Brain Signatures of Meaning Access in Action Word Recognition

The brain basis of action words may be neuron ensembles binding language-and action-related information that are dispersed over both language-and action-related cortical areas. This predicts fast spreading of neuronal activity from language areas to specific sensorimotor areas when action words sema...

Full description

Saved in:
Bibliographic Details
Published inJournal of cognitive neuroscience Vol. 17; no. 6; pp. 884 - 892
Main Authors Pulvermüller, Friedemann, Shtyrov, Yury, Ilmoniemi, Risto
Format Journal Article
LanguageEnglish
Published One Rogers Street, Cambridge, MA 02142-1209, USA MIT Press 01.06.2005
MIT Press Journals, The
Subjects
Online AccessGet full text
ISSN0898-929X
1530-8898
DOI10.1162/0898929054021111

Cover

Abstract The brain basis of action words may be neuron ensembles binding language-and action-related information that are dispersed over both language-and action-related cortical areas. This predicts fast spreading of neuronal activity from language areas to specific sensorimotor areas when action words semantically related to different parts of the body are being perceived. To test this, fast neurophysiological imaging was applied to reveal spatiotemporal activity patterns elicited by words with different action-related meaning. Spoken words referring to actions involving the face or leg were presented while subjects engaged in a distraction task and their brain activity was recorded using high-density magnetoencephalography. Shortly after the words could be recognized as unique lexical items, objective source localization using minimum norm current estimates revealed activation in superior temporal (130 msec) and inferior frontocentral areas (142-146 msec). Face-word stimuli activated inferior frontocentral areas more strongly than leg words, whereas the reverse was found at superior central sites (170 msec), thus reflecting the cortical somatotopy of motor actions signified by the words. Significant correlations were found between local source strengths in the frontocentral cortex calculated for all participants and their semantic ratings of the stimulus words, thus further establishing a close relationship between word meaning access and neurophysiology. These results show that meaning access in action word recognition is an early automatic process reflected by spatiotemporal signatures of word-evoked activity. Word-related distributed neuronal assemblies with specific cortical topographies can explain the observed spatiotemporal dynamics reflecting word meaning access.
AbstractList The brain basis of action words may be neuron ensembles binding language- and action-related information that are dispersed over both language- and action-related cortical areas. This predicts fast spreading of neuronal activity from language areas to specific sensorimotor areas when action words semantically related to different parts of the body are being perceived. To test this, fast neurophysiological imaging was applied to reveal spatiotemporal activity patterns elicited by words with different action-related meaning. Spoken words referring to actions involving the face or leg were presented while subjects engaged in a distraction task and their brain activity was recorded using high-density magnetoencephalography. Shortly after the words could be recognized as unique lexical items, objective source localization using minimum norm current estimates revealed activation in superior temporal (130 msec) and inferior frontocentral areas (142-146 msec). Face-word stimuli activated inferior frontocentral areas more strongly than leg words, whereas the reverse was found at superior central sites (170 msec), thus reflecting the cortical somatotopy of motor actions signified by the words. Significant correlations were found between local source strengths in the frontocentral cortex calculated for all participants and their semantic ratings of the stimulus words, thus further establishing a close relationship between word meaning access and neurophysiology. These results show that meaning access in action word recognition is an early automatic process ref lected by spatiotemporal signatures of word-evoked activity. Word-related distributed neuronal assemblies with specific cortical topographies can explain the observed spatiotemporal dynamics reflecting word meaning access. [PUBLICATION ABSTRACT]
The brain basis of action words may be neuron ensembles binding language- and action-related information that are dispersed over both language- and action-related cortical areas. This predicts fast spreading of neuronal activity from language areas to specific sensorimotor areas when action words semantically related to different parts of the body are being perceived. To test this, fast neurophysiological imaging was applied to reveal spatiotemporal activity patterns elicited by words with different action-related meaning. Spoken words referring to actions involving the face or leg were presented while subjects engaged in a distraction task and their brain activity was recorded using high-density magnetoencephalography. Shortly after the words could be recognized as unique lexical items, objective source localization using minimum norm current estimates revealed activation in superior temporal (130 msec) and inferior frontocentral areas (142-146 msec). Face-word stimuli activated inferior frontocentral areas more strongly than leg words, whereas the reverse was found at superior central sites (170 msec), thus reflecting the cortical somatotopy of motor actions signified by the words. Significant correlations were found between local source strengths in the frontocentral cortex calculated for all participants and their semantic ratings of the stimulus words, thus further establishing a close relationship between word meaning access and neurophysiology. These results show that meaning access in action word recognition is an early automatic process ref lected by spatiotemporal signatures of word-evoked activity. Word-related distributed neuronal assemblies with specific cortical topographies can explain the observed spatiotemporal dynamics reflecting word meaning access.
