A neural network aerosol-typing algorithm based on lidar data
Atmospheric aerosols play a crucial role in the Earth's system, but their role is not completely understood, partly because of the large variability in their properties resulting from a large number of possible aerosol sources. Recently developed lidar-based techniques were able to retrieve the...
        Saved in:
      
    
          | Published in | Atmospheric chemistry and physics Vol. 18; no. 19; pp. 14511 - 14537 | 
|---|---|
| Main Authors | , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Katlenburg-Lindau
          Copernicus GmbH
    
        10.10.2018
     Copernicus Publications  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1680-7324 1680-7316 1680-7324  | 
| DOI | 10.5194/acp-18-14511-2018 | 
Cover
| Abstract | Atmospheric aerosols play a crucial role in the Earth's system,
but their role is not completely understood, partly because of the large
variability in their properties resulting from a large number of possible
aerosol sources. Recently developed lidar-based techniques were able to
retrieve the height distributions of optical and microphysical properties of
fine-mode and coarse-mode particles, providing the types of the aerosols. One
such technique is based on artificial neural networks (ANNs). In this
article, a Neural Network Aerosol Typing Algorithm Based on Lidar Data
(NATALI) was developed to estimate the most probable aerosol type from a set
of multispectral lidar data. The algorithm was adjusted to run on
the EARLINET 3β+2α(+1δ) profiles. The NATALI algorithm is
based on the ability of specialized ANNs to resolve the overlapping values of
the intensive optical parameters, calculated for each identified layer in the
multiwavelength Raman lidar profiles. The ANNs were trained using synthetic
data, for which a new aerosol model was developed. Two parallel typing
schemes were implemented in order to accommodate data sets containing (or not)
the measured linear particle depolarization ratios (LPDRs): (a) identification
of 14 aerosol mixtures (high-resolution typing) if the LPDR is available in
the input data files, and (b) identification of five predominant aerosol types
(low-resolution typing) if the LPDR is not provided. For each scheme, three
ANNs were run simultaneously, and a voting procedure selects the most
probable aerosol type. The whole algorithm has been integrated into a Python
application. The limitation of NATALI is that the results are strongly
dependent on the input data, and thus the outputs should be understood
accordingly. Additional applications of NATALI are feasible, e.g. testing the quality of
the optical data and identifying incorrect calibration or insufficient cloud
screening. Blind tests on EARLINET data samples showed the
capability of NATALI to retrieve the aerosol type from a large variety of
data, with different levels of quality and physical content. | 
    
