Plasmodium falciparum Gametocyte-Specific Antibody Profiling Reveals Boosting through Natural Infection and Identifies Potential Markers of Gametocyte Exposure

Malaria elimination efforts would benefit from vaccines that block transmission of Plasmodium falciparum gametocytes from humans to mosquitoes. A clear understanding of gametocyte-specific antibody responses in exposed populations could help determine whether transmission-blocking vaccines (TBV) wou...

Full description

Saved in:
Bibliographic Details
Published inInfection and immunity Vol. 83; no. 11; pp. 4229 - 4236
Main Authors Skinner, Jeff, Huang, Chiung-Yu, Waisberg, Michael, Felgner, Philip L., Doumbo, Ogobara K., Ongoiba, Aissata, Kayentao, Kassoum, Traore, Boubacar, Crompton, Peter D., Williamson, Kim C.
Format Journal Article
LanguageEnglish
Published United States American Society for Microbiology 01.11.2015
Subjects
Online AccessGet full text
ISSN0019-9567
1098-5522
1098-5522
DOI10.1128/IAI.00644-15

Cover

Abstract Malaria elimination efforts would benefit from vaccines that block transmission of Plasmodium falciparum gametocytes from humans to mosquitoes. A clear understanding of gametocyte-specific antibody responses in exposed populations could help determine whether transmission-blocking vaccines (TBV) would be boosted by natural gametocyte exposure, and also inform the development of serologic tools to monitor gametocyte exposure in populations targeted for malaria elimination. To this end, plasma was collected from Malian children and adults before and after the 6-month malaria season and probed against a microarray containing 1,204 P. falciparum proteins. Using publicly available proteomic data, we classified 91 proteins as gametocyte specific and 69 as proteins not expressed by gametocytes. The overall breadth and magnitude of gametocyte-specific IgG responses increased during the malaria season, although they were consistently lower than IgG responses to nongametocyte antigens. Notably, IgG specific for the TBV candidates Pfs48/45 and Pfs230 increased during the malaria season. In addition, IgGs specific for the gametocyte proteins Pfmdv1, Pfs16, PF3D7_1346400, and PF3D7_1024800 were detected in nearly all subjects, suggesting that seroconversion to these proteins may be a sensitive indicator of gametocyte exposure, although further studies are needed to determine the specificity and kinetics of these potential serologic markers. These findings suggest that TBV-induced immunity would be boosted through natural gametocyte exposure, and that antibody responses to particular antigens may reliably indicate gametocyte exposure.
AbstractList Malaria elimination efforts would benefit from vaccines that block transmission of Plasmodium falciparum gametocytes from humans to mosquitoes. A clear understanding of gametocyte-specific antibody responses in exposed populations could help determine whether transmission-blocking vaccines (TBV) would be boosted by natural gametocyte exposure, and also inform the development of serologic tools to monitor gametocyte exposure in populations targeted for malaria elimination. To this end, plasma was collected from Malian children and adults before and after the 6-month malaria season and probed against a microarray containing 1,204 P. falciparum proteins. Using publicly available proteomic data, we classified 91 proteins as gametocyte specific and 69 as proteins not expressed by gametocytes. The overall breadth and magnitude of gametocyte-specific IgG responses increased during the malaria season, although they were consistently lower than IgG responses to nongametocyte antigens. Notably, IgG specific for the TBV candidates Pfs48/45 and Pfs230 increased during the malaria season. In addition, IgGs specific for the gametocyte proteins Pfmdv1, Pfs16, PF3D7_1346400, and PF3D7_1024800 were detected in nearly all subjects, suggesting that seroconversion to these proteins may be a sensitive indicator of gametocyte exposure, although further studies are needed to determine the specificity and kinetics of these potential serologic markers. These findings suggest that TBV-induced immunity would be boosted through natural gametocyte exposure, and that antibody responses to particular antigens may reliably indicate gametocyte exposure.
Malaria elimination efforts would benefit from vaccines that block transmission of Plasmodium falciparum gametocytes from humans to mosquitoes. A clear understanding of gametocyte-specific antibody responses in exposed populations could help determine whether transmission-blocking vaccines (TBV) would be boosted by natural gametocyte exposure, and also inform the development of serologic tools to monitor gametocyte exposure in populations targeted for malaria elimination. To this end, plasma was collected from Malian children and adults before and after the 6-month malaria season and probed against a microarray containing 1,204 P. falciparum proteins. Using publicly available proteomic data, we classified 91 proteins as gametocyte specific and 69 as proteins not expressed by gametocytes. The overall breadth and magnitude of gametocyte-specific IgG responses increased during the malaria season, although they were consistently lower than IgG responses to nongametocyte antigens. Notably, IgG specific for the TBV candidates Pfs48/45 and Pfs230 increased during the malaria season. In addition, IgGs specific for the gametocyte proteins Pfmdv1, Pfs16, PF3D7_1346400, and PF3D7_1024800 were detected in nearly all subjects, suggesting that seroconversion to these proteins may be a sensitive indicator of gametocyte exposure, although further studies are needed to determine the specificity and kinetics of these potential serologic markers. These findings suggest that TBV-induced immunity would be boosted through natural gametocyte exposure, and that antibody responses to particular antigens may reliably indicate gametocyte exposure.
