Plasmodium falciparum Gametocyte-Specific Antibody Profiling Reveals Boosting through Natural Infection and Identifies Potential Markers of Gametocyte Exposure
Malaria elimination efforts would benefit from vaccines that block transmission of Plasmodium falciparum gametocytes from humans to mosquitoes. A clear understanding of gametocyte-specific antibody responses in exposed populations could help determine whether transmission-blocking vaccines (TBV) wou...
Saved in:
Published in | Infection and immunity Vol. 83; no. 11; pp. 4229 - 4236 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society for Microbiology
01.11.2015
|
Subjects | |
Online Access | Get full text |
ISSN | 0019-9567 1098-5522 1098-5522 |
DOI | 10.1128/IAI.00644-15 |
Cover
Abstract | Malaria elimination efforts would benefit from vaccines that block transmission of
Plasmodium falciparum
gametocytes from humans to mosquitoes. A clear understanding of gametocyte-specific antibody responses in exposed populations could help determine whether transmission-blocking vaccines (TBV) would be boosted by natural gametocyte exposure, and also inform the development of serologic tools to monitor gametocyte exposure in populations targeted for malaria elimination. To this end, plasma was collected from Malian children and adults before and after the 6-month malaria season and probed against a microarray containing 1,204
P. falciparum
proteins. Using publicly available proteomic data, we classified 91 proteins as gametocyte specific and 69 as proteins not expressed by gametocytes. The overall breadth and magnitude of gametocyte-specific IgG responses increased during the malaria season, although they were consistently lower than IgG responses to nongametocyte antigens. Notably, IgG specific for the TBV candidates Pfs48/45 and Pfs230 increased during the malaria season. In addition, IgGs specific for the gametocyte proteins Pfmdv1, Pfs16, PF3D7_1346400, and PF3D7_1024800 were detected in nearly all subjects, suggesting that seroconversion to these proteins may be a sensitive indicator of gametocyte exposure, although further studies are needed to determine the specificity and kinetics of these potential serologic markers. These findings suggest that TBV-induced immunity would be boosted through natural gametocyte exposure, and that antibody responses to particular antigens may reliably indicate gametocyte exposure. |
---|---|
AbstractList | Malaria elimination efforts would benefit from vaccines that block transmission of Plasmodium falciparum gametocytes from humans to mosquitoes. A clear understanding of gametocyte-specific antibody responses in exposed populations could help determine whether transmission-blocking vaccines (TBV) would be boosted by natural gametocyte exposure, and also inform the development of serologic tools to monitor gametocyte exposure in populations targeted for malaria elimination. To this end, plasma was collected from Malian children and adults before and after the 6-month malaria season and probed against a microarray containing 1,204 P. falciparum proteins. Using publicly available proteomic data, we classified 91 proteins as gametocyte specific and 69 as proteins not expressed by gametocytes. The overall breadth and magnitude of gametocyte-specific IgG responses increased during the malaria season, although they were consistently lower than IgG responses to nongametocyte antigens. Notably, IgG specific for the TBV candidates Pfs48/45 and Pfs230 increased during the malaria season. In addition, IgGs specific for the gametocyte proteins Pfmdv1, Pfs16, PF3D7_1346400, and PF3D7_1024800 were detected in nearly all subjects, suggesting that seroconversion to these proteins may be a sensitive indicator of gametocyte exposure, although further studies