|---|---|
| AbstractList | Atmospheric aerosols play a crucial role in the Earth's system, but their role is not completely understood, partly because of the large variability in their properties resulting from a large number of possible aerosol sources. Recently developed lidar-based techniques were able to retrieve the height distributions of optical and microphysical properties of fine-mode and coarse-mode particles, providing the types of the aerosols. One such technique is based on artificial neural networks (ANNs). In this article, a Neural Network Aerosol Typing Algorithm Based on Lidar Data (NATALI) was developed to estimate the most probable aerosol type from a set of multispectral lidar data. The algorithm was adjusted to run on the EARLINET 3β+2α(+1δ) profiles. The NATALI algorithm is based on the ability of specialized ANNs to resolve the overlapping values of the intensive optical parameters, calculated for each identified layer in the multiwavelength Raman lidar profiles. The ANNs were trained using synthetic data, for which a new aerosol model was developed. Two parallel typing schemes were implemented in order to accommodate data sets containing (or not) the measured linear particle depolarization ratios (LPDRs): (a) identification of 14 aerosol mixtures (high-resolution typing) if the LPDR is available in the input data files, and (b) identification of five predominant aerosol types (low-resolution typing) if the LPDR is not provided. For each scheme, three ANNs were run simultaneously, and a voting procedure selects the most probable aerosol type. The whole algorithm has been integrated into a Python application. The limitation of NATALI is that the results are strongly dependent on the input data, and thus the outputs should be understood accordingly. Additional applications of NATALI are feasible, e.g. testing the quality of the optical data and identifying incorrect calibration or insufficient cloud screening. Blind tests on EARLINET data samples showed the capability of NATALI to retrieve the aerosol type from a large variety of data, with different levels of quality and physical content. Atmospheric aerosols play a crucial role in the Earth's system, but their role is not completely understood, partly because of the large variability in their properties resulting from a large number of possible aerosol sources. Recently developed lidar-based techniques were able to retrieve the height distributions of optical and microphysical properties of fine-mode and coarse-mode particles, providing the types of the aerosols. One such technique is based on artificial neural networks (ANNs). In this article, a Neural Network Aerosol Typing Algorithm Based on Lidar Data (NATALI) was developed to estimate the most probable aerosol type from a set of multispectral lidar data. The algorithm was adjusted to run on the EARLINET 3β + 2α( + 1[delta]) profiles. The NATALI algorithm is based on the ability of specialized ANNs to resolve the overlapping values of the intensive optical parameters, calculated for each identified layer in the multiwavelength Raman lidar profiles. The ANNs were trained using synthetic data, for which a new aerosol model was developed. Two parallel typing schemes were implemented in order to accommodate data sets containing (or not) the measured linear particle depolarization ratios (LPDRs): (a) identification of 14 aerosol mixtures (high-resolution typing) if the LPDR is available in the input data files, and (b) identification of five predominant aerosol types (low-resolution typing) if the LPDR is not provided. For each scheme, three ANNs were run simultaneously, and a voting procedure selects the most probable aerosol type. The whole algorithm has been integrated into a Python application. The limitation of NATALI is that the results are strongly dependent on the input data, and thus the outputs should be understood accordingly. Additional applications of NATALI are feasible, e.g. testing the quality of the optical data and identifying incorrect calibration or insufficient cloud screening. Blind tests on EARLINET data samples showed the capability of NATALI to retrieve the aerosol type from a large variety of data, with different levels of quality and physical content. Atmospheric aerosols play a crucial role in the Earth's system, but their role is not completely understood, partly because of the large variability in their properties resulting from a large number of possible aerosol sources. Recently developed lidar-based techniques were able to retrieve the height distributions of optical and microphysical properties of fine-mode and coarse-mode particles, providing the types of the aerosols. One such technique is based on artificial neural networks (ANNs). In this article, a Neural Network Aerosol Typing Algorithm Based on Lidar Data (NATALI) was developed to estimate the most probable aerosol type from a set of multispectral