Malaria elimination efforts would benefit from vaccines that block transmission of Plasmodium falciparum gametocytes from humans to mosquitoes. A clear understanding of gametocyte-specific antibody responses in exposed populations could help determine whether transmission-blocking vaccines (TBV) would be boosted by natural gametocyte exposure, and also inform the development of serologic tools to monitor gametocyte exposure in populations targeted for malaria elimination. To this end, plasma was collected from Malian children and adults before and after the 6-month malaria season and probed against a microarray containing 1,204 P. falciparum proteins. Using publicly available proteomic data, we classified 91 proteins as gametocyte specific and 69 as proteins not expressed by gametocytes. The overall breadth and magnitude of gametocyte-specific IgG responses increased during the malaria season, although they were consistently lower than IgG responses to nongametocyte antigens. Notably, IgG specific for the TBV candidates Pfs48/45 and Pfs230 increased during the malaria season. In addition, IgGs specific for the gametocyte proteins Pfmdv1, Pfs16, PF3D7_1346400, and PF3D7_1024800 were detected in nearly all subjects, suggesting that seroconversion to these proteins may be a sensitive indicator of gametocyte exposure, although further studies are needed to determine the specificity and kinetics of these potential serologic markers. These findings suggest that TBV-induced immunity would be boosted through natural gametocyte exposure, and that antibody responses to particular antigens may reliably indicate gametocyte exposure.Malaria elimination efforts would benefit from vaccines that block transmission of Plasmodium falciparum gametocytes from humans to mosquitoes. A clear understanding of gametocyte-specific antibody responses in exposed populations could help determine whether transmission-blocking vaccines (TBV) would be boosted by natural gametocyte exposure, and also inform the development of serologic tools to monitor gametocyte exposure in populations targeted for malaria elimination. To this end, plasma was collected from Malian children and adults before and after the 6-month malaria season and probed against a microarray containing 1,204 P. falciparum proteins. Using publicly available proteomic data, we classified 91 proteins as gametocyte specific and 69 as proteins not expressed by gametocytes. The overall breadth and magnitude of gametocyte-specific IgG responses increased during the malaria season, although they were consistently lower than IgG responses to nongametocyte antigens. Notably, IgG specific for the TBV candidates Pfs48/45 and Pfs230 increased during the malaria season. In addition, IgGs specific for the gametocyte proteins Pfmdv1, Pfs16, PF3D7_1346400, and PF3D7_1024800 were detected in nearly all subjects, suggesting that seroconversion to these proteins may be a sensitive indicator of gametocyte exposure, although further studies are needed to determine the specificity and kinetics of these potential serologic markers. These findings suggest that TBV-induced immunity would be boosted through natural gametocyte exposure, and that antibody responses to particular antigens may reliably indicate gametocyte exposure.
Author Kayentao, Kassoum
Crompton, Peter D.
Doumbo, Ogobara K.
Ongoiba, Aissata
Williamson, Kim C.
Felgner, Philip L.
Traore, Boubacar
Skinner, Jeff
Waisberg, Michael
Huang, Chiung-Yu
Author_xml – sequence: 1
  givenname: Jeff
  surname: Skinner
  fullname: Skinner, Jeff
  organization: Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
– sequence: 2
  givenname: Chiung-Yu
  surname: Huang
  fullname: Huang, Chiung-Yu
  organization: Division of Biostatistics and Bioinformatics, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA
– sequence: 3
  givenname: Michael
  surname: Waisberg
  fullname: Waisberg, Michael
  organization: Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
– sequence: 4
  givenname: Philip L.
  surname: Felgner
  fullname: Felgner, Philip L.
  organization: Division of Infectious Diseases, Department of Medicine, University of California, Irvine, Irvine, California, USA, Antigen Discovery, Inc., Irvine, California, USA
– sequence: 5
  givenname: Ogobara K.
  surname: Doumbo
  fullname: Doumbo, Ogobara K.
  organization: Mali International Center of Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
– sequence: 6
  givenname: Aissata
  surname: Ongoiba
  fullname: Ongoiba, Aissata
  organization: Division of Infectious Diseases, Department of Medicine, University of California, Irvine, Irvine, California, USA
– sequence: 7
  givenname: Kassoum
  surname: Kayentao
  fullname: Kayentao, Kassoum
  organization: Division of Infectious Diseases, Department of Medicine, University of California, Irvine, Irvine, California, USA
– sequence: 8
  givenname: Boubacar
  surname: Traore
  fullname: Traore, Boubacar
  organization: Mali International Center of Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
– sequence: 9
  givenname: Peter D.
  surname: Crompton
  fullname: Crompton, Peter D.
  organization: Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
– sequence: 10
  givenname: Kim C.
  surname: Williamson
  fullname: Williamson, Kim C.
  organization: Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA, Department of Biology, Loyola University Chicago, Chicago, Illinois, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26283330$$D View this record in MEDLINE/PubMed
BookMark eNqNkk9vFCEYxompsdvqzbPh6MGpwDAzzMVkbWrdpOrGP2fCwMsuOjNMgWncT9OvWta2phoPnnh5eXjeX-A5QgejHwGh55ScUMrE69VydUJIzXlBq0doQUkriqpi7AAtCKFt0VZ1c4iOYvyet5xz8QQdspqJsizJAl2vexUHb9w8YKt67SYVcnmuBkhe7xIUXybQzjqNl2NynTc7vA7eut6NG_wZrkD1Eb_1PqZ9I22Dnzdb_FGlOager0YLOjk_YjUavDKQPayDiNc-7ess-aDCDwgRe_tgKj77Ofk4B3iKHmesCM_u1mP07d3Z19P3xcWn89Xp8qLQXJSp6HhdNcCsbdoyT7SMNcTUTdfUhjLohDGNIJzbFhpRmdIw2-qWKNqB7axgrDxGb259p7kbwOgMl_nlFNygwk565eSfJ6Pbyo2_krxqBSd1Nnh5ZxD85QwxycFFDX2vRvBzlLThtWjLDPEfUkbLirCyytIXD7F-89x_YBawW4EOPsYAVmqX1P7FM6XrJSVynxKZUyJ_pUTSveurvy7d-_5TfgOAy8JU
CitedBy_id crossref_primary_10_1371_journal_pmed_1003560
crossref_primary_10_1007_s00436_018_6127_9
crossref_primary_10_3389_fimmu_2019_02480
crossref_primary_10_1002_adbi_201800011
crossref_primary_10_3389_fimmu_2022_930956
crossref_primary_10_3389_fimmu_2018_02769
crossref_primary_10_1038_s41467_017_02646_2
crossref_primary_10_1016_j_mib_2017_11_029
crossref_primary_10_1128_IAI_00775_18
crossref_primary_10_3389_fcimb_2021_774537
crossref_primary_10_1016_j_ijpara_2016_10_002
crossref_primary_10_1126_scitranslmed_abg2112
crossref_primary_10_3390_jcm11071839
crossref_primary_10_1016_j_parepi_2023_e00295
crossref_primary_10_1074_mcp_RA118_000992
crossref_primary_10_1016_j_actatropica_2016_07_023
crossref_primary_10_1128_CVI_00140_17
crossref_primary_10_1186_s12936_018_2479_y
crossref_primary_10_1016_j_vaccine_2016_11_072
Cites_doi 10.1046/j.1365-3024.1996.d01-17.x
10.1073/pnas.1001323107
10.1111/j.1365-3024.1994.tb00323.x
10.1590/S0074-02761992000700027
10.1017/S0031182007003381
10.1016/j.ijpara.2010.09.008
10.1155/2010/976827
10.1074/mcp.M900479-MCP200
10.1128/CVI.05105-11
10.1016/j.molbiopara.2005.05.007
10.1128/CVI.05104-11
10.1111/j.1365-3024.1988.tb00215.x
10.1093/cid/cit174
10.1128/CMR.00051-10
10.1038/ncomms2241
10.1084/jem.169.1.135
10.1016/j.jinf.2015.03.007
10.1038/nature01107
10.1038/333074a0
10.1128/IAI.02398-14
10.1084/jem.158.3.976
10.1016/S0166-6851(96)02621-7
10.1084/jem.162.5.1460
10.4049/jimmunol.131.5.2557
10.1371/journal.pmed.1000398
10.1111/j.1365-3156.2007.01821.x
10.1021/pr900412k
10.1016/0166-6851(94)90111-2
10.1371/journal.pone.0076316
10.1038/ncomms7054
10.1038/nature01111
10.1186/1475-2875-9-136
10.1111/j.2517-6161.1995.tb02031.x
10.1126/science.1125129
10.1038/nrg3185
10.1128/IAI.05288-11
10.2307/2532694
10.1038/nrmicro3364
10.4049/jimmunol.139.12.4213
10.1111/j.1365-3024.2005.00818.x
10.1073/pnas.0501858102
10.4269/ajtmh.2002.66.310
10.2202/1544-6115.1027
10.1101/gr.2523904
10.1146/annurev.mi.44.100190.002241
10.1186/1475-2875-7-125
10.1111/j.1365-3024.2007.00948.x
10.30875/9f925144-en
10.1086/592224
ContentType Journal Article
Copyright Copyright © 2015, Skinner et al.