are needed to determine the specificity and kinetics of these potential serologic markers. These findings suggest that TBV-induced immunity would be boosted through natural gametocyte exposure, and that antibody responses to particular antigens may reliably indicate gametocyte exposure. Malaria elimination efforts would benefit from vaccines that block transmission of Plasmodium falciparum gametocytes from humans to mosquitoes. A clear understanding of gametocyte-specific antibody responses in exposed populations could help determine whether transmission-blocking vaccines (TBV) would be boosted by natural gametocyte exposure, and also inform the development of serologic tools to monitor gametocyte exposure in populations targeted for malaria elimination. To this end, plasma was collected from Malian children and adults before and after the 6-month malaria season and probed against a microarray containing 1,204 P. falciparum proteins. Using publicly available proteomic data, we classified 91 proteins as gametocyte specific and 69 as proteins not expressed by gametocytes. The overall breadth and magnitude of gametocyte-specific IgG responses increased during the malaria season, although they were consistently lower than IgG responses to nongametocyte antigens. Notably, IgG specific for the TBV candidates Pfs48/45 and Pfs230 increased during the malaria season. In addition, IgGs specific for the gametocyte proteins Pfmdv1, Pfs16, PF3D7_1346400, and PF3D7_1024800 were detected in nearly all subjects, suggesting that seroconversion to these proteins may be a sensitive indicator of gametocyte exposure, although further studies are needed to determine the specificity and kinetics of these potential serologic markers. These findings suggest that TBV-induced immunity would be boosted through natural gametocyte exposure, and that antibody responses to particular antigens may reliably indicate gametocyte exposure. Malaria elimination efforts would benefit from vaccines that block transmission of Plasmodium falciparum gametocytes from humans to mosquitoes. A clear understanding of gametocyte-specific antibody responses in exposed populations could help determine whether transmission-blocking vaccines (TBV) would be boosted by natural gametocyte exposure, and also inform the development of serologic tools to monitor gametocyte exposure in populations targeted for malaria elimination. To this end, plasma was collected from Malian children and adults before and after the 6-month malaria season and probed against a microarray containing 1,204 P. falciparum proteins. Using publicly available proteomic data, we classified 91 proteins as gametocyte specific and 69 as proteins not expressed by gametocytes. The overall breadth and magnitude of gametocyte-specific IgG responses increased during the malaria season, although they were consistently lower than IgG responses to nongametocyte antigens. Notably, IgG specific for the TBV candidates Pfs48/45 and Pfs230 increased during the malaria season. In addition, IgGs specific for the gametocyte proteins Pfmdv1, Pfs16, PF3D7_1346400, and PF3D7_1024800 were detected in nearly all subjects, suggesting that seroconversion to these proteins may be a sensitive indicator of gametocyte exposure, although further studies are needed to determine the specificity and kinetics of these potential serologic markers. These findings suggest that TBV-induced immunity would be boosted through natural gametocyte exposure, and that antibody responses to particular antigens may reliably indicate gametocyte exposure.Malaria elimination efforts would benefit from vaccines that block transmission of Plasmodium falciparum gametocytes from humans to mosquitoes. A clear understanding of gametocyte-specific antibody responses in exposed