Brain Dynamics in Predicting Driving Fatigue Using a Recurrent Self-Evolving Fuzzy Neural Network
This paper proposes a generalized prediction system called a recurrent self-evolving fuzzy neural network (RSEFNN) that employs an on-line gradient descent learning rule to address the electroencephalography (EEG) regression problem in brain dynamics for driving fatigue. The cognitive states of driv...
Saved in:
Published in | IEEE transaction on neural networks and learning systems Vol. 27; no. 2; pp. 347 - 360 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
United States
IEEE
01.02.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2162-237X 2162-2388 |
DOI | 10.1109/TNNLS.2015.2496330 |
Cover
Abstract | This paper proposes a generalized prediction system called a recurrent self-evolving fuzzy neural network (RSEFNN) that employs an on-line gradient descent learning rule to address the electroencephalography (EEG) regression problem in brain dynamics for driving fatigue. The cognitive states of drivers significantly affect driving safety; in particular, fatigue driving, or drowsy driving, endangers both the individual and the public. For this reason, the development of brain-computer interfaces (BCIs) that can identify drowsy driving states is a crucial and urgent topic of study. Many EEG-based BCIs have been developed as artificial auxiliary systems for use in various practical applications because of the benefits of measuring EEG signals. In the literature, the efficacy of EEG-based BCIs in recognition tasks has been limited by low resolutions. The system proposed in this paper represents the first attempt to use the recurrent fuzzy neural network (RFNN) architecture to increase adaptability in realistic EEG applications to overcome this bottleneck. This paper further analyzes brain dynamics in a simulated car driving task in a virtual-reality environment. The proposed RSEFNN model is evaluated using the generalized cross-subject approach, and the results indicate that the RSEFNN is superior to competing models regardless of the use of recurrent or nonrecurrent structures. |
---|---|
AbstractList | This paper proposes a generalized prediction system called a recurrent self-evolving fuzzy neural network (RSEFNN) that employs an on-line gradient descent learning rule to address the electroencephalography (EEG) regression problem in brain dynamics for driving fatigue. The cognitive states of drivers significantly affect driving safety; in particular, fatigue driving, or drowsy driving, endangers both the individual and the public. For this reason, the development of brain-computer interfaces (BCIs) that can identify drowsy driving states is a crucial and urgent topic of study. Many EEG-based BCIs have been developed as artificial auxiliary systems for use in various practical applications because of the benefits of measuring EEG signals. In the literature, the efficacy of EEG-based BCIs in recognition tasks has been limited by low resolutions. The system proposed in this paper represents the first attempt to use the recurrent fuzzy neural network (RFNN) architecture to increase adaptability in realistic EEG applications to overcome this bottleneck. This paper further analyzes brain dynamics in a simulated car driving task in a virtual-reality environment. The proposed RSEFNN model is evaluated using the generalized cross-subject approach, and the results indicate that the RSEFNN is superior to competing models regardless of the use of recurrent or nonrecurrent structures. |