Copyright © 2015, Skinner et al. 2015 Skinner et al.
Copyright_xml – notice: Copyright © 2015, Skinner et al.
– notice: Copyright © 2015, Skinner et al. 2015 Skinner et al.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7T5
C1K
F1W
H94
H95
H97
L.G
M7N
5PM
DOI 10.1128/IAI.00644-15
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Immunology Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
AIDS and Cancer Research Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Algology Mycology and Protozoology Abstracts (Microbiology C)
ASFA: Aquatic Sciences and Fisheries Abstracts
AIDS and Cancer Research Abstracts
Immunology Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Environmental Sciences and Pollution Management
DatabaseTitleList MEDLINE
CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
DocumentTitleAlternate P. falciparum Gametocyte-Specific Antibody Profiling
EISSN 1098-5522
EndPage 4236
ExternalDocumentID PMC4598406
26283330
10_1128_IAI_00644_15
Genre Journal Article
Research Support, N.I.H., Intramural
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIAID NIH HHS
  grantid: R01 AI095916
– fundername: Intramural NIH HHS
– fundername: NIAID NIH HHS
  grantid: R43AI066791
– fundername: NIAID NIH HHS
  grantid: R01 AI069314
– fundername: NIAID NIH HHS
  grantid: AI069314
– fundername: NIAID NIH HHS
  grantid: R43 AI066791
– fundername: NIAID NIH HHS
  grantid: U54 AI065359
– fundername: NIAID NIH HHS
  grantid: R01AI095916
– fundername: NIAID NIH HHS
  grantid: U54AI065359
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
18M
29I
2WC
39C
3O-
4.4
41~
53G
5GY
5RE
5VS
85S
AAGFI
AAYXX
ABOCM
ACGFO
ADBBV
ADXHL
AENEX
AGCDD
AGVNZ
AI.
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
C1A
CITATION
CS3
D0S
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HYE
HZ~
H~9
IH2
J5H
KQ8
L7B
MVM
NEJ
O9-
OHT
OK1
P2P
RHI
RNS
RPM
RSF
SJN
TR2
TWZ
UPT
VH1
W2D
W8F
WH7
WHG
WOQ
X7M
Y6R
ZGI
ZXP
~KM
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7T5
C1K
F1W
H94
H95
H97
L.G
M7N
5PM
ID FETCH-LOGICAL-c483t-b4657e2ff793fecf2270d67b76d12eb8dd78044f9e785d3d2f9c90a1befbf8223
ISSN 0019-9567
1098-5522
IngestDate Thu Aug 21 18:22:01 EDT 2025
Fri Sep 05 12:38:24 EDT 2025
Fri Sep 05 12:42:43 EDT 2025
Thu Apr 03 07:00:05 EDT 2025
Thu Apr 24 22:55:41 EDT 2025
Tue Jul 01 02:09:18 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License Copyright © 2015, Skinner et al.
This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-ShareAlike 3.0 Unported license, which permits unrestricted noncommercial use, distribution, and reproduction in any medium, provided the original author and source are credited.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c483t-b4657e2ff793fecf2270d67b76d12eb8dd78044f9e785d3d2f9c90a1befbf8223
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Citation Skinner J, Huang C-Y, Waisberg M, Felgner PL, Doumbo OK, Ongoiba A, Kayentao K, Traore B, Crompton PD, Williamson KC. 2015. Plasmodium falciparum gametocyte-specific antibody profiling reveals boosting through natural infection and identifies potential markers of gametocyte exposure. Infect Immun 83:4229–4236. doi:10.1128/IAI.00644-15.
Present address: Michael Waisberg, Department of Pathology, School of Medicine, University of Virginia, Charlottesville, Virginia, USA.
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC4598406
PMID 26283330
PQID 1721350235
PQPubID 23479
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4598406
proquest_miscellaneous_1746893044
proquest_miscellaneous_1721350235
pubmed_primary_26283330
crossref_citationtrail_10_1128_IAI_00644_15
crossref_primary_10_1128_IAI_00644_15
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-11-01
PublicationDateYYYYMMDD 2015-11-01
PublicationDate_xml – month: 11
  year: 2015
  text: 2015-11-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: 1752 N St., N.W., Washington, DC
PublicationTitle Infection and immunity
PublicationTitleAlternate Infect Immun
PublicationYear 2015
Publisher American Society for Microbiology
Publisher_xml – name: American Society for Microbiology
References e_1_3_3_50_2
e_1_3_3_16_2
e_1_3_3_18_2
e_1_3_3_39_2
Chen PQ (e_1_3_3_4_2) 1994; 107
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_33_2
e_1_3_3_31_2
e_1_3_3_52_2
e_1_3_3_40_2
Benjamini Y (e_1_3_3_34_2) 1995; 57
e_1_3_3_5_2
e_1_3_3_7_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_23_2
e_1_3_3_48_2
e_1_3_3_25_2
e_1_3_3_46_2
e_1_3_3_44_2
e_1_3_3_3_2
e_1_3_3_21_2
e_1_3_3_42_2
e_1_3_3_51_2
Quakyi IA (e_1_3_3_13_2) 1987; 139
e_1_3_3_17_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_36_2
Kaushal DC (e_1_3_3_10_2) 1983; 131
e_1_3_3_15_2
e_1_3_3_32_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_6_2
e_1_3_3_8_2
e_1_3_3_28_2
e_1_3_3_49_2
e_1_3_3_24_2
e_1_3_3_47_2
e_1_3_3_26_2
e_1_3_3_45_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_43_2
e_1_3_3_22_2
e_1_3_3_41_2
16629703 - Parasite Immunol. 2006 May;28(5):185-90
21311586 - PLoS Med. 2011;8(1):e1000398
16646809 - Stat Appl Genet Mol Biol. 2004;3:Article3
3287282 - Parasite Immunol. 1988 Mar;10(2):209-18
3283563 - Nature. 1988 May 5;333(6168):74-6
12368866 - Nature. 2002 Oct 3;419(6906):520-6
19817483 - J Proteome Res. 2009 Dec;8(12):5451-64
23212366 - Nat Commun. 2012;3:1237
20111746 - J Biomed Biotechnol. 2010;2010:976827
21715576 - Clin Vaccine Immunol. 2011 Aug;18(8):1351-7
18752444 - J Infect Dis. 2008 Nov 1;198(9):1265-75
25422270 - Infect Immun. 2015 Feb;83(2):646-60
22411467 - Nat Rev Genet. 2012 Apr;13(4):227-32
21969000 - Infect Immun. 2011 Dec;79(12):4957-64
2865324 - J Exp Med. 1985 Nov 1;162(5):1460-76
21715579 - Clin Vaccine Immunol. 2011 Aug;18(8):1343-50
9226690 - Parasite Immunol. 1996 Oct;18(10):527-33
2252389 - Annu Rev Microbiol. 1990;44:429-49
6350527 - J Exp Med. 1983 Sep 1;158(3):976-81
16888139 - Science. 2006 Aug 4;313(5787):667-9
20351286 - Proc Natl Acad Sci U S A. 2010 Apr 13;107(15):6958-63
12139226 - Am J Trop Med Hyg. 2002 Mar;66(3):310-3
7935618 - Mol Biochem Parasitol. 1994 May;65(1):11-22
8015855 - Parasite Immunol. 1994 Feb;16(2):55-62
24312682 - PLoS One. 2013;8(9):e76316
8813686 - Mol Biochem Parasitol. 1996 Jun;78(1-2):161-9
25597498 - Nat Commun. 2015;6:6054
17518949 - Parasite Immunol. 2007 Jun;29(6):309-17
20332084 - Mol Cell Proteomics. 2010 Jul;9(7):1437-48
2447164 - J Immunol. 1987 Dec 15;139(12):4213-7
20497536 - Malar J. 2010;9:136
21482730 - Clin Microbiol Rev. 2011 Apr;24(2):377-410
16275909 - Proc Natl Acad Sci U S A. 2005 Nov 15;102(46):16813-8
23487390 - Clin Infect Dis. 2013 Jul;57(1):40-7
25329408 - Nat Rev Microbiol. 2014 Dec;12(12):833-40
18613962 - Malar J. 2008;7:125
2642527 - J Exp Med. 1989 Jan 1;169(1):135-47
1364201 - Mem Inst Oswaldo Cruz. 1992;87 Suppl 3:169-73
16005087 - Mol Biochem Parasitol. 2005 Sep;143(1):67-79
15520293 - Genome Res. 2004 Nov;14(11):2308-18
12368870 - Nature. 2002 Oct 3;419(6906):537-42
17445146 - Trop Med Int Health. 2007 Apr;12(4):547-53
7805466 - Chin Med J (Engl). 1994 Sep;107(9):709-11
17714601 - Parasitology. 2007 Dec;134(Pt.14):1911-29
20974145 - Int J Parasitol. 2011 Mar;41(3-4):293-300
6631012 - J Immunol. 1983 Nov;131(5):2557-62
25869538 - J Infect. 2015 Jul;71(1):117-27
References_xml – ident: e_1_3_3_26_2
  doi: 10.1046/j.1365-3024.1996.d01-17.x
– ident: e_1_3_3_28_2
  doi: 10.1073/pnas.1001323107
– ident: e_1_3_3_23_2
  doi: 10.1111/j.1365-3024.1994.tb00323.x
– ident: e_1_3_3_27_2
  doi: 10.1590/S0074-02761992000700027
– ident: e_1_3_3_31_2
– ident: e_1_3_3_38_2
  doi: 10.1017/S0031182007003381
– ident: e_1_3_3_18_2
  doi: 10.1016/j.ijpara.2010.09.008
– ident: e_1_3_3_9_2
  doi: 10.1155/2010/976827
– ident: e_1_3_3_40_2
  doi: 10.1074/mcp.M900479-MCP200
– ident: e_1_3_3_43_2
  doi: 10.1128/CVI.05105-11
– ident: e_1_3_3_52_2
  doi: 10.1016/j.molbiopara.2005.05.007
– ident: e_1_3_3_42_2
  doi: 10.1128/CVI.05104-11
– ident: e_1_3_3_22_2
  doi: 10.1111/j.1365-3024.1988.tb00215.x
– ident: e_1_3_3_41_2
  doi: 10.1093/cid/cit174
– ident: e_1_3_3_25_2
  doi: 10.1128/CMR.00051-10
– ident: e_1_3_3_5_2
  doi: 10.1038/ncomms2241
– ident: e_1_3_3_16_2
  doi: 10.1084/jem.169.1.135
– ident: e_1_3_3_21_2
  doi: 10.1016/j.jinf.2015.03.007
– ident: e_1_3_3_29_2
  doi: 10.1038/nature01107
– ident: e_1_3_3_49_2
  doi: 10.1038/333074a0
– ident: e_1_3_3_19_2
  doi: 10.1128/IAI.02398-14
– ident: e_1_3_3_11_2
  doi: 10.1084/jem.158.3.976
– ident: e_1_3_3_48_2
  doi: 10.1016/S0166-6851(96)02621-7
– ident: e_1_3_3_12_2
  doi: 10.1084/jem.162.5.1460
– volume: 131
  start-page: 2557
  year: 1983
  ident: e_1_3_3_10_2
  article-title: Monoclonal antibodies against surface determinants on gametes of Plasmodium gallinaceum block transmission of malaria parasites to mosquitoes
  publication-title: J Immunol
  doi: 10.4049/jimmunol.131.5.2557
– ident: e_1_3_3_6_2
  doi: 10.1371/journal.pmed.1000398
– volume: 107
  start-page: 709
  year: 1994
  ident: e_1_3_3_4_2
  article-title: The infectivity of gametocytes of Plasmodium falciparum from patients treated with artemisinin
  publication-title: Chin Med J (Engl)
– ident: e_1_3_3_47_2
  doi: 10.1111/j.1365-3156.2007.01821.x
– ident: e_1_3_3_32_2
  doi: 10.1021/pr900412k
– ident: e_1_3_3_50_2
  doi: 10.1016/0166-6851(94)90111-2
– ident: e_1_3_3_46_2
  doi: 10.1371/journal.pone.0076316
– ident: e_1_3_3_45_2
  doi: 10.1038/ncomms7054
– ident: e_1_3_3_39_2
  doi: 10.1038/nature01111
– ident: e_1_3_3_8_2
  doi: 10.1186/1475-2875-9-136
– volume: 57
  start-page: 289
  year: 1995
  ident: e_1_3_3_34_2
  article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing
  publication-title: J R Stat Soc
  doi: 10.1111/j.2517-6161.1995.tb02031.x
– ident: e_1_3_3_14_2
  doi: 10.1126/science.1125129
– ident: e_1_3_3_36_2
  doi: 10.1038/nrg3185
– ident: e_1_3_3_20_2
  doi: 10.1128/IAI.05288-11
– ident: e_1_3_3_35_2
  doi: 10.2307/2532694
– ident: e_1_3_3_44_2
  doi: 10.1038/nrmicro3364
– volume: 139
  start-page: 4213
  year: 1987
  ident: e_1_3_3_13_2
  article-title: The 230-kDa gamete surface protein of Plasmodium falciparum is also a target for transmission-blocking antibodies
  publication-title: J Immunol
  doi: 10.4049/jimmunol.139.12.4213
– ident: e_1_3_3_17_2
  doi: 10.1111/j.1365-3024.2005.00818.x
– ident: e_1_3_3_51_2
  doi: 10.1073/pnas.0501858102
– ident: e_1_3_3_15_2
  doi: 10.4269/ajtmh.2002.66.310
– ident: e_1_3_3_33_2
  doi: 10.2202/1544-6115.1027
– ident: e_1_3_3_37_2
  doi: 10.1101/gr.2523904
– ident: e_1_3_3_7_2
  doi: 10.1146/annurev.mi.44.100190.002241
– ident: e_1_3_3_3_2
  doi: 10.1186/1475-2875-7-125
– ident: e_1_3_3_24_2
  doi: 10.1111/j.1365-3024.2007.00948.x
– ident: e_1_3_3_2_2
  doi: 10.30875/9f925144-en
– ident: e_1_3_3_30_2
  doi: 10.1086/592224
– reference: 15520293 - Genome Res. 2004 Nov;14(11):2308-18
– reference: 12368870 - Nature. 2002 Oct 3;419(6906):537-42
– reference: 6631012 - J Immunol. 1983 Nov;131(5):2557-62
– reference: 16275909 - Proc Natl Acad Sci U S A. 2005 Nov 15;102(46):16813-8
– reference: 2252389 - Annu Rev Microbiol. 1990;44:429-49
– reference: 25869538 - J Infect. 2015 Jul;71(1):117-27
– reference: 25597498 - Nat Commun. 2015;6:6054
– reference: 21969000 - Infect Immun. 2011 Dec;79(12):4957-64
– reference: 23487390 - Clin Infect Dis. 2013 Jul;57(1):40-7
– reference: 18613962 - Malar J. 2008;7:125
– reference: 16005087 - Mol Biochem Parasitol. 2005 Sep;143(1):67-79
– reference: 3283563 - Nature. 1988 May 5;333(6168):74-6
– reference: 9226690 - Parasite Immunol. 1996 Oct;18(10):527-33
– reference: 17518949 - Parasite Immunol. 2007 Jun;29(6):309-17
– reference: 8015855 - Parasite Immunol. 1994 Feb;16(2):55-62
– reference: 2447164 - J Immunol. 1987 Dec 15;139(12):4213-7
– reference: 21482730 - Clin Microbiol Rev. 2011 Apr;24(2):377-410
– reference: 20332084 - Mol Cell Proteomics. 2010 Jul;9(7):1437-48
– reference: 8813686 - Mol Biochem Parasitol. 1996 Jun;78(1-2):161-9
– reference: 12139226 - Am J Trop Med Hyg. 2002 Mar;66(3):310-3
– reference: 21311586 - PLoS Med. 2011;8(1):e1000398
– reference: 20351286 - Proc Natl Acad Sci U S A. 2010 Apr 13;107(15):6958-63
– reference: 17445146 - Trop Med Int Health. 2007 Apr;12(4):547-53
– reference: 23212366 - Nat Commun. 2012;3:1237
– reference: 12368866 - Nature. 2002 Oct 3;419(6906):520-6
– reference: 1364201 - Mem Inst Oswaldo Cruz. 1992;87 Suppl 3:169-73
– reference: 25329408 - Nat Rev Microbiol. 2014 Dec;12(12):833-40
– reference: 17714601 - Parasitology. 2007 Dec;134(Pt.14):1911-29
– reference: 7805466 - Chin Med J (Engl). 1994 Sep;107(9):709-11
– reference: 19817483 - J Proteome Res. 2009 Dec;8(12):5451-64
– reference: 6350527 - J Exp Med. 1983 Sep 1;158(3):976-81
– reference: 2642527 - J Exp Med. 1989 Jan 1;169(1):135-47
– reference: 16888139 - Science. 2006 Aug 4;313(5787):667-9
– reference: 7935618 - Mol Biochem Parasitol. 1994 May;65(1):11-22
– reference: 18752444 - J Infect Dis. 2008 Nov 1;198(9):1265-75
– reference: 2865324 - J Exp Med. 1985 Nov 1;162(5):1460-76
– reference: 24312682 - PLoS One. 2013;8(9):e76316
– reference: 3287282 - Parasite Immunol. 1988 Mar;10(2):209-18
– reference: 25422270 - Infect Immun. 2015 Feb;83(2):646-60
– reference: 22411467 - Nat Rev Genet. 2012 Apr;13(4):227-32
– reference: 20111746 - J Biomed Biotechnol. 2010;2010:976827
– reference: 21715579 - Clin Vaccine Immunol. 2011 Aug;18(8):1343-50
– reference: 20974145 - Int J Parasitol. 2011 Mar;41(3-4):293-300
– reference: 16646809 - Stat Appl Genet Mol Biol. 2004;3:Article3
– reference: 20497536 - Malar J. 2010;9:136
– reference: 16629703 - Parasite Immunol. 2006 May;28(5):185-90
– reference: 21715576 - Clin Vaccine Immunol. 2011 Aug;18(8):1351-7
SSID ssj0014448
Score 2.3017185
Snippet Malaria elimination efforts would benefit from vaccines that block transmission of Plasmodium falciparum gametocytes from humans to mosquitoes. A clear...
Malaria elimination efforts would benefit from vaccines that block transmission of Plasmodium falciparum gametocytes from humans to mosquitoes. A clear...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 4229
SubjectTerms Adolescent
Adult
Antibodies, Protozoan - immunology
Child
Child, Preschool
Cohort Studies
Female
Germ Cells - immunology
Humans
Infant
Malaria, Falciparum - immunology
Malaria, Falciparum - parasitology
Male
Microbial Immunity and Vaccines
Plasmodium falciparum
Plasmodium falciparum - chemistry
Plasmodium falciparum - classification
Plasmodium falciparum - genetics
Plasmodium falciparum - immunology
Proteomics
Protozoan Proteins - chemistry
Protozoan Proteins - genetics
Protozoan Proteins - immunology
Young Adult
Title Plasmodium falciparum Gametocyte-Specific Antibody Profiling Reveals Boosting through Natural Infection and Identifies Potential Markers of Gametocyte Exposure
URI https://www.ncbi.nlm.nih.gov/pubmed/26283330
https://www.proquest.com/docview/1721350235
https://www.proquest.com/docview/1746893044
https://pubmed.ncbi.nlm.nih.gov/PMC4598406
Volume 83
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFB7WiuKLaL2tN0bQpyWaTGZyeaxF7QotFVqoT2GSzLSB3U3ZTYT6Z3z2X3pOZnKzragvISSzM4Tz7cy5foeQ18J1JRxkscNUFjpcCddJc546WsaeDFQoVYAFzvsHwd4x_3wiTiaTn4OspbpK32bfr6wr-R-pwjOQK1bJ_oNku0nhAdyDfOEKEobrX8n4EFTfZZkX9XKm5QKzo9dw-0kuVVVmF5Vymu7yusiQI6BIyxzLAbFHt8m5-6aQO_l9WW5MtwjbsudAGi6Ouc3TMunKpqJXg2E9OywrvMeqXkzuWTfZIP2qSJ9cbixTSav4jicrmqqUqnPnD1qAYcS5x5r1Zu-eFbApOV_r3v-PcRSTmTbM_G-U2sWpnct4i2xhhXVteMLW-DUnk9mOke1UCDbar03jmxaX3mD35cx4Ty4fCwxLHeY7c0zj49wxFaQDhJwvG4iwALQt3waKxjTc7asb5CYLAd0Y___SB6w4mLltXQWL3g2XQr5p--Ox8nPJovk9MXeg6RzdI3etiUJ3DN7uk4labZNbpmnpxTa5vW_TMR6QHz0AaQ9AegUAaQtA2gGQWgDSFoDUApBaANIOMxQwQ3sA0g6A1AKQlnqwKm0B-JAcf_xwtLvn2I4fTsYjv3JSHohQMa3h1IAVNGOhmwdhGga5x1Qa5TnyZXEdqzASuZ8zHWexK71U6VSDqus_IlurcqWeEJoJLgOuRYqdZPwsiqI8kLFimYAD3VXxlMxaUSSZpcPHriyLpDGLWZSADJNGhoknpuRNN_rc0MBcM-5VK9UE9mkMvsmVKutNgq4WXyC71J_G8ADsB_jCKXlskNCt1kJoSsIRRroByBM_frMqzhq-eC7iCPT2p9fO-Yzc6f9-z8lWta7VC9C1q_Rlg_Jf9IjetA
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Plasmodium+falciparum+Gametocyte-Specific+Antibody+Profiling+Reveals+Boosting+through+Natural+Infection+and+Identifies+Potential+Markers+of+Gametocyte+Exposure&rft.jtitle=Infection+and+immunity&rft.au=Skinner%2C+Jeff&rft.au=Huang%2C+Chiung-Yu&rft.au=Waisberg%2C+Michael&rft.au=Felgner%2C+Philip+L&rft.date=2015-11-01&rft.eissn=1098-5522&rft.volume=83&rft.issue=11&rft.spage=4229&rft_id=info:doi/10.1128%2FIAI.00644-15&rft_id=info%3Apmid%2F26283330&rft.externalDocID=26283330
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0019-9567&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0019-9567&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0019-9567&client=summon