lidar data. The algorithm was adjusted to run on the EARLINET 3β+2α(+1δ) profiles. The NATALI algorithm is based on the ability of specialized ANNs to resolve the overlapping values of the intensive optical parameters, calculated for each identified layer in the multiwavelength Raman lidar profiles. The ANNs were trained using synthetic data, for which a new aerosol model was developed. Two parallel typing schemes were implemented in order to accommodate data sets containing (or not) the measured linear particle depolarization ratios (LPDRs): (a) identification of 14 aerosol mixtures (high-resolution typing) if the LPDR is available in the input data files, and (b) identification of five predominant aerosol types (low-resolution typing) if the LPDR is not provided. For each scheme, three ANNs were run simultaneously, and a voting procedure selects the most probable aerosol type. The whole algorithm has been integrated into a Python application. The limitation of NATALI is that the results are strongly dependent on the input data, and thus the outputs should be understood accordingly. Additional applications of NATALI are feasible, e.g. testing the quality of the optical data and identifying incorrect calibration or insufficient cloud screening. Blind tests on EARLINET data samples showed the capability of NATALI to retrieve the aerosol type from a large variety of data, with different levels of quality and physical content. Atmospheric aerosols play a crucial role in the Earth's system, but their role is not completely understood, partly because of the large variability in their properties resulting from a large number of possible aerosol sources. Recently developed lidar-based techniques were able to retrieve the height distributions of optical and microphysical properties of fine-mode and coarse-mode particles, providing the types of the aerosols. One such technique is based on artificial neural networks (ANNs). In this article, a Neural Network Aerosol Typing Algorithm Based on Lidar Data (NATALI) was developed to estimate the most probable aerosol type from a set of multispectral lidar data. The algorithm was adjusted to run on the EARLINET 3β + 2α( + 1δ) profiles. The NATALI algorithm is based on the ability of specialized ANNs to resolve the overlapping values of the intensive optical parameters, calculated for each identified layer in the multiwavelength Raman lidar profiles. The ANNs were trained using synthetic data, for which a new aerosol model was developed. Two parallel typing schemes were implemented in order to accommodate data sets containing (or not) the measured linear particle depolarization ratios (LPDRs): (a) identification of 14 aerosol mixtures (high-resolution typing) if the LPDR is available in the input data files, and (b) identification of five predominant aerosol types (low-resolution typing) if the LPDR is not provided. For each scheme, three ANNs were run simultaneously, and a voting procedure selects the most probable aerosol type. The whole algorithm has been integrated into a Python application. The limitation of NATALI is that the results are strongly dependent on the input data, and thus the outputs should be understood accordingly. Additional applications of NATALI are feasible, e.g. testing the quality of the optical data and identifying incorrect calibration or insufficient cloud screening. Blind tests on EARLINET data samples showed the capability of NATALI to retrieve the aerosol type from a large variety of data, with different levels of quality and physical content.  | 
    
| Audience | Academic | 
    
| Author | Nicolae, Victor Andrei, Simona Vasilescu, Jeni Antonescu, Bogdan Nicolae, Doina Binietoglou, Ioannis Talianu, Camelia  | 
    
| Author_xml | – sequence: 1 givenname: Doina surname: Nicolae fullname: Nicolae, Doina – sequence: 2 givenname: Jeni orcidid: 0000-0002-1256-8838 surname: Vasilescu fullname: Vasilescu, Jeni – sequence: 3 givenname: Camelia surname: Talianu fullname: Talianu, Camelia – sequence: 4 givenname: Ioannis orcidid: 0000-0002-0065-9791 surname: Binietoglou fullname: Binietoglou, Ioannis – sequence: 5 givenname: Victor surname: Nicolae fullname: Nicolae, Victor – sequence: 6 givenname: Simona surname: Andrei fullname: Andrei, Simona – sequence: 7 givenname: Bogdan orcidid: 0000-0003-1788-8424 surname: Antonescu fullname: Antonescu, Bogdan  | 
    
| BookMark | eNqNkUuLFDEUhQsZwZnRH-CuwJWLGvOspBYumsFHw4DgYx1u3UrKtNWVMkkx9r83My1qi4hkccPlfCe5515UZ3OYbVU9peRK0k68AFwaqhsqJKUNI1Q_qM5pq0mjOBNnv90fVRcp7QhhklBxXr3c1LNdI0yl5NsQv9RgY0hhavJh8fNYwzSG6PPnfd1DskMd5nryA8R6gAyPq4cOpmSf_KiX1afXrz5ev21u3r3ZXm9uGhSa50ZItJ0GJYXoLCLvB63o4OTAmARgyLiWDAeJ0FmqEYEppYTrhJC9447yy2p79B0C7MwS_R7iwQTw5r4R4mggZo-TNY51EgWKVtpeUFS6d4RjMbScSNFD8WJHr3Ve4HAL0_TTkBJzF6YpYRqqzX2Y5i7MAj07QksMX1ebstmFNc5lZsMoVZwTJcgv1QjlJ352IUfAvU9oNlKqtmWkbYvq6i-qcga791jW6nzpnwDPT4CiyfZbHmFNyWw_vD_V0qMWyxZTtO6_hlN_MOgzZF-eieCnf5DfATCCwDQ | 
    
