Benchmarking of human Y-chromosomal haplogroup classifiers with whole-genome and whole-exome sequence data

In anthropological, medical, and forensic studies, the nonrecombinant region of the human Y chromosome (NRY) enables accurate reconstruction of pedigree relationships and retrieval of ancestral information. Using high-throughput sequencing (HTS) data, we present a benchmarking analysis of command-li...

Full description

Saved in:
Bibliographic Details
Published inComputational and structural biotechnology journal Vol. 21; pp. 4613 - 4618
Main Authors García-Olivares, Víctor, Muñoz-Barrera, Adrián, Rubio-Rodríguez, Luis A., Jáspez, David, Díaz-de Usera, Ana, Iñigo-Campos, Antonio, Veeramah, Krishna R., Alonso, Santos, Thomas, Mark G., Lorenzo-Salazar, José M., González-Montelongo, Rafaela, Flores, Carlos
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.01.2023
Research Network of Computational and Structural Biotechnology
Elsevier
Subjects
Online AccessGet full text
ISSN2001-0370
2001-0370
DOI10.1016/j.csbj.2023.09.012

Cover

Abstract In anthropological, medical, and forensic studies, the nonrecombinant region of the human Y chromosome (NRY) enables accurate reconstruction of pedigree relationships and retrieval of ancestral information. Using high-throughput sequencing (HTS) data, we present a benchmarking analysis of command-line tools for NRY haplogroup classification. The evaluation was performed using paired Illumina data from whole-genome sequencing (WGS) and whole-exome sequencing (WES) experiments from 50 unrelated donors. Additionally, as a validation, we also used paired WGS/WES datasets of 54 individuals from the 1000 Genomes Project. Finally, we evaluated the tools on data from third-generation HTS obtained from a subset of donors and one reference sample. Our results show that WES, despite typically offering less genealogical resolution than WGS, is an effective method for determining the NRY haplogroup. Y-LineageTracker and Yleaf showed the highest accuracy for WGS data, classifying precisely 98% and 96% of the samples, respectively. Yleaf outperforms all benchmarked tools in the WES data, classifying approximately 90% of the samples. Yleaf, Y-LineageTracker, and pathPhynder can correctly classify most samples (88%) sequenced with third-generation HTS. As a result, Yleaf provides the best performance for applications that use WGS and WES. Overall, our study offers researchers with a guide that allows them to select the most appropriate tool to analyze the NRY region using both second- and third-generation HTS data. [Display omitted] •Whole-exome sequencing provides sufficient information to classify the NRY haplogroup.•Among the tools evaluated, YLeaf offers the best performance.•Nanopore sequencing technology provides enough resolution to accurately retrieve NRY haplogroup.
AbstractList In anthropological, medical, and forensic studies, the nonrecombinant region of the human Y chromosome (NRY) enables accurate reconstruction of pedigree relationships and retrieval of ancestral information. Using high-throughput sequencing (HTS) data, we present a benchmarking analysis of command-line tools for NRY haplogroup classification. The evaluation was performed using paired Illumina data from whole-genome sequencing (WGS) and whole-exome sequencing (WES) experiments from 50 unrelated donors. Additionally, as a validation, we also used paired WGS/WES datasets of 54 individuals from the 1000 Genomes Project. Finally, we evaluated the tools on data from third-generation HTS obtained from a subset of donors and one reference sample. Our results show that WES, despite typically offering less genealogical resolution than WGS, is an effective method for determining the NRY haplogroup. Y-LineageTracker and Yleaf showed the highest accuracy for WGS data, classifying precisely 98% and 96% of the samples, respectively. Yleaf outperforms all benchmarked tools in the WES data, classifying approximately 90% of the samples. Yleaf, Y-LineageTracker, and pathPhynder can correctly classify most samples (88%) sequenced with third-generation HTS. As a result, Yleaf provides the best performance for applications that use WGS and WES. Overall, our study offers researchers with a guide that allows them to select the most appropriate tool to analyze the NRY region using both second- and third-generation HTS data.
In anthropological, medical, and forensic studies, the nonrecombinant region of the human Y chromosome (NRY) enables accurate reconstruction of pedigree relationships and retrieval of ancestral information. Using high-throughput sequencing (HTS) data, we present a benchmarking analysis of command-line tools for NRY haplogroup classification. The evaluation was performed using paired Illumina data from whole-genome sequencing (WGS) and whole-exome sequencing (WES) experiments from 50 unrelated donors. Additionally, as a validation, we also used paired WGS/WES datasets of 54 individuals from the 1000 Genomes Project. Finally, we evaluated the tools on data from third-generation HTS obtained from a subset of donors and one reference sample. Our results show that WES, despite typically offering less genealogical resolution than WGS, is an effective method for determining the NRY haplogroup. Y-LineageTracker and Yleaf showed the highest accuracy for WGS data, classifying precisely 98% and 96% of the samples, respectively. Yleaf outperforms all benchmarked tools in the WES data, classifying approximately 90% of the samples. Yleaf, Y-LineageTracker, and pathPhynder can correctly classify most samples (88%) sequenced with third-generation HTS. As a result, Yleaf provides the best performance for applications that use WGS and WES. Overall, our study offers researchers with a guide that allows them to select the most appropriate tool to analyze the NRY region using both second- and third-generation HTS data.In anthropological, medical, and forensic studies, the nonrecombinant region of the human Y chromosome (NRY) enables accurate reconstruction of pedigree relationships and retrieval of ancestral information. Using high-throughput sequencing (HTS) data, we present a benchmarking analysis of command-line tools for NRY haplogroup classification. The evaluation was performed using paired Illumina data from whole-genome sequencing (WGS) and whole-exome sequencing (WES) experiments from 50 unrelated donors. Additionally, as a validation, we also used paired WGS/WES datasets of 54 individuals from the 1000 Genomes Project. Finally, we evaluated the tools on data from third-generation HTS obtained from a subset of donors and one reference sample. Our results show that WES, despite typically offering less genealogical resolution than WGS, is an effective method for determining the NRY haplogroup. Y-LineageTracker and Yleaf showed the highest accuracy for WGS data, classifying precisely 98% and 96% of the samples, respectively. Yleaf outperforms all benchmarked tools in the WES data, classifying approximately 90% of the samples. Yleaf, Y-LineageTracker, and pathPhynder can correctly classify most samples (88%) sequenced with third-generation HTS. As a result, Yleaf provides the best performance for applications that use WGS and WES. Overall, our study offers researchers with a guide that allows them to select the most appropriate tool to analyze the NRY region using both second- and third-generation HTS data.