The brain basis of action words may be neuron ensembles binding language- and action-related information that are dispersed over both language- and action-related cortical areas. This predicts fast spreading of neuronal activity from language areas to specific sensorimotor areas when action words semantically related to different parts of the body are being perceived. To test this, fast neurophysiological imaging was applied to reveal spatiotemporal activity patterns elicited by words with different action-related meaning. Spoken words referring to actions involving the face or leg were presented while subjects engaged in a distraction task and their brain activity was recorded using high-density magnetoencephalography. Shortly after the words could be recognized as unique lexical items, objective source localization using minimum norm current estimates revealed activation in superior temporal (130 msec) and inferior frontocentral areas (142-146 msec). Face-word stimuli activated inferior frontocentral areas more strongly than leg words, whereas the reverse was found at superior central sites (170 msec), thus reflecting the cortical somatotopy of motor actions signified by the words. Significant correlations were found between local source strengths in the frontocentral cortex calculated for all participants and their semantic ratings of the stimulus words, thus further establishing a close relationship between word meaning access and neurophysiology. These results show that meaning access in action word recognition is an early automatic process ref lected by spatiotemporal signatures of word-evoked activity. Word-related distributed neuronal assemblies with specific cortical topographies can explain the observed spatiotemporal dynamics reflecting word meaning access.The brain basis of action words may be neuron ensembles binding language- and action-related information that are dispersed over both language- and action-related cortical areas. This predicts fast spreading of neuronal activity from language areas to specific sensorimotor areas when action words semantically related to different parts of the body are being perceived. To test this, fast neurophysiological imaging was applied to reveal spatiotemporal activity patterns elicited by words with different action-related meaning. Spoken words referring to actions involving the face or leg were presented while subjects engaged in a distraction task and their brain activity was recorded using high-density magnetoencephalography. Shortly after the words could be recognized as unique lexical items, objective source localization using minimum norm current estimates revealed activation in superior temporal (130 msec) and inferior frontocentral areas (142-146 msec). Face-word stimuli activated inferior frontocentral areas more strongly than leg words, whereas the reverse was found at superior central sites (170 msec), thus reflecting the cortical somatotopy of motor actions signified by the words. Significant correlations were found between local source strengths in the frontocentral cortex calculated for all participants and their semantic ratings of the stimulus words, thus further establishing a close relationship between word meaning access and neurophysiology. These results show that meaning access in action word recognition is an early automatic process ref lected by spatiotemporal signatures of word-evoked activity. Word-related distributed neuronal assemblies with specific cortical topographies can explain the observed spatiotemporal dynamics reflecting word meaning access.
The brain basis of action words may be neuron ensembles binding language- & action-related information that are dispersed over both language- & action-related cortical areas. This predicts fast spreading of neuronal activity from language areas to specific sensorimotor areas when action words semantically related to different parts of the body are being perceived. To test this, fast neurophysiological imaging was applied to reveal spatiotemporal activity patterns elicited by words with different action-related meaning. Spoken words referring to actions involving the face or leg were presented while subjects engaged in a distraction task & their brain activity was recorded using high-density magnetoencephalography. Shortly after the words could be recognized as unique lexical items, objective source localization using minimum norm current estimates revealed activation in superior temporal (130 msec) & inferior frontocentral areas (142-146 msec). Face-word stimuli activated inferior frontocentral areas more strongly than leg words, whereas the reverse was found at superior central sites (170 msec), thus reflecting the cortical somatotopy of motor actions signified by the words. Significant correlations were found between local source strengths in the frontocentral cortex calculated for all participants & their semantic ratings of the stimulus words, thus further establishing a close relationship between word meaning access & neurophysiology. These results show that meaning access in action word recognition is an early automatic process reflected by spatiotemporal signatures of word-evoked activity. Word-related distributed neuronal assemblies with specific cortical topographies can explain the observed spatiotemporal dynamics reflecting word meaning access. 1 Table, 7 Figures, 31 References. Adapted from the source document
The brain basis of action words may be neuron ensembles binding language-and action-related information that are dispersed over both language-and action-related cortical areas. This predicts fast spreading of neuronal activity from language areas to specific sensorimotor areas when action words semantically related to different parts of the body are being perceived. To test this, fast neurophysiological imaging was applied to reveal spatiotemporal activity patterns elicited by words with different action-related meaning. Spoken words referring to actions involving the face or leg were presented while subjects engaged in a distraction task and their brain activity was recorded using high-density magnetoencephalography. Shortly after the words could be recognized as unique lexical items, objective source localization using minimum norm current estimates revealed activation in superior temporal (130 msec) and inferior frontocentral areas (142-146 msec). Face-word stimuli activated inferior frontocentral areas more strongly than leg words, whereas the reverse was found at superior central sites (170 msec), thus reflecting the cortical somatotopy of motor actions signified by the words. Significant correlations were found between local source strengths in the frontocentral cortex calculated for all participants and their semantic ratings of the stimulus words, thus further establishing a close relationship between word meaning access and neurophysiology. These results show that meaning access in action word recognition is an early automatic process reflected by spatiotemporal signatures of word-evoked activity. Word-related distributed neuronal assemblies with specific cortical topographies can explain the observed spatiotemporal dynamics reflecting word meaning access.
Author Pulvermüller, Friedemann
Shtyrov, Yury
Ilmoniemi, Risto
Author_xml – sequence: 1
  givenname: Friedemann
  surname: Pulvermüller
  fullname: Pulvermüller, Friedemann
  organization: MRC Cognition and Brain Sciences Unit, Cambridge, UK
– sequence: 2
  givenname: Yury
  surname: Shtyrov
  fullname: Shtyrov, Yury
  organization: MRC Cognition and Brain Sciences Unit, Cambridge, UK
– sequence: 3
  givenname: Risto
  surname: Ilmoniemi
  fullname: Ilmoniemi, Risto
  organization: Helsinki University Central Hospital and Nexstim Inc., Helsinki, Finland
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16833729$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/15969907$$D View this record in MEDLINE/PubMed
BookMark eNqFkdtrFDEUxoO02O3qu08yCPapoyf3yUMf1mqtUBG8oG8hm8ksWWaTNZkR6l9vhl0vLC3mJXC-3_cl55xTdBRicAg9wfACY0FeQqMaRRRwBgSX8wDNMKdQN6V-hGaTXBf92wk6zXkNAIQL9hCdYK6EUiBn6OJVMj5Un_wqmGFMLlexq947E3xYVQtrXc5V0Rd28DFUX2Nqq4_OxlXwU-EROu5Mn93j_T1HX67efL68rm8-vH13ubipLWvoUPPWtZSBYJ1jDjMrbSdIwzEhVhlGO8ydM0zyJRADvJMOyJLaTsoGlpjLls7R2S53m-L30eVBb3y2ru9NcHHMuuGCKMrpf0EhlSAYJvDZAbiOYwqlCU0IBVnycIGe7qFxuXGt3ia_MelW_x5fAZ7vAZOt6btkgvX5LycaSmX52RyJHWdTzDm5Tls_mGmCQxl_rzHoaZ_6cJ_FCAfGP9n3W17vLBv_T1PraMMPLL3QFAgB0KTgJaH49U-_vSvm_I6Ye1_9BXEMvfA
CODEN JCONEO
CitedBy_id crossref_primary_10_1016_j_neuropsychologia_2013_12_002
crossref_primary_10_1016_j_bandl_2008_12_001
crossref_primary_10_1016_j_neuropsychologia_2013_04_008
crossref_primary_10_1016_j_neuropsychologia_2014_06_019
crossref_primary_10_1016_j_bandl_2010_09_004
crossref_primary_10_1016_j_jneuroling_2011_09_001
crossref_primary_10_1016_j_neuropsychologia_2008_01_015
crossref_primary_10_1016_j_pneurobio_2017_07_001
crossref_primary_10_1016_j_brainres_2020_147010
crossref_primary_10_3758_s13428_020_01488_z
crossref_primary_10_1093_cercor_bhj060
crossref_primary_10_1016_j_bandl_2022_105081
crossref_primary_10_1016_j_neuropsychologia_2023_108602
crossref_primary_10_1080_23273798_2023_2232481
crossref_primary_10_1016_j_neuropsychologia_2012_02_005
crossref_primary_10_1162_jocn_2009_21292
crossref_primary_10_1016_j_cortex_2010_12_003
crossref_primary_10_1016_j_brainres_2012_10_004
crossref_primary_10_1111_cogs_13442
crossref_primary_10_1017_S135561770707110X
crossref_primary_10_1016_j_neuroimage_2006_03_037
crossref_primary_10_1111_j_1469_8986_2007_00514_x
crossref_primary_10_1016_j_bandl_2014_02_002
crossref_primary_10_1027_1618_3169_a000507
crossref_primary_10_3389_fnhum_2022_1008995
crossref_primary_10_1080_17470218_2011_605150
crossref_primary_10_1016_j_bandl_2018_02_003
crossref_primary_10_1016_j_neuroimage_2014_08_039
crossref_primary_10_1016_j_cortex_2011_10_005
crossref_primary_10_1097_WNR_0b013e3280b07ba1
crossref_primary_10_1027_1618_3169_a000031
crossref_primary_10_1371_journal_pone_0270352
crossref_primary_10_1016_j_neuroimage_2023_120254
crossref_primary_10_1177_0956797611412387
crossref_primary_10_1093_cercor_bhw026
crossref_primary_10_3389_fpsyg_2016_00031
crossref_primary_10_1016_j_bandl_2007_09_003
crossref_primary_10_1016_j_actpsy_2011_06_006
crossref_primary_10_1016_j_clinph_2022_10_010
crossref_primary_10_1016_j_neuroimage_2010_12_002
crossref_primary_10_1111_j_1749_6632_2011_06013_x
crossref_primary_10_1016_j_bandl_2013_12_001
crossref_primary_10_1016_j_jml_2017_04_005
crossref_primary_10_1016_j_neuroimage_2019_05_002
crossref_primary_10_1016_j_neulet_2013_09_021
crossref_primary_10_3389_fnhum_2014_00886
crossref_primary_10_1044_2020_JSLHR_20_00048
crossref_primary_10_1016_j_neubiorev_2016_07_033
crossref_primary_10_1111_psyp_13543
crossref_primary_10_1016_j_tics_2011_10_001
crossref_primary_10_1016_j_neuropsychologia_2008_09_017
crossref_primary_10_1111_tops_12155
crossref_primary_10_1016_j_neuroscience_2010_04_039
crossref_primary_10_1016_j_neuropsychologia_2020_107384
crossref_primary_10_1016_j_cortex_2017_10_021
crossref_primary_10_1093_cercor_bhr238
crossref_primary_10_3389_fnhum_2016_00591
crossref_primary_10_1002_ejsp_795
crossref_primary_10_1162_jocn_a_01038
crossref_primary_10_1016_j_jneuroling_2015_06_001
crossref_primary_10_1007_s10803_013_1858_z
crossref_primary_10_1016_j_neuropsychologia_2016_06_010
crossref_primary_10_1080_14427591_2011_575758
crossref_primary_10_1016_j_clinph_2010_03_053
crossref_primary_10_1016_j_bandl_2017_01_010
crossref_primary_10_1111_j_1460_9568_2008_06103_x
crossref_primary_10_1111_j_1469_8986_2008_00753_x
crossref_primary_10_1016_j_bandl_2009_11_004
crossref_primary_10_3758_s13423_024_02556_7
crossref_primary_10_1162_jocn_2010_21543
crossref_primary_10_1016_j_neuroimage_2011_11_011
crossref_primary_10_1007_s00426_020_01374_5
crossref_primary_10_1002_ejsp_662
crossref_primary_10_1002_ejsp_663
crossref_primary_10_1162_jocn_2008_20075
crossref_primary_10_1002_ejsp_661
crossref_primary_10_1523_JNEUROSCI_3579_08_2008
crossref_primary_10_3390_s22207734
crossref_primary_10_1111_cogs_12433
crossref_primary_10_1523_ENEURO_0052_20_2020
crossref_primary_10_1016_j_neuroimage_2015_01_018
crossref_primary_10_3390_bs5030353
crossref_primary_10_1016_j_neulet_2012_01_032
crossref_primary_10_1016_j_neuroimage_2011_06_077
crossref_primary_10_1371_journal_pone_0049099
crossref_primary_10_1093_scan_nsad033
crossref_primary_10_2139_ssrn_1974590
crossref_primary_10_1523_JNEUROSCI_2800_16_2017
crossref_primary_10_1016_j_neuropsychologia_2012_09_016
crossref_primary_10_1111_tops_12097
crossref_primary_10_1080_17470210701623605
crossref_primary_10_1093_cercor_bhs228
crossref_primary_10_1162_jocn_a_00168
crossref_primary_10_3389_fpsyg_2015_01690
crossref_primary_10_3389_fneur_2017_00400
crossref_primary_10_3758_s13414_015_1041_z
crossref_primary_10_1093_cercor_bhn217
crossref_primary_10_1093_cercor_bhl159
crossref_primary_10_1177_0261927X241234845
crossref_primary_10_3389_fpsyg_2022_1061990
crossref_primary_10_3389_fpsyg_2021_603075
crossref_primary_10_1007_s00426_012_0475_3
crossref_primary_10_1016_j_cortex_2017_11_021
crossref_primary_10_1016_j_nicl_2021_102568
crossref_primary_10_1016_j_neuroscience_2018_06_009
crossref_primary_10_1016_j_neuropsychologia_2016_07_004
crossref_primary_10_1016_j_neuropsychologia_2012_09_006
crossref_primary_10_1016_j_imavis_2016_06_007
crossref_primary_10_3389_fnhum_2021_683277
crossref_primary_10_1016_j_actpsy_2009_02_002
crossref_primary_10_1016_j_bbr_2013_11_025
crossref_primary_10_1016_j_jphysparis_2008_03_010
crossref_primary_10_1016_j_jphysparis_2008_03_014
crossref_primary_10_1016_j_bandl_2019_104714
crossref_primary_10_1016_j_jphysparis_2008_03_013
crossref_primary_10_3389_fnhum_2023_982849
crossref_primary_10_1016_j_jphysparis_2008_03_015
crossref_primary_10_1111_j_1467_9280_2009_02297_x
crossref_primary_10_1162_jocn_2007_19_10_1633
crossref_primary_10_1162_jocn_2007_19_4_684
crossref_primary_10_1016_j_bandl_2018_06_002
crossref_primary_10_1007_s11682_011_9139_y
crossref_primary_10_1016_j_tics_2013_06_004
crossref_primary_10_1016_j_pneurobio_2010_01_006
crossref_primary_10_1075_ml_10_1_01wur
crossref_primary_10_1016_j_neuroimage_2015_02_028
crossref_primary_10_1016_j_neuroimage_2007_03_035
crossref_primary_10_1016_j_cortex_2017_11_019
crossref_primary_10_1038_s41598_020_67539_9
crossref_primary_10_1016_j_cortex_2017_09_012
crossref_primary_10_1038_srep01928
crossref_primary_10_3758_s13423_014_0784_1
crossref_primary_10_1007_s10648_023_09835_0
crossref_primary_10_1093_cercor_bhm028
crossref_primary_10_1016_j_neuroimage_2012_02_041
crossref_primary_10_1016_j_pneurobio_2006_04_004
crossref_primary_10_3389_fnins_2023_1277129
crossref_primary_10_1016_j_neuropsychologia_2020_107629
crossref_primary_10_1016_j_jphysparis_2008_03_008
crossref_primary_10_1016_j_neuroimage_2011_12_020
crossref_primary_10_3390_bs11120162
crossref_primary_10_1111_j_1551_6709_2012_01268_x
crossref_primary_10_1016_j_sbspro_2012_01_032
crossref_primary_10_1016_j_cortex_2011_04_006
crossref_primary_10_1038_nrn1706
crossref_primary_10_1016_j_neuroimage_2009_07_065
crossref_primary_10_1080_17470210701625667
crossref_primary_10_1016_j_neuroimage_2019_05_071
crossref_primary_10_1162_jocn_a_00473
crossref_primary_10_1016_j_neuroimage_2006_01_030
crossref_primary_10_1162_jocn_a_01328
crossref_primary_10_1002_lnc3_317
crossref_primary_10_1016_j_heares_2009_04_022
crossref_primary_10_1016_j_cortex_2024_07_002
crossref_primary_10_1016_j_brainres_2010_02_082
crossref_primary_10_1016_j_neuropsychologia_2017_06_026
crossref_primary_10_1080_02643290802247052
crossref_primary_10_1162_jocn_2007_19_3_525
crossref_primary_10_3389_fpsyg_2018_02455
crossref_primary_10_1016_j_biopsych_2011_01_015
crossref_primary_10_1016_j_neubiorev_2012_01_006
crossref_primary_10_2478_s13380_014_0208_8
crossref_primary_10_1038_nrneurol_2010_201
crossref_primary_10_1080_17470210701625550
crossref_primary_10_1590_S1980_57642014DN83000004
crossref_primary_10_1111_ejn_12097
crossref_primary_10_1007_s10548_008_0043_8
crossref_primary_10_1371_journal_pone_0065910
crossref_primary_10_1016_j_bandl_2011_05_004
crossref_primary_10_1111_j_1460_9568_2007_05668_x
crossref_primary_10_1177_0956797612469209
crossref_primary_10_3389_fpsyg_2019_02098
crossref_primary_10_3389_fpsyg_2016_00798
crossref_primary_10_7868_S0869813918100040
crossref_primary_10_1007_s13670_012_0007_4
crossref_primary_10_1016_j_physbeh_2013_08_010
crossref_primary_10_1016_j_neuropsychologia_2016_01_015
crossref_primary_10_1016_j_bandc_2015_06_006
crossref_primary_10_1002_dev_20504
crossref_primary_10_1162_jocn_2010_21486
crossref_primary_10_1016_j_biosystems_2009_01_006
crossref_primary_10_1016_j_cortex_2011_05_020
crossref_primary_10_1371_journal_pone_0067696
crossref_primary_10_3389_fnins_2019_00957
crossref_primary_10_1162_jocn_2009_21310
crossref_primary_10_3390_brainsci12010032
crossref_primary_10_1093_texcom_tgab040
crossref_primary_10_1371_journal_pone_0004508
crossref_primary_10_1109_MCI_2007_385365
crossref_primary_10_1111_j_1749_6632_2010_05442_x
crossref_primary_10_1016_j_bandl_2009_08_002
crossref_primary_10_1093_cercor_bhaa178
crossref_primary_10_1016_j_sbspro_2012_10_049
crossref_primary_10_1016_j_ijpsycho_2018_03_016
crossref_primary_10_3917_lang_201_0111
crossref_primary_10_1017_langcog_2014_36
crossref_primary_10_3389_fpsyg_2015_01661
crossref_primary_10_1016_j_cognition_2014_10_004
crossref_primary_10_4000_tipa_4879
crossref_primary_10_1371_journal_pone_0251448
crossref_primary_10_3389_fphar_2017_00438
crossref_primary_10_1016_j_bandl_2013_01_008
crossref_primary_10_1080_17470210701623829
crossref_primary_10_1016_j_cortex_2010_11_001
crossref_primary_10_1016_j_bandl_2023_105298
crossref_primary_10_3389_fcomm_2021_590077
crossref_primary_10_1111_j_1756_8765_2010_01106_x
crossref_primary_10_1111_j_1469_8986_2012_01447_x
crossref_primary_10_1016_j_neuroimage_2010_06_071
crossref_primary_10_1016_j_cognition_2016_01_011