Author | Yang-Yin Lin Chun-Hsiang Chuang Yu-Ting Liu Shang-Lin Wu Chin-Teng Lin |
Author_xml | – sequence: 1 givenname: Yu-Ting surname: Liu fullname: Liu, Yu-Ting – sequence: 2 givenname: Yang-Yin surname: Lin fullname: Lin, Yang-Yin – sequence: 3 givenname: Shang-Lin surname: Wu fullname: Wu, Shang-Lin – sequence: 4 givenname: Chun-Hsiang surname: Chuang fullname: Chuang, Chun-Hsiang – sequence: 5 givenname: Chin-Teng surname: Lin fullname: Lin, Chin-Teng |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/26595929$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkk1vEzEQhi1UREvbPwASWokLl01tT_x1hH4AUhRQPyRulteZrVw23mLvFqW_HoekPfRQ8OUdS8870sy8r8lO7CMS8obRCWPUHF3O57OLCadMTPjUSAD6guxxJnnNQeudx1r92CWHOd_Q8iQVcmpekV0uhRGGmz3iPiUXYnWyim4ZfK5K_T3hIvghxOvqJIW7tZ65IVyPWF3l9c9V5-jHlDAO1QV2bX1613cbbry_X1VzHJPrigy_-_TzgLxsXZfxcKv75Ors9PL4Sz379vnr8cdZ7acahtpRA5SB5x6ZAeFUs_CKtV6LhTGCOqWNptiCa6ExUjdKClCauoY1EsEL2CcfNn1vU_9rxDzYZcgeu85F7MdsmQYFZQEa_o0qLTljU8b-A5VUayMFLej7J-hNP6ZYZi6UMBSk1LpQ77bU2CxxYW9TWLq0sg8nKYDeAD71OSdsrQ9D2X8fh3KqzjJq1wGwfwNg1wGw2wAUK39ifej-rOntxhQQ8dGgABg3DP4AMg65UQ |
CODEN | ITNNAL |
CitedBy_id | crossref_primary_10_1016_j_engappai_2022_105399 crossref_primary_10_1109_ACCESS_2021_3056021 crossref_primary_10_1088_1741_2552_ac697d crossref_primary_10_1109_ACCESS_2023_3293823 crossref_primary_10_1109_TFUZZ_2020_2992856 crossref_primary_10_1109_JAS_2020_1003450 crossref_primary_10_1109_TCYB_2021_3068300 crossref_primary_10_1016_j_asoc_2019_106046 crossref_primary_10_1007_s40815_016_0205_x crossref_primary_10_1016_j_jhydrol_2018_12_040 crossref_primary_10_1007_s00170_019_03754_7 crossref_primary_10_1109_TNB_2019_2896981 crossref_primary_10_3390_s22093331 crossref_primary_10_1371_journal_pone_0234992 crossref_primary_10_1109_TETCI_2020_2997031 crossref_primary_10_1016_j_procs_2018_10_330 crossref_primary_10_1016_j_neucom_2021_04_065 crossref_primary_10_3390_s21144754 crossref_primary_10_1016_j_eswa_2017_01_040 crossref_primary_10_1109_ACCESS_2018_2811723 crossref_primary_10_1109_JSEN_2022_3201015 crossref_primary_10_3389_fncom_2022_1010770 crossref_primary_10_1016_j_asej_2017_12_003 crossref_primary_10_52547_joc_15_2_1 crossref_primary_10_1109_TITS_2021_3052801 crossref_primary_10_1007_s11227_025_07015_1 crossref_primary_10_1109_TNSRE_2021_3126264 crossref_primary_10_1109_TCYB_2017_2762521 crossref_primary_10_1109_TNSRE_2021_3079505 crossref_primary_10_1109_TAFFC_2021_3133443 crossref_primary_10_1109_TFUZZ_2017_2659764 crossref_primary_10_1016_j_bspc_2020_102075 crossref_primary_10_1016_j_inffus_2022_12_014 crossref_primary_10_1016_j_eswa_2023_120322 crossref_primary_10_1088_1741_2552_ab255d crossref_primary_10_1002_jdn_10166 crossref_primary_10_1109_TITS_2022_3189346 crossref_primary_10_1109_ACCESS_2018_2889226 crossref_primary_10_3233_JIFS_190229 crossref_primary_10_1109_TPEL_2021_3066986 crossref_primary_10_1109_TSMC_2020_3041382 crossref_primary_10_1007_s42979_022_01515_0 crossref_primary_10_1007_s10462_022_10355_6 crossref_primary_10_1016_j_asoc_2018_08_022 