populations could help determine whether transmission-blocking vaccines (TBV) would be boosted by natural gametocyte exposure, and also inform the development of serologic tools to monitor gametocyte exposure in populations targeted for malaria elimination. To this end, plasma was collected from Malian children and adults before and after the 6-month malaria season and probed against a microarray containing 1,204 P. falciparum proteins. Using publicly available proteomic data, we classified 91 proteins as gametocyte specific and 69 as proteins not expressed by gametocytes. The overall breadth and magnitude of gametocyte-specific IgG responses increased during the malaria season, although they were consistently lower than IgG responses to nongametocyte antigens. Notably, IgG specific for the TBV candidates Pfs48/45 and Pfs230 increased during the malaria season. In addition, IgGs specific for the gametocyte proteins Pfmdv1, Pfs16, PF3D7_1346400, and PF3D7_1024800 were detected in nearly all subjects, suggesting that seroconversion to these proteins may be a sensitive indicator of gametocyte exposure, although further studies are needed to determine the specificity and kinetics of these potential serologic markers. These findings suggest that TBV-induced immunity would be boosted through natural gametocyte exposure, and that antibody responses to particular antigens may reliably indicate gametocyte exposure. |
Author | Kayentao, Kassoum Crompton, Peter D. Doumbo, Ogobara K. Ongoiba, Aissata Williamson, Kim C. Felgner, Philip L. Traore, Boubacar Skinner, Jeff Waisberg, Michael Huang, Chiung-Yu |
Author_xml | – sequence: 1 givenname: Jeff surname: Skinner fullname: Skinner, Jeff organization: Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA – sequence: 2 givenname: Chiung-Yu surname: Huang fullname: Huang, Chiung-Yu organization: Division of Biostatistics and Bioinformatics, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland, USA – sequence: 3 givenname: Michael surname: Waisberg fullname: Waisberg, Michael organization: Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA – sequence: 4 givenname: Philip L. surname: Felgner fullname: Felgner, Philip L. organization: Division of Infectious Diseases, Department of Medicine, University of California, Irvine, Irvine, California, USA, Antigen Discovery, Inc., Irvine, California, USA – sequence: 5 givenname: Ogobara K. surname: Doumbo fullname: Doumbo, Ogobara K. organization: Mali International Center of Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali – sequence: 6 givenname: Aissata surname: Ongoiba fullname: Ongoiba, Aissata organization: Division of Infectious Diseases, Department of Medicine, University of California, Irvine, Irvine, California, USA – sequence: 7 givenname: Kassoum surname: Kayentao fullname: Kayentao, Kassoum organization: Division of Infectious Diseases, Department of Medicine, University of California, Irvine, Irvine, California, USA – sequence: 8 givenname: Boubacar surname: Traore fullname: Traore, Boubacar organization: Mali International Center of Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali – sequence: 9 givenname: Peter D. surname: Crompton fullname: Crompton, Peter D. organization: Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA – sequence: 10 givenname: Kim C. surname: Williamson fullname: Williamson, Kim C. organization: Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA, Department of Biology, Loyola University Chicago, Chicago, Illinois, USA |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26283330$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkk9vFCEYxompsdvqzbPh6MGpwDAzzMVkbWrdpOrGP2fCwMsuOjNMgWncT9OvWta2phoPnnh5eXjeX-A5QgejHwGh55ScUMrE69VydUJIzXlBq0doQUkriqpi7AAtCKFt0VZ1c4iOYvyet5xz8QQdspqJsizJAl2vexUHb9w8YKt67SYVcnmuBkhe7xIUXybQzjqNl2NynTc7vA7eut6NG_wZrkD1Eb_1PqZ9I22Dnzdb_FGlOager0YLOjk_YjUavDKQPayDiNc-7ess-aDCDwgRe_tgKj77Ofk4B3iKHmesCM_u1mP07d3Z19P3xcWn89Xp8qLQXJSp6HhdNcCsbdoyT7SMNcTUTdfUhjLohDGNIJzbFhpRmdIw2-qWKNqB7axgrDxGb259p7kbwOgMl_nlFNygwk565eSfJ6Pbyo2_krxqBSd1Nnh5ZxD85QwxycFFDX2vRvBzlLThtWjLDPEfUkbLirCyytIXD7F-89x_YBawW4EOPsYAVmqX1P7FM6XrJSVynxKZUyJ_pUTSveurvy7d-_5TfgOAy8JU |