crossref_primary_10_1038_s41598_022_19416_w
crossref_primary_10_1016_j_bandl_2008_11_002
crossref_primary_10_1016_j_neuropsychologia_2012_07_012
crossref_primary_10_1016_j_neuropsychologia_2024_108800
crossref_primary_10_1093_cercor_bhu137
crossref_primary_10_1016_j_bandl_2007_03_004
crossref_primary_10_1016_j_cortex_2009_02_019
crossref_primary_10_30961_lr_2019_55_2_253
crossref_primary_10_1080_23273798_2016_1190023
crossref_primary_10_1162_jocn_2006_18_10_1607
crossref_primary_10_1016_j_neuropsychologia_2011_01_003
crossref_primary_10_1016_j_jneuroling_2011_03_004
crossref_primary_10_1111_jnp_12270
crossref_primary_10_1038_s41598_019_47835_9
crossref_primary_10_1027_0269_8803_21_34_176
crossref_primary_10_1016_j_cognition_2015_05_017
crossref_primary_10_1016_j_jneuroling_2013_01_002
crossref_primary_10_1111_psyp_12470
crossref_primary_10_1093_cercor_bhp115
crossref_primary_10_1162_jocn_2008_20123
crossref_primary_10_1016_j_neuroimage_2013_01_006
crossref_primary_10_1016_j_jneuroling_2015_01_001
crossref_primary_10_1080_02643290600926667
crossref_primary_10_1111_j_1551_6709_2009_01038_x
crossref_primary_10_1016_j_neuroimage_2012_04_048
crossref_primary_10_1111_tops_12367
crossref_primary_10_3389_fnhum_2016_00435
crossref_primary_10_1111_psyp_13216
crossref_primary_10_1523_JNEUROSCI_2858_16_2016
crossref_primary_10_1146_annurev_neuro_071013_013950
crossref_primary_10_1073_pnas_1323158111
crossref_primary_10_1016_j_cogsys_2021_12_002
crossref_primary_10_1177_0031512519834389
crossref_primary_10_5765_jkacap_220042
crossref_primary_10_1093_cercor_bhr324
crossref_primary_10_3758_s13428_012_0242_9
crossref_primary_10_1007_s00426_011_0371_2
crossref_primary_10_1038_s41598_018_37877_w
crossref_primary_10_1016_j_bandl_2013_05_015
crossref_primary_10_1038_nrn2811
crossref_primary_10_1016_j_neuropsychologia_2007_10_007
crossref_primary_10_1016_j_bandl_2012_07_005
crossref_primary_10_1016_j_bandl_2012_07_008
crossref_primary_10_1016_j_copsyc_2016_04_016
crossref_primary_10_1371_journal_pone_0108059
crossref_primary_10_1080_02687030701612213
crossref_primary_10_1016_j_brainres_2010_03_014
crossref_primary_10_1162_jocn_2009_21339
crossref_primary_10_1080_1751696X_2014_956010
crossref_primary_10_3389_fpsyg_2015_00659
crossref_primary_10_1016_j_bandl_2016_05_006
crossref_primary_10_3389_fpsyg_2017_02136
crossref_primary_10_1080_02687030903515362
crossref_primary_10_1016_j_neuropsychologia_2015_08_020
crossref_primary_10_1162_jocn_a_00669
crossref_primary_10_1007_s00426_012_0411_6
crossref_primary_10_1016_j_cognition_2006_03_001
Cites_doi 10.1016/S0896-6273(03)00838-9
10.1097/00001756-200008210-00036
10.1038/35090060
10.1038/379649a0
10.1016/S1364-6613(00)01803-9
10.1016/S0896-6273(04)00004-2
10.1016/S0166-2236(02)00037-1
10.1006/nimg.2001.0970
10.1006/nimg.2001.0864
10.1046/j.1469-7580.2000.19730335.x
10.1016/j.tics.2003.09.010
10.1038/385432a0
10.1162/089892903322598148
10.1046/j.0953-816X.2000.01380.x
10.1006/nimg.1999.0454
10.1103/RevModPhys.65.413
10.1016/0010-0277(87)90005-9
10.1016/S0959-4388(00)00196-3
10.1111/1469-8986.3810114
10.1097/00001756-200203250-00033
10.1016/0028-3932(71)90067-4
10.1016/S0926-6410(97)00033-5
10.1007/BF01128686
10.1016/S0896-6273(02)01060-7
10.1111/j.1460-9568.1996.tb01580.x
10.1016/S0166-2236(00)01790-2
10.1002/hbm.10157
10.1016/S1053-8119(03)00356-2
ContentType Journal Article
Copyright 2005 INIST-CNRS
Copyright MIT Press Journals Jun 2005
Copyright_xml – notice: 2005 INIST-CNRS
– notice: Copyright MIT Press Journals Jun 2005
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7TK
8FD
FR3
K9.
P64
7X8
7T9
DOI 10.1162/0898929054021111
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Chemoreception Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Linguistics and Language Behavior Abstracts (LLBA)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Chemoreception Abstracts
Engineering Research Database
Technology Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Linguistics and Language Behavior Abstracts (LLBA)
DatabaseTitleList ProQuest Health & Medical Complete (Alumni)
MEDLINE
MEDLINE - Academic
Linguistics and Language Behavior Abstracts (LLBA)

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Psychology
EISSN 1530-8898
EndPage 892
ExternalDocumentID 852112651
15969907
16833729
10_1162_0898929054021111
0898929054021111.pdf
Genre Clinical Trial
Research Support, Non-U.S. Gov't
Journal Article
Feature
GroupedDBID ---
-DZ
-~X
.DC
.GJ
0R~
36B
4.4
53G
5GY
5RE
6IK
AAJGR
ABDBF
ABDNZ
ABIVO
ABPIV
ABTAH
ACGFO
ACHQT
ACIWK
ACPRK
AEGXH
AENEX
AETEA
AFHIN
AHMBA
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AVWKF
AZFZN
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CAG
COF
CS3
EAP
EAS
EBC
EBD
EBO
EBS
EJD
EMB
EMK
EMOBN
EPL
EPS
ESX
F5P
FAC
FEDTE
FNEHJ
HVGLF
HZ~
I-F
IAO
IEA
IGS
IHR
IOF
IPLJI
IPY
JAVBF
MCG
MINIK
MKJ
MVM
N9A
O9-
OCL
P0W
P2P
PK0
PQQKQ
RMI
RWL
RXW
S10
SV3
TAE
TH9
TN5
TUS
UHB
UPT
WG8
WH7
X7L
XSW
YBU
YQT
ZA5
ZWS
ZXP
ZY4
AAYXX
ABAZT
ABVLG
ACUHS
AEILP
CITATION
08R
29K
9M8
ABPTK
ACYGS
AGJRR
AI.
BKOMP
D-I
FAS
FJW
IQODW
ITC
M43
ROL
VH1
ZGI
CGR
CUY
CVF
ECM
EIF
NPM
7QR
7TK
8FD
FR3
K9.
P64
7X8
7T9
ID FETCH-LOGICAL-c483t-5ded34064fe4e14c7cf6285122c9a43f15eea475b02a05f7e02b3cf7780b157d3
ISSN 0898-929X
IngestDate Fri Sep 05 12:10:41 EDT 2025
Fri Sep 05 13:55:19 EDT 2025
Mon Jun 30 06:48:55 EDT 2025
Fri Jun 20 17:45:30 EDT 2025
Sun Oct 29 17:07:37 EDT 2023
Tue Jul 01 01:47:40 EDT 2025
Thu Apr 24 23:13:21 EDT 2025
Thu Mar 28 07:29:37 EDT 2024
Tue Mar 01 17:17:50 EST 2022
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords Human
Action
Word
Language
Topography
Central nervous system
Cognition
Recognition
Encephalon
Language English
License CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c483t-5ded34064fe4e14c7cf6285122c9a43f15eea475b02a05f7e02b3cf7780b157d3
Notes June, 2005
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
PMID 15969907
PQID 223076291
PQPubID 37146
PageCount 9
ParticipantIDs crossref_citationtrail_10_1162_0898929054021111
mit_journals_10_1162_0898929054021111
proquest_miscellaneous_67962103
crossref_primary_10_1162_0898929054021111
proquest_journals_223076291
pascalfrancis_primary_16833729
pubmed_primary_15969907
mit_journals_jocnv17i6_302200_2021_11_08_zip_0898929054021111
proquest_miscellaneous_85629353
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2005-06-01
PublicationDateYYYYMMDD 2005-06-01
PublicationDate_xml – month: 06
  year: 2005
  text: 2005-06-01
  day: 01
PublicationDecade 2000
PublicationPlace One Rogers Street, Cambridge, MA 02142-1209, USA
PublicationPlace_xml – name: One Rogers Street, Cambridge, MA 02142-1209, USA
– name: Cambridge, MA
– name: United States
– name: Cambridge
PublicationTitle Journal of cognitive neuroscience
PublicationTitleAlternate J Cogn Neurosci
PublicationYear 2005
Publisher MIT Press
MIT Press Journals, The
Publisher_xml – name: MIT Press
– name: MIT Press Journals, The
References p_27
p_28
p_29
p_23
p_24
p_25
p_26
p_20
p_21
p_22
p_16
p_2
p_18
p_19
p_4
p_12
p_13
p_6
p_14
p_5
p_15
p_8
p_7
p_9
p_30
p_31
p_10
p_11
References_xml – ident: p_5
  doi: 10.1016/S0896-6273(03)00838-9
– ident: p_21
  doi: 10.1097/00001756-200008210-00036
– ident: p_25
  doi: 10.1038/35090060
– ident: p_10
  doi: 10.1038/379649a0
– ident: p_19
  doi: 10.1016/S1364-6613(00)01803-9
– ident: p_2
  doi: 10.1016/S0896-6273(04)00004-2
– ident: p_26
  doi: 10.1016/S0166-2236(02)00037-1
– ident: p_15
  doi: 10.1006/nimg.2001.0970
– ident: p_22
  doi: 10.1006/nimg.2001.0864
– ident: p_18
  doi: 10.1046/j.1469-7580.2000.19730335.x
– ident: p_27
  doi: 10.1016/j.tics.2003.09.010
– ident: p_12
  doi: 10.1038/385432a0
– ident: p_29
  doi: 10.1162/089892903322598148
– ident: p_20
  doi: 10.1046/j.0953-816X.2000.01380.x
– ident: p_31
  doi: 10.1006/nimg.1999.0454
– ident: p_4
  doi: 10.1103/RevModPhys.65.413
– ident: p_8
  doi: 10.1016/0010-0277(87)90005-9
– ident: p_9
  doi: 10.1016/S0959-4388(00)00196-3
– ident: p_11
  doi: 10.1111/1469-8986.3810114
– ident: p_28
  doi: 10.1097/00001756-200203250-00033
– ident: p_14
  doi: 10.1016/0028-3932(71)90067-4
– ident: p_30
  doi: 10.1016/S0926-6410(97)00033-5
– ident: p_7
  doi: 10.1007/BF01128686
– ident: p_16
  doi: 10.1016/S0896-6273(02)01060-7
– ident: p_23
  doi: 10.1111/j.1460-9568.1996.tb01580.x
– ident: p_13
  doi: 10.1016/S0166-2236(00)01790-2
– ident: p_6
  doi: 10.1002/hbm.10157
– ident: p_24
  doi: 10.1016/S1053-8119(03)00356-2
SSID ssj0002564
Score 2.3423278
Snippet The brain basis of action words may be neuron ensembles binding language-and action-related information that are dispersed over both language-and...
The brain basis of action words may be neuron ensembles binding language- and action-related information that are dispersed over both language- and...
The brain basis of action words may be neuron ensembles binding language- & action-related information that are dispersed over both language- & action-related...
SourceID proquest
pubmed
pascalfrancis
crossref
mit
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 884
SubjectTerms Acoustic Stimulation
Adult
Analysis of Variance
Anatomical correlates of behavior
Behavioral psychophysiology
Biological and medical sciences
Body/Body Parts
Brain
Brain Mapping
Cognition & reasoning
Female
Frontal Lobe - physiology
Fundamental and applied biological sciences. Psychology
Humans
Language
Language Processing
Lexical Access
Magnetoencephalography
Male
Neuroimaging Techniques
Neurolinguistics
Neurons
Psychology. Psychoanalysis. Psychiatry
Psychology. Psychophysiology
Recognition (Psychology) - physiology
Reference Values
Semantic Processing
Temporal Lobe - physiology
Verbal Behavior - physiology
Word Meaning
Word Recognition
Title Brain Signatures of Meaning Access in Action Word Recognition
URI https://direct.mit.edu/jocn/article/doi/10.1162/0898929054021111
https://www.ncbi.nlm.nih.gov/pubmed/15969907
https://www.proquest.com/docview/223076291
https://www.proquest.com/docview/67962103
https://www.proquest.com/docview/85629353
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLdYd9kFwcZHGYwcAAmhsPgjTnLg0A6qgQRCbBO7RXZiQ9CaTGs6qfvreY7z0XTrxLhEVfJenPr9_Pxsvw-EXqUhV6GUkUu41i4oPOrKUHA3iLjESlPMlNka-PqNH56wL6f-aec6VEWXlPJ9cnVjXMn_SBXugVxNlOwdJNu-FG7Ab5AvXEHCcP0nGY9NfYd3R9kvm57T-rMoYbc6qkqI1XaGrQb-0wQG_mj8hWppXDdLO3-ipVSXrfS_V57UU3O8Pj5ooggnsNxO1VTkLdCOfpeLi-Ky0u_zztH48xl0TaammQ3pB7uzt-ngd85RjW6KQE_aKrgwjTS603PD0BaVbpVrsASiZU0Z2spwzaRrC-Jd1-fc5Ic1rUFjxrokuFHOvdTZK1Na62hYLXE4iVffsIE2SQDG1gBtjsYfx5N28gYLsMo41vy_5mSbk_3Vd_QsmY1pVhq_WjGDoaVtTZT1i5bKeDl-gO7X4nVGFkIP0T2Vb6OdEcCmmC6cN07lB1wdsGyjrXZOXOwgCzGng5hTaKeGmGMh5sBzCzHHQMxZgtgjdDL5dHxw6NYVN9yEhbR0_VSlFEw8phVTmCVBok2ILSYkiQSjGvtKCRb40iPC83WgPCJpooMg9CT2g5Q-RoO8yNVT5BAsZCq4kkJqRoFFMhYlHtZaJwrWJEO03_RenNTp6E1VlLN4ncyG6G3LcW5TsdxC-xoEEtdjdXYL3Yce3Z8iyS9xkPGYmhB0LyZAB6zAGF9l5zfw7_VE3n0YD6k5ER-i3QYDXSvERF9wEgH7y_YpqHVzVidyVcxnsdneJdij6ylCWLlE1AeKJxZaXdt-xMHIDJ7docN20VY3zp-jQXkxVy_A3C7lXj1E_gIoUchm
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Brain+Signatures+of+Meaning+Access+in+Action+Word+Recognition&rft.jtitle=Journal+of+cognitive+neuroscience&rft.au=Pulverm%C3%BCller%2C+Friedemann&rft.au=Shtyrov%2C+Yury&rft.au=Ilmoniemi%2C+Risto&rft.date=2005-06-01&rft.issn=0898-929X&rft.eissn=1530-8898&rft.volume=17&rft.issue=6&rft.spage=884&rft.epage=892&rft_id=info:doi/10.1162%2F0898929054021111&rft.externalDBID=n%2Fa&rft.externalDocID=10_1162_0898929054021111
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0898-929X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0898-929X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0898-929X&client=summon