crossref_primary_10_1109_THMS_2019_2938156 crossref_primary_10_1016_j_trip_2023_100864 crossref_primary_10_1109_TFUZZ_2018_2878156 crossref_primary_10_3390_app9235078 crossref_primary_10_1109_TIM_2024_3384559 crossref_primary_10_1111_ina_13106 crossref_primary_10_3390_ijerph182212173 crossref_primary_10_1109_TNNLS_2023_3334150 crossref_primary_10_1155_2021_2464505 crossref_primary_10_1016_j_asoc_2024_111458 crossref_primary_10_1109_ACCESS_2023_3296382 crossref_primary_10_1109_TNSRE_2020_3026991 crossref_primary_10_1007_s40815_022_01421_w crossref_primary_10_1016_j_asoc_2020_106275 crossref_primary_10_1007_s44230_024_00086_y crossref_primary_10_1109_TCDS_2019_2929858 crossref_primary_10_1109_TITS_2019_2918438 crossref_primary_10_1007_s00500_019_04515_0 crossref_primary_10_1109_TCYB_2021_3123842 crossref_primary_10_1177_01423312231169605 crossref_primary_10_1007_s12008_016_0368_6 crossref_primary_10_1109_TFUZZ_2021_3077396 crossref_primary_10_1162_neco_a_01382 crossref_primary_10_1016_j_neucom_2023_126709 crossref_primary_10_1088_2516_1091_ad8530 crossref_primary_10_1016_j_aap_2022_106910 crossref_primary_10_1109_TITS_2019_2897377 crossref_primary_10_1007_s10489_023_04776_1 crossref_primary_10_1016_j_eswa_2021_114642 crossref_primary_10_1016_j_jtte_2023_07_004 crossref_primary_10_1109_TNNLS_2022_3148194 crossref_primary_10_3389_fnins_2017_00332 crossref_primary_10_1007_s11071_024_09360_x crossref_primary_10_3233_JIFS_181014 crossref_primary_10_1016_j_eswa_2024_124124 crossref_primary_10_1109_TFUZZ_2019_2911492 crossref_primary_10_3390_s18051339 crossref_primary_10_1016_j_heliyon_2024_e39592 crossref_primary_10_2196_11966 crossref_primary_10_1109_TETCI_2018_2881229 crossref_primary_10_1109_TIM_2018_2885608 crossref_primary_10_1007_s00521_023_08280_y crossref_primary_10_1038_s41597_019_0027_4 crossref_primary_10_1109_TFUZZ_2017_2666789 crossref_primary_10_3390_en16041902 crossref_primary_10_1016_j_fss_2021_10_007 crossref_primary_10_3390_app6060171 crossref_primary_10_1109_MIE_2019_2952165 crossref_primary_10_1109_JSEN_2023_3339727 crossref_primary_10_1109_TIM_2024_3369143 crossref_primary_10_1109_TITS_2020_2986697 crossref_primary_10_1007_s11042_022_12412_2 crossref_primary_10_3390_app12063154 crossref_primary_10_1016_j_heliyon_2024_e24960 crossref_primary_10_1109_TCBB_2021_3052811 crossref_primary_10_2478_cjece_2018_0015 crossref_primary_10_1109_TETCI_2018_2848289 crossref_primary_10_1088_1741_2552_ac41ac crossref_primary_10_1002_rnc_6600 crossref_primary_10_1088_1741_2552_abfa71 crossref_primary_10_1109_TITS_2020_2979527 crossref_primary_10_1109_THMS_2018_2799525 |
Cites_doi | 10.1109/TNSRE.2003.814799 10.1016/j.eswa.2005.04.011 10.1109/TVT.2004.830974 10.1109/TSMCB.2004.833330 10.1109/MIS.2008.41 10.1007/BF02345969 10.1109/TII.2012.2230638 10.1016/j.aap.2004.10.006 10.1016/j.neuroimage.2007.10.036 10.1016/j.eswa.2011.04.149 10.1016/j.fss.2010.04.006 10.1016/j.neuroimage.2010.06.002 10.1109/TNNLS.2013.2275003 10.1109/MITS.2012.2217995 10.1109/91.660805 10.1145/1961189.1961199 10.1109/91.917126 10.1111/j.1532-5415.2011.03739.x 10.1016/j.chaos.2011.08.012 10.1109/TNSRE.2006.875557 10.1016/j.dsp.2008.07.007 10.1518/001872008X288376 10.1109/TBME.2007.905490 10.1016/j.neuroimage.2014.01.015 10.1088/1741-2560/4/2/R01 10.1109/TCSI.2006.884408 10.1109/MCI.2014.2307224 10.1016/j.cviu.2006.10.019 10.1109/TNN.2010.2066285 10.1109/TSMCB.2009.2018469 10.1016/j.physbeh.2008.02.015 10.1109/TNSRE.2012.2197221 10.1109/91.995118 10.1016/j.jneumeth.2003.10.009 10.1109/TCSI.2012.2185290 10.1109/TBME.2004.839630 10.1016/S0301-0511(00)00085-5 10.1016/j.eswa.2011.07.106 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016 |
DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
DOI | 10.1109/TNNLS.2015.2496330 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore Digital Library CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Calcium & Calcified Tissue Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Materials Business File Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Chemoreception Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Civil Engineering Abstracts Aluminium Industry Abstracts Electronics & Communications Abstracts Ceramic Abstracts Neurosciences Abstracts METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Solid State and Superconductivity Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Corrosion Abstracts MEDLINE - Academic |
DatabaseTitleList | Materials Research Database Technology Research Database MEDLINE Neurosciences Abstracts MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 2162-2388 |
EndPage | 360 |
ExternalDocumentID | 3929671521 26595929 10_1109_TNNLS_2015_2496330 7331291 |
Genre | orig-research Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Cognition and Neuroergonomics Collaborative Technology Alliance Annual Program Plan through the Army Research Laboratory under Cooperative Agreement grantid: W911NF-10-2-0022 – fundername: University System of Taiwan–UC San Diego International Center of Excellence in Advanced Bio-Engineering within the Ministry of Science and Technology through the I-RiCE Program grantid: MOST 103-2911-I-009-101; MOST 104-2627-E-009-001 – fundername: Tung Thih Electronic Fellowship – fundername: Aiming for the Top University Plan within National Chiao Tung University through the Ministry of Education, Taiwan grantid: 104W963 |
GroupedDBID | 0R~ 4.4 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 MS~ O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG CGR CUY CVF ECM EIF NPM 7QF 7QO 7QP 7QQ 7QR 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 |
ID | FETCH-LOGICAL-c483t-a093013c2ce1935a7bdc71fc85d9950a78980ef3af3b968b7653780ab1b6e3c53 |
IEDL.DBID | RIE |
ISSN | 2162-237X |
IngestDate | Sat Sep 27 23:51:19 EDT 2025 Fri Sep 05 09:28:06 EDT 2025 Sun Sep 28 03:16:47 EDT 2025 Mon Jun 30 07:04:08 EDT 2025 Thu Apr 03 06:56:06 EDT 2025 Tue Jul 01 00:27:21 EDT 2025 Thu Apr 24 23:02:06 EDT 2025 Tue Aug 26 16:42:53 EDT 2025 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 2 |
Keywords | electroencephalography (EEG) recurrent fuzzy neural network (RFNN) driving fatigue Brain–computer interface (BCI) |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c483t-a093013c2ce1935a7bdc71fc85d9950a78980ef3af3b968b7653780ab1b6e3c53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PMID | 26595929 |
PQID | 1759036688 |
PQPubID | 85436 |
PageCount | 14 |
ParticipantIDs | proquest_miscellaneous_1760889650 crossref_citationtrail_10_1109_TNNLS_2015_2496330 crossref_primary_10_1109_TNNLS_2015_2496330 proquest_miscellaneous_1786211411 proquest_journals_1759036688 pubmed_primary_26595929 ieee_primary_7331291 proquest_miscellaneous_1837305683 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-Feb. 2016-2-00 2016-Feb 20160201 |
PublicationDateYYYYMMDD | 2016-02-01 |
PublicationDate_xml | – month: 02 year: 2016 text: 2016-Feb. |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Piscataway |
PublicationTitle | IEEE transaction on neural networks and learning systems |
PublicationTitleAbbrev | TNNLS |
PublicationTitleAlternate | IEEE Trans Neural Netw Learn Syst |
PublicationYear | 2016 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref35 ref13 ref34 ref12 ref37 ref15 ref36 ref14 ref31 ref30 ref33 ref11 ref32 ref2 ref1 ref39 ref17 ref38 ref16 ref19 ref18 davidson (ref26) 2006 lin (ref10) 2013; 24 ref23 ref25 ref20 ref22 übeyli (ref24) 2009; 19 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – ident: ref9 doi: 10.1109/TNSRE.2003.814799 – ident: ref25 doi: 10.1016/j.eswa.2005.04.011 – ident: ref6 doi: 10.1109/TVT.2004.830974 – ident: ref29 doi: 10.1109/TSMCB.2004.833330 – ident: ref8 doi: 10.1109/MIS.2008.41 – ident: ref23 doi: 10.1007/BF02345969 – ident: ref34 doi: 10.1109/TII.2012.2230638 – ident: ref4 doi: 10.1016/j.aap.2004.10.006 – ident: ref14 doi: 10.1016/j.neuroimage.2007.10.036 – ident: ref19 doi: 10.1016/j.eswa.2011.04.149 – ident: ref28 doi: 10.1016/j.fss.2010.04.006 – ident: ref39 doi: 10.1016/j.neuroimage.2010.06.002 – volume: 24 start-page: 1689 year: 2013 ident: ref10 article-title: EEG-based learning system for online motion sickness level estimation in a dynamic vehicle environment publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2013.2275003 – ident: ref5 doi: 10.1109/MITS.2012.2217995 – ident: ref32 doi: 10.1109/91.660805 – ident: ref31 doi: 10.1145/1961189.1961199 – ident: ref37 doi: 10.1109/91.917126 – ident: ref2 doi: 10.1111/j.1532-5415.2011.03739.x – ident: ref13 doi: 10.1016/j.chaos.2011.08.012 – ident: ref38 doi: 10.1109/TNSRE.2006.875557 – volume: 19 start-page: 134 year: 2009 ident: ref24 article-title: Analysis of EEG signals by implementing eigenvector methods/recurrent neural networks publication-title: Digit Signal Process doi: 10.1016/j.dsp.2008.07.007 – ident: ref1 doi: 10.1518/001872008X288376 – ident: ref20 doi: 10.1109/TBME.2007.905490 – ident: ref16 doi: 10.1016/j.neuroimage.2014.01.015 – ident: ref17 doi: 10.1088/1741-2560/4/2/R01 – ident: ref27 doi: 10.1109/TCSI.2006.884408 – ident: ref36 doi: 10.1109/MCI.2014.2307224 – ident: ref7 doi: 10.1016/j.cviu.2006.10.019 – ident: ref33 doi: 10.1109/TNN.2010.2066285 – ident: ref22 doi: 10.1109/TSMCB.2009.2018469 – ident: ref3 doi: 10.1016/j.physbeh.2008.02.015 – ident: ref12 doi: 10.1109/TNSRE.2012.2197221 – start-page: 5754 year: 2006 ident: ref26 article-title: Detecting behavioral microsleeps using EEG and LSTM recurrent neural networks publication-title: Proc 27th Annu Int Conf Eng Med Biol Soc – ident: ref30 doi: 10.1109/91.995118 – ident: ref35 doi: 10.1016/j.jneumeth.2003.10.009 – ident: ref11 doi: 10.1109/TCSI.2012.2185290 – ident: ref18 doi: 10.1109/TBME.2004.839630 – ident: ref15 doi: 10.1016/S0301-0511(00)00085-5 – ident: ref21 doi: 10.1016/j.eswa.2011.07.106 |
SSID | ssj0000605649 |
Score | 2.5372064 |
Snippet | This paper proposes a generalized prediction system called a recurrent self-evolving fuzzy neural network (RSEFNN) that employs an on-line gradient descent... |
SourceID | proquest pubmed crossref ieee |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 347 |
SubjectTerms | Adult Artificial neural networks Automobile Driving - psychology Biological neural networks Brain Brain - physiology Brain modeling Brain-computer interface (BCI) driving fatigue Dynamical systems Dynamics Electroencephalography electroencephalography (EEG) Electroencephalography - methods Fatigue Fatigue (materials) Fatigue - diagnosis Fatigue - psychology Female Forecasting Fuzzy Logic Fuzzy neural networks Humans Male Networks Neural networks Neural Networks (Computer) Reaction Time - physiology Real-time systems recurrent fuzzy neural network (RFNN) Sleep deprivation Vehicles Young Adult |
Title | Brain Dynamics in Predicting Driving Fatigue Using a Recurrent Self-Evolving Fuzzy Neural Network |
URI | https://ieeexplore.ieee.org/document/7331291 https://www.ncbi.nlm.nih.gov/pubmed/26595929 https://www.proquest.com/docview/1759036688 https://www.proquest.com/docview/1760889650 https://www.proquest.com/docview/1786211411 https://www.proquest.com/docview/1837305683 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VnrhQaHmElspI3MDbJI4d-wi0qwrRFaKttLfIdhyEqHbRdnPo_npmnAcSalfcLGWiOPpszzfjeQC8a-qAWqhQXDaq4IVOHddNarktpHRW5KbMKMH5YqbOr4svcznfgQ9jLkwIIQafhQkN411-vfQtucpOqL9gTqnqj3CZdblaoz8lRV6uItvNM5XzXJTzIUcmNSdXs9nXSwrkkhO0NxQa8VQFmGrpmUgu_6qk2GPlYboZ1c50Dy6GCXfRJr8m7dpN_OafWo7_-0dP4UnPP9nHbsE8g52w2Ie9obcD67f6AdhP1DuCnXYN628Zjr-t6FKHwqTZ6eonOSLYFHH90QYWAw-YZd_Je0_1nthluGn4GZ59nVy72dwxKgSC3551kefP4Xp6dvX5nPftGLgvtFhzmxo8DYTPfUDWJ23pao9Iei1rY2RqS210GhphG-GM0q5UUpQ6tS5zKggvxQvYXSwX4RUwo01wWtdFjQzOlcYEtEMDHgheuELUTQLZgEjl-1rl1DLjpoo2S2qqCGhFgFY9oAm8H9_53VXq2Cp9QGiMkj0QCRwNwFf9Zr6tkGEZVPRK6wTejo9xG9Ldil2EZUsyigLGkO9uk0HzEe3PLNsio0VJVp0WCbzsFt44x2G9vr5_7ofwGP-wDyk_gt31qg1vkDGt3XHcKn8A6ggOEQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED9N4wFeGDBggQFG4g3SJXHs2I_AVhVoK8Q6qW-R7TgIMbWoax7oX8-d84GEoOLNUi6Ko5_P9zv7PgBe1ZVHK5TLWNQyj3OV2FjViYlNLoQ1PNNFSgnOs7mcXOUfl2J5AG-GXBjvfQg-8yMahrv8au0aOio7o_6CGaWq3xLoVag2W2s4UUmQmcvAd7NUZnHGi2WfJZPos8V8Pr2kUC4xQo9DohtPdYCpmp4O9PK3UQpdVv5NOIPhGR_BrJ9yG2_yfdRs7cjt_qjm-L__dA_udgyUvW2XzH048KsHcNR3d2Cdsh-DeUfdI9h527L-huH484audShQmp1vvtFRBBsjsl8bz0LoATPsC53fU8Undumv6_gCd79WrtntfjIqBYLfnrex5w_hanyxeD-Ju4YMscsV38Ym0bgfcJc5j7xPmMJWDrF0SlRai8QUSqvE19zU3GqpbCEFL1RibGql507wR3C4Wq_8CTCttLdKVXmFHM4WWnv0RD1uCY7bnFd1BGmPSOm6auXUNOO6DF5LossAaEmAlh2gEbwe3vnR1urYK31MaAySHRARnPbAl50635TIsTSaeqlUBC-Hx6iIdLtiVn7dkIykkDFkvPtk0IFEDzRN98goXpBfp3gEj9uFN8yxX69P_j73F3B7sphNy-mH-aencAf_tgswP4XD7abxz5A_be3zoDa_AEFtEWQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Brain+Dynamics+in+Predicting+Driving+Fatigue+Using+a+Recurrent+Self-Evolving+Fuzzy+Neural+Network&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Liu%2C+Yu-Ting&rft.au=Lin%2C+Yang-Yin&rft.au=Wu%2C+Shang-Lin&rft.au=Chuang%2C+Chun-Hsiang&rft.date=2016-02-01&rft.eissn=2162-2388&rft.volume=27&rft.issue=2&rft.spage=347&rft.epage=360&rft_id=info:doi/10.1109%2FTNNLS.2015.2496330&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon |