Brain Signatures of Meaning Access in Action Word Recognition
The brain basis of action words may be neuron ensembles binding language-and action-related information that are dispersed over both language-and action-related cortical areas. This predicts fast spreading of neuronal activity from language areas to specific sensorimotor areas when action words sema...
Saved in:
Published in | Journal of cognitive neuroscience Vol. 17; no. 6; pp. 884 - 892 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
One Rogers Street, Cambridge, MA 02142-1209, USA
MIT Press
01.06.2005
MIT Press Journals, The |
Subjects | |
Online Access | Get full text |
ISSN | 0898-929X 1530-8898 |
DOI | 10.1162/0898929054021111 |
Cover
Abstract | The brain basis of action words may be neuron ensembles binding language-and action-related information that are dispersed over both language-and action-related cortical areas. This predicts fast spreading of neuronal activity from language areas to specific sensorimotor areas when action words semantically related to different parts of the body are being perceived. To test this, fast neurophysiological imaging was applied to reveal spatiotemporal activity patterns elicited by words with different action-related meaning. Spoken words referring to actions involving the face or leg were presented while subjects engaged in a distraction task and their brain activity was recorded using high-density magnetoencephalography. Shortly after the words could be recognized as unique lexical items, objective source localization using minimum norm current estimates revealed activation in superior temporal (130 msec) and inferior frontocentral areas (142-146 msec). Face-word stimuli activated inferior frontocentral areas more strongly than leg words, whereas the reverse was found at superior central sites (170 msec), thus reflecting the cortical somatotopy of motor actions signified by the words. Significant correlations were found between local source strengths in the frontocentral cortex calculated for all participants and their semantic ratings of the stimulus words, thus further establishing a close relationship between word meaning access and neurophysiology. These results show that meaning access in action word recognition is an early automatic process reflected by spatiotemporal signatures of word-evoked activity. Word-related distributed neuronal assemblies with specific cortical topographies can explain the observed spatiotemporal dynamics reflecting word meaning access. |
---|---|
AbstractList | The brain basis of action words may be neuron ensembles binding language- and action-related information that are dispersed over both language- and action-related cortical areas. This predicts fast spreading of neuronal activity from language areas to specific sensorimotor areas when action words semantically related to different parts of the body are being perceived. To test this, fast neurophysiological imaging was applied to reveal spatiotemporal activity patterns elicited by words with different action-related meaning. Spoken words referring to actions involving the face or leg were presented while subjects engaged in a distraction task and their brain activity was recorded using high-density magnetoencephalography. Shortly after the words could be recognized as unique lexical items, objective source localization using minimum norm current estimates revealed activation in superior temporal (130 msec) and inferior frontocentral areas (142-146 msec). Face-word stimuli activated inferior frontocentral areas more strongly than leg words, whereas the reverse was found at superior central sites (170 msec), thus reflecting the cortical somatotopy of motor actions signified by the words. Significant correlations were found between local source strengths in the frontocentral cortex calculated for all participants and their semantic ratings of the stimulus words, thus further establishing a close relationship between word meaning access and neurophysiology. These results show that meaning access in action word recognition is an early automatic process ref lected by spatiotemporal signatures of word-evoked activity. Word-related distributed neuronal assemblies with specific cortical topographies can explain the observed spatiotemporal dynamics reflecting word meaning access. [PUBLICATION ABSTRACT] The brain basis of action words may be neuron ensembles binding language- and action-related information that are dispersed