Brain Dynamics in Predicting Driving Fatigue Using a Recurrent Self-Evolving Fuzzy Neural Network

This paper proposes a generalized prediction system called a recurrent self-evolving fuzzy neural network (RSEFNN) that employs an on-line gradient descent learning rule to address the electroencephalography (EEG) regression problem in brain dynamics for driving fatigue. The cognitive states of driv...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 27; no. 2; pp. 347 - 360
Main Authors Liu, Yu-Ting, Lin, Yang-Yin, Wu, Shang-Lin, Chuang, Chun-Hsiang, Lin, Chin-Teng
Format Journal Article
LanguageEnglish
Published United States IEEE 01.02.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2162-237X
2162-2388
DOI10.1109/TNNLS.2015.2496330

Cover

Abstract This paper proposes a generalized prediction system called a recurrent self-evolving fuzzy neural network (RSEFNN) that employs an on-line gradient descent learning rule to address the electroencephalography (EEG) regression problem in brain dynamics for driving fatigue. The cognitive states of drivers significantly affect driving safety; in particular, fatigue driving, or drowsy driving, endangers both the individual and the public. For this reason, the development of brain-computer interfaces (BCIs) that can identify drowsy driving states is a crucial and urgent topic of study. Many EEG-based BCIs have been developed as artificial auxiliary systems for use in various practical applications because of the benefits of measuring EEG signals. In the literature, the efficacy of EEG-based BCIs in recognition tasks has been limited by low resolutions. The system proposed in this paper represents the first attempt to use the recurrent fuzzy neural network (RFNN) architecture to increase adaptability in realistic EEG applications to overcome this bottleneck. This paper further analyzes brain dynamics in a simulated car driving task in a virtual-reality environment. The proposed RSEFNN model is evaluated using the generalized cross-subject approach, and the results indicate that the RSEFNN is superior to competing models regardless of the use of recurrent or nonrecurrent structures.
AbstractList This paper proposes a generalized prediction system called a recurrent self-evolving fuzzy neural network (RSEFNN) that employs an on-line gradient descent learning rule to address the electroencephalography (EEG) regression problem in brain dynamics for driving fatigue. The cognitive states of drivers significantly affect driving safety; in particular, fatigue driving, or drowsy driving, endangers both the individual and the public. For this reason, the development of brain-computer interfaces (BCIs) that can identify drowsy driving states is a crucial and urgent topic of study. Many EEG-based BCIs have been developed as artificial auxiliary systems for use in various practical applications because of the benefits of measuring EEG signals. In the literature, the efficacy of EEG-based BCIs in recognition tasks has been limited by low resolutions. The system proposed in this paper represents the first attempt to use the recurrent fuzzy neural network (RFNN) architecture to increase adaptability in realistic EEG applications to overcome this bottleneck. This paper further analyzes brain dynamics in a simulated car driving task in a virtual-reality environment. The proposed RSEFNN model is evaluated using the generalized cross-subject approach, and the results indicate that the RSEFNN is superior to competing models regardless of the use of recurrent or nonrecurrent structures.