CitedBy_id | crossref_primary_10_1371_journal_pmed_1003560 crossref_primary_10_1007_s00436_018_6127_9 crossref_primary_10_3389_fimmu_2019_02480 crossref_primary_10_1002_adbi_201800011 crossref_primary_10_3389_fimmu_2022_930956 crossref_primary_10_3389_fimmu_2018_02769 crossref_primary_10_1038_s41467_017_02646_2 crossref_primary_10_1016_j_mib_2017_11_029 crossref_primary_10_1128_IAI_00775_18 crossref_primary_10_3389_fcimb_2021_774537 crossref_primary_10_1016_j_ijpara_2016_10_002 crossref_primary_10_1126_scitranslmed_abg2112 crossref_primary_10_3390_jcm11071839 crossref_primary_10_1016_j_parepi_2023_e00295 crossref_primary_10_1074_mcp_RA118_000992 crossref_primary_10_1016_j_actatropica_2016_07_023 crossref_primary_10_1128_CVI_00140_17 crossref_primary_10_1186_s12936_018_2479_y crossref_primary_10_1016_j_vaccine_2016_11_072 |
Cites_doi | 10.1046/j.1365-3024.1996.d01-17.x 10.1073/pnas.1001323107 10.1111/j.1365-3024.1994.tb00323.x 10.1590/S0074-02761992000700027 10.1017/S0031182007003381 10.1016/j.ijpara.2010.09.008 10.1155/2010/976827 10.1074/mcp.M900479-MCP200 10.1128/CVI.05105-11 10.1016/j.molbiopara.2005.05.007 10.1128/CVI.05104-11 10.1111/j.1365-3024.1988.tb00215.x 10.1093/cid/cit174 10.1128/CMR.00051-10 10.1038/ncomms2241 10.1084/jem.169.1.135 10.1016/j.jinf.2015.03.007 10.1038/nature01107 10.1038/333074a0 10.1128/IAI.02398-14 10.1084/jem.158.3.976 10.1016/S0166-6851(96)02621-7 10.1084/jem.162.5.1460 10.4049/jimmunol.131.5.2557 10.1371/journal.pmed.1000398 10.1111/j.1365-3156.2007.01821.x 10.1021/pr900412k 10.1016/0166-6851(94)90111-2 10.1371/journal.pone.0076316 10.1038/ncomms7054 10.1038/nature01111 10.1186/1475-2875-9-136 10.1111/j.2517-6161.1995.tb02031.x 10.1126/science.1125129 10.1038/nrg3185 10.1128/IAI.05288-11 10.2307/2532694 10.1038/nrmicro3364 10.4049/jimmunol.139.12.4213 10.1111/j.1365-3024.2005.00818.x 10.1073/pnas.0501858102 10.4269/ajtmh.2002.66.310 10.2202/1544-6115.1027 10.1101/gr.2523904 10.1146/annurev.mi.44.100190.002241 10.1186/1475-2875-7-125 10.1111/j.1365-3024.2007.00948.x 10.30875/9f925144-en 10.1086/592224 |
ContentType | Journal Article |
Copyright | Copyright © 2015, Skinner et al. Copyright © 2015, Skinner et al. 2015 Skinner et al. |
Copyright_xml | – notice: Copyright © 2015, Skinner et al. – notice: Copyright © 2015, Skinner et al. 2015 Skinner et al. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7T5 C1K F1W H94 H95 H97 L.G M7N 5PM |
DOI | 10.1128/IAI.00644-15 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Immunology Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts AIDS and Cancer Research Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Algology Mycology and Protozoology Abstracts (Microbiology C) ASFA: Aquatic Sciences and Fisheries Abstracts AIDS and Cancer Research Abstracts Immunology Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Environmental Sciences and Pollution Management |
DatabaseTitleList | MEDLINE CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
DocumentTitleAlternate | P. falciparum Gametocyte-Specific Antibody Profiling |
EISSN | 1098-5522 |
EndPage | 4236 |
ExternalDocumentID | PMC4598406 26283330 10_1128_IAI_00644_15 |
Genre | Journal Article Research Support, N.I.H., Intramural Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIAID NIH HHS grantid: R01 AI095916 – fundername: Intramural NIH HHS – fundername: NIAID NIH HHS grantid: R43AI066791 – fundername: NIAID NIH HHS grantid: R01 AI069314 – fundername: NIAID NIH HHS grantid: AI069314 – fundername: NIAID NIH HHS grantid: R43 AI066791 – fundername: NIAID NIH HHS grantid: U54 AI065359 – fundername: NIAID NIH HHS grantid: R01AI095916 – fundername: NIAID NIH HHS grantid: U54AI065359 |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 18M 29I 2WC 39C 3O- 4.4 41~ 53G 5GY 5RE 5VS 85S AAGFI AAYXX ABOCM ACGFO ADBBV ADXHL AENEX AGCDD AGVNZ AI. ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BTFSW C1A CITATION CS3 D0S DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HYE HZ~ H~9 IH2 J5H KQ8 L7B MVM NEJ O9- OHT OK1 P2P RHI RNS RPM RSF SJN TR2 TWZ UPT VH1 W2D W8F WH7 WHG WOQ X7M Y6R ZGI ZXP ~KM CGR CUY CVF ECM EIF NPM 7X8 7T5 C1K F1W H94 H95 H97 L.G M7N 5PM |
ID | FETCH-LOGICAL-c483t-b4657e2ff793fecf2270d67b76d12eb8dd78044f9e785d3d2f9c90a1befbf8223 |
ISSN | 0019-9567 1098-5522 |
IngestDate | Thu Aug 21 18:22:01 EDT 2025 Fri Sep 05 12:38:24 EDT 2025 Fri Sep 05 12:42:43 EDT 2025 Thu Apr 03 07:00:05 EDT 2025 Thu Apr 24 22:55:41 EDT 2025 Tue Jul 01 02:09:18 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | Copyright © 2015, Skinner et al. This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-ShareAlike 3.0 Unported license, which permits unrestricted noncommercial use, distribution, and reproduction in any medium, provided the original author and source are credited. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c483t-b4657e2ff793fecf2270d67b76d12eb8dd78044f9e785d3d2f9c90a1befbf8223 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Citation Skinner J, Huang C-Y, Waisberg M, Felgner PL, Doumbo OK, Ongoiba A, Kayentao K, Traore B, Crompton PD, Williamson KC. 2015. Plasmodium falciparum gametocyte-specific antibody profiling reveals boosting through natural infection and identifies potential markers of gametocyte exposure. Infect Immun 83:4229–4236. doi:10.1128/IAI.00644-15. Present address: Michael Waisberg, Department of Pathology, School of Medicine, University of Virginia, Charlottesville, Virginia, USA. |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC4598406 |
PMID | 26283330 |
PQID | 1721350235 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4598406 proquest_miscellaneous_1746893044 proquest_miscellaneous_1721350235 pubmed_primary_26283330 crossref_citationtrail_10_1128_IAI_00644_15 crossref_primary_10_1128_IAI_00644_15 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-11-01 |
PublicationDateYYYYMMDD | 2015-11-01 |
PublicationDate_xml | – month: 11 year: 2015 text: 2015-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: 1752 N St., N.W., Washington, DC |
PublicationTitle | Infection and immunity |
PublicationTitleAlternate | Infect Immun |
PublicationYear | 2015 |
Publisher | American Society for Microbiology |
Publisher_xml | – name: American Society for Microbiology |
References | e_1_3_3_50_2 e_1_3_3_16_2 e_1_3_3_18_2 e_1_3_3_39_2 Chen PQ (e_1_3_3_4_2) 1994; 107 e_1_3_3_12_2 e_1_3_3_37_2 e_1_3_3_14_2 e_1_3_3_35_2 e_1_3_3_33_2 e_1_3_3_31_2 e_1_3_3_52_2 e_1_3_3_40_2 Benjamini Y (e_1_3_3_34_2) 1995; 57 e_1_3_3_5_2 e_1_3_3_7_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_23_2 e_1_3_3_48_2 e_1_3_3_25_2 e_1_3_3_46_2 e_1_3_3_44_2 e_1_3_3_3_2 e_1_3_3_21_2 e_1_3_3_42_2 e_1_3_3_51_2 Quakyi IA (e_1_3_3_13_2) 1987; 139 e_1_3_3_17_2 e_1_3_3_19_2 e_1_3_3_38_2 e_1_3_3_36_2 Kaushal DC (e_1_3_3_10_2) 1983; 131 e_1_3_3_15_2 e_1_3_3_32_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_6_2 e_1_3_3_8_2 e_1_3_3_28_2 e_1_3_3_49_2 e_1_3_3_24_2 e_1_3_3_47_2 e_1_3_3_26_2 e_1_3_3_45_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_43_2 e_1_3_3_22_2 e_1_3_3_41_2 16629703 - Parasite Immunol. 2006 May;28(5):185-90 21311586 - PLoS Med. 2011;8(1):e1000398 16646809 - Stat Appl Genet Mol Biol. 2004;3:Article3 3287282 - Parasite Immunol. 