| CitedBy_id | crossref_primary_10_1109_TGRS_2022_3201436 crossref_primary_10_5194_acp_20_8909_2020 crossref_primary_10_5194_acp_25_1639_2025 crossref_primary_10_5194_amt_16_2055_2023 crossref_primary_10_5194_acp_20_9265_2020 crossref_primary_10_3390_rs13112219 crossref_primary_10_2166_wcc_2021_336 crossref_primary_10_5194_amt_14_391_2021 crossref_primary_10_3390_rs13245001 crossref_primary_10_3390_rs12172769 crossref_primary_10_5194_amt_16_2485_2023 crossref_primary_10_5194_acp_21_2211_2021 crossref_primary_10_5194_acp_19_6235_2019 crossref_primary_10_1016_j_infrared_2021_103852 crossref_primary_10_5194_acp_22_3931_2022 crossref_primary_10_1364_OE_393625 crossref_primary_10_3390_atmos13091445 crossref_primary_10_5194_amt_17_4137_2024 crossref_primary_10_5194_acp_19_13097_2019 crossref_primary_10_5194_acp_20_13905_2020 crossref_primary_10_5194_amt_15_4881_2022 crossref_primary_10_1051_epjconf_202023708003 crossref_primary_10_3390_rs15174318 crossref_primary_10_5194_gmd_15_509_2022 crossref_primary_10_3390_s22010158 crossref_primary_10_5194_acp_20_10775_2020 crossref_primary_10_5194_acp_24_5025_2024 crossref_primary_10_3390_rs14051217 crossref_primary_10_5194_amt_16_6025_2023 crossref_primary_10_3390_rs12060965 crossref_primary_10_3390_atmos10090482 crossref_primary_10_1029_2022RG000796 crossref_primary_10_5194_acp_20_8003_2020 crossref_primary_10_5194_acp_25_3191_2025 crossref_primary_10_5194_amt_16_2353_2023 crossref_primary_10_3390_rs13132512 crossref_primary_10_5194_acp_19_10961_2019 crossref_primary_10_5194_amt_17_693_2024 crossref_primary_10_3389_feart_2021_801020 crossref_primary_10_1364_OE_427864 crossref_primary_10_1364_OE_496794 crossref_primary_10_1016_j_jqsrt_2019_106692 crossref_primary_10_5194_acp_21_3015_2021 crossref_primary_10_5194_amt_17_6119_2024 crossref_primary_10_3390_rs12233969 crossref_primary_10_3390_rs14246208 crossref_primary_10_1016_j_atmosenv_2021_118346 crossref_primary_10_1029_2021EA001816  | 
    
| Cites_doi | 10.1029/2010JD014601 10.1364/AO.38.002358 10.5194/acp-16-7043-2016 10.1029/2004GL021105 10.1029/2010GL045999 10.1175/JAS-D-17-0034.1 10.5194/amt-5-73-2012 10.1007/s11356-016-6575-7 10.1175/JAS-D-16-0037.1 10.1175/1520-0477(1998)079<0831:OPOAAC>2.0.CO;2 10.5194/amt-10-4253-2017 10.1002/jgrd.50273 10.1175/1520-0469(2002)059<0590:VOAAOP>2.0.CO;2 10.1364/AO.41.002760 10.1103/PhysRevD.3.825 10.3390/ijerph13050508 10.5194/acp-15-8217-2015 10.1111/j.1600-0889.2011.00559.x 10.1051/epjconf/201817605005 10.1029/2004JD005756 10.1051/epjconf/201611901004 10.1007/s11869-015-0373-0 10.1073/pnas.1514043113 10.1111/j.1600-0889.2008.00390.x 10.5194/amt-6-3243-2013 10.1016/j.atmosenv.2017.09.022 10.2478/s11600-013-0167-4 10.1111/j.1600-0889.2008.00396.x 10.1016/S0034-4257(98)00031-5 10.1016/S1352-2310(99)00328-3 10.5194/acp-17-5931-2017 10.1016/j.atmosres.2011.08.002 10.5194/amt-7-419-2014 10.5194/acp-2018-370 10.5194/acp-11-2209-2011 10.1029/2009JD013099 10.1016/j.atmosenv.2011.06.017 10.5194/acp-16-11535-2016 10.1029/2002JD002862 10.1016/j.atmosenv.2016.06.002 10.5194/acp-15-13453-2015 10.5194/amt-6-1397-2013 10.1029/2003JD004153 10.1016/0030-4018(94)90731-5 10.5194/acp-12-3115-2012 10.1111/j.1600-0889.2011.00549.x 10.1109/34.824819 10.1364/AO.38.002346 10.1175/2009JTECHA1231.1 10.3390/rs9111199 10.1029/2009JD012147 10.5194/amt-5-1793-2012 10.1029/2008JD011497 10.5040/9781350392434 10.1364/AO.47.006734 10.1029/2009JD012520 10.1016/j.jqsrt.2016.06.034 10.1029/2004JD005124 10.5194/acp-13-2487-2013 10.5194/acp-16-5009-2016 10.1155/2012/356265 10.1029/2012JD018127 10.1029/2009JD011862 10.5194/acp-16-4987-2016 10.1007/s40641-017-0056-z 10.5194/amt-8-281-2015 10.1029/2011JD017090 10.1029/2012JD018338 10.5194/amt-7-3151-2014 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2 10.1126/science.1207374 10.5194/acp-10-11567-2010 10.5194/acp-13-6757-2013 10.1016/0022-4073(96)00002-7 10.1029/2009JD013472 10.5194/amt-3-569-2010 10.1007/s00521-012-1178-9 10.1002/2015JD023322 10.5194/amt-7-2389-2014 10.3390/rs10030412 10.1029/2000JD900408 10.1175/JAS-D-16-0361.1 10.1029/2001JD001109 10.1029/2010GL043809 10.1029/2007JD009028 10.5194/acp-15-11067-2015 10.1029/2006JD008292 10.5194/acp-18-5021-2018 10.1175/BAMS-D-14-00110.1 10.5194/acp-18-11375-2018 10.1029/2010JD014139 10.5194/amt-11-1119-2018 10.5194/acp-16-2341-2016 10.1111/j.1600-0889.2011.00556.x 10.1029/2000JD000202 10.1016/j.atmosenv.2004.12.029 10.1016/j.atmosres.2012.09.021 10.1016/j.atmosres.2007.03.006 10.30638/eemj.2017.223 10.1016/S0021-8502(03)00361-6 10.1002/jgrd.50324 10.5194/acp-13-10609-2013 10.1016/j.jcp.2015.06.045  | 
    
| ContentType | Journal Article | 
    
| Copyright | COPYRIGHT 2018 Copernicus GmbH 2018. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| Copyright_xml | – notice: COPYRIGHT 2018 Copernicus GmbH – notice: 2018. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| DBID | AAYXX CITATION ISR 7QH 7TG 7TN 7UA 8FD 8FE 8FG ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BENPR BFMQW BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W GNUQQ H8D H96 HCIFZ KL. L.G L7M P5Z P62 PATMY PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PYCSY ADTOC UNPAY DOA  | 
    
| DOI | 10.5194/acp-18-14511-2018 | 
    
| DatabaseName | CrossRef Gale In Context: Science Aqualine Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Water Resources Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Continental Europe Database Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central Student Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection (Proquest) Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Environmental Science Collection Unpaywall for CDI: Periodical Content Unpaywall Openly Available Collection - DOAJ  | 
    
| DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences Aerospace Database ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Continental Europe Database ProQuest SciTech Collection Aqualine Environmental Science Collection Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Environmental Science Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New)  | 
    
| DatabaseTitleList | Publicly Available Content Database CrossRef  | 
    
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Meteorology & Climatology | 
    
| EISSN | 1680-7324 | 
    
| EndPage | 14537 | 
    
| ExternalDocumentID | oai_doaj_org_article_f295c4c465eb41c78bf03c277e3054ba 10.5194/acp-18-14511-2018 A557662066 10_5194_acp_18_14511_2018  | 
    
| GroupedDBID | 23N 2WC 4P2 5GY 5VS 6J9 7XC 8FE 8FG 8FH 8R4 8R5 AAFWJ AAYXX ABUWG ACGFO ADBBV AENEX AEUYN AFKRA AFPKN AFRAH AHGZY AIAGR ALMA_UNASSIGNED_HOLDINGS ARAPS ATCPS BCNDV BENPR BFMQW BGLVJ BHPHI BKSAR BPHCQ CCPQU CITATION D1K E3Z EBS EDH EJD FD6 GROUPED_DOAJ GX1 H13 HCIFZ HH5 IAO IEA IPNFZ ISR ITC K6- KQ8 OK1 OVT P2P P62 PATMY PCBAR PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PUEGO PYCSY Q2X RIG RKB RNS TR2 XSB ~02 7QH 7TG 7TN 7UA 8FD AZQEC C1K DWQXO F1W GNUQQ H8D H96 KL. L.G L7M PKEHL PQEST PQUKI ADTOC C1A UNPAY  | 
    
| ID | FETCH-LOGICAL-c483t-45ce98a75449ecc3bd871df5d225aa2c23852cd5ca9e18cca27774f9445bf3f13 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 1680-7324 1680-7316  | 
    
| IngestDate | Tue Oct 14 19:05:14 EDT 2025 Tue Aug 19 21:50:21 EDT 2025 Sat Jul 26 00:15:26 EDT 2025 Mon Oct 20 22:29:50 EDT 2025 Mon Oct 20 16:09:13 EDT 2025 Thu Oct 16 15:26:45 EDT 2025 Wed Oct 01 04:22:01 EDT 2025 Thu Apr 24 23:08:13 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 19 | 
    
| Language | English | 
    
| License | https://creativecommons.org/licenses/by/4.0 cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c483t-45ce98a75449ecc3bd871df5d225aa2c23852cd5ca9e18cca27774f9445bf3f13 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0002-0065-9791 0000-0003-1788-8424 0000-0002-1256-8838  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://acp.copernicus.org/articles/18/14511/2018/acp-18-14511-2018.pdf | 
    
| PQID | 2117330740 | 
    
| PQPubID | 105744 | 
    
| PageCount | 27 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_f295c4c465eb41c78bf03c277e3054ba unpaywall_primary_10_5194_acp_18_14511_2018 proquest_journals_2117330740 gale_infotracmisc_A557662066 gale_infotracacademiconefile_A557662066 gale_incontextgauss_ISR_A557662066 crossref_primary_10_5194_acp_18_14511_2018 crossref_citationtrail_10_5194_acp_18_14511_2018  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2018-10-10 | 
    
| PublicationDateYYYYMMDD | 2018-10-10 | 
    
| PublicationDate_xml | – month: 10 year: 2018 text: 2018-10-10 day: 10  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | Katlenburg-Lindau | 
    
| PublicationPlace_xml | – name: Katlenburg-Lindau | 
    
| PublicationTitle | Atmospheric chemistry and physics | 
    
| PublicationYear | 2018 | 
    
| Publisher | Copernicus GmbH Copernicus Publications  | 
    
| Publisher_xml | – name: Copernicus GmbH – name: Copernicus Publications  | 
    
| References | ref57 ref56 ref59 ref58 ref53 ref52 ref55 ref54 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref100 ref101 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref13 ref12 ref15 ref14 ref97 ref96 ref11 ref99 ref10 ref98 ref17 ref16 ref19 ref18 ref93 ref92 ref95 ref94 ref91 ref90 ref89 ref86 ref85 ref88 ref87 ref82 ref81 ref84 ref83 ref80 ref79 ref108 ref78 ref109 ref106 ref107 ref75 ref104 ref74 ref105 ref77 ref102 ref76 ref103 ref2 ref1 ref71 ref111 ref70 ref73 ref72 ref110 ref68 ref67 ref69 ref64 ref63 ref66 ref65 ref60 ref62 ref61  | 
    
| References_xml | – ident: ref48 doi: 10.1029/2010JD014601 – ident: ref62 – ident: ref65 doi: 10.1364/AO.38.002358 – ident: ref33 doi: 10.5194/acp-16-7043-2016 – ident: ref70 doi: 10.1029/2004GL021105 – ident: ref1 doi: 10.1029/2010GL045999 – ident: ref30 doi: 10.1175/JAS-D-17-0034.1 – ident: ref15 doi: 10.5194/amt-5-73-2012 – ident: ref84 doi: 10.1007/s11356-016-6575-7 – ident: ref24 doi: 10.1175/JAS-D-16-0037.1 – ident: ref43 doi: 10.1175/1520-0477(1998)079<0831:OPOAAC>2.0.CO;2 – ident: ref58 doi: 10.5194/amt-10-4253-2017 – ident: ref50 doi: 10.1002/jgrd.50273 – ident: ref23 doi: 10.1175/1520-0469(2002)059<0590:VOAAOP>2.0.CO;2 – ident: ref52 doi: 10.1364/AO.41.002760 – ident: ref110 doi: 10.1103/PhysRevD.3.825 – ident: ref109 doi: 10.3390/ijerph13050508 – ident: ref27 doi: 10.5194/acp-15-8217-2015 – ident: ref29 doi: 10.1111/j.1600-0889.2011.00559.x – ident: ref73 doi: 10.1051/epjconf/201817605005 – ident: ref66 doi: 10.1029/2004JD005756 – ident: ref108 doi: 10.1051/epjconf/201611901004 – ident: ref103 doi: 10.1007/s11869-015-0373-0 – ident: ref92 doi: 10.1073/pnas.1514043113 – ident: ref100 doi: 10.1111/j.1600-0889.2008.00390.x – ident: ref71 doi: 10.5194/amt-6-3243-2013 – ident: ref46 doi: 10.1016/j.atmosenv.2017.09.022 – ident: ref8 doi: 10.2478/s11600-013-0167-4 – ident: ref26 doi: 10.1111/j.1600-0889.2008.00396.x – ident: ref44 doi: 10.1016/S0034-4257(98)00031-5 – ident: ref88 doi: 10.1016/S1352-2310(99)00328-3 – ident: ref74 – ident: ref78 doi: 10.5194/acp-17-5931-2017 – ident: ref12 doi: 10.1016/j.atmosres.2011.08.002 – ident: ref17 doi: 10.5194/amt-7-419-2014 – ident: ref25 doi: 10.5194/acp-2018-370 – ident: ref28 doi: 10.5194/acp-11-2209-2011 – ident: ref87 doi: 10.1029/2009JD013099 – ident: ref35 doi: 10.1016/j.atmosenv.2011.06.017 – ident: ref38 doi: 10.5194/acp-16-11535-2016 – ident: ref97 doi: 10.1029/2002JD002862 – ident: ref41 doi: 10.1016/j.atmosenv.2016.06.002 – ident: ref18 doi: 10.5194/acp-15-13453-2015 – ident: ref16 doi: 10.5194/amt-6-1397-2013 – ident: ref69 doi: 10.1029/2003JD004153 – ident: ref59 doi: 10.1016/0030-4018(94)90731-5 – ident: ref93 doi: 10.5194/acp-12-3115-2012 – ident: ref101 doi: 10.1111/j.1600-0889.2011.00549.x – ident: ref45 doi: 10.1109/34.824819 – ident: ref85 doi: 10.1007/s11356-016-6575-7 – ident: ref64 doi: 10.1364/AO.38.002346 – ident: ref76 doi: 10.1175/2009JTECHA1231.1 – ident: ref94 doi: 10.3390/rs9111199 – ident: ref82 doi: 10.1029/2009JD012147 – ident: ref55 doi: 10.5194/amt-5-1793-2012 – ident: ref39 doi: 10.1029/2008JD011497 – ident: ref86 doi: 10.5040/9781350392434 – ident: ref40 doi: 10.1364/AO.47.006734 – ident: ref11 – ident: ref68 doi: 10.1029/2009JD012520 – ident: ref10 doi: 10.1016/j.jqsrt.2016.06.034 – ident: ref20 doi: 10.1029/2004JD005124 – ident: ref36 doi: 10.5194/acp-13-2487-2013 – ident: ref14 doi: 10.5194/acp-16-5009-2016 – ident: ref61 doi: 10.1155/2012/356265 – ident: ref32 doi: 10.1029/2012JD018127 – ident: ref99 doi: 10.1029/2009JD011862 – ident: ref13 doi: 10.5194/acp-16-4987-2016 – ident: ref54 doi: 10.1007/s40641-017-0056-z – ident: ref22 doi: 10.5194/amt-8-281-2015 – ident: ref102 doi: 10.1029/2011JD017090 – ident: ref106 – ident: ref6 doi: 10.1029/2012JD018338 – ident: ref98 doi: 10.5194/amt-7-3151-2014 – ident: ref49 doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2 – ident: ref53 doi: 10.1126/science.1207374 – ident: ref3 doi: 10.5194/acp-10-11567-2010 – ident: ref21 doi: 10.5194/acp-13-6757-2013 – ident: ref60 doi: 10.1016/0022-4073(96)00002-7 – ident: ref57 doi: 10.1029/2009JD013472 – ident: ref7 – ident: ref31 doi: 10.5194/amt-3-569-2010 – ident: ref2 doi: 10.1007/s00521-012-1178-9 – ident: ref47 doi: 10.1002/2015JD023322 – ident: ref83 doi: 10.5194/amt-7-2389-2014 – ident: ref95 doi: 10.3390/rs10030412 – ident: ref51 – ident: ref77 doi: 10.1029/2000JD900408 – ident: ref56 doi: 10.1175/JAS-D-16-0361.1 – ident: ref4 doi: 10.1029/2001JD001109 – ident: ref5 doi: 10.1029/2010GL043809 – ident: ref81 doi: 10.1029/2007JD009028 – ident: ref37 doi: 10.5194/acp-15-11067-2015 – ident: ref67 doi: 10.1029/2006JD008292 – ident: ref79 doi: 10.5194/acp-18-5021-2018 – ident: ref96 doi: 10.1175/BAMS-D-14-00110.1 – ident: ref104 doi: 10.5194/acp-18-11375-2018 – ident: ref105 doi: 10.1029/2010JD014139 – ident: ref42 – ident: ref9 doi: 10.5194/amt-11-1119-2018 – ident: ref80 doi: 10.5194/acp-16-2341-2016 – ident: ref34 doi: 10.1111/j.1600-0889.2011.00556.x – ident: ref107 doi: 10.1029/2000JD000202 – ident: ref90 doi: 10.1016/j.atmosenv.2004.12.029 – ident: ref19 doi: 10.1016/j.atmosres.2012.09.021 – ident: ref75 doi: 10.1016/j.atmosres.2007.03.006 – ident: ref63 doi: 10.30638/eemj.2017.223 – ident: ref91 doi: 10.1016/S0021-8502(03)00361-6 – ident: ref72 doi: 10.1002/jgrd.50324 – ident: ref111 doi: 10.5194/acp-13-10609-2013 – ident: ref89 doi: 10.1016/j.jcp.2015.06.045  | 
    