Author Yang-Yin Lin
Chun-Hsiang Chuang
Yu-Ting Liu
Shang-Lin Wu
Chin-Teng Lin
Author_xml – sequence: 1
  givenname: Yu-Ting
  surname: Liu
  fullname: Liu, Yu-Ting
– sequence: 2
  givenname: Yang-Yin
  surname: Lin
  fullname: Lin, Yang-Yin
– sequence: 3
  givenname: Shang-Lin
  surname: Wu
  fullname: Wu, Shang-Lin
– sequence: 4
  givenname: Chun-Hsiang
  surname: Chuang
  fullname: Chuang, Chun-Hsiang
– sequence: 5
  givenname: Chin-Teng
  surname: Lin
  fullname: Lin, Chin-Teng
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26595929$$D View this record in MEDLINE/PubMed
BookMark eNqNkk1vEzEQhi1UREvbPwASWokLl01tT_x1hH4AUhRQPyRulteZrVw23mLvFqW_HoekPfRQ8OUdS8870sy8r8lO7CMS8obRCWPUHF3O57OLCadMTPjUSAD6guxxJnnNQeudx1r92CWHOd_Q8iQVcmpekV0uhRGGmz3iPiUXYnWyim4ZfK5K_T3hIvghxOvqJIW7tZ65IVyPWF3l9c9V5-jHlDAO1QV2bX1613cbbry_X1VzHJPrigy_-_TzgLxsXZfxcKv75Ors9PL4Sz379vnr8cdZ7acahtpRA5SB5x6ZAeFUs_CKtV6LhTGCOqWNptiCa6ExUjdKClCauoY1EsEL2CcfNn1vU_9rxDzYZcgeu85F7MdsmQYFZQEa_o0qLTljU8b-A5VUayMFLej7J-hNP6ZYZi6UMBSk1LpQ77bU2CxxYW9TWLq0sg8nKYDeAD71OSdsrQ9D2X8fh3KqzjJq1wGwfwNg1wGw2wAUK39ifej-rOntxhQQ8dGgABg3DP4AMg65UQ
CODEN ITNNAL
CitedBy_id crossref_primary_10_1016_j_engappai_2022_105399
crossref_primary_10_1109_ACCESS_2021_3056021
crossref_primary_10_1088_1741_2552_ac697d
crossref_primary_10_1109_ACCESS_2023_3293823
crossref_primary_10_1109_TFUZZ_2020_2992856
crossref_primary_10_1109_JAS_2020_1003450
crossref_primary_10_1109_TCYB_2021_3068300
crossref_primary_10_1016_j_asoc_2019_106046
crossref_primary_10_1007_s40815_016_0205_x
crossref_primary_10_1016_j_jhydrol_2018_12_040
crossref_primary_10_1007_s00170_019_03754_7
crossref_primary_10_1109_TNB_2019_2896981
crossref_primary_10_3390_s22093331
crossref_primary_10_1371_journal_pone_0234992
crossref_primary_10_1109_TETCI_2020_2997031
crossref_primary_10_1016_j_procs_2018_10_330
crossref_primary_10_1016_j_neucom_2021_04_065
crossref_primary_10_3390_s21144754
crossref_primary_10_1016_j_eswa_2017_01_040
crossref_primary_10_1109_ACCESS_2018_2811723
crossref_primary_10_1109_JSEN_2022_3201015
crossref_primary_10_3389_fncom_2022_1010770
crossref_primary_10_1016_j_asej_2017_12_003
crossref_primary_10_52547_joc_15_2_1
crossref_primary_10_1109_TITS_2021_3052801
crossref_primary_10_1007_s11227_025_07015_1
crossref_primary_10_1109_TNSRE_2021_3126264
crossref_primary_10_1109_TCYB_2017_2762521
crossref_primary_10_1109_TNSRE_2021_3079505
crossref_primary_10_1109_TAFFC_2021_3133443
crossref_primary_10_1109_TFUZZ_2017_2659764
crossref_primary_10_1016_j_bspc_2020_102075
crossref_primary_10_1016_j_inffus_2022_12_014
crossref_primary_10_1016_j_eswa_2023_120322
crossref_primary_10_1088_1741_2552_ab255d
crossref_primary_10_1002_jdn_10166
crossref_primary_10_1109_TITS_2022_3189346
crossref_primary_10_1109_ACCESS_2018_2889226
crossref_primary_10_3233_JIFS_190229
crossref_primary_10_1109_TPEL_2021_3066986
crossref_primary_10_1109_TSMC_2020_3041382
crossref_primary_10_1007_s42979_022_01515_0
crossref_primary_10_1007_s10462_022_10355_6
crossref_primary_10_1016_j_asoc_2018_08_022
crossref_primary_10_1109_THMS_2019_2938156
crossref_primary_10_1016_j_trip_2023_100864
crossref_primary_10_1109_TFUZZ_2018_2878156
crossref_primary_10_3390_app9235078
crossref_primary_10_1109_TIM_2024_3384559
crossref_primary_10_1111_ina_13106
crossref_primary_10_3390_ijerph182212173
crossref_primary_10_1109_TNNLS_2023_3334150
crossref_primary_10_1155_2021_2464505
crossref_primary_10_1016_j_asoc_2024_111458
crossref_primary_10_1109_ACCESS_2023_3296382
crossref_primary_10_1109_TNSRE_2020_3026991
crossref_primary_10_1007_s40815_022_01421_w
crossref_primary_10_1016_j_asoc_2020_106275
crossref_primary_10_1007_s44230_024_00086_y
crossref_primary_10_1109_TCDS_2019_2929858
crossref_primary_10_1109_TITS_2019_2918438
crossref_primary_10_1007_s00500_019_04515_0
crossref_primary_10_1109_TCYB_2021_3123842
crossref_primary_10_1177_01423312231169605
crossref_primary_10_1007_s12008_016_0368_6
crossref_primary_10_1109_TFUZZ_2021_3077396
crossref_primary_10_1162_neco_a_01382
crossref_primary_10_1016_j_neucom_2023_126709
crossref_primary_10_1088_2516_1091_ad8530
crossref_primary_10_1016_j_aap_2022_106910
crossref_primary_10_1109_TITS_2019_2897377
crossref_primary_10_1007_s10489_023_04776_1
crossref_primary_10_1016_j_eswa_2021_114642
crossref_primary_10_1016_j_jtte_2023_07_004
crossref_primary_10_1109_TNNLS_2022_3148194
crossref_primary_10_3389_fnins_2017_00332
crossref_primary_10_1007_s11071_024_09360_x
crossref_primary_10_3233_JIFS_181014
crossref_primary_10_1016_j_eswa_2024_124124
crossref_primary_10_1109_TFUZZ_2019_2911492
crossref_primary_10_3390_s18051339
crossref_primary_10_1016_j_heliyon_2024_e39592
crossref_primary_10_2196_11966
crossref_primary_10_1109_TETCI_2018_2881229
crossref_primary_10_1109_TIM_2018_2885608
crossref_primary_10_1007_s00521_023_08280_y
crossref_primary_10_1038_s41597_019_0027_4
crossref_primary_10_1109_TFUZZ_2017_2666789
crossref_primary_10_3390_en16041902
crossref_primary_10_1016_j_fss_2021_10_007
crossref_primary_10_3390_app6060171
crossref_primary_10_1109_MIE_2019_2952165
crossref_primary_10_1109_JSEN_2023_3339727
crossref_primary_10_1109_TIM_2024_3369143
crossref_primary_10_1109_TITS_2020_2986697
crossref_primary_10_1007_s11042_022_12412_2
crossref_primary_10_3390_app12063154
crossref_primary_10_1016_j_heliyon_2024_e24960
crossref_primary_10_1109_TCBB_2021_3052811
crossref_primary_10_2478_cjece_2018_0015
crossref_primary_10_1109_TETCI_2018_2848289
crossref_primary_10_1088_1741_2552_ac41ac
crossref_primary_10_1002_rnc_6600
crossref_primary_10_1088_1741_2552_abfa71
crossref_primary_10_1109_TITS_2020_2979527
crossref_primary_10_1109_THMS_2018_2799525
Cites_doi 10.1109/TNSRE.2003.814799
10.1016/j.eswa.2005.04.011
10.1109/TVT.2004.830974
10.1109/TSMCB.2004.833330
10.1109/MIS.2008.41
10.1007/BF02345969
10.1109/TII.2012.2230638
10.1016/j.aap.2004.10.006
10.1016/j.neuroimage.2007.10.036
10.1016/j.eswa.2011.04.149
10.1016/j.fss.2010.04.006
10.1016/j.neuroimage.2010.06.002
10.1109/TNNLS.2013.2275003
10.1109/MITS.2012.2217995