In anthropological, medical, and forensic studies, the nonrecombinant region of the human Y chromosome (NRY) enables accurate reconstruction of pedigree relationships and retrieval of ancestral information. Using high-throughput sequencing (HTS) data, we present a benchmarking analysis of command-line tools for NRY haplogroup classification. The evaluation was performed using paired Illumina data from whole-genome sequencing (WGS) and whole-exome sequencing (WES) experiments from 50 unrelated donors. Additionally, as a validation, we also used paired WGS/WES datasets of 54 individuals from the 1000 Genomes Project. Finally, we evaluated the tools on data from third-generation HTS obtained from a subset of donors and one reference sample. Our results show that WES, despite typically offering less genealogical resolution than WGS, is an effective method for determining the NRY haplogroup. Y-LineageTracker and Yleaf showed the highest accuracy for WGS data, classifying precisely 98% and 96% of the samples, respectively. Yleaf outperforms all benchmarked tools in the WES data, classifying approximately 90% of the samples. Yleaf, Y-LineageTracker, and pathPhynder can correctly classify most samples (88%) sequenced with third-generation HTS. As a result, Yleaf provides the best performance for applications that use WGS and WES. Overall, our study offers researchers with a guide that allows them to select the most appropriate tool to analyze the NRY region using both second- and third-generation HTS data. ga1 • Whole-exome sequencing provides sufficient information to classify the NRY haplogroup. • Among the tools evaluated, YLeaf offers the best performance. • Nanopore sequencing technology provides enough resolution to accurately retrieve NRY haplogroup.
In anthropological, medical, and forensic studies, the nonrecombinant region of the human Y chromosome (NRY) enables accurate reconstruction of pedigree relationships and retrieval of ancestral information. Using high-throughput sequencing (HTS) data, we present a benchmarking analysis of command-line tools for NRY haplogroup classification. The evaluation was performed using paired Illumina data from whole-genome sequencing (WGS) and whole-exome sequencing (WES) experiments from 50 unrelated donors. Additionally, as a validation, we also used paired WGS/WES datasets of 54 individuals from the 1000 Genomes Project. Finally, we evaluated the tools on data from third-generation HTS obtained from a subset of donors and one reference sample. Our results show that WES, despite typically offering less genealogical resolution than WGS, is an effective method for determining the NRY haplogroup. Y-LineageTracker and Yleaf showed the highest accuracy for WGS data, classifying precisely 98% and 96% of the samples, respectively. Yleaf outperforms all benchmarked tools in the WES data, classifying approximately 90% of the samples. Yleaf, Y-LineageTracker, and pathPhynder can correctly classify most samples (88%) sequenced with third-generation HTS. As a result, Yleaf provides the best performance for applications that use WGS and WES. Overall, our study offers researchers with a guide that allows them to select the most appropriate tool to analyze the NRY region using both second- and third-generation HTS data. [Display omitted] •Whole-exome sequencing provides sufficient information to classify the NRY haplogroup.•Among the tools evaluated, YLeaf offers the best performance.•Nanopore sequencing technology provides enough resolution to accurately retrieve NRY haplogroup.
Author González-Montelongo, Rafaela
Díaz-de Usera, Ana
García-Olivares, Víctor
Veeramah, Krishna R.
Thomas, Mark G.
Lorenzo-Salazar, José M.
Alonso, Santos
Muñoz-Barrera, Adrián
Flores, Carlos
Rubio-Rodríguez, Luis A.
Iñigo-Campos, Antonio
Jáspez, David
Author_xml – sequence: 1
  givenname: Víctor
  surname: García-Olivares
  fullname: García-Olivares, Víctor
  organization: Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain
– sequence: 2
  givenname: Adrián
  surname: Muñoz-Barrera
  fullname: Muñoz-Barrera, Adrián
  organization: Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain
– sequence: 3
  givenname: Luis A.
  surname: Rubio-Rodríguez
  fullname: Rubio-Rodríguez, Luis A.
  organization: Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain
– sequence: 4
  givenname: David
  orcidid: 0000-0001-7923-0068
  surname: Jáspez
  fullname: Jáspez, David
  organization: Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain
– sequence: 5
  givenname: Ana
  surname: Díaz-de Usera
  fullname: Díaz-de Usera, Ana
  organization: Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain
– sequence: 6
  givenname: Antonio
  surname: Iñigo-Campos
  fullname: Iñigo-Campos, Antonio
  organization: Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain
– sequence: 7
  givenname: Krishna R.
  surname: Veeramah
  fullname: Veeramah, Krishna R.
  organization: Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11794-5245, United States
– sequence: 8
  givenname: Santos
  surname: Alonso
  fullname: Alonso, Santos
  organization: Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country UPV/EHU, Leioa, Bizkaia, Spain
– sequence: 9
  givenname: Mark G.
  surname: Thomas
  fullname: Thomas, Mark G.
  organization: UCL Genetics Institute, University College London (UCL), Gower Street, London WC1E 6BT, United Kingdom
– sequence: 10
  givenname: José M.
  surname: Lorenzo-Salazar
  fullname: Lorenzo-Salazar, José M.
  organization: Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain
– sequence: 11
  givenname: Rafaela
  surname: González-Montelongo
  fullname: González-Montelongo, Rafaela
  organization: Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain
– sequence: 12
  givenname: Carlos
  orcidid: 0000-0003-0034-8181
  surname: Flores
  fullname: Flores, Carlos
  email: cflores@ull.edu.es
  organization: Genomics Division, Instituto Tecnológico y de Energías Renovables (ITER), Santa Cruz de Tenerife, Spain
BookMark eNqFkstu1TAQhiNUJMqhL8AqSzYJvia2hISg4lKpEhtYsLIcZ5w4JPbBTlp4exzOEaIb8Mae8cwn-5__aXHhg4eieI5RjRFuXk61Sd1UE0RojWSNMHlUXBKEcIVoiy7-Oj8prlKaUF4CN5Kiy2J6C96Mi47fnB_KYMtxW7Qvv1ZmjGEJKSx6Lkd9nMMQw3YszaxTctZBTOW9W8fyfgwzVAP4sECpfX9OwI89TvB9y3woe73qZ8Vjq-cEV-f9UHx5_-7z9cfq9tOHm-s3t5Vhgq6VbEgjCFAgLW1Zx2kvqBHINFZjbK3lFCwnljHbCcFY3wHvtcB9S6Tkgjb0UNycuH3QkzpGl3_3UwXt1O9EiIPScXVmBiUFtlK3TFtuGG6NpC21QJhkYHjXmcx6fWIdt26B3oBfo54fQB_eeDeqIdwpjHiDZCsy4cWZEEMWI61qccnAPGsPYUuKYk4JahD9fykRLRecNlmYQ0FOpSaGlCLYP0_CSO2mUJPaTaF2UygkVTZFbnp1aoKs_l0eoUrG7ePpXQSzZnncv9p_AeoZw5g
Cites_doi 10.1038/s41598-018-27819-x
10.1186/1471-2105-14-331
10.1038/ng.3559
10.1038/s41467-018-04375-6
10.1038/nrg.2017.36
10.1038/s41467-018-07885-5
10.21105/joss.01236
10.1093/bioinformatics/btp352
10.1007/s00439-016-1740-0
10.1093/bioinformatics/bty149
10.1093/molbev/msac017
10.1146/annurev.genet.41.110306.130407
10.1186/1471-2164-14-101
10.1101/gr.217602
10.1093/bioinformatics/btp324
10.1186/s12859-021-04057-z
10.1093/bioinformatics/bts503
10.1093/bioinformatics/bty191
10.1186/gb-2003-4-9-226
10.1186/s12958-018-0330-5
10.1146/annurev-genom-083115-022413
10.1371/journal.pgen.1009758
10.1016/j.fsigen.2019.04.001
10.1093/bioinformatics/btx346
10.1093/molbev/msy032
10.1038/ng.806
10.1038/s41431-018-0238-8
10.1016/j.forsciint.2022.111270
10.1038/s41587-020-0503-6
10.1007/s00439-017-1776-9
10.1016/j.cub.2018.11.029
10.3389/fgene.2019.00781
10.1038/nature15393
ContentType Journal Article
Copyright 2023 The Authors
2023 The Authors.
2023 The Authors 2023
Copyright_xml – notice: 2023 The Authors
– notice: 2023 The Authors.
– notice: 2023 The Authors 2023
DBID 6I.
AAFTH
AAYXX
CITATION
7X8
7S9
L.6
5PM
DOA
DOI 10.1016/j.csbj.2023.09.012
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
MEDLINE - Academic



Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2001-0370
EndPage 4618
ExternalDocumentID oai_doaj_org_article_981f9a74af5c417c9373fe2494ec5bbc
PMC10560978
10_1016_j_csbj_2023_09_012
S2001037023003240
GroupedDBID 0R~
0SF
457
53G
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAHBH
AAIKJ
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
ADRAZ
ADVLN
AEXQZ
AFTJW
AGHFR
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BAWUL
BCNDV
DIK
EBS
EJD
FDB
GROUPED_DOAJ
HYE
IPNFZ
KQ8
M41
M48
M~E
NCXOZ
O9-
OK1
RIG
ROL
RPM
SSZ
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
CITATION
7X8
7S9
L.6
5PM
ID FETCH-LOGICAL-c483t-962682e3e27374b53d83c80c6fa11fff53ef52f44fb8844dbe5da81d729958363
IEDL.DBID M48
ISSN 2001-0370
IngestDate Wed Aug 27 01:12:52 EDT 2025
Thu Aug 21 18:35:46 EDT 2025
Thu Jul 10 18:21:45 EDT 2025
Fri Jul 11 04:34:35 EDT 2025
Tue Jul 01 03:43:03 EDT 2025
Sat Dec 21 16:00:41 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Comparative genomics
NRY haplogroup classification
Next-generation sequencing
Population genetics
Y chromosome
Language English
License This is an open access article under the CC BY license.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c483t-962682e3e27374b53d83c80c6fa11fff53ef52f44fb8844dbe5da81d729958363
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-0034-8181
0000-0001-7923-0068
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1016/j.csbj.2023.09.012
PQID 2875853627
PQPubID 23479
PageCount 6
ParticipantIDs doaj_primary_oai_doaj_org_article_981f9a74af5c417c9373fe2494ec5bbc
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10560978
proquest_miscellaneous_3153206038
proquest_miscellaneous_2875853627
crossref_primary_10_1016_j_csbj_2023_09_012
elsevier_sciencedirect_doi_10_1016_j_csbj_2023_09_012
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationTitle Computational and structural biotechnology journal
PublicationYear 2023
Publisher Elsevier B.V
Research Network of Computational and Structural Biotechnology
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Research Network of Computational and Structural Biotechnology
– name: Elsevier
References Kayser (bib7) 2017; 136
García-Alcalde, Okonechnikov, Carbonell, Cruz, Götz, Tarazona (bib31) 2012; 28
Kuderna, Lizano, Julià, Gomez-Garrido, Serres-Armero, Kuhlwilm (bib14) 2019
Auton, Brooks, Durbin, Garrison, Kang, Korbel (bib37) 2015; 526
Gel, Serra (bib38) 2017; 33
Van Geystelen, Decorte, Larmuseau (bib18) 2013; 14
Ralf, van Oven, Montiel González, de Knijff, van der Beek, Wootton (bib22) 2019; 41
Grassmann, Kiel, den Hollander, Weeks, Lotery, Cipriani (bib6) 2019; 27
Jagadeesan, Ebenesersdóttir, Guðmundsdóttir, Thordardottir, Moore, Helgason (bib23) 2020
Li, Durbin (bib30) 2009; 25
Claerhout, Verstraete, Warnez, Vanpaemel, Larmuseau, Decorte (bib15) 2021; 17
The Y Chromosome Consortium, A Nomenclature System for the Tree of Human Y-Chromosomal Binary Haplogroups, Genome Research. 12 (2002) 339–348. https://doi.org/10.1101/gr.217602.