| SSID | ssj0025014 | 
    
| Score | 2.4936452 | 
    
| Snippet | Atmospheric aerosols play a crucial role in the Earth's system,
but their role is not completely understood, partly because of the large
variability in their... Atmospheric aerosols play a crucial role in the Earth's system, but their role is not completely understood, partly because of the large variability in their...  | 
    
| SourceID | doaj unpaywall proquest gale crossref  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database  | 
    
| StartPage | 14511 | 
    
| SubjectTerms | Aerosols Algorithms Artificial neural networks Atmospheric aerosols Atmospheric research Data Data processing Depolarization Earth Identification Identification and classification Lidar Methods Neural networks Optical properties Parameter identification Profiles Properties Ratios Resolution Typing  | 
    
| SummonAdditionalLinks | – databaseName: Openly Available Collection - DOAJ dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fi9QwEA5yL-qD-BOrdxJEFJRwbZO26YMP6-FxCueDenBvIZkk50Jtl90ucv_9zbTdZRfBe_Gx7aQ0k0lmvmbyDWNvQBE2rrywzuVC1UELayEXNS6FTlmiSKOzw-ffyrML9fWyuNwp9UU5YSM98Ki445jXBShQZRGcyqDSLqYS8qoKaKnKDaFRqusNmJqgFu2WEdQqdSqoNtO4n4nRijq2sBAZIici5kIboWofOx5pIO7_e3m-z-6u24W9_mObZsf_nD5kD6bAkc_GD37E7oT2MUvOMebtlsOvcf6WnzRzDECHqyfs44wTWSW2acdUb24DfkDXiP6aDklx21x1y3n_6zcnV-Z51_Jm7u2SU9boU3Zx-vnnyZmYiiUIUFr2QhUQam2Jz67GYZHOIxTysfA4Ya3NAV1zkYMvwNYh0zhuqMJKxVqpwkUZM_mMHbRdG54zXkpwWZVq0LFEeBm1lhGU9A6irFzwCUs3CjMwMYlTQYvGIKIgHRvUscm0GXRsSMcJe79tshhpNP4l_IlGYStIDNjDDbQLM9mFuc0uEvaaxtAQx0VLSTRXdr1amS8_vptZgSCrJB77hL2bhGKHPQA7nUlAPRAt1p7k4Z4kTkLYf7wxFTMtAiuD2LqSuIaqNGEftuZze_9f_I_-v2T36F3kZrP0kB30y3U4wvipd6-GqXIDkoMSyA priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3ra9RAEB_q9YP6QXxitMoioqAszWOTbD4UuZaWKvSQaqHfln2ehZic90D63zuTS84eQv2YZBKys7Mz89vHbwDeWkHYuHRcG5NyUXnJtbYpr9AVGqGJIo3ODp9NitML8eUyv9yByXAWhrZVDj6xc9SutTRHvo9ApUTsXYr40-wXp6pRtLo6lNDQfWkFd9BRjN2B3ZSYsUawe3g8-Xq-gWC0ikYQrJAxp5pN63VOzGLEvrYzniCiIsIutB2qAnIjUnWE_v-67ftwd9XM9PVvXdc34tLJQ3jQJ5RsvLaAR7Djm8cQnWEu3M67KXP2jh3VV5iYdldP4GDMiMQS32nWW8CZ9vgDbc2X13R4iul6ig1f_vjJKMQ51jasvnJ6zmg36VO4ODn-fnTK-yIK3AqZLbnIra-kJp67CrsrMw4hkgu5w4GsdWoxZOepdbnVlU8k9mdaYkYYKiFyE7KQZM9g1LSNfw6syKxJylhaGQqEnUHKLFiROWNDVhrvIogHhSnbM4xToYtaIdIgHSvUsUqk6nSsSMcRfNi8MlvTa9wmfEi9sBEkZuzuRjufqn6gqZBWuRVWFLk3IrGlNCHOLDbKo2cTRkfwhvpQEfdFQ5trpnq1WKjP387VOEfwVRC_fQTve6HQYgus7s8qoB6ILmtLcm9LEgen3X48mIrqncNC_TXlCD5uzOf_7X9x-8dewj2SosCaxHswWs5X_hVmTEvzuh8GfwAnvxCb priority: 102 providerName: ProQuest  | 
    
| Title | A neural network aerosol-typing algorithm based on lidar data | 
    
| URI | https://www.proquest.com/docview/2117330740 https://acp.copernicus.org/articles/18/14511/2018/acp-18-14511-2018.pdf https://doaj.org/article/f295c4c465eb41c78bf03c277e3054ba  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 18 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1680-7324 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0025014 issn: 1680-7324 databaseCode: HH5 dateStart: 20010101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1680-7324 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0025014 issn: 1680-7324 databaseCode: KQ8 dateStart: 20010101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1680-7324 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0025014 issn: 1680-7324 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1680-7324 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0025014 issn: 1680-7324 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVPQU databaseName: Continental Europe Database customDbUrl: eissn: 1680-7324 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0025014 issn: 1680-7324 databaseCode: BFMQW dateStart: 20100415 isFulltext: true titleUrlDefault: https://search.proquest.com/conteurope providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1680-7324 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0025014 issn: 1680-7324 databaseCode: BENPR dateStart: 20100415 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1680-7324 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0025014 issn: 1680-7324 databaseCode: 8FG dateStart: 20100415 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED9t7QPwwDciY1QRQiCB0uXDSZwHHrpp3UBqNQYV25NlO_FWkSVVmwqNv567JC2USSAknpK650rnu5zvl979DPBSM8LGcepIpXyHJRl3pNS-k2AoVEwSRRr1Do_G0fGEfTgLz7bgaNULIzV1MsyyeTHVy0VDFNxWiO15fI_OlfUQsOMtSjoeIiAacWikP0vNNnSjEJPyDnQn45PBOcGtiLsOnc_0895nzf-bmL2wm7-zsUPVRP43w_UduLUsZvL6m8zzX_aj4T24XGnSlKF87S8r1dfffyN5_A-q3oe7bc5qD5ppD2ArKx6CNcJ0u5zXb-XtV_ZBPsXct_70CN4NbOLJxDlFU2Vuywx1LXOnuqb-LFvmF-V8Wl1e2bSLpnZZ2Pk0lXObClYfw2R4-Png2GnPaXA040HlsFBnCZdEpZegRwQqRRSWmjDFWCGlrzErCH2dhlommcfRZfwYk06TMBYqExgveAKdoiyyp2BHgVZe7HLNTYTI1nAeGM2CVGkTxCpLLXBXthG6JTGnszRygWCGzClwrYTHRb1WgtbKgjfrKbOGweNPwvtk8LUgkW_XA2gd0VpHGD8JNdMsCjPFPB1zZdxAo1IZBk-mpAUvyF0E0WsUVL9zIZeLhXj_6VQMQsR3EVHoW_C6FTIlaqBl2w6B60CMXBuSuxuS-Pzrza9XXina-LMQCOvjAMM3cy14u_bUv-u_80_Sz-A2XWgr99xd6FTzZfYcc7RK9WCbD4960N0_HJ-c0nU4-vilV7_x6LXP5g_7szY1 | 
    
| linkProvider | Unpaywall | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfG9jB4QHyKwAAL8SGBrOXDSZyHCnVjU8vWCo1N2ptnO3aZFJLSD0395_jbuEuTsgppPO2x7Tnqne27-8W-3xHy1nDExmnOlNYh45kVTCkTsgxcoeYKKdKwdngwTHpn_Ot5fL5Bfre1MHitsvWJtaPOK4PvyHcBqKSAvVPufx7_Ytg1Ck9X2xYaqmmtkHdqirGmsOPILq4Awk07_S8w3-_C8PDgdL_Hmi4DzHARzRiPjc2EQiK4DPSJdA4YIndxDitdqdBATItDk8dGZTYQoHCYQsrkMs5j7SIXRPDcO2SLRzwD8Le1dzD8drKCfHhqh5AvET7DHlHLc1XImviuMmMWAIJDgjBYq9h15FpkrBsI_Bsm7pHteTlWiytVFNfi4OEDcr9JYGl3ueIekg1bPiLeAHLvalK_oqfv6X5xCYlw_ekx6XQpkmbCmHJ55ZwqC3-gKthsgcVaVBUjMPTsx0-KITWnVUmLy1xNKN5efULObsWcT8lmWZX2GaFJZHSQ-sIIlwDMdUJEzvAo18ZFqba5R_zWYNI0jObYWKOQgGzQxhJsLAMhaxtLtLFHPq6GjJd0HjcJ7-EsrASRibv-opqMZLOxpQuz2HDDk9hqHphUaOdHBpSy4Em5Vh55g3MokWujxMs8IzWfTmX_-4nsxgD2EuTT98iHRshVoIFRTW0E2AHpudYkd9YkwRmY9Z_bpSIbZzSVf7eORz6tls__9X9-88Nek-3e6eBYHveHRy_IXRyBQT3wd8jmbDK3LyFbm-lXzZag5OK2d-EfOwNOOQ | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGkLg8IK4iMMBCXCSQ1VycxHmYUNkoK2MTgk3am7Edu0wKSWlTTf1r_DrOyaWsQhpPe2xrR_XxuX2xz3cIeWE4YuM0Z0rrkPHMCqaUCVkGrlBzhRRpWDt8cJjsHfNPJ_HJBvnd18LgtcreJzaOOq8MviMfAFBJAXun3B-47lrEl93Ru-kvhh2k8KS1b6fRqsi-XZ4BfJtvj3dhr1-G4ejD0c4e6zoMMMNFVDMeG5sJhSRwGawl0jngh9zFOWi5UqGBeBaHJo-NymwgYLFhCumSyziPtYtcEMFzr5CrKbK4Y5X66OMK7OF5HYK9RPgMu0O1J6qQL_GBMlMWAHZDajDQUuw3ci4mNq0D_g0QN8n1RTlVyzNVFOci4Og2udWlrnTY6todsmHLu8Q7gKy7mjUv5-krulOcQgrcfLpHtocU6TJhTtleNqfKwh-oClYvsUyLqmICYq1__KQYTHNalbQ4zdWM4r3V--T4UoT5gGyWVWkfEppERgepL4xwCQBcJ0TkDI9ybVyUapt7xO8FJk3HZY4tNQoJmAZlLEHGMhCykbFEGXvkzWrKtCXyuGjwe9yF1UDk4G6-qGYT2Zm0dGEWG254ElvNA5MK7fzIwKIs-FCulUee4x5KZNkoUV8najGfy_G3r3IYA8xLkEnfI6-7Qa6CFRjVVUWAHJCYa23k1tpIcANm_edeVWTnhubyr9F45O1Kff6__kcXP-wZuQa2Jz-PD_cfkxs4AaN54G-RzXq2sE8gTav108YeKPl-2Qb4BwkkS9M | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED-N7gF44BuRMZCFEEggd_lwEueBhzIxBtImBFQaT5bt2FtFllRtKjT-eu6atFAmgZB4SuKeK53vcr5fe_czwFMrCBvnJdfGxFwUTnKtbcwLDIVGaKJIo97ho-PscCzen6QnW_B21QujLXUyTN2sntjFvCMK7ivE9iK5R-fKRgjY8RYleYQIiEY4jQynpb8C21mKSfkAtsfHH0ZfCG5lMuR0PtPP-1h0_29i9iIuf8_GDrUk8r8crq_D1UU91RffdFX9sh8d3ISzlSZdGcrX4aI1Q_v9N5LH_6DqLbjR56xs1E27DVuuvgPBEabbzWz5qzx7xvarCea-y6e78GrEiCcT59RdlTnTDnVtKt5eUH8W09VpM5u0Z-eMdtGSNTWrJqWeMSpYvQfjgzef9w95f04Dt0ImLRepdYXURKVXoEckpkQUVvq0xFihdWwxK0hjW6ZWFy6S6DJxjkmnL4RIjU98lNyHQd3U7gGwLLEmykNppc8Q2XopE29FUhrrk9y4MoBwZRtlexJzOkujUghmyJwK10pFUi3XStFaBfBiPWXaMXj8Sfg1GXwtSOTbywG0juqto3xcpFZYkaXOiMjm0vgwsaiUw-ApjA7gCbmLInqNmup3TvViPlfvPn1UoxTxXUYU-gE874V8gxpY3bdD4DoQI9eG5O6GJL7_dvPjlVeqPv7MFcL6PMHwLcIAXq499e_67_yT9EO4RhfayqNwFwbtbOEeYY7Wmsf9-_cDX1IxIA | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+neural+network+aerosol-typing+algorithm+based+on+lidar+data&rft.jtitle=Atmospheric+chemistry+and+physics&rft.au=Nicolae%2C+Doina&rft.au=Vasilescu%2C+Jeni&rft.au=Talianu%2C+Camelia&rft.au=Binietoglou%2C+Ioannis&rft.date=2018-10-10&rft.pub=Copernicus+GmbH&rft.issn=1680-7316&rft.volume=18&rft.issue=19&rft.spage=14511&rft_id=info:doi/10.5194%2Facp-18-14511-2018&rft.externalDocID=A557662066 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1680-7324&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1680-7324&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1680-7324&client=summon |