10.1109/91.660805
10.1145/1961189.1961199
10.1109/91.917126
10.1111/j.1532-5415.2011.03739.x
10.1016/j.chaos.2011.08.012
10.1109/TNSRE.2006.875557
10.1016/j.dsp.2008.07.007
10.1518/001872008X288376
10.1109/TBME.2007.905490
10.1016/j.neuroimage.2014.01.015
10.1088/1741-2560/4/2/R01
10.1109/TCSI.2006.884408
10.1109/MCI.2014.2307224
10.1016/j.cviu.2006.10.019
10.1109/TNN.2010.2066285
10.1109/TSMCB.2009.2018469
10.1016/j.physbeh.2008.02.015
10.1109/TNSRE.2012.2197221
10.1109/91.995118
10.1016/j.jneumeth.2003.10.009
10.1109/TCSI.2012.2185290
10.1109/TBME.2004.839630
10.1016/S0301-0511(00)00085-5
10.1016/j.eswa.2011.07.106
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TNNLS.2015.2496330
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore Digital Library
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList
Materials Research Database
Technology Research Database
MEDLINE
Neurosciences Abstracts
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 360
ExternalDocumentID 3929671521
26595929
10_1109_TNNLS_2015_2496330
7331291
Genre orig-research
Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Cognition and Neuroergonomics Collaborative Technology Alliance Annual Program Plan through the Army Research Laboratory under Cooperative Agreement
  grantid: W911NF-10-2-0022
– fundername: University System of Taiwan–UC San Diego International Center of Excellence in Advanced Bio-Engineering within the Ministry of Science and Technology through the I-RiCE Program
  grantid: MOST 103-2911-I-009-101; MOST 104-2627-E-009-001
– fundername: Tung Thih Electronic Fellowship
– fundername: Aiming for the Top University Plan within National Chiao Tung University through the Ministry of Education, Taiwan
  grantid: 104W963
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c483t-a093013c2ce1935a7bdc71fc85d9950a78980ef3af3b968b7653780ab1b6e3c53
IEDL.DBID RIE
ISSN 2162-237X
IngestDate Sat Sep 27 23:51:19 EDT 2025
Fri Sep 05 09:28:06 EDT 2025
Sun Sep 28 03:16:47 EDT 2025
Mon Jun 30 07:04:08 EDT 2025
Thu Apr 03 06:56:06 EDT 2025
Tue Jul 01 00:27:21 EDT 2025
Thu Apr 24 23:02:06 EDT 2025
Tue Aug 26 16:42:53 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 2
Keywords electroencephalography (EEG)
recurrent fuzzy neural network (RFNN)
driving fatigue
Brain–computer interface (BCI)
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c483t-a093013c2ce1935a7bdc71fc85d9950a78980ef3af3b968b7653780ab1b6e3c53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 26595929
PQID 1759036688
PQPubID 85436
PageCount 14
ParticipantIDs proquest_miscellaneous_1760889650
crossref_citationtrail_10_1109_TNNLS_2015_2496330
crossref_primary_10_1109_TNNLS_2015_2496330
proquest_miscellaneous_1786211411
proquest_journals_1759036688
pubmed_primary_26595929
ieee_primary_7331291
proquest_miscellaneous_1837305683
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-Feb.
2016-2-00
2016-Feb
20160201
PublicationDateYYYYMMDD 2016-02-01
PublicationDate_xml – month: 02
  year: 2016
  text: 2016-Feb.
