_10_3168_jds_2015_9975
crossref_primary_10_1093_jas_sky332
crossref_primary_10_1016_j_smallrumres_2018_03_005
crossref_primary_10_3168_jds_2017_14200
crossref_primary_10_3168_jds_2016_11246
crossref_primary_10_1038_s41598_020_59974_5
crossref_primary_10_1186_s42523_021_00089_1
crossref_primary_10_1016_j_livsci_2017_11_009
crossref_primary_10_1186_s40168_018_0447_y
crossref_primary_10_3389_fmicb_2021_710914
crossref_primary_10_1016_j_csbj_2021_01_035
crossref_primary_10_3389_fmicb_2019_01846
crossref_primary_10_1371_journal_pone_0016731
crossref_primary_10_3168_jds_2016_12206
crossref_primary_10_3390_ani10071127
crossref_primary_10_1038_s41598_022_15155_0
crossref_primary_10_1186_s40064_015_1201_6
crossref_primary_10_1007_s00253_013_5143_z
crossref_primary_10_1038_srep40864
crossref_primary_10_1038_srep05892
crossref_primary_10_15212_ijafr_2022_0014
crossref_primary_10_3168_jds_2016_11198
crossref_primary_10_3168_jds_2024_25797
crossref_primary_10_3390_microorganisms11010001
crossref_primary_10_1371_journal_pone_0129174
crossref_primary_10_1186_s12711_024_00887_6
crossref_primary_10_1186_s42523_021_00155_8
crossref_primary_10_3389_fmicb_2020_01311
crossref_primary_10_1093_femsec_fiw059
crossref_primary_10_2527_jas_2015_9225
crossref_primary_10_3168_jdsc_2020_0002
crossref_primary_10_1093_femsec_fiz203
crossref_primary_10_1093_nar_gkv973
crossref_primary_10_1096_fj_201802456R
crossref_primary_10_3168_jds_2016_12514
crossref_primary_10_1038_s41598_018_21440_8
crossref_primary_10_3168_jds_2012_5772
crossref_primary_10_3168_jds_2022_22084
crossref_primary_10_1007_s00248_012_0024_z
crossref_primary_10_3168_jds_2013_7164
crossref_primary_10_1017_S1751731118002276
crossref_primary_10_3389_fmicb_2018_00004
crossref_primary_10_1128_AEM_02657_18
crossref_primary_10_2527_jas_2017_1403
crossref_primary_10_1038_s41598_024_70770_3
crossref_primary_10_1016_j_scitotenv_2024_175732
crossref_primary_10_1093_jas_skac275
crossref_primary_10_3168_jds_2022_22407
crossref_primary_10_1016_j_aninu_2023_02_001
crossref_primary_10_2527_jas_2016_1339
crossref_primary_10_3168_jds_2018_15829
crossref_primary_10_1139_cjas_2019_0193
crossref_primary_10_3168_jds_2019_17514
crossref_primary_10_2527_af_2016_0019
crossref_primary_10_1007_s00253_019_10239_w
crossref_primary_10_1093_femsec_fiu026
crossref_primary_10_1186_s12866_020_1716_z
crossref_primary_10_1016_j_anifeedsci_2016_10_009
crossref_primary_10_1371_journal_pone_0091864
crossref_primary_10_1186_s13104_021_05726_1
crossref_primary_10_3389_fcimb_2018_00079
crossref_primary_10_1080_1828051X_2018_1462110
crossref_primary_10_3389_fmicb_2014_00689
crossref_primary_10_1186_s40168_022_01352_6
crossref_primary_10_3390_ani12151901
crossref_primary_10_1017_S1751731119003161
crossref_primary_10_1016_j_anifeedsci_2016_05_001
crossref_primary_10_1071_AN20344
crossref_primary_10_3390_toxins12100633
crossref_primary_10_1016_j_anaerobe_2019_05_003
crossref_primary_10_1186_s12866_015_0369_9
crossref_primary_10_3389_fmicb_2017_02147
crossref_primary_10_1016_j_livsci_2023_105171
crossref_primary_10_1080_1828051X_2019_1698979
crossref_primary_10_1111_jam_12958
crossref_primary_10_1186_s40104_016_0135_3
crossref_primary_10_3168_jds_2023_23486
crossref_primary_10_3389_fmicb_2019_01116
crossref_primary_10_1017_S0021859618001053
crossref_primary_10_1371_journal_pgen_1007580
crossref_primary_10_3168_jds_2014_8003
crossref_primary_10_3390_ani9080498
crossref_primary_10_1128_AEM_02141_18
crossref_primary_10_1186_s40168_023_01620_z
crossref_primary_10_3389_fmicb_2016_01839
crossref_primary_10_1007_s00248_018_1234_9
crossref_primary_10_3168_jds_2017_12746
crossref_primary_10_3168_jds_2024_24817
crossref_primary_10_1093_tas_txab051
crossref_primary_10_2527_jas_2014_8754
crossref_primary_10_3168_jds_2013_7342
crossref_primary_10_1016_j_anifeedsci_2019_03_004
crossref_primary_10_1186_s12711_019_0464_8
crossref_primary_10_3168_jds_2013_6775
crossref_primary_10_14405_kjvr_2021_61_e2
crossref_primary_10_3389_fmicb_2016_02143
crossref_primary_10_1038_s41598_018_37033_4
crossref_primary_10_1093_tas_txac148
crossref_primary_10_3390_microorganisms7100410
crossref_primary_10_1038_s41598_017_01269_3
crossref_primary_10_1038_s41598_022_16052_2
crossref_primary_10_2527_jas_2015_9839
crossref_primary_10_1371_journal_pone_0083424
crossref_primary_10_3389_fmicb_2021_769438
crossref_primary_10_1021_acs_jafc_3c04632
crossref_primary_10_1292_jvms_13_0370
crossref_primary_10_1016_j_anifeedsci_2020_114562
crossref_primary_10_1038_s41598_024_65685_y
crossref_primary_10_3168_jds_2016_11832
crossref_primary_10_3389_frmbi_2023_1204988
crossref_primary_10_3168_jds_2015_10352
crossref_primary_10_3168_jds_2017_13328
crossref_primary_10_1093_jas_skx056
crossref_primary_10_3389_fmicb_2016_01206
crossref_primary_10_3168_jds_2018_15691
crossref_primary_10_3389_fnut_2018_00080
crossref_primary_10_1186_s40104_017_0141_0
crossref_primary_10_3168_jds_2013_6766
crossref_primary_10_3389_fmicb_2022_804562
crossref_primary_10_3389_fmicb_2024_1431063
Cites_doi 10.1111/j.1740-0929.2007.00470.x
10.1007/s002489901006
10.3168/jds.2009-2206
10.1128/AEM.65.10.4630-4636.1999
10.1016/j.anaerobe.2009.07.002
10.2527/1998.76123114x
10.1073/pnas.0801925105
10.3945/jn.109.108506
10.1111/j.1462-2920.2005.00835.x
10.3168/jds.S0022-0302(96)76506-2
10.1111/j.1442-9993.1993.tb00438.x
10.1128/AEM.64.9.3496-3498.1998
10.2307/1307321
10.1007/s00253-006-0802-y
10.1016/j.anifeedsci.2004.01.010
10.1128/AEM.61.3.1116-1119.1995
10.1111/j.1462-2920.2007.01527.x
10.2527/1991.6941795x
10.1111/j.1751-0813.1986.tb02990.x
10.1007/BF00164416
10.4141/A06-066
10.3168/jds.S0022-0302(69)86840-2
ContentType Journal Article
Copyright 2015 INIST-CNRS
Copyright © 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2015 INIST-CNRS
– notice: Copyright © 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
DBID FBQ
AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.3168/jds.2010-3500
DatabaseName AGRIS
CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic

AGRICOLA
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 1525-3198
EndPage 5912
ExternalDocumentID 21094763
23460392
10_3168_jds_2010_3500
US201301919433
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
-~X
.GJ
0R~
0SF
186
18M
1B1
29K
2WC
36B
3V.
4.4
457
4G.
53G
5GY
5VS
7-5
7X2
7X7
7XC
88E
8FE
8FG
8FH
8FI
8FJ
8FW
8R4
8R5
8VB
AABVA
AAEDT
AAEDW
AAFTH
AAIAV
AALRI
AAQFI
AAQXK
AAWRB
AAXUO
ABCQX
ABJCF
ABJNI
ABPTK
ABUWG
ABVKL
ACGFO
ACGFS
ACIWK
ADBBV
ADMUD
ADPAM
AEGXH
AENEX
AESVU
AFKRA
AFKWA
AFRAH
AFTJW
AGZHU
AHMBA
AI.
AIAGR
AITUG
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALXNB
AMRAJ
ASPBG
ATCPS
AVWKF
AZFZN
BELOY
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C1A
CCPQU
CS3
D-I
DU5
E3Z
EBS
EBU
EDH
EJD
EMB
F5P
FBQ
FDB
FEDTE
FGOYB
FYUFA
GBLVA
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HVGLF
HZ~
K1G
L6V
L7B
M0K
M1P
M41
M7S
N9A
NCXOZ
NHB
O9-
OK1
P2P
PATMY
PQQKQ
PROAC
PSQYO
PTHSS
PYCSY
Q2X
QII
QWB
R2-
ROL
RWL
S0X
SEL
SES
SSZ
SV3
TAE
TDS
TWZ
U5U
UHB
UKHRP
VH1
WOQ
XH2
XOL
ZGI
ZL0
ZXP
~KM
AAFWJ
AAHBH
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADMHG
ADNMO
ADVLN
AEUPX
AEUYN
AFJKZ
AFPKN
AFPUW
AGQPQ
AIGII
AKBMS
AKRWK
AKYEP
ALIPV
APXCP
CITATION
PHGZM
PHGZT
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
7X8
7S9
L.6
ID FETCH-LOGICAL-c483t-da9955b7f7504546f091ee7912bc14c15bf37e87ec494b036cf75c1a94552c203
ISSN 0022-0302
1525-3198
IngestDate Fri Sep 05 02:52:03 EDT 2025
Thu Sep 04 21:54:40 EDT 2025
Mon Jul 21 05:38:22 EDT 2025
Wed Apr 02 07:17:10 EDT 2025
Thu Apr 24 22:51:43 EDT 2025
Tue Jul 01 04:20:45 EDT 2025
Wed Dec 27 19:11:13 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Farming animal
rumen pH
Digestive system
Dairy cattle
Rumen
Vertebrata
Specificity
Mammalia
Content
Dairy industry
Volatile fatty acid
pH
bacterial community
Artiodactyla
Ungulata
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
Copyright © 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c483t-da9955b7f7504546f091ee7912bc14c15bf37e87ec494b036cf75c1a94552c203
Notes http://hdl.handle.net/10113/48596
http://dx.doi.org/10.3168/jds.2010-3500
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink http://www.journalofdairyscience.org/article/S0022030210006417/pdf
PMID 21094763
PQID 812131271
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_866244815
proquest_miscellaneous_812131271
pubmed_primary_21094763
pascalfrancis_primary_23460392
crossref_primary_10_3168_jds_2010_3500
crossref_citationtrail_10_3168_jds_2010_3500
fao_agris_US201301919433
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-12-01
PublicationDateYYYYMMDD 2010-12-01
PublicationDate_xml – month: 12
  year: 2010
  text: 2010-12-01
  day: 01
PublicationDecade 2010
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: United States
PublicationTitle Journal of dairy science
PublicationTitleAlternate J Dairy Sci
PublicationYear 2010
Publisher Elsevier
Publisher_xml – name: Elsevier
References Allison (10.3168/jds.2010-3500_bib0005) 2008; 105
Jones (10.3168/jds.2010-3500_bib0045) 1986; 63
Shade (10.3168/jds.2010-3500_bib0085) 2008; 10
Hungate (10.3168/jds.2010-3500_bib0040) 1966
Fisher (10.3168/jds.2010-3500_bib0030) 1999; 63
Penner (10.3168/jds.2010-3500_bib0070) 2009; 139
Gregg (10.3168/jds.2010-3500_bib0035) 1998; 64
Paul (10.3168/jds.2010-3500_bib0065) 2007; 115
Krause (10.3168/jds.2010-3500_bib0055) 1999; 38
Weimer (10.3168/jds.2010-3500_bib0105) 1998; 76
Weimer (10.3168/jds.2010-3500_bib0110) 1991; 36
Brown (10.3168/jds.2010-3500_bib0010) 2005; 7
Chiquette (10.3168/jds.2010-3500_bib0015) 2007; 87
Stevenson (10.3168/jds.2010-3500_bib0090) 2007; 75
Cole (10.3168/jds.2010-3500_bib0025) 1991; 69
Ludwig (10.3168/jds.2010-3500_bib0060) 1988
Krause (10.3168/jds.2010-3500_bib0050) 1996; 79
Clarke (10.3168/jds.2010-3500_bib0020) 1993; 17
Russell (10.3168/jds.2010-3500_bib0075) 2002
Satter (10.3168/jds.2010-3500_bib0080) 1969; 52
Weimer (10.3168/jds.2010-3500_bib0115) 2010; 93
Tatsuoka (10.3168/jds.2010-3500_bib0095) 2007; 78
Varel (10.3168/jds.2010-3500_bib0100) 1995; 61
Welkie (10.3168/jds.2010-3500_bib0120) 2010; 16
Westman (10.3168/jds.2010-3500_bib0125) 1978; 28
References_xml – volume: 78
  start-page: 512
  year: 2007
  ident: 10.3168/jds.2010-3500_bib0095
  article-title: Analysis of methanogens in the bovine rumen by polymerase chain reaction single-strand conformation polymorphism
  publication-title: Anim. Sci. J.
  doi: 10.1111/j.1740-0929.2007.00470.x
– volume: 38
  start-page: 365
  year: 1999
  ident: 10.3168/jds.2010-3500_bib0055
  article-title: Use of 16S-RNA based techniques to investigate the succession of microbial populations in the immature lamb rumen: Tracking of a specific strain of inoculated Ruminococcus and interactions with other microbial populations in vivo
  publication-title: Microb. Ecol.
  doi: 10.1007/s002489901006
– volume: 93
  start-page: 265
  year: 2010
  ident: 10.3168/jds.2010-3500_bib0115
  article-title: Shifts in bacterial community composition in the rumen of lactating dairy cows under conditions of milk fat depression
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.2009-2206
– volume: 63
  start-page: 4630
  year: 1999
  ident: 10.3168/jds.2010-3500_bib0030
  article-title: Automated approach for ribosomal intergenic spacer analysis of microbial diversity and its application to freshwater environments
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.65.10.4630-4636.1999
– volume: 16
  start-page: 94
  year: 2010
  ident: 10.3168/jds.2010-3500_bib0120
  article-title: ARISA analysis of ruminal bacterial community dynamics in lactating dairy cows during the feeding cycle
  publication-title: Anaerobe
  doi: 10.1016/j.anaerobe.2009.07.002
– volume: 76
  start-page: 3114
  year: 1998
  ident: 10.3168/jds.2010-3500_bib0105
  article-title: Manipulating ruminal fermentation: A microbial ecological perspective
  publication-title: J. Anim. Sci.
  doi: 10.2527/1998.76123114x
– volume: 105
  start-page: 11512
  year: 2008
  ident: 10.3168/jds.2010-3500_bib0005
  article-title: Resistance, resilience, and redundancy in microbial communities
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0801925105
– volume: 139
  start-page: 1714
  year: 2009
  ident: 10.3168/jds.2010-3500_bib0070
  article-title: Epithelial capacity for apical uptake of short chain fatty acids is a key determinant of intraruminal pH and the susceptibility to subacute ruminal acidosis in sheep
  publication-title: J. Nutr.
  doi: 10.3945/jn.109.108506
– volume: 7
  start-page: 1466
  year: 2005
  ident: 10.3168/jds.2010-3500_bib0010
  article-title: Coupling of 16S-ITS-rDNA clone libraries and automated ribosomal interspecies spacer analysis to show marine microbial diversity: Development and application of a time series
  publication-title: Environ. Microbiol.
  doi: 10.1111/j.1462-2920.2005.00835.x
– volume: 79
  start-page: 1467
  year: 1996
  ident: 10.3168/jds.2010-3500_bib0050
  article-title: How many ruminal bacteria are there?
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.S0022-0302(96)76506-2
– volume: 17
  start-page: 117
  year: 1993
  ident: 10.3168/jds.2010-3500_bib0020
  article-title: Non-parmetric multivariate analysis of changes in community structure
  publication-title: Aust. J. Ecol.
  doi: 10.1111/j.1442-9993.1993.tb00438.x
– volume: 64
  start-page: 3496
  year: 1998
  ident: 10.3168/jds.2010-3500_bib0035
  article-title: Genetically modified ruminal bacteria protect sheep from fluoroacetate poisoning
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.64.9.3496-3498.1998
– year: 1966
  ident: 10.3168/jds.2010-3500_bib0040
– volume: 28
  start-page: 705
  year: 1978
  ident: 10.3168/jds.2010-3500_bib0125
  article-title: Measuring the inertia and resilience of ecosystems
  publication-title: Bioscience
  doi: 10.2307/1307321
– year: 1988
  ident: 10.3168/jds.2010-3500_bib0060
  article-title: Community ordination
– volume: 75
  start-page: 165
  year: 2007
  ident: 10.3168/jds.2010-3500_bib0090
  article-title: Dominance of Prevotella and low abundance of classical ruminal bacterial species in the bovine rumen revealed by relative quantification real-time PCR
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/s00253-006-0802-y
– year: 2002
  ident: 10.3168/jds.2010-3500_bib0075
– volume: 115
  start-page: 143
  year: 2007
  ident: 10.3168/jds.2010-3500_bib0065
  article-title: Effect of administration of an anaerobic gut fungus isolated from wild blue bull (Boselaphus tragocameulus) to buffaloes (Bubalus bubalis) on in vivo ruminal fermentation and digestion of nutrients
  publication-title: Anim. Feed Sci. Technol.
  doi: 10.1016/j.anifeedsci.2004.01.010
– volume: 61
  start-page: 1116
  year: 1995
  ident: 10.3168/jds.2010-3500_bib0100
  article-title: Addition of cellulolytic clostridia to the bovine rumen and pig intestinal tract
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.61.3.1116-1119.1995
– volume: 10
  start-page: 1057
  year: 2008
  ident: 10.3168/jds.2010-3500_bib0085
  article-title: The influence of habitat heterogeneity on bacterial community composition and dynamics
  publication-title: Environ. Microbiol.
  doi: 10.1111/j.1462-2920.2007.01527.x
– volume: 69
  start-page: 1795
  year: 1991
  ident: 10.3168/jds.2010-3500_bib0025
  article-title: Effects of animal-to-animal exchange of ruminal contents on the feed intake and ruminal characteristics of fed and fasted lambs
  publication-title: J. Anim. Sci.
  doi: 10.2527/1991.6941795x
– volume: 63
  start-page: 259
  year: 1986
  ident: 10.3168/jds.2010-3500_bib0045
  article-title: Successful transfer of DHP-degrading bacteria from Hawaiian goats to Australian ruminants to overcome the toxicity of Leucaena
  publication-title: Aust. Vet. J.
  doi: 10.1111/j.1751-0813.1986.tb02990.x
– volume: 36
  start-page: 178
  year: 1991
  ident: 10.3168/jds.2010-3500_bib0110
  article-title: A segmented gas/liquid delivery system for continuous culture of microorganisms on solid substrates, and its use for growth of Ruminococcus flavefaciens on cellulose
  publication-title: Appl. Microbiol. Biotechnol.
  doi: 10.1007/BF00164416
– volume: 87
  start-page: 237
  year: 2007
  ident: 10.3168/jds.2010-3500_bib0015
  article-title: Repeated ruminal dosing of Ruminococcus flavefaciens NJ along with a probiotic mixture in forage or concentrate-fed dairy cows: Effect on ruminal fermentation, cellulolytic populations and in sacco digestibility
  publication-title: Can. J. Anim. Sci.
  doi: 10.4141/A06-066
– volume: 52
  start-page: 1776
  year: 1969
  ident: 10.3168/jds.2010-3500_bib0080
  article-title: The effect of abrupt ration changes on milk and blood components
  publication-title: J. Dairy Sci.
  doi: 10.3168/jds.S0022-0302(69)86840-2
SSID ssj0021205
Score 2.4518197
Snippet The purpose of this study was to examine the stability and host specificity of a cow's ruminal bacterial community following massive challenge with ruminal...
SourceID proquest
pubmed
pascalfrancis
crossref
fao
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5902
SubjectTerms Animal productions
Animals
Biological and medical sciences
Cattle - metabolism
Cattle - microbiology
dairy cows
digesta
Fatty Acids, Volatile - metabolism
Food industries
Fundamental and applied biological sciences. Psychology
Host Specificity
Hydrogen-Ion Concentration
microbial ecology
Milk and cheese industries. Ice creams
Rumen - chemistry
Rumen - metabolism
Rumen - microbiology
rumen bacteria
rumen microorganisms
Terrestrial animal productions
Vertebrates
volatile fatty acids
Title Host specificity of the ruminal bacterial community in the dairy cow following near-total exchange of ruminal contents
URI https://www.ncbi.nlm.nih.gov/pubmed/21094763
https://www.proquest.com/docview/812131271
https://www.proquest.com/docview/866244815
Volume 93
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbY7gUOiPeWx8oHxKVkiR07j2MFu6rYdkHQir1FduqgSihBbbpl-fXMxE7SSl1el6h1R5Mq3xd77HkR8lL7scp4Lr2cR9ITRiWe0j58DWOtYmV4Psfk5MlFOJqJ95fysnPF1NkllT7Jfu7NK_kfVGEMcMUs2X9AtlUKA_AZ8IUrIAzXv8J4VK6qAeZKYryPi62oQwbXtlWXtqWY6xIgdR5Idd3ENc7VYnkNw5tBDkwoN3hiUADrvarE9Ejzw2YEo8ZGG0a1N5Wf9tizVqNbUTuHz8K1Z_m45YCqO6m5VK933XnsBBsaX9kmU4NRd347cYe0g7Ebc6cUOxEfbmLl6HG3HadPzJ4xNxvbfokN6_jW3IqFZvZN-th6Cyf9-aqO1PMC6fvd6tZ49C8-pGez8Tidnl5OD8ghj8DU6pHD4fmnL-ftDp3xOua1_WO2KCve4M2O-h0j5iBXJYbUqhW8Vblth3LzfqW2W6b3yF0HEB1a9twnt0zxgNwZfl26oivmIblCHtEtHtEyp0AS6pCnLY9oyyO6KGqRGnUY3tCWR7TjEW14hBobbQ2PHpHZ2en07chz_Ti8TMRB5c1VkkipoxxbAkgR5mBrGhMljOuMiYxJnQeRiSOTiURoMI0ykMyYSoSUPON-8Jj0irIwR4QqZXxtWAbWYi58kJd-kGkTxhGP4TfRJ6-bB5xmrlg99kz5lsKmFfFIAY8U8UgRjz551Yp_t1VabhI8ArRSBQ95lc4-c_Tbs4QlIgj65HgHwlYRD0TowzaiT2iDaQpzMDrWVGHK9SqNsS4i4xH7jUgYgiEdM9knTywdOv3MTwQs80__rP8Zud29XM9Jr1quzQswiit97Kj8C-E3uhk
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Host+specificity+of+the+ruminal+bacterial+community+in+the+dairy+cow+following+near-total+exchange+of+ruminal+contents&rft.jtitle=Journal+of+dairy+science&rft.au=Weimer%2C+P+J&rft.au=Stevenson%2C+D+M&rft.au=Mantovani%2C+H+C&rft.au=Man%2C+S+L+C&rft.date=2010-12-01&rft.issn=1525-3198&rft.eissn=1525-3198&rft.volume=93&rft.issue=12&rft.spage=5902&rft_id=info:doi/10.3168%2Fjds.2010-3500&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-0302&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-0302&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-0302&client=summon