over both language- and action-related cortical areas. This predicts fast spreading of neuronal activity from language areas to specific sensorimotor areas when action words semantically related to different parts of the body are being perceived. To test this, fast neurophysiological imaging was applied to reveal spatiotemporal activity patterns elicited by words with different action-related meaning. Spoken words referring to actions involving the face or leg were presented while subjects engaged in a distraction task and their brain activity was recorded using high-density magnetoencephalography. Shortly after the words could be recognized as unique lexical items, objective source localization using minimum norm current estimates revealed activation in superior temporal (130 msec) and inferior frontocentral areas (142-146 msec). Face-word stimuli activated inferior frontocentral areas more strongly than leg words, whereas the reverse was found at superior central sites (170 msec), thus reflecting the cortical somatotopy of motor actions signified by the words. Significant correlations were found between local source strengths in the frontocentral cortex calculated for all participants and their semantic ratings of the stimulus words, thus further establishing a close relationship between word meaning access and neurophysiology. These results show that meaning access in action word recognition is an early automatic process ref lected by spatiotemporal signatures of word-evoked activity. Word-related distributed neuronal assemblies with specific cortical topographies can explain the observed spatiotemporal dynamics reflecting word meaning access. The brain basis of action words may be neuron ensembles binding language- and action-related information that are dispersed over both language- and action-related cortical areas. This predicts fast spreading of neuronal activity from language areas to specific sensorimotor areas when action words semantically related to different parts of the body are being perceived. To test this, fast neurophysiological imaging was applied to reveal spatiotemporal activity patterns elicited by words with different action-related meaning. Spoken words referring to actions involving the face or leg were presented while subjects engaged in a distraction task and their brain activity was recorded using high-density magnetoencephalography. Shortly after the words could be recognized as unique lexical items, objective source localization using minimum norm current estimates revealed activation in superior temporal (130 msec) and inferior frontocentral areas (142-146 msec). Face-word stimuli activated inferior frontocentral areas more strongly than leg words, whereas the reverse was found at superior central sites (170 msec), thus reflecting the cortical somatotopy of motor actions signified by the words. Significant correlations were found between local source strengths in the frontocentral cortex calculated for all participants and their semantic ratings of the stimulus words, thus further establishing a close relationship between word meaning access and neurophysiology. These results show that meaning access in action word recognition is an early automatic process ref lected by spatiotemporal signatures of word-evoked activity. Word-related distributed neuronal assemblies with specific cortical topographies can explain the observed spatiotemporal dynamics reflecting word meaning access.The brain basis of action words may be neuron ensembles binding language- and action-related information that are dispersed over both language- and action-related cortical areas. This predicts fast spreading of neuronal activity from language areas to specific sensorimotor areas when action words semantically related to different parts of the body are being perceived. To test this, fast neurophysiological imaging was applied to reveal spatiotemporal activity patterns elicited by words with different action-related meaning. Spoken words referring to actions involving the face or leg were presented while subjects engaged in a distraction task and their brain activity was recorded using high-density magnetoencephalography. Shortly after the words could be recognized as unique lexical items, objective source localization using minimum norm current estimates revealed activation in superior temporal (130 msec) and inferior frontocentral areas (142-146 msec). Face-word stimuli activated inferior frontocentral areas more strongly than leg words, whereas the reverse was found at superior central sites (170 msec), thus reflecting the cortical somatotopy of motor actions signified by the words. Significant correlations were found between local source strengths in the frontocentral cortex calculated for all participants and their semantic ratings of the stimulus words, thus further establishing a close relationship between word meaning access and neurophysiology. These results show that meaning access in action word recognition is an early automatic process ref lected by spatiotemporal signatures of word-evoked activity. Word-related distributed neuronal assemblies with specific cortical topographies can explain the observed spatiotemporal dynamics reflecting word meaning access. The brain basis of action words may be neuron ensembles binding language- & action-related information that are dispersed over both language- & action-related cortical areas. This predicts fast spreading of neuronal activity from language areas to specific sensorimotor areas when action words semantically related to different parts of the body are being perceived. To test this, fast neurophysiological imaging was applied to reveal spatiotemporal activity patterns elicited by words with different action-related meaning. Spoken words referring to actions involving the face or leg were presented while subjects engaged in a distraction task & their brain activity was recorded using high-density magnetoencephalography. Shortly after the words could be recognized as unique lexical items, objective source localization using minimum norm current estimates revealed activation in superior temporal (130 msec) & inferior frontocentral areas (142-146 msec). Face-word stimuli activated inferior frontocentral areas more strongly than leg words, whereas the reverse was found at superior central sites (170 msec), thus reflecting the cortical somatotopy of motor actions signified by the words. Significant correlations were found between local source strengths in the frontocentral cortex calculated for all participants & their semantic ratings of the stimulus words, thus further establishing a close relationship between word meaning access & neurophysiology. These results show that meaning access in action word recognition is an early automatic process reflected by spatiotemporal signatures of word-evoked activity. Word-related distributed neuronal assemblies with specific cortical topographies can explain the observed spatiotemporal dynamics reflecting word meaning access. 1 Table, 7 Figures, 31 References. Adapted from the source document The brain basis of action words may be neuron ensembles binding language-and action-related information that are dispersed over both language-and action-related cortical areas. This predicts fast spreading of neuronal activity from language areas to specific sensorimotor areas when action words semantically related to different parts of the body are being perceived. To test this, fast neurophysiological imaging was applied to reveal spatiotemporal activity patterns elicited by words with different action-related meaning. Spoken words referring to actions involving the face or leg were presented while subjects engaged in a distraction task and their brain activity was recorded using high-density magnetoencephalography. Shortly after the words could be recognized as unique lexical items, objective source localization using minimum norm current estimates revealed activation in superior temporal (130 msec) and inferior frontocentral areas (142-146 msec). Face-word stimuli activated inferior frontocentral areas more strongly than leg words, whereas the reverse was found at superior central sites (170 msec), thus reflecting the cortical somatotopy of motor actions signified by the words. Significant correlations were found between local source strengths in the frontocentral cortex calculated for all participants and their semantic ratings of the stimulus words, thus further establishing a close relationship between word meaning access and neurophysiology. These results show that meaning access in action word recognition is an early automatic process reflected by spatiotemporal signatures of word-evoked activity. Word-related distributed neuronal assemblies with specific cortical topographies can explain the observed spatiotemporal dynamics reflecting word meaning access. |
Author | Pulvermüller, Friedemann Shtyrov, Yury Ilmoniemi, Risto |
Author_xml | – sequence: 1 givenname: Friedemann surname: Pulvermüller fullname: Pulvermüller, Friedemann organization: MRC Cognition and Brain Sciences Unit, Cambridge, UK – sequence: 2 givenname: Yury surname: Shtyrov fullname: Shtyrov, Yury organization: MRC Cognition and Brain Sciences Unit, Cambridge, UK – sequence: 3 givenname: Risto surname: Ilmoniemi fullname: Ilmoniemi, Risto organization: Helsinki University Central Hospital and Nexstim Inc., Helsinki, Finland |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16833729$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/15969907$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkdtrFDEUxoO02O3qu08yCPapoyf3yUMf1mqtUBG8oG8hm8ksWWaTNZkR6l9vhl0vLC3mJXC-3_cl55xTdBRicAg9wfACY0FeQqMaRRRwBgSX8wDNMKdQN6V-hGaTXBf92wk6zXkNAIQL9hCdYK6EUiBn6OJVMj5Un_wqmGFMLlexq947E3xYVQtrXc5V0Rd28DFUX2Nqq4_OxlXwU-EROu5Mn93j_T1HX67efL68rm8-vH13ubipLWvoUPPWtZSBYJ1jDjMrbSdIwzEhVhlGO8ydM0zyJRADvJMOyJLaTsoGlpjLls7R2S53m-L30eVBb3y2ru9NcHHMuuGCKMrpf0EhlSAYJvDZAbiOYwqlCU0IBVnycIGe7qFxuXGt3ia_MelW_x5fAZ7vAZOt6btkgvX5LycaSmX52RyJHWdTzDm5Tls_mGmCQxl_rzHoaZ_6cJ_FCAfGP9n3W17vLBv_T1PraMMPLL3QFAgB0KTgJaH49U-_vSvm_I6Ye1_9BXEMvfA |
CODEN | JCONEO |
CitedBy_id | crossref_primary_10_1016_j_neuropsychologia_2013_12_002 crossref_primary_10_1016_j_bandl_2008_12_001 crossref_primary_10_1016_j_neuropsychologia_2013_04_008 crossref_primary_10_1016_j_neuropsychologia_2014_06_019 crossref_primary_10_1016_j_bandl_2010_09_004 crossref_primary_10_1016_j_jneuroling_2011_09_001 crossref_primary_10_1016_j_neuropsychologia_2008_01_015 crossref_primary_10_1016_j_pneurobio_2017_07_001 crossref_primary_10_1016_j_brainres_2020_147010 crossref_primary_10_3758_s13428_020_01488_z crossref_primary_10_1093_cercor_bhj060 crossref_primary_10_1016_j_bandl_2022_105081 crossref_primary_10_1016_j_neuropsychologia_2023_108602 crossref_primary_10_1080_23273798_2023_2232481 crossref_primary_10_1016_j_neuropsychologia_2012_02_005 crossref_primary_10_1162_jocn_2009_21292 crossref_primary_10_1016_j_cortex_2010_12_003 crossref_primary_10_1016_j_brainres_2012_10_004 crossref_primary_10_1111_cogs_13442 crossref_primary_10_1017_S135561770707110X crossref_primary_10_1016_j_neuroimage_2006_03_037 crossref_primary_10_1111_j_1469_8986_2007_00514_x crossref_primary_10_1016_j_bandl_2014_02_002 crossref_primary_10_1027_1618_3169_a000507 crossref_primary_10_3389_fnhum_2022_1008995 crossref_primary_10_1080_17470218_2011_605150 crossref_primary_10_1016_j_bandl_2018_02_003 crossref_primary_10_1016_j_neuroimage_2014_08_039 crossref_primary_10_1016_j_cortex_2011_10_005 crossref_primary_10_1097_WNR_0b013e3280b07ba1 crossref_primary_10_1027_1618_3169_a000031 crossref_primary_10_1371_journal_pone_0270352 crossref_primary_10_1016_j_neuroimage_2023_120254 crossref_primary_10_1177_0956797611412387 crossref_primary_10_1093_cercor_bhw026 crossref_primary_10_3389_fpsyg_2016_00031 crossref_primary_10_1016_j_bandl_2007_09_003 crossref_primary_10_1016_j_actpsy_2011_06_006 crossref_primary_10_1016_j_clinph_2022_10_010 crossref_primary_10_1016_j_neuroimage_2010_12_002 crossref_primary_10_1111_j_1749_6632_2011_06013_x crossref_primary_10_1016_j_bandl_2013_12_001 crossref_primary_10_1016_j_jml_2017_04_005 crossref_primary_10_1016_j_neuroimage_2019_05_002 crossref_primary_10_1016_j_neulet_2013_09_021 crossref_primary_10_3389_fnhum_2014_00886 crossref_primary_10_1044_2020_JSLHR_20_00048 crossref_primary_10_1016_j_neubiorev_2016_07_033 crossref_primary_10_1111_psyp_13543 crossref_primary_10_1016_j_tics_2011_10_001 crossref_primary_10_1016_j_neuropsychologia_2008_09_017 crossref_primary_10_1111_tops_12155 crossref_primary_10_1016_j_neuroscience_2010_04_039 crossref_primary_10_1016_j_neuropsychologia_2020_107384 crossref_primary_10_1016_j_cortex_2017_10_021 crossref_primary_10_1093_cercor_bhr238 crossref_primary_10_3389_fnhum_2016_00591 crossref_primary_10_1002_ejsp_795 crossref_primary_10_1162_jocn_a_01038 crossref_primary_10_1016_j_jneuroling_2015_06_001 crossref_primary_10_1007_s10803_013_1858_z crossref_primary_10_1016_j_neuropsychologia_2016_06_010 crossref_primary_10_1080_14427591_2011_575758 crossref_primary_10_1016_j_clinph_2010_03_053 crossref_primary_10_1016_j_bandl_2017_01_010 crossref_primary_10_1111_j_1460_9568_2008_06103_x crossref_primary_10_1111_j_1469_8986_2008_00753_x crossref_primary_10_1016_j_bandl_2009_11_004 crossref_primary_10_3758_s13423_024_02556_7 crossref_primary_10_1162_jocn_2010_21543 crossref_primary_10_1016_j_neuroimage_2011_11_011 crossref_primary_10_1007_s00426_020_01374_5 crossref_primary_10_1002_ejsp_662 crossref_primary_10_1002_ejsp_663 crossref_primary_10_1162_jocn_2008_20075 crossref_primary_10_1002_ejsp_661 crossref_primary_10_1523_JNEUROSCI_3579_08_2008 crossref_primary_10_3390_s22207734 crossref_primary_10_1111_cogs_12433 crossref_primary_10_1523_ENEURO_0052_20_2020 crossref_primary_10_1016_j_neuroimage_2015_01_018 crossref_primary_10_3390_bs5030353 crossref_primary_10_1016_j_neulet_2012_01_032 crossref_primary_10_1016_j_neuroimage_2011_06_077 crossref_primary_10_1371_journal_pone_0049099 crossref_primary_10_1093_scan_nsad033 crossref_primary_10_2139_ssrn_1974590 crossref_primary_10_1523_JNEUROSCI_2800_16_2017 crossref_primary_10_1016_j_neuropsychologia_2012_09_016 crossref_primary_10_1111_tops_12097 crossref_primary_10_1080_17470210701623605 crossref_primary_10_1093_cercor_bhs228 crossref_primary_10_1162_jocn_a_00168 crossref_primary_10_3389_fpsyg_2015_01690 crossref_primary_10_3389_fneur_2017_00400 crossref_primary_10_3758_s13414_015_1041_z crossref_primary_10_1093_cercor_bhn217 crossref_primary_10_1093_cercor_bhl159 crossref_primary_10_1177_0261927X241234845 crossref_primary_10_3389_fpsyg_2022_1061990 crossref_primary_10_3389_fpsyg_2021_603075 crossref_primary_10_1007_s00426_012_0475_3 crossref_primary_10_1016_j_cortex_2017_11_021 crossref_primary_10_1016_j_nicl_2021_102568 crossref_primary_10_1016_j_neuroscience_2018_06_009 crossref_primary_10_1016_j_neuropsychologia_2016_07_004 crossref_primary_10_1016_j_neuropsychologia_2012_09_006 crossref_primary_10_1016_j_imavis_2016_06_007 crossref_primary_10_3389_fnhum_2021_683277 crossref_primary_10_1016_j_actpsy_2009_02_002 crossref_primary_10_1016_j_bbr_2013_11_025 crossref_primary_10_1016_j_jphysparis_2008_03_010 crossref_primary_10_1016_j_jphysparis_2008_03_014 crossref_primary_10_1016_j_bandl_2019_104714 crossref_primary_10_1016_j_jphysparis_2008_03_013 crossref_primary_10_3389_fnhum_2023_982849 crossref_primary_10_1016_j_jphysparis_2008_03_015 crossref_primary_10_1111_j_1467_9280_2009_02297_x crossref_primary_10_1162_jocn_2007_19_10_1633 crossref_primary_10_1162_jocn_2007_19_4_684 crossref_primary_10_1016_j_bandl_2018_06_002 crossref_primary_10_1007_s11682_011_9139_y crossref_primary_10_1016_j_tics_2013_06_004 crossref_primary_10_1016_j_pneurobio_2010_01_006 crossref_primary_10_1075_ml_10_1_01wur crossref_primary_10_1016_j_neuroimage_2015_02_028 crossref_primary_10_1016_j_neuroimage_2007_03_035 crossref_primary_10_1016_j_cortex_2017_11_019 crossref_primary_10_1038_s41598_020_67539_9 crossref_primary_10_1016_j_cortex_2017_09_012 crossref_primary_10_1038_srep01928 crossref_primary_10_3758_s13423_014_0784_1 crossref_primary_10_1007_s10648_023_09835_0 crossref_primary_10_1093_cercor_bhm028 crossref_primary_10_1016_j_neuroimage_2012_02_041 crossref_primary_10_1016_j_pneurobio_2006_04_004 crossref_primary_10_3389_fnins_2023_1277129 crossref_primary_10_1016_j_neuropsychologia_2020_107629 crossref_primary_10_1016_j_jphysparis_2008_03_008 crossref_primary_10_1016_j_neuroimage_2011_12_020 crossref_primary_10_3390_bs11120162 crossref_primary_10_1111_j_1551_6709_2012_01268_x crossref_primary_10_1016_j_sbspro_2012_01_032 crossref_primary_10_1016_j_cortex_2011_04_006 crossref_primary_10_1038_nrn1706 crossref_primary_10_1016_j_neuroimage_2009_07_065 crossref_primary_10_1080_17470210701625667 crossref_primary_10_1016_j_neuroimage_2019_05_071 crossref_primary_10_1162_jocn_a_00473 crossref_primary_10_1016_j_neuroimage_2006_01_030 crossref_primary_10_1162_jocn_a_01328 crossref_primary_10_1002_lnc3_317 crossref_primary_10_1016_j_heares_2009_04_022 crossref_primary_10_1016_j_cortex_2024_07_002 crossref_primary_10_1016_j_brainres_2010_02_082 crossref_primary_10_1016_j_neuropsychologia_2017_06_026 crossref_primary_10_1080_02643290802247052 crossref_primary_10_1162_jocn_2007_19_3_525 crossref_primary_10_3389_fpsyg_2018_02455 crossref_primary_10_1016_j_biopsych_2011_01_015 crossref_primary_10_1016_j_neubiorev_2012_01_006 crossref_primary_10_2478_s13380_014_0208_8 crossref_primary_10_1038_nrneurol_2010_201 crossref_primary_10_1080_17470210701625550 crossref_primary_10_1590_S1980_57642014DN83000004 crossref_primary_10_1111_ejn_12097 crossref_primary_10_1007_s10548_008_0043_8 crossref_primary_10_1371_journal_pone_0065910 crossref_primary_10_1016_j_bandl_2011_05_004 crossref_primary_10_1111_j_1460_9568_2007_05668_x crossref_primary_10_1177_0956797612469209 crossref_primary_10_3389_fpsyg_2019_02098 crossref_primary_10_3389_fpsyg_2016_00798 crossref_primary_10_7868_S0869813918100040 crossref_primary_10_1007_s13670_012_0007_4 crossref_primary_10_1016_j_physbeh_2013_08_010 crossref_primary_10_1016_j_neuropsychologia_2016_01_015 crossref_primary_10_1016_j_bandc_2015_06_006 crossref_primary_10_1002_dev_20504 crossref_primary_10_1162_jocn_2010_21486 crossref_primary_10_1016_j_biosystems_2009_01_006 crossref_primary_10_1016_j_cortex_2011_05_020 crossref_primary_10_1371_journal_pone_0067696 crossref_primary_10_3389_fnins_2019_00957 crossref_primary_10_1162_jocn_2009_21310 crossref_primary_10_3390_brainsci12010032 crossref_primary_10_1093_texcom_tgab040 crossref_primary_10_1371_journal_pone_0004508 crossref_primary_10_1109_MCI_2007_385365 crossref_primary_10_1111_j_1749_6632_2010_05442_x crossref_primary_10_1016_j_bandl_2009_08_002 crossref_primary_10_1093_cercor_bhaa178 crossref_primary_10_1016_j_sbspro_2012_10_049 crossref_primary_10_1016_j_ijpsycho_2018_03_016 crossref_primary_10_3917_lang_201_0111 crossref_primary_10_1017_langcog_2014_36 crossref_primary_10_3389_fpsyg_2015_01661 crossref_primary_10_1016_j_cognition_2014_10_004 crossref_primary_10_4000_tipa_4879 crossref_primary_10_1371_journal_pone_0251448 crossref_primary_10_3389_fphar_2017_00438 crossref_primary_10_1016_j_bandl_2013_01_008 crossref_primary_10_1080_17470210701623829 crossref_primary_10_1016_j_cortex_2010_11_001 crossref_primary_10_1016_j_bandl_2023_105298 crossref_primary_10_3389_fcomm_2021_590077 crossref_primary_10_1111_j_1756_8765_2010_01106_x crossref_primary_10_1111_j_1469_8986_2012_01447_x crossref_primary_10_1016_j_neuroimage_2010_06_071 crossref_primary_10_1016_j_cognition_2016_01_011 crossref_primary_10_1038_s41598_022_19416_w crossref_primary_10_1016_j_bandl_2008_11_002 crossref_primary_10_1016_j_neuropsychologia_2012_07_012 crossref_primary_10_1016_j_neuropsychologia_2024_108800 crossref_primary_10_1093_cercor_bhu137 crossref_primary_10_1016_j_bandl_2007_03_004 crossref_primary_10_1016_j_cortex_2009_02_019 crossref_primary_10_30961_lr_2019_55_2_253 crossref_primary_10_1080_23273798_2016_1190023 crossref_primary_10_1162_jocn_2006_18_10_1607 crossref_primary_10_1016_j_neuropsychologia_2011_01_003 crossref_primary_10_1016_j_jneuroling_2011_03_004 crossref_primary_10_1111_jnp_12270 crossref_primary_10_1038_s41598_019_47835_9 crossref_primary_10_1027_0269_8803_21_34_176 crossref_primary_10_1016_j_cognition_2015_05_017 crossref_primary_10_1016_j_jneuroling_2013_01_002 crossref_primary_10_1111_psyp_12470 crossref_primary_10_1093_cercor_bhp115 crossref_primary_10_1162_jocn_2008_20123 crossref_primary_10_1016_j_neuroimage_2013_01_006 crossref_primary_10_1016_j_jneuroling_2015_01_001 crossref_primary_10_1080_02643290600926667 crossref_primary_10_1111_j_1551_6709_2009_01038_x crossref_primary_10_1016_j_neuroimage_2012_04_048 crossref_primary_10_1111_tops_12367 crossref_primary_10_3389_fnhum_2016_00435 crossref_primary_10_1111_psyp_13216 crossref_primary_10_1523_JNEUROSCI_2858_16_2016 crossref_primary_10_1146_annurev_neuro_071013_013950 crossref_primary_10_1073_pnas_1323158111 crossref_primary_10_1016_j_cogsys_2021_12_002 crossref_primary_10_1177_0031512519834389 crossref_primary_10_5765_jkacap_220042 crossref_primary_10_1093_cercor_bhr324 crossref_primary_10_3758_s13428_012_0242_9 crossref_primary_10_1007_s00426_011_0371_2 crossref_primary_10_1038_s41598_018_37877_w crossref_primary_10_1016_j_bandl_2013_05_015 crossref_primary_10_1038_nrn2811 crossref_primary_10_1016_j_neuropsychologia_2007_10_007 crossref_primary_10_1016_j_bandl_2012_07_005 crossref_primary_10_1016_j_bandl_2012_07_008 crossref_primary_10_1016_j_copsyc_2016_04_016 crossref_primary_10_1371_journal_pone_0108059 crossref_primary_10_1080_02687030701612213 crossref_primary_10_1016_j_brainres_2010_03_014 crossref_primary_10_1162_jocn_2009_21339 crossref_primary_10_1080_1751696X_2014_956010 crossref_primary_10_3389_fpsyg_2015_00659 crossref_primary_10_1016_j_bandl_2016_05_006 crossref_primary_10_3389_fpsyg_2017_02136 crossref_primary_10_1080_02687030903515362 crossref_primary_10_1016_j_neuropsychologia_2015_08_020 crossref_primary_10_1162_jocn_a_00669 crossref_primary_10_1007_s00426_012_0411_6 crossref_primary_10_1016_j_cognition_2006_03_001 |
Cites_doi | 10.1016/S0896-6273(03)00838-9 10.1097/00001756-200008210-00036 10.1038/35090060 10.1038/379649a0 10.1016/S1364-6613(00)01803-9 10.1016/S0896-6273(04)00004-2 10.1016/S0166-2236(02)00037-1 10.1006/nimg.2001.0970 10.1006/nimg.2001.0864 10.1046/j.1469-7580.2000.19730335.x 10.1016/j.tics.2003.09.010 10.1038/385432a0 10.1162/089892903322598148 10.1046/j.0953-816X.2000.01380.x 10.1006/nimg.1999.0454 10.1103/RevModPhys.65.413 10.1016/0010-0277(87)90005-9 10.1016/S0959-4388(00)00196-3 10.1111/1469-8986.3810114 10.1097/00001756-200203250-00033 10.1016/0028-3932(71)90067-4 10.1016/S0926-6410(97)00033-5 10.1007/BF01128686 10.1016/S0896-6273(02)01060-7 10.1111/j.1460-9568.1996.tb01580.x 10.1016/S0166-2236(00)01790-2 10.1002/hbm.10157 10.1016/S1053-8119(03)00356-2 |
ContentType | Journal Article |
Copyright | 2005 INIST-CNRS Copyright MIT Press Journals Jun 2005 |
Copyright_xml | – notice: 2005 INIST-CNRS – notice: Copyright MIT Press Journals Jun 2005 |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7QR 7TK 8FD FR3 K9. P64 7X8 7T9 |
DOI | 10.1162/0898929054021111 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Chemoreception Abstracts Neurosciences Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biotechnology and BioEngineering Abstracts MEDLINE - Academic Linguistics and Language Behavior Abstracts (LLBA) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Chemoreception Abstracts Engineering Research Database Technology Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts MEDLINE - Academic Linguistics and Language Behavior Abstracts (LLBA) |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) MEDLINE MEDLINE - Academic Linguistics and Language Behavior Abstracts (LLBA) CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Psychology |
EISSN | 1530-8898 |
EndPage | 892 |
ExternalDocumentID | 852112651 15969907 16833729 10_1162_0898929054021111 0898929054021111.pdf |
Genre | Clinical Trial Research Support, Non-U.S. Gov't Journal Article Feature |
GroupedDBID | --- -DZ -~X .DC .GJ 0R~ 36B 4.4 53G 5GY 5RE 6IK AAJGR ABDBF ABDNZ ABIVO ABPIV ABTAH ACGFO ACHQT ACIWK ACPRK AEGXH AENEX AETEA AFHIN AHMBA AIAGR ALMA_UNASSIGNED_HOLDINGS AVWKF AZFZN BEFXN BFFAM BGNUA BKEBE BPEOZ CAG COF CS3 EAP EAS EBC EBD EBO EBS EJD EMB EMK EMOBN EPL EPS ESX F5P FAC FEDTE FNEHJ HVGLF HZ~ I-F IAO IEA IGS IHR IOF IPLJI IPY JAVBF MCG MINIK MKJ MVM N9A O9- OCL P0W P2P PK0 PQQKQ RMI RWL RXW S10 SV3 TAE TH9 TN5 TUS UHB UPT WG8 WH7 X7L XSW YBU YQT ZA5 ZWS ZXP ZY4 AAYXX ABAZT ABVLG ACUHS AEILP CITATION 08R 29K 9M8 ABPTK ACYGS AGJRR AI. BKOMP D-I FAS FJW IQODW ITC M43 ROL VH1 ZGI CGR CUY CVF ECM EIF NPM 7QR 7TK 8FD FR3 K9. P64 7X8 7T9 |
ID | FETCH-LOGICAL-c483t-5ded34064fe4e14c7cf6285122c9a43f15eea475b02a05f7e02b3cf7780b157d3 |
ISSN | 0898-929X |
IngestDate | Fri Sep 05 12:10:41 EDT 2025 Fri Sep 05 13:55:19 EDT 2025 Mon Jun 30 06:48:55 EDT 2025 Fri Jun 20 17:45:30 EDT 2025 Sun Oct 29 17:07:37 EDT 2023 Tue Jul 01 01:47:40 EDT 2025 Thu Apr 24 23:13:21 EDT 2025 Thu Mar 28 07:29:37 EDT 2024 Tue Mar 01 17:17:50 EST 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Keywords | Human Action Word Language Topography Central nervous system Cognition Recognition Encephalon |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c483t-5ded34064fe4e14c7cf6285122c9a43f15eea475b02a05f7e02b3cf7780b157d3 |
Notes | June, 2005 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-2 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
PMID | 15969907 |
PQID | 223076291 |
PQPubID | 37146 |
PageCount | 9 |
ParticipantIDs | crossref_citationtrail_10_1162_0898929054021111 mit_journals_10_1162_0898929054021111 proquest_miscellaneous_67962103 crossref_primary_10_1162_0898929054021111 proquest_journals_223076291 pascalfrancis_primary_16833729 pubmed_primary_15969907 mit_journals_jocnv17i6_302200_2021_11_08_zip_0898929054021111 proquest_miscellaneous_85629353 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2005-06-01 |
PublicationDateYYYYMMDD | 2005-06-01 |
PublicationDate_xml | – month: 06 year: 2005 text: 2005-06-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | One Rogers Street, Cambridge, MA 02142-1209, USA |
PublicationPlace_xml | – name: One Rogers Street, Cambridge, MA 02142-1209, USA – name: Cambridge, MA – name: United States – name: Cambridge |
PublicationTitle | Journal of cognitive neuroscience |
PublicationTitleAlternate | J Cogn Neurosci |
PublicationYear | 2005 |
Publisher | MIT Press MIT Press Journals, The |
Publisher_xml | – name: MIT Press – name: MIT Press Journals, The |
References | p_27 p_28 p_29 p_23 p_24 p_25 p_26 p_20 p_21 p_22 p_16 p_2 p_18 p_19 p_4 p_12 p_13 p_6 p_14 p_5 p_15 p_8 p_7 p_9 p_30 p_31 p_10 p_11 |
References_xml | – ident: p_5 doi: 10.1016/S0896-6273(03)00838-9 – ident: p_21 doi: 10.1097/00001756-200008210-00036 – ident: p_25 doi: 10.1038/35090060 – ident: p_10 doi: 10.1038/379649a0 – ident: p_19 doi: 10.1016/S1364-6613(00)01803-9 – ident: p_2 doi: 10.1016/S0896-6273(04)00004-2 – ident: p_26 doi: 10.1016/S0166-2236(02)00037-1 – ident: p_15 doi: 10.1006/nimg.2001.0970 – ident: p_22 doi: 10.1006/nimg.2001.0864 – ident: p_18 doi: 10.1046/j.1469-7580.2000.19730335.x – ident: p_27 doi: 10.1016/j.tics.2003.09.010 – ident: p_12 doi: 10.1038/385432a0 – ident: p_29 doi: 10.1162/089892903322598148 – ident: p_20 doi: 10.1046/j.0953-816X.2000.01380.x – ident: p_31 doi: 10.1006/nimg.1999.0454 – ident: p_4 doi: 10.1103/RevModPhys.65.413 – ident: p_8 doi: 10.1016/0010-0277(87)90005-9 – ident: p_9 doi: 10.1016/S0959-4388(00)00196-3 – ident: p_11 doi: 10.1111/1469-8986.3810114 – ident: p_28 doi: 10.1097/00001756-200203250-00033 – ident: p_14 doi: 10.1016/0028-3932(71)90067-4 – ident: p_30 doi: 10.1016/S0926-6410(97)00033-5 – ident: p_7 doi: 10.1007/BF01128686 – ident: p_16 doi: 10.1016/S0896-6273(02)01060-7 – ident: p_23 doi: 10.1111/j.1460-9568.1996.tb01580.x – ident: p_13 doi: 10.1016/S0166-2236(00)01790-2 – ident: p_6 doi: 10.1002/hbm.10157 – ident: p_24 doi: 10.1016/S1053-8119(03)00356-2 |
SSID | ssj0002564 |
Score | 2.3423278 |
Snippet | The brain basis of action words may be neuron ensembles binding language-and action-related information that are dispersed over both language-and... The brain basis of action words may be neuron ensembles binding language- and action-related information that are dispersed over both language- and... The brain basis of action words may be neuron ensembles binding language- & action-related information that are dispersed over both language- & action-related... |
SourceID | proquest pubmed pascalfrancis crossref mit |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 884 |
SubjectTerms | Acoustic Stimulation Adult Analysis of Variance Anatomical correlates of behavior Behavioral psychophysiology Biological and medical sciences Body/Body Parts Brain Brain Mapping Cognition & reasoning Female Frontal Lobe - physiology Fundamental and applied biological sciences. Psychology Humans Language Language Processing Lexical Access Magnetoencephalography Male Neuroimaging Techniques Neurolinguistics Neurons Psychology. Psychoanalysis. Psychiatry Psychology. Psychophysiology Recognition (Psychology) - physiology Reference Values Semantic Processing Temporal Lobe - physiology Verbal Behavior - physiology Word Meaning Word Recognition |
Title | Brain Signatures of Meaning Access in Action Word Recognition |
URI | https://direct.mit.edu/jocn/article/doi/10.1162/0898929054021111 https://www.ncbi.nlm.nih.gov/pubmed/15969907 https://www.proquest.com/docview/223076291 https://www.proquest.com/docview/67962103 https://www.proquest.com/docview/85629353 |
Volume | 17 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLdYd9kFwcZHGYwcAAmhsPgjTnLg0A6qgQRCbBO7RXZiQ9CaTGs6qfvreY7z0XTrxLhEVfJenPr9_Pxsvw-EXqUhV6GUkUu41i4oPOrKUHA3iLjESlPMlNka-PqNH56wL6f-aec6VEWXlPJ9cnVjXMn_SBXugVxNlOwdJNu-FG7Ab5AvXEHCcP0nGY9NfYd3R9kvm57T-rMoYbc6qkqI1XaGrQb-0wQG_mj8hWppXDdLO3-ipVSXrfS_V57UU3O8Pj5ooggnsNxO1VTkLdCOfpeLi-Ky0u_zztH48xl0TaammQ3pB7uzt-ngd85RjW6KQE_aKrgwjTS603PD0BaVbpVrsASiZU0Z2spwzaRrC-Jd1-fc5Ic1rUFjxrokuFHOvdTZK1Na62hYLXE4iVffsIE2SQDG1gBtjsYfx5N28gYLsMo41vy_5mSbk_3Vd_QsmY1pVhq_WjGDoaVtTZT1i5bKeDl-gO7X4nVGFkIP0T2Vb6OdEcCmmC6cN07lB1wdsGyjrXZOXOwgCzGng5hTaKeGmGMh5sBzCzHHQMxZgtgjdDL5dHxw6NYVN9yEhbR0_VSlFEw8phVTmCVBok2ILSYkiQSjGvtKCRb40iPC83WgPCJpooMg9CT2g5Q-RoO8yNVT5BAsZCq4kkJqRoFFMhYlHtZaJwrWJEO03_RenNTp6E1VlLN4ncyG6G3LcW5TsdxC-xoEEtdjdXYL3Yce3Z8iyS9xkPGYmhB0LyZAB6zAGF9l5zfw7_VE3n0YD6k5ER-i3QYDXSvERF9wEgH7y_YpqHVzVidyVcxnsdneJdij6ylCWLlE1AeKJxZaXdt-xMHIDJ7docN20VY3zp-jQXkxVy_A3C7lXj1E_gIoUchm |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Brain+Signatures+of+Meaning+Access+in+Action+Word+Recognition&rft.jtitle=Journal+of+cognitive+neuroscience&rft.au=Pulverm%C3%BCller%2C+Friedemann&rft.au=Shtyrov%2C+Yury&rft.au=Ilmoniemi%2C+Risto&rft.date=2005-06-01&rft.issn=0898-929X&rft.eissn=1530-8898&rft.volume=17&rft.issue=6&rft.spage=884&rft.epage=892&rft_id=info:doi/10.1162%2F0898929054021111&rft.externalDBID=n%2Fa&rft.externalDocID=10_1162_0898929054021111 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0898-929X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0898-929X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0898-929X&client=summon |