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2016
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref37
ref15
ref36
ref14
ref31
ref30
ref33
ref11
ref32
ref2
ref1
ref39
ref17
ref38
ref16
ref19
ref18
davidson (ref26) 2006
lin (ref10) 2013; 24
ref23
ref25
ref20
ref22
übeyli (ref24) 2009; 19
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref9
  doi: 10.1109/TNSRE.2003.814799
– ident: ref25
  doi: 10.1016/j.eswa.2005.04.011
– ident: ref6
  doi: 10.1109/TVT.2004.830974
– ident: ref29
  doi: 10.1109/TSMCB.2004.833330
– ident: ref8
  doi: 10.1109/MIS.2008.41
– ident: ref23
  doi: 10.1007/BF02345969
– ident: ref34
  doi: 10.1109/TII.2012.2230638
– ident: ref4
  doi: 10.1016/j.aap.2004.10.006
– ident: ref14
  doi: 10.1016/j.neuroimage.2007.10.036
– ident: ref19
  doi: 10.1016/j.eswa.2011.04.149
– ident: ref28
  doi: 10.1016/j.fss.2010.04.006
– ident: ref39
  doi: 10.1016/j.neuroimage.2010.06.002
– volume: 24
  start-page: 1689
  year: 2013
  ident: ref10
  article-title: EEG-based learning system for online motion sickness level estimation in a dynamic vehicle environment
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2013.2275003
– ident: ref5
  doi: 10.1109/MITS.2012.2217995
– ident: ref32
  doi: 10.1109/91.660805
– ident: ref31
  doi: 10.1145/1961189.1961199
– ident: ref37
  doi: 10.1109/91.917126
– ident: ref2
  doi: 10.1111/j.1532-5415.2011.03739.x
– ident: ref13
  doi: 10.1016/j.chaos.2011.08.012
– ident: ref38
  doi: 10.1109/TNSRE.2006.875557
– volume: 19
  start-page: 134
  year: 2009
  ident: ref24
  article-title: Analysis of EEG signals by implementing eigenvector methods/recurrent neural networks
  publication-title: Digit Signal Process
  doi: 10.1016/j.dsp.2008.07.007
– ident: ref1
  doi: 10.1518/001872008X288376
– ident: ref20
  doi: 10.1109/TBME.2007.905490
– ident: ref16
  doi: 10.1016/j.neuroimage.2014.01.015
– ident: ref17
  doi: 10.1088/1741-2560/4/2/R01
– ident: ref27
  doi: 10.1109/TCSI.2006.884408
– ident: ref36
  doi: 10.1109/MCI.2014.2307224
– ident: ref7
  doi: 10.1016/j.cviu.2006.10.019
– ident: ref33
  doi: 10.1109/TNN.2010.2066285
– ident: ref22
  doi: 10.1109/TSMCB.2009.2018469
– ident: ref3
  doi: 10.1016/j.physbeh.2008.02.015
– ident: ref12
  doi: 10.1109/TNSRE.2012.2197221
– start-page: 5754
  year: 2006
  ident: ref26
  article-title: Detecting behavioral microsleeps using EEG and LSTM recurrent neural networks
  publication-title: Proc 27th Annu Int Conf Eng Med Biol Soc
– ident: ref30
  doi: 10.1109/91.995118
– ident: ref35
  doi: 10.1016/j.jneumeth.2003.10.009
– ident: ref11
  doi: 10.1109/TCSI.2012.2185290
– ident: ref18
  doi: 10.1109/TBME.2004.839630
– ident: ref15
  doi: 10.1016/S0301-0511(00)00085-5
– ident: ref21
  doi: 10.1016/j.eswa.2011.07.106
SSID ssj0000605649
Score 2.5372064
Snippet This paper proposes a generalized prediction system called a recurrent self-evolving fuzzy neural network (RSEFNN) that employs an on-line gradient descent...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 347