1988 Mar;10(2):209-18 3283563 - Nature. 1988 May 5;333(6168):74-6 12368866 - Nature. 2002 Oct 3;419(6906):520-6 19817483 - J Proteome Res. 2009 Dec;8(12):5451-64 23212366 - Nat Commun. 2012;3:1237 20111746 - J Biomed Biotechnol. 2010;2010:976827 21715576 - Clin Vaccine Immunol. 2011 Aug;18(8):1351-7 18752444 - J Infect Dis. 2008 Nov 1;198(9):1265-75 25422270 - Infect Immun. 2015 Feb;83(2):646-60 22411467 - Nat Rev Genet. 2012 Apr;13(4):227-32 21969000 - Infect Immun. 2011 Dec;79(12):4957-64 2865324 - J Exp Med. 1985 Nov 1;162(5):1460-76 21715579 - Clin Vaccine Immunol. 2011 Aug;18(8):1343-50 9226690 - Parasite Immunol. 1996 Oct;18(10):527-33 2252389 - Annu Rev Microbiol. 1990;44:429-49 6350527 - J Exp Med. 1983 Sep 1;158(3):976-81 16888139 - Science. 2006 Aug 4;313(5787):667-9 20351286 - Proc Natl Acad Sci U S A. 2010 Apr 13;107(15):6958-63 12139226 - Am J Trop Med Hyg. 2002 Mar;66(3):310-3 7935618 - Mol Biochem Parasitol. 1994 May;65(1):11-22 8015855 - Parasite Immunol. 1994 Feb;16(2):55-62 24312682 - PLoS One. 2013;8(9):e76316 8813686 - Mol Biochem Parasitol. 1996 Jun;78(1-2):161-9 25597498 - Nat Commun. 2015;6:6054 17518949 - Parasite Immunol. 2007 Jun;29(6):309-17 20332084 - Mol Cell Proteomics. 2010 Jul;9(7):1437-48 2447164 - J Immunol. 1987 Dec 15;139(12):4213-7 20497536 - Malar J. 2010;9:136 21482730 - Clin Microbiol Rev. 2011 Apr;24(2):377-410 16275909 - Proc Natl Acad Sci U S A. 2005 Nov 15;102(46):16813-8 23487390 - Clin Infect Dis. 2013 Jul;57(1):40-7 25329408 - Nat Rev Microbiol. 2014 Dec;12(12):833-40 18613962 - Malar J. 2008;7:125 2642527 - J Exp Med. 1989 Jan 1;169(1):135-47 1364201 - Mem Inst Oswaldo Cruz. 1992;87 Suppl 3:169-73 16005087 - Mol Biochem Parasitol. 2005 Sep;143(1):67-79 15520293 - Genome Res. 2004 Nov;14(11):2308-18 12368870 - Nature. 2002 Oct 3;419(6906):537-42 17445146 - Trop Med Int Health. 2007 Apr;12(4):547-53 7805466 - Chin Med J (Engl). 1994 Sep;107(9):709-11 17714601 - Parasitology. 2007 Dec;134(Pt.14):1911-29 20974145 - Int J Parasitol. 2011 Mar;41(3-4):293-300 6631012 - J Immunol. 1983 Nov;131(5):2557-62 25869538 - J Infect. 2015 Jul;71(1):117-27 |
References_xml | – ident: e_1_3_3_26_2 doi: 10.1046/j.1365-3024.1996.d01-17.x – ident: e_1_3_3_28_2 doi: 10.1073/pnas.1001323107 – ident: e_1_3_3_23_2 doi: 10.1111/j.1365-3024.1994.tb00323.x – ident: e_1_3_3_27_2 doi: 10.1590/S0074-02761992000700027 – ident: e_1_3_3_31_2 – ident: e_1_3_3_38_2 doi: 10.1017/S0031182007003381 – ident: e_1_3_3_18_2 doi: 10.1016/j.ijpara.2010.09.008 – ident: e_1_3_3_9_2 doi: 10.1155/2010/976827 – ident: e_1_3_3_40_2 doi: 10.1074/mcp.M900479-MCP200 – ident: e_1_3_3_43_2 doi: 10.1128/CVI.05105-11 – ident: e_1_3_3_52_2 doi: 10.1016/j.molbiopara.2005.05.007 – ident: e_1_3_3_42_2 doi: 10.1128/CVI.05104-11 – ident: e_1_3_3_22_2 doi: 10.1111/j.1365-3024.1988.tb00215.x – ident: e_1_3_3_41_2 doi: 10.1093/cid/cit174 – ident: e_1_3_3_25_2 doi: 10.1128/CMR.00051-10 – ident: e_1_3_3_5_2 doi: 10.1038/ncomms2241 – ident: e_1_3_3_16_2 doi: 10.1084/jem.169.1.135 – ident: e_1_3_3_21_2 doi: 10.1016/j.jinf.2015.03.007 – ident: e_1_3_3_29_2 doi: 10.1038/nature01107 – ident: e_1_3_3_49_2 doi: 10.1038/333074a0 – ident: e_1_3_3_19_2 doi: 10.1128/IAI.02398-14 – ident: e_1_3_3_11_2 doi: 10.1084/jem.158.3.976 – ident: e_1_3_3_48_2 doi: 10.1016/S0166-6851(96)02621-7 – ident: e_1_3_3_12_2 doi: 10.1084/jem.162.5.1460 – volume: 131 start-page: 2557 year: 1983 ident: e_1_3_3_10_2 article-title: Monoclonal antibodies against surface determinants on gametes of Plasmodium gallinaceum block transmission of malaria parasites to mosquitoes publication-title: J Immunol doi: 10.4049/jimmunol.131.5.2557 – ident: e_1_3_3_6_2 doi: 10.1371/journal.pmed.1000398 – volume: 107 start-page: 709 year: 1994 ident: e_1_3_3_4_2 article-title: The infectivity of gametocytes of Plasmodium falciparum from patients treated with artemisinin publication-title: Chin Med J (Engl) – ident: e_1_3_3_47_2 doi: 10.1111/j.1365-3156.2007.01821.x – ident: e_1_3_3_32_2 doi: 10.1021/pr900412k – ident: e_1_3_3_50_2 doi: 10.1016/0166-6851(94)90111-2 – ident: e_1_3_3_46_2 doi: 10.1371/journal.pone.0076316 – ident: e_1_3_3_45_2 doi: 10.1038/ncomms7054 – ident: e_1_3_3_39_2 doi: 10.1038/nature01111 – ident: e_1_3_3_8_2 doi: 10.1186/1475-2875-9-136 – volume: 57 start-page: 289 year: 1995 ident: e_1_3_3_34_2 article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing publication-title: J R Stat Soc doi: 10.1111/j.2517-6161.1995.tb02031.x – ident: e_1_3_3_14_2 doi: 10.1126/science.1125129 – ident: e_1_3_3_36_2 doi: 10.1038/nrg3185 – ident: e_1_3_3_20_2 doi: 10.1128/IAI.05288-11 – ident: e_1_3_3_35_2 doi: 10.2307/2532694 – ident: e_1_3_3_44_2 doi: 10.1038/nrmicro3364 – volume: 139 start-page: 4213 year: 1987 ident: e_1_3_3_13_2 article-title: The 230-kDa gamete surface protein of Plasmodium falciparum is also a target for transmission-blocking antibodies publication-title: J Immunol doi: 10.4049/jimmunol.139.12.4213 – ident: e_1_3_3_17_2 doi: 10.1111/j.1365-3024.2005.00818.x – ident: e_1_3_3_51_2 doi: 10.1073/pnas.0501858102 – ident: e_1_3_3_15_2 doi: 10.4269/ajtmh.2002.66.310 – ident: e_1_3_3_33_2 doi: 10.2202/1544-6115.1027 – ident: e_1_3_3_37_2 doi: 10.1101/gr.2523904 – ident: e_1_3_3_7_2 doi: 10.1146/annurev.mi.44.100190.002241 – ident: e_1_3_3_3_2 doi: 10.1186/1475-2875-7-125 – ident: e_1_3_3_24_2 doi: 10.1111/j.1365-3024.2007.00948.x – ident: e_1_3_3_2_2 doi: 10.30875/9f925144-en – ident: e_1_3_3_30_2 doi: 10.1086/592224 – reference: 15520293 - Genome Res. 2004 Nov;14(11):2308-18 – reference: 12368870 - Nature. 2002 Oct 3;419(6906):537-42 – reference: 6631012 - J Immunol. 1983 Nov;131(5):2557-62 – reference: 16275909 - Proc Natl Acad Sci U S A. 2005 Nov 15;102(46):16813-8 – reference: 2252389 - Annu Rev Microbiol. 1990;44:429-49 – reference: 25869538 - J Infect. 2015 Jul;71(1):117-27 – reference: 25597498 - Nat Commun. 2015;6:6054 – reference: 21969000 - Infect Immun. 2011 Dec;79(12):4957-64 – reference: 23487390 - Clin Infect Dis. 2013 Jul;57(1):40-7 – reference: 18613962 - Malar J. 2008;7:125 – reference: 16005087 - Mol Biochem Parasitol. 2005 Sep;143(1):67-79 – reference: 3283563 - Nature. 1988 May 5;333(6168):74-6 – reference: 9226690 - Parasite Immunol. 1996 Oct;18(10):527-33 – reference: 17518949 - Parasite Immunol. 2007 Jun;29(6):309-17 – reference: 8015855 - Parasite Immunol. 1994 Feb;16(2):55-62 – reference: 2447164 - J Immunol. 1987 Dec 15;139(12):4213-7 – reference: 21482730 - Clin Microbiol Rev. 2011 Apr;24(2):377-410 – reference: 20332084 - Mol Cell Proteomics. 2010 Jul;9(7):1437-48 – reference: 8813686 - Mol Biochem Parasitol. 1996 Jun;78(1-2):161-9 – reference: 12139226 - Am J Trop Med Hyg. 2002 Mar;66(3):310-3 – reference: 21311586 - PLoS Med. 2011;8(1):e1000398 – reference: 20351286 - Proc Natl Acad Sci U S A. 2010 Apr 13;107(15):6958-63 – reference: 17445146 - Trop Med Int Health. 2007 Apr;12(4):547-53 – reference: 23212366 - Nat Commun. 2012;3:1237 – reference: 12368866 - Nature. 2002 Oct 3;419(6906):520-6 – reference: 1364201 - Mem Inst Oswaldo Cruz. 1992;87 Suppl 3:169-73 – reference: 25329408 - Nat Rev Microbiol. 2014 Dec;12(12):833-40 – reference: 17714601 - Parasitology. 2007 Dec;134(Pt.14):1911-29 – reference: 7805466 - Chin Med J (Engl). 1994 Sep;107(9):709-11 – reference: 19817483 - J Proteome Res. 2009 Dec;8(12):5451-64 – reference: 6350527 - J Exp Med. 1983 Sep 1;158(3):976-81 – reference: 2642527 - J Exp Med. 1989 Jan 1;169(1):135-47 – reference: 16888139 - Science. 2006 Aug 4;313(5787):667-9 – reference: 7935618 - Mol Biochem Parasitol. 1994 May;65(1):11-22 – reference: 18752444 - J Infect Dis. 2008 Nov 1;198(9):1265-75 – reference: 2865324 - J Exp Med. 1985 Nov 1;162(5):1460-76 – reference: 24312682 - PLoS One. 2013;8(9):e76316 – reference: 3287282 - Parasite Immunol. 1988 Mar;10(2):209-18 – reference: 25422270 - Infect Immun. 2015 Feb;83(2):646-60 – reference: 22411467 - Nat Rev Genet. 2012 Apr;13(4):227-32 – reference: 20111746 - J Biomed Biotechnol. 2010;2010:976827 – reference: 21715579 - Clin Vaccine Immunol. 2011 Aug;18(8):1343-50 – reference: 20974145 - Int J Parasitol. 2011 Mar;41(3-4):293-300 – reference: 16646809 - Stat Appl Genet Mol Biol. 2004;3:Article3 – reference: 20497536 - Malar J. 2010;9:136 – reference: 16629703 - Parasite Immunol. 2006 May;28(5):185-90 – reference: 21715576 - Clin Vaccine Immunol. 2011 Aug;18(8):1351-7 |
SSID | ssj0014448 |
Score | 2.3017185 |
Snippet | Malaria elimination efforts would benefit from vaccines that block transmission of
Plasmodium falciparum
gametocytes from humans to mosquitoes. A clear... Malaria elimination efforts would benefit from vaccines that block transmission of Plasmodium falciparum gametocytes from humans to mosquitoes. A clear... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 4229 |
SubjectTerms | Adolescent Adult Antibodies, Protozoan - immunology Child Child, Preschool Cohort Studies Female Germ Cells - immunology Humans Infant Malaria, Falciparum - immunology Malaria, Falciparum - parasitology Male Microbial Immunity and Vaccines Plasmodium falciparum Plasmodium falciparum - chemistry Plasmodium falciparum - classification Plasmodium falciparum - genetics Plasmodium falciparum - immunology Proteomics Protozoan Proteins - chemistry Protozoan Proteins - genetics Protozoan Proteins - immunology Young Adult |
Title | Plasmodium falciparum Gametocyte-Specific Antibody Profiling Reveals Boosting through Natural Infection and Identifies Potential Markers of Gametocyte Exposure |
URI | https://www.ncbi.nlm.nih.gov/pubmed/26283330 https://www.proquest.com/docview/1721350235 https://www.proquest.com/docview/1746893044 https://pubmed.ncbi.nlm.nih.gov/PMC4598406 |
Volume | 83 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFB7WiuKLaL2tN0bQpyWaTGZyeaxF7QotFVqoT2GSzLSB3U3ZTYT6Z3z2X3pOZnKzragvISSzM4Tz7cy5foeQ18J1JRxkscNUFjpcCddJc546WsaeDFQoVYAFzvsHwd4x_3wiTiaTn4OspbpK32bfr6wr-R-pwjOQK1bJ_oNku0nhAdyDfOEKEobrX8n4EFTfZZkX9XKm5QKzo9dw-0kuVVVmF5Vymu7yusiQI6BIyxzLAbFHt8m5-6aQO_l9WW5MtwjbsudAGi6Ouc3TMunKpqJXg2E9OywrvMeqXkzuWTfZIP2qSJ9cbixTSav4jicrmqqUqnPnD1qAYcS5x5r1Zu-eFbApOV_r3v-PcRSTmTbM_G-U2sWpnct4i2xhhXVteMLW-DUnk9mOke1UCDbar03jmxaX3mD35cx4Ty4fCwxLHeY7c0zj49wxFaQDhJwvG4iwALQt3waKxjTc7asb5CYLAd0Y___SB6w4mLltXQWL3g2XQr5p--Ox8nPJovk9MXeg6RzdI3etiUJ3DN7uk4labZNbpmnpxTa5vW_TMR6QHz0AaQ9AegUAaQtA2gGQWgDSFoDUApBaANIOMxQwQ3sA0g6A1AKQlnqwKm0B-JAcf_xwtLvn2I4fTsYjv3JSHohQMa3h1IAVNGOhmwdhGga5x1Qa5TnyZXEdqzASuZ8zHWexK71U6VSDqus_IlurcqWeEJoJLgOuRYqdZPwsiqI8kLFimYAD3VXxlMxaUSSZpcPHriyLpDGLWZSADJNGhoknpuRNN_rc0MBcM-5VK9UE9mkMvsmVKutNgq4WXyC71J_G8ADsB_jCKXlskNCt1kJoSsIRRroByBM_frMqzhq-eC7iCPT2p9fO-Yzc6f9-z8lWta7VC9C1q_Rlg_Jf9IjetA |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Plasmodium+falciparum+Gametocyte-Specific+Antibody+Profiling+Reveals+Boosting+through+Natural+Infection+and+Identifies+Potential+Markers+of+Gametocyte+Exposure&rft.jtitle=Infection+and+immunity&rft.au=Skinner%2C+Jeff&rft.au=Huang%2C+Chiung-Yu&rft.au=Waisberg%2C+Michael&rft.au=Felgner%2C+Philip+L&rft.date=2015-11-01&rft.eissn=1098-5522&rft.volume=83&rft.issue=11&rft.spage=4229&rft_id=info:doi/10.1128%2FIAI.00644-15&rft_id=info%3Apmid%2F26283330&rft.externalDocID=26283330 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0019-9567&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0019-9567&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0019-9567&client=summon |