Levy, Myers (bib9) 2016; 17
Poznik (bib20) 2016
Alvarez-Cubero, Santiago, Martínez-Labarga, Martínez-García, Marrero-Díaz, Rubio-Roldan (bib12) 2018; 8
Chen, Lu, Lu, Xu (bib24) 2021; 22
Calafell, Larmuseau (bib17) 2017; 136
Li, Handsaker, Wysoker, Fennell, Ruan, Homer (bib33) 2009; 25
Leger, Leonardi (bib27) 2019; 4
Poznik, Xue, Mendez, Willems, Massaia, Wilson Sayres (bib39) 2016; 48
Zhang, Chen, Liu, Yao, Li, Jin (bib19) 2013; 14
Charlesworth (bib11) 2003; 4
Pedersen, Bhetariya, Brown, Marth, Jensen, Bronner (bib36) 2019
Anderson, Cañadas-Garre, Chambers, Maxwell, McKnight (bib10) 2019; 10
Li (bib35) 2018; 34
Shafin, Pesout, Lorig-Roach, Haukness, Olsen, Bosworth (bib28) 2020; 38
DePristo, Banks, Poplin, Garimella, Maguire, Hartl (bib32) 2011; 43
Underhill, Kivisild (bib2) 2007; 41
S. Andrews, FastQC: a quality control tool for high throughput sequence data, (2010).
Quintana-Murci, Fellous (bib1) 2001; 1
Zhou, Zhou, Li, Yao, Yang, Qian (bib8) 2022; 334
Díaz-de Usera, Lorenzo-Salazar, Rubio-Rodríguez, Muñoz-Barrera, Guillen-Guio, Marcelino-Rodríguez (bib26) 2020; 9
Zeng, Aw, Feldman (bib3) 2018; 9
De Coster, D’Hert, Schultz, Cruts, Van Broeckhoven (bib34) 2018; 34
Martiniano, De Sanctis, Hallast, Durbin (bib25) 2022; 39
Pinotti, Bergström, Geppert, Bawn, Ohasi, Shi (bib4) 2019; 29
Colaco, Modi (bib5) 2018; 16
Ralf, Montiel González, Zhong, Kayser (bib21) 2018; 35
Jobling, Tyler-Smith (bib13) 2017; 18
Gel (10.1016/j.csbj.2023.09.012_bib38) 2017; 33
Li (10.1016/j.csbj.2023.09.012_bib35) 2018; 34
Grassmann (10.1016/j.csbj.2023.09.012_bib6) 2019; 27
Kayser (10.1016/j.csbj.2023.09.012_bib7) 2017; 136
Levy (10.1016/j.csbj.2023.09.012_bib9) 2016; 17
Leger (10.1016/j.csbj.2023.09.012_bib27) 2019; 4
DePristo (10.1016/j.csbj.2023.09.012_bib32) 2011; 43
Poznik (10.1016/j.csbj.2023.09.012_bib39) 2016; 48
Quintana-Murci (10.1016/j.csbj.2023.09.012_bib1) 2001; 1
Ralf (10.1016/j.csbj.2023.09.012_bib22) 2019; 41
Calafell (10.1016/j.csbj.2023.09.012_bib17) 2017; 136
Li (10.1016/j.csbj.2023.09.012_bib33) 2009; 25
Kuderna (10.1016/j.csbj.2023.09.012_bib14) 2019
Van Geystelen (10.1016/j.csbj.2023.09.012_bib18) 2013; 14
Díaz-de Usera (10.1016/j.csbj.2023.09.012_bib26) 2020; 9
10.1016/j.csbj.2023.09.012_bib29
Ralf (10.1016/j.csbj.2023.09.012_bib21) 2018; 35
Martiniano (10.1016/j.csbj.2023.09.012_bib25) 2022; 39
Pedersen (10.1016/j.csbj.2023.09.012_bib36) 2019
Colaco (10.1016/j.csbj.2023.09.012_bib5) 2018; 16
Pinotti (10.1016/j.csbj.2023.09.012_bib4) 2019; 29
Claerhout (10.1016/j.csbj.2023.09.012_bib15) 2021; 17
Underhill (10.1016/j.csbj.2023.09.012_bib2) 2007; 41
Zeng (10.1016/j.csbj.2023.09.012_bib3) 2018; 9
Zhang (10.1016/j.csbj.2023.09.012_bib19) 2013; 14
Alvarez-Cubero (10.1016/j.csbj.2023.09.012_bib12) 2018; 8
Jagadeesan (10.1016/j.csbj.2023.09.012_bib23) 2020
Chen (10.1016/j.csbj.2023.09.012_bib24) 2021; 22
Charlesworth (10.1016/j.csbj.2023.09.012_bib11) 2003; 4
García-Alcalde (10.1016/j.csbj.2023.09.012_bib31) 2012; 28
10.1016/j.csbj.2023.09.012_bib16
Poznik (10.1016/j.csbj.2023.09.012_bib20) 2016
De Coster (10.1016/j.csbj.2023.09.012_bib34) 2018; 34
Li (10.1016/j.csbj.2023.09.012_bib30) 2009; 25
Anderson (10.1016/j.csbj.2023.09.012_bib10) 2019; 10
Zhou (10.1016/j.csbj.2023.09.012_bib8) 2022; 334
Shafin (10.1016/j.csbj.2023.09.012_bib28) 2020; 38
Auton (10.1016/j.csbj.2023.09.012_bib37) 2015; 526
Jobling (10.1016/j.csbj.2023.09.012_bib13) 2017; 18
References_xml – volume: 35
  start-page: 1291
  year: 2018
  end-page: 1294
  ident: bib21
  article-title: Yleaf: software for human Y-chromosomal haplogroup inference from next-generation sequencing data
  publication-title: Mol Biol Evol
– volume: 39
  year: 2022
  ident: bib25
  article-title: Placing ancient DNA sequences into reference phylogenies
  publication-title: Mol Biol Evol
– volume: 4
  start-page: 1236
  year: 2019
  ident: bib27
  article-title: pycoQC, interactive quality control for Oxford Nanopore Sequencing
  publication-title: JOSS
– volume: 34
  start-page: 2666
  year: 2018
  end-page: 2669
  ident: bib34
  article-title: NanoPack: visualizing and processing long-read sequencing data
  publication-title: Bioinformatics
– volume: 1
  start-page: 18
  year: 2001
  end-page: 24
  ident: bib1
  article-title: The human Y chromosome: the biological role of a “Functional Wasteland
  publication-title: ” J Biomed Biotechnol
– volume: 22
  year: 2021
  ident: bib24
  article-title: Y-LineageTracker: a high-throughput analysis framework for Y-chromosomal next-generation sequencing data
  publication-title: BMC Bioinforma
– volume: 25
  start-page: 2078
  year: 2009
  end-page: 2079
  ident: bib33
  article-title: 1000 genome project data processing subgroup, the sequence alignment/map format and SAMtools
  publication-title: Bioinformatics
– volume: 43
  start-page: 491
  year: 2011
  end-page: 498
  ident: bib32
  article-title: A framework for variation discovery and genotyping using next-generation DNA sequencing data
  publication-title: Nat Genet
– volume: 14
  start-page: 331
  year: 2013
  ident: bib19
  article-title: YHap: a population model for probabilistic assignment of Y haplogroups from re-sequencing data
  publication-title: BMC Bioinforma
– volume: 9
  start-page: 3656
  year: 2020
  ident: bib26
  article-title: Evaluation of whole-exome enrichment solutions: lessons from the high-end of the short-read sequencing scale
  publication-title: J Clin Med Res
– volume: 25
  start-page: 1754
  year: 2009
  end-page: 1760
  ident: bib30
  article-title: Fast and accurate short read alignment with Burrows–Wheeler transform
  publication-title: Bioinformatics
– volume: 29
  start-page: 149
  year: 2019
  end-page: 157
  ident: bib4
  article-title: Sequences reveal a short beringian standstill, rapid expansion, and early population structure of native american founders
  publication-title: Curr Biol
– reference: S. Andrews, FastQC: a quality control tool for high throughput sequence data, (2010).
– volume: 41
  start-page: 539
  year: 2007
  end-page: 564
  ident: bib2
  article-title: Use of y chromosome and mitochondrial DNA population structure in tracing human migrations
  publication-title: Annu Rev Genet
– volume: 8
  start-page: 9436
  year: 2018
  ident: bib12
  article-title: Methodology for Y Chromosome Capture: A complete genome sequence of Y chromosome using flow cytometry, laser microdissection and magnetic streptavidin-beads
  publication-title: Sci Rep
– volume: 18
  start-page: 485
  year: 2017
  end-page: 497
  ident: bib13
  article-title: Human Y-chromosome variation in the genome-sequencing era
  publication-title: Nat Rev Genet
– volume: 16
  start-page: 14
  year: 2018
  ident: bib5
  article-title: Genetics of the human Y chromosome and its association with male infertility
  publication-title: Reprod Biol Endocrinol
– volume: 136
  start-page: 621
  year: 2017
  end-page: 635
  ident: bib7
  article-title: Forensic use of Y-chromosome DNA: a general overview
  publication-title: Hum Genet
– volume: 334
  year: 2022
  ident: bib8
  article-title: Identification and assessment of a subset of Y-SNPs with recurrent mutation for forensic purpose
  publication-title: Forensic Sci Int
– volume: 27
  start-page: 36
  year: 2019
  end-page: 41
  ident: bib6
  article-title: International age-related macular degeneration genomics consortium (IAMDGC), Y chromosome mosaicism is associated with age-related macular degeneration
  publication-title: Eur J Hum Genet
– volume: 9
  start-page: 2077
  year: 2018
  ident: bib3
  article-title: Cultural hitchhiking and competition between patrilineal kin groups explain the post-Neolithic Y-chromosome bottleneck
  publication-title: Nat Commun
– volume: 4
  start-page: 226
  year: 2003
  ident: bib11
  article-title: The organization and evolution of the human Y chromosome
  publication-title: Genome Biol
– volume: 10
  start-page: 781
  year: 2019
  ident: bib10
  article-title: The challenges of chromosome Y analysis and the implications for chronic kidney disease
  publication-title: Front Genet
– volume: 38
  start-page: 1044
  year: 2020
  end-page: 1053
  ident: bib28
  article-title: Nanopore sequencing and the Shasta toolkit enable efficient de novo assembly of eleven human genomes
  publication-title: Nat Biotechnol
– volume: 34
  start-page: 3094
  year: 2018
  end-page: 3100
  ident: bib35
  article-title: Minimap2: pairwise alignment for nucleotide sequences
  publication-title: Bioinformatics
– volume: 526
  start-page: 68
  year: 2015
  end-page: 74
  ident: bib37
  article-title: A global reference for human genetic variation
  publication-title: Nature
– volume: 48
  start-page: 593
  year: 2016
  end-page: 599
  ident: bib39
  article-title: 1000 Genomes Project Consortium, C.D. Bustamante, C. Tyler-Smith, Punctuated bursts in human male demography inferred from 1,244 worldwide Y-chromosome sequences
  publication-title: Nat Genet
– volume: 136
  start-page: 559
  year: 2017
  end-page: 573
  ident: bib17
  article-title: The Y chromosome as the most popular marker in genetic genealogy benefits interdisciplinary research
  publication-title: Hum Genet
– year: 2019
  ident: bib36
  article-title: Somalier: rapid relatedness estimation for cancer and germline studies using efficient genome sketches
  publication-title: BioRxiv
– volume: 33
  start-page: 3088
  year: 2017
  end-page: 3090
  ident: bib38
  article-title: karyoploteR: an R/Bioconductor package to plot customizable genomes displaying arbitrary data
  publication-title: Bioinformatics
– reference: The Y Chromosome Consortium, A Nomenclature System for the Tree of Human Y-Chromosomal Binary Haplogroups, Genome Research. 12 (2002) 339–348. https://doi.org/10.1101/gr.217602.
– volume: 28
  start-page: 2678
  year: 2012
  end-page: 2679
  ident: bib31
  article-title: Qualimap: evaluating next-generation sequencing alignment data
  publication-title: Bioinformatics
– year: 2016
  ident: bib20
  article-title: Identifying Y-chromosome haplogroups in arbitrarily large samples of sequenced or genotyped men
  publication-title: Cold Spring Harb Lab
– volume: 17
  start-page: 95
  year: 2016
  end-page: 115
  ident: bib9
  article-title: Advancements in next-generation sequencing
  publication-title: Annu Rev Genom Hum Genet
– volume: 41
  start-page: 93
  year: 2019
  end-page: 106
  ident: bib22
  article-title: Forensic Y-SNP analysis beyond SNaPshot: High-resolution Y-chromosomal haplogrouping from low quality and quantity DNA using Ion AmpliSeq and targeted massively parallel sequencing
  publication-title: Forensic Sci Int Genet
– volume: 14
  start-page: 101
  year: 2013
  ident: bib18
  article-title: AMY-tree: an algorithm to use whole genome SNP calling for Y chromosomal phylogenetic applications
  publication-title: BMC Genom
– volume: 17
  year: 2021
  ident: bib15
  article-title: CSYseq: The first Y-chromosome sequencing tool typing a large number of Y-SNPs and Y-STRs to unravel worldwide human population genetics
  publication-title: PLoS Genet
– year: 2019
  ident: bib14
  article-title: Selective single molecule sequencing and assembly of a human Y chromosome of African origin
  publication-title: Nat Commun
– year: 2020
  ident: bib23
  article-title: HaploGrouper: A generalized approach to haplogroup classification
  publication-title: Bioinformatics
– volume: 8
  start-page: 9436
  year: 2018
  ident: 10.1016/j.csbj.2023.09.012_bib12
  article-title: Methodology for Y Chromosome Capture: A complete genome sequence of Y chromosome using flow cytometry, laser microdissection and magnetic streptavidin-beads
  publication-title: Sci Rep
  doi: 10.1038/s41598-018-27819-x
– volume: 14
  start-page: 331
  year: 2013
  ident: 10.1016/j.csbj.2023.09.012_bib19
  article-title: YHap: a population model for probabilistic assignment of Y haplogroups from re-sequencing data
  publication-title: BMC Bioinforma
  doi: 10.1186/1471-2105-14-331
– volume: 48
  start-page: 593
  year: 2016
  ident: 10.1016/j.csbj.2023.09.012_bib39
  article-title: 1000 Genomes Project Consortium, C.D. Bustamante, C. Tyler-Smith, Punctuated bursts in human male demography inferred from 1,244 worldwide Y-chromosome sequences
  publication-title: Nat Genet
  doi: 10.1038/ng.3559
– volume: 9
  start-page: 2077
  year: 2018
  ident: 10.1016/j.csbj.2023.09.012_bib3
  article-title: Cultural hitchhiking and competition between patrilineal kin groups explain the post-Neolithic Y-chromosome bottleneck
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-04375-6
– volume: 18
  start-page: 485
  year: 2017
  ident: 10.1016/j.csbj.2023.09.012_bib13
  article-title: Human Y-chromosome variation in the genome-sequencing era
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg.2017.36
– year: 2019
  ident: 10.1016/j.csbj.2023.09.012_bib14
  article-title: Selective single molecule sequencing and assembly of a human Y chromosome of African origin
  publication-title: Nat Commun
  doi: 10.1038/s41467-018-07885-5
– volume: 4
  start-page: 1236
  year: 2019
  ident: 10.1016/j.csbj.2023.09.012_bib27
  article-title: pycoQC, interactive quality control for Oxford Nanopore Sequencing
  publication-title: JOSS
  doi: 10.21105/joss.01236
– volume: 25
  start-page: 2078
  year: 2009
  ident: 10.1016/j.csbj.2023.09.012_bib33
  article-title: 1000 genome project data processing subgroup, the sequence alignment/map format and SAMtools
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp352
– volume: 136
  start-page: 559
  year: 2017
  ident: 10.1016/j.csbj.2023.09.012_bib17
  article-title: The Y chromosome as the most popular marker in genetic genealogy benefits interdisciplinary research
  publication-title: Hum Genet
  doi: 10.1007/s00439-016-1740-0
– volume: 34
  start-page: 2666
  year: 2018
  ident: 10.1016/j.csbj.2023.09.012_bib34
  article-title: NanoPack: visualizing and processing long-read sequencing data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty149
– volume: 39
  year: 2022
  ident: 10.1016/j.csbj.2023.09.012_bib25
  article-title: Placing ancient DNA sequences into reference phylogenies
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msac017
– volume: 41
  start-page: 539
  year: 2007
  ident: 10.1016/j.csbj.2023.09.012_bib2
  article-title: Use of y chromosome and mitochondrial DNA population structure in tracing human migrations
  publication-title: Annu Rev Genet
  doi: 10.1146/annurev.genet.41.110306.130407
– volume: 14
  start-page: 101
  year: 2013
  ident: 10.1016/j.csbj.2023.09.012_bib18
  article-title: AMY-tree: an algorithm to use whole genome SNP calling for Y chromosomal phylogenetic applications
  publication-title: BMC Genom
  doi: 10.1186/1471-2164-14-101
– ident: 10.1016/j.csbj.2023.09.012_bib16
  doi: 10.1101/gr.217602
– volume: 25
  start-page: 1754
  year: 2009
  ident: 10.1016/j.csbj.2023.09.012_bib30
  article-title: Fast and accurate short read alignment with Burrows–Wheeler transform
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp324
– year: 2019
  ident: 10.1016/j.csbj.2023.09.012_bib36
  article-title: Somalier: rapid relatedness estimation for cancer and germline studies using efficient genome sketches
  publication-title: BioRxiv
– volume: 9
  start-page: 3656
  year: 2020
  ident: 10.1016/j.csbj.2023.09.012_bib26
  article-title: Evaluation of whole-exome enrichment solutions: lessons from the high-end of the short-read sequencing scale
  publication-title: J Clin Med Res
– volume: 22
  year: 2021
  ident: 10.1016/j.csbj.2023.09.012_bib24
  article-title: Y-LineageTracker: a high-throughput analysis framework for Y-chromosomal next-generation sequencing data
  publication-title: BMC Bioinforma
  doi: 10.1186/s12859-021-04057-z
– volume: 28
  start-page: 2678
  year: 2012
  ident: 10.1016/j.csbj.2023.09.012_bib31
  article-title: Qualimap: evaluating next-generation sequencing alignment data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts503
– volume: 34
  start-page: 3094
  year: 2018
  ident: 10.1016/j.csbj.2023.09.012_bib35
  article-title: Minimap2: pairwise alignment for nucleotide sequences
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bty191
– volume: 4
  start-page: 226
  year: 2003
  ident: 10.1016/j.csbj.2023.09.012_bib11
  article-title: The organization and evolution of the human Y chromosome
  publication-title: Genome Biol
  doi: 10.1186/gb-2003-4-9-226
– volume: 16
  start-page: 14
  year: 2018
  ident: 10.1016/j.csbj.2023.09.012_bib5
  article-title: Genetics of the human Y chromosome and its association with male infertility
  publication-title: Reprod Biol Endocrinol
  doi: 10.1186/s12958-018-0330-5
– year: 2016
  ident: 10.1016/j.csbj.2023.09.012_bib20
  article-title: Identifying Y-chromosome haplogroups in arbitrarily large samples of sequenced or genotyped men
  publication-title: Cold Spring Harb Lab
– volume: 17
  start-page: 95
  year: 2016
  ident: 10.1016/j.csbj.2023.09.012_bib9
  article-title: Advancements in next-generation sequencing
  publication-title: Annu Rev Genom Hum Genet
  doi: 10.1146/annurev-genom-083115-022413
– volume: 17
  year: 2021
  ident: 10.1016/j.csbj.2023.09.012_bib15
  article-title: CSYseq: The first Y-chromosome sequencing tool typing a large number of Y-SNPs and Y-STRs to unravel worldwide human population genetics
  publication-title: PLoS Genet
  doi: 10.1371/journal.pgen.1009758
– volume: 41
  start-page: 93
  year: 2019
  ident: 10.1016/j.csbj.2023.09.012_bib22
  article-title: Forensic Y-SNP analysis beyond SNaPshot: High-resolution Y-chromosomal haplogrouping from low quality and quantity DNA using Ion AmpliSeq and targeted massively parallel sequencing
  publication-title: Forensic Sci Int Genet
  doi: 10.1016/j.fsigen.2019.04.001
– volume: 33
  start-page: 3088
  year: 2017
  ident: 10.1016/j.csbj.2023.09.012_bib38
  article-title: karyoploteR: an R/Bioconductor package to plot customizable genomes displaying arbitrary data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx346
– ident: 10.1016/j.csbj.2023.09.012_bib29
– volume: 35
  start-page: 1291
  year: 2018
  ident: 10.1016/j.csbj.2023.09.012_bib21
  article-title: Yleaf: software for human Y-chromosomal haplogroup inference from next-generation sequencing data
  publication-title: Mol Biol Evol
  doi: 10.1093/molbev/msy032
– volume: 43
  start-page: 491
  year: 2011
  ident: 10.1016/j.csbj.2023.09.012_bib32
  article-title: A framework for variation discovery and genotyping using next-generation DNA sequencing data
  publication-title: Nat Genet
  doi: 10.1038/ng.806
– volume: 27
  start-page: 36
  year: 2019
  ident: 10.1016/j.csbj.2023.09.012_bib6
  article-title: International age-related macular degeneration genomics consortium (IAMDGC), Y chromosome mosaicism is associated with age-related macular degeneration
  publication-title: Eur J Hum Genet
  doi: 10.1038/s41431-018-0238-8
– volume: 334
  year: 2022
  ident: 10.1016/j.csbj.2023.09.012_bib8
  article-title: Identification and assessment of a subset of Y-SNPs with recurrent mutation for forensic purpose
  publication-title: Forensic Sci Int
  doi: 10.1016/j.forsciint.2022.111270
– volume: 38
  start-page: 1044
  year: 2020
  ident: 10.1016/j.csbj.2023.09.012_bib28
  article-title: Nanopore sequencing and the Shasta toolkit enable efficient de novo assembly of eleven human genomes
  publication-title: Nat Biotechnol
  doi: 10.1038/s41587-020-0503-6
– volume: 136
  start-page: 621
  year: 2017
  ident: 10.1016/j.csbj.2023.09.012_bib7
  article-title: Forensic use of Y-chromosome DNA: a general overview
  publication-title: Hum Genet
  doi: 10.1007/s00439-017-1776-9
– volume: 29
  start-page: 149
  year: 2019
  ident: 10.1016/j.csbj.2023.09.012_bib4
  article-title: Sequences reveal a short beringian standstill, rapid expansion, and early population structure of native american founders
  publication-title: Curr Biol
  doi: 10.1016/j.cub.2018.11.029
– volume: 10
  start-page: 781
  year: 2019
  ident: 10.1016/j.csbj.2023.09.012_bib10
  article-title: The challenges of chromosome Y analysis and the implications for chronic kidney disease
  publication-title: Front Genet
  doi: 10.3389/fgene.2019.00781
– volume: 1
  start-page: 18
  year: 2001
  ident: 10.1016/j.csbj.2023.09.012_bib1
  article-title: The human Y chromosome: the biological role of a “Functional Wasteland
  publication-title: ” J Biomed Biotechnol
– year: 2020
  ident: 10.1016/j.csbj.2023.09.012_bib23
  article-title: HaploGrouper: A generalized approach to haplogroup classification
  publication-title: Bioinformatics
– volume: 526
  start-page: 68
  year: 2015
  ident: 10.1016/j.csbj.2023.09.012_bib37
  article-title: A global reference for human genetic variation
  publication-title: Nature
  doi: 10.1038/nature15393
SSID ssj0000816930
Score 2.2577276
Snippet In anthropological, medical, and forensic studies, the nonrecombinant region of the human Y chromosome (NRY) enables accurate reconstruction of pedigree...
SourceID doaj
pubmedcentral
proquest
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 4613
SubjectTerms biotechnology
Comparative genomics
data collection
forensic sciences
genome
humans
Next-generation sequencing
NRY haplogroup classification
pedigree
Population genetics
Y chromosome
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELaqnugB8ShioSAj9VYF4vgR-0gRVVUJTq1UTpbt2NpdaZMVuyv4-Z1xEpQcgEsvkZLYSewZe75xxt8Qcu5dFAncrkIYr-CgVQF2JxVSRVMblkyVk018-66u78TNvbyfpPrCmLCeHrjvuE9GQwVXC5dkEKwOYE55iuA0iBik9wFn39KUE2cqz8EaSUbKYZdMH9AVdn79EbOFZ2JTVs0sUSbsnxmkCeCch0tO7M_VM_J0AI70c__Bz8lRbF-Qkwmd4EuyvgSVW25cXv6mXaI5AR_9UYQlBt3tug08YOm2SFPdHbY0IHJeJUyGTXE9lv7CZLkF0rZuInVtM1yIv_F8DLqmGFR6Su6uvt5-uS6GXApFEJrvCwOOi64ijwBXauElbzQPugwqOcZSSpLHJKskRPJaC9H4KBsHWBawt5GaK_6KHLddG18TGqG6TsyYpgETyCoHThDzDVQslfONWJCLsV_ttqfMsGMs2dqiFCxKwZbGghQW5BK7_k9JpLvOF0AJ7KAE9n9KsCByFJwdkEOPCOBRq3--_MMoZQvDCv-VuDZ2h50FRxIcKbDu9d_LcIZZNVTJ9YLomYrMWjO_066WmcQbcK3CPTRvHqP9b8kTbFW_NHRGjvc_D_EdgKW9f5_HxQOKwBXZ
  priority: 102
  providerName: Directory of Open Access Journals
Title Benchmarking of human Y-chromosomal haplogroup classifiers with whole-genome and whole-exome sequence data
URI https://dx.doi.org/10.1016/j.csbj.2023.09.012
https://www.proquest.com/docview/2875853627
https://www.proquest.com/docview/3153206038
https://pubmed.ncbi.nlm.nih.gov/PMC10560978
https://doaj.org/article/981f9a74af5c417c9373fe2494ec5bbc
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELaq9gIHRHmIBboyEjeUKlk_Yh8QahFVRQUHxIpysmzHZnfVTZZ9iPbfd8abwEYqiEukvJzEY2e-mUy-j5DXzgYeIezKuHYSFkpm4HdiJmTQpS6iHiWxiU-f5fmYf7wUl3ukkztqO3B1Z2iHelLj5dXx9c-bdzDh3_6p1fIrNztGIfDEWYqiwwfpexGW8rVwP72ZFVKPYNqlrSQq8_Y_mrub6fmqROnfc1k7kLRfULnjoc4ekgcttKQn27FwSPZC_Yjc3yEcfExmpzAoJ3ObEuS0iTRJ9NHvmZ9gWd6qmUMDE7tAIutms6AesfU0olw2xYwt_YVyuhkSu84DtXXVbgjXuN6VZVMsO31Cxmcfvr4_z1q1hcxzxdaZhtBGjQILAGhK7gSrFPMq9zLaoogxChaiGEXOo1OK88oFUVlAu4DOtVBMsqdkv27q8IzQAKerWGhdVeAki5GFMKlwFZyYS-sqPiBvun41iy2phumqzWYGrWDQCibXBqwwIKfY9b-PRELstKFZ_jDt_DJawbiyJbdReF6UHlAXiwFiSx68cM4PiOgMZ1psscUM0NT0nxd_1VnZwMTDrym2Ds1mZSDUhFAL_H_592NYgbobMmdqQFRviPSepr-nnk4SzTcgX4l_2Tz_j1t4Qe7hTW9zQy_J_nq5CUeAltZuSA5OLr58uximbMMwTYhbS1YXFA
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Benchmarking+of+human+Y-chromosomal+haplogroup+classifiers+with+whole-genome+and+whole-exome+sequence+data&rft.jtitle=Computational+and+structural+biotechnology+journal&rft.au=Garc%C3%ADa-Olivares%2C+V%C3%ADctor&rft.au=Mu%C3%B1oz-Barrera%2C+Adri%C3%A1n&rft.au=Rubio-Rodr%C3%ADguez%2C+Luis+A&rft.au=J%C3%A1spez%2C+David&rft.date=2023-01-01&rft.issn=2001-0370&rft.eissn=2001-0370&rft.volume=21&rft.spage=4613&rft_id=info:doi/10.1016%2Fj.csbj.2023.09.012&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2001-0370&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2001-0370&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2001-0370&client=summon