SubjectTerms Adult
Artificial neural networks
Automobile Driving - psychology
Biological neural networks
Brain
Brain - physiology
Brain modeling
Brain-computer interface (BCI)
driving fatigue
Dynamical systems
Dynamics
Electroencephalography
electroencephalography (EEG)
Electroencephalography - methods
Fatigue
Fatigue (materials)
Fatigue - diagnosis
Fatigue - psychology
Female
Forecasting
Fuzzy Logic
Fuzzy neural networks
Humans
Male
Networks
Neural networks
Neural Networks (Computer)
Reaction Time - physiology
Real-time systems
recurrent fuzzy neural network (RFNN)
Sleep deprivation
Vehicles
Young Adult
Title Brain Dynamics in Predicting Driving Fatigue Using a Recurrent Self-Evolving Fuzzy Neural Network
URI https://ieeexplore.ieee.org/document/7331291
https://www.ncbi.nlm.nih.gov/pubmed/26595929
https://www.proquest.com/docview/1759036688
https://www.proquest.com/docview/1760889650
https://www.proquest.com/docview/1786211411
https://www.proquest.com/docview/1837305683
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VnrhQaHmElspI3MDbJI4d-wi0qwrRFaKttLfIdhyEqHbRdnPo_npmnAcSalfcLGWiOPpszzfjeQC8a-qAWqhQXDaq4IVOHddNarktpHRW5KbMKMH5YqbOr4svcznfgQ9jLkwIIQafhQkN411-vfQtucpOqL9gTqnqj3CZdblaoz8lRV6uItvNM5XzXJTzIUcmNSdXs9nXSwrkkhO0NxQa8VQFmGrpmUgu_6qk2GPlYboZ1c50Dy6GCXfRJr8m7dpN_OafWo7_-0dP4UnPP9nHbsE8g52w2Ie9obcD67f6AdhP1DuCnXYN628Zjr-t6FKHwqTZ6eonOSLYFHH90QYWAw-YZd_Je0_1nthluGn4GZ59nVy72dwxKgSC3551kefP4Xp6dvX5nPftGLgvtFhzmxo8DYTPfUDWJ23pao9Iei1rY2RqS210GhphG-GM0q5UUpQ6tS5zKggvxQvYXSwX4RUwo01wWtdFjQzOlcYEtEMDHgheuELUTQLZgEjl-1rl1DLjpoo2S2qqCGhFgFY9oAm8H9_53VXq2Cp9QGiMkj0QCRwNwFf9Zr6tkGEZVPRK6wTejo9xG9Ldil2EZUsyigLGkO9uk0HzEe3PLNsio0VJVp0WCbzsFt44x2G9vr5_7ofwGP-wDyk_gt31qg1vkDGt3XHcKn8A6ggOEQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED9N4wFeGDBggQFG4g3SJXHs2I_AVhVoK8Q6qW-R7TgIMbWoax7oX8-d84GEoOLNUi6Ko5_P9zv7PgBe1ZVHK5TLWNQyj3OV2FjViYlNLoQ1PNNFSgnOs7mcXOUfl2J5AG-GXBjvfQg-8yMahrv8au0aOio7o_6CGaWq3xLoVag2W2s4UUmQmcvAd7NUZnHGi2WfJZPos8V8Pr2kUC4xQo9DohtPdYCpmp4O9PK3UQpdVv5NOIPhGR_BrJ9yG2_yfdRs7cjt_qjm-L__dA_udgyUvW2XzH048KsHcNR3d2Cdsh-DeUfdI9h527L-huH484audShQmp1vvtFRBBsjsl8bz0LoATPsC53fU8Undumv6_gCd79WrtntfjIqBYLfnrex5w_hanyxeD-Ju4YMscsV38Ym0bgfcJc5j7xPmMJWDrF0SlRai8QUSqvE19zU3GqpbCEFL1RibGql507wR3C4Wq_8CTCttLdKVXmFHM4WWnv0RD1uCY7bnFd1BGmPSOm6auXUNOO6DF5LossAaEmAlh2gEbwe3vnR1urYK31MaAySHRARnPbAl50635TIsTSaeqlUBC-Hx6iIdLtiVn7dkIykkDFkvPtk0IFEDzRN98goXpBfp3gEj9uFN8yxX69P_j73F3B7sphNy-mH-aencAf_tgswP4XD7abxz5A_be3zoDa_AEFtEWQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Brain+Dynamics+in+Predicting+Driving+Fatigue+Using+a+Recurrent+Self-Evolving+Fuzzy+Neural+Network&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Liu%2C+Yu-Ting&rft.au=Lin%2C+Yang-Yin&rft.au=Wu%2C+Shang-Lin&rft.au=Chuang%2C+Chun-Hsiang&rft.date=2016-02-01&rft.eissn=2162-2388&rft.volume=27&rft.issue=2&rft.spage=347&rft.epage=360&rft_id=info:doi/10.1109%2FTNNLS.2015.2496330&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon