A neural network aerosol-typing algorithm based on lidar data

Atmospheric aerosols play a crucial role in the Earth's system, but their role is not completely understood, partly because of the large variability in their properties resulting from a large number of possible aerosol sources. Recently developed lidar-based techniques were able to retrieve the...

Full description

Saved in:
Bibliographic Details
Published inAtmospheric chemistry and physics Vol. 18; no. 19; pp. 14511 - 14537
Main Authors Nicolae, Doina, Vasilescu, Jeni, Talianu, Camelia, Binietoglou, Ioannis, Nicolae, Victor, Andrei, Simona, Antonescu, Bogdan
Format Journal Article
LanguageEnglish
Published Katlenburg-Lindau Copernicus GmbH 10.10.2018
Copernicus Publications
Subjects
Online AccessGet full text
ISSN1680-7324
1680-7316
1680-7324
DOI10.5194/acp-18-14511-2018

Cover

Abstract Atmospheric aerosols play a crucial role in the Earth's system, but their role is not completely understood, partly because of the large variability in their properties resulting from a large number of possible aerosol sources. Recently developed lidar-based techniques were able to retrieve the height distributions of optical and microphysical properties of fine-mode and coarse-mode particles, providing the types of the aerosols. One such technique is based on artificial neural networks (ANNs). In this article, a Neural Network Aerosol Typing Algorithm Based on Lidar Data (NATALI) was developed to estimate the most probable aerosol type from a set of multispectral lidar data. The algorithm was adjusted to run on the EARLINET 3β+2α(+1δ) profiles. The NATALI algorithm is based on the ability of specialized ANNs to resolve the overlapping values of the intensive optical parameters, calculated for each identified layer in the multiwavelength Raman lidar profiles. The ANNs were trained using synthetic data, for which a new aerosol model was developed. Two parallel typing schemes were implemented in order to accommodate data sets containing (or not) the measured linear particle depolarization ratios (LPDRs): (a) identification of 14 aerosol mixtures (high-resolution typing) if the LPDR is available in the input data files, and (b) identification of five predominant aerosol types (low-resolution typing) if the LPDR is not provided. For each scheme, three ANNs were run simultaneously, and a voting procedure selects the most probable aerosol type. The whole algorithm has been integrated into a Python application. The limitation of NATALI is that the results are strongly dependent on the input data, and thus the outputs should be understood accordingly. Additional applications of NATALI are feasible, e.g. testing the quality of the optical data and identifying incorrect calibration or insufficient cloud screening. Blind tests on EARLINET data samples showed the capability of NATALI to retrieve the aerosol type from a large variety of data, with different levels of quality and physical content.
AbstractList Atmospheric aerosols play a crucial role in the Earth's system, but their role is not completely understood, partly because of the large variability in their properties resulting from a large number of possible aerosol sources. Recently developed lidar-based techniques were able to retrieve the height distributions of optical and microphysical properties of fine-mode and coarse-mode particles, providing the types of the aerosols. One such technique is based on artificial neural networks (ANNs). In this article, a Neural Network Aerosol Typing Algorithm Based on Lidar Data (NATALI) was developed to estimate the most probable aerosol type from a set of multispectral lidar data. The algorithm was adjusted to run on the EARLINET 3β+2α(+1δ) profiles. The NATALI algorithm is based on the ability of specialized ANNs to resolve the overlapping values of the intensive optical parameters, calculated for each identified layer in the multiwavelength Raman lidar profiles. The ANNs were trained using synthetic data, for which a new aerosol model was developed. Two parallel typing schemes were implemented in order to accommodate data sets containing (or not) the measured linear particle depolarization ratios (LPDRs): (a) identification of 14 aerosol mixtures (high-resolution typing) if the LPDR is available in the input data files, and (b) identification of five predominant aerosol types (low-resolution typing) if the LPDR is not provided. For each scheme, three ANNs were run simultaneously, and a voting procedure selects the most probable aerosol type. The whole algorithm has been integrated into a Python application. The limitation of NATALI is that the results are strongly dependent on the input data, and thus the outputs should be understood accordingly. Additional applications of NATALI are feasible, e.g. testing the quality of the optical data and identifying incorrect calibration or insufficient cloud screening. Blind tests on EARLINET data samples showed the capability of NATALI to retrieve the aerosol type from a large variety of data, with different levels of quality and physical content.
Atmospheric aerosols play a crucial role in the Earth's system, but their role is not completely understood, partly because of the large variability in their properties resulting from a large number of possible aerosol sources. Recently developed lidar-based techniques were able to retrieve the height distributions of optical and microphysical properties of fine-mode and coarse-mode particles, providing the types of the aerosols. One such technique is based on artificial neural networks (ANNs). In this article, a Neural Network Aerosol Typing Algorithm Based on Lidar Data (NATALI) was developed to estimate the most probable aerosol type from a set of multispectral lidar data. The algorithm was adjusted to run on the EARLINET 3β + 2α( + 1[delta]) profiles. The NATALI algorithm is based on the ability of specialized ANNs to resolve the overlapping values of the intensive optical parameters, calculated for each identified layer in the multiwavelength Raman lidar profiles. The ANNs were trained using synthetic data, for which a new aerosol model was developed. Two parallel typing schemes were implemented in order to accommodate data sets containing (or not) the measured linear particle depolarization ratios (LPDRs): (a) identification of 14 aerosol mixtures (high-resolution typing) if the LPDR is available in the input data files, and (b) identification of five predominant aerosol types (low-resolution typing) if the LPDR is not provided. For each scheme, three ANNs were run simultaneously, and a voting procedure selects the most probable aerosol type. The whole algorithm has been integrated into a Python application. The limitation of NATALI is that the results are strongly dependent on the input data, and thus the outputs should be understood accordingly. Additional applications of NATALI are feasible, e.g. testing the quality of the optical data and identifying incorrect calibration or insufficient cloud screening. Blind tests on EARLINET data samples showed the capability of NATALI to retrieve the aerosol type from a large variety of data, with different levels of quality and physical content.
Atmospheric aerosols play a crucial role in the Earth's system, but their role is not completely understood, partly because of the large variability in their properties resulting from a large number of possible aerosol sources. Recently developed lidar-based techniques were able to retrieve the height distributions of optical and microphysical properties of fine-mode and coarse-mode particles, providing the types of the aerosols. One such technique is based on artificial neural networks (ANNs). In this article, a Neural Network Aerosol Typing Algorithm Based on Lidar Data (NATALI) was developed to estimate the most probable aerosol type from a set of multispectral lidar data. The algorithm was adjusted to run on the EARLINET 3β+2α(+1δ) profiles. The NATALI algorithm is based on the ability of specialized ANNs to resolve the overlapping values of the intensive optical parameters, calculated for each identified layer in the multiwavelength Raman lidar profiles. The ANNs were trained using synthetic data, for which a new aerosol model was developed. Two parallel typing schemes were implemented in order to accommodate data sets containing (or not) the measured linear particle depolarization ratios (LPDRs): (a) identification of 14 aerosol mixtures (high-resolution typing) if the LPDR is available in the input data files, and (b) identification of five predominant aerosol types (low-resolution typing) if the LPDR is not provided. For each scheme, three ANNs were run simultaneously, and a voting procedure selects the most probable aerosol type. The whole algorithm has been integrated into a Python application. The limitation of NATALI is that the results are strongly dependent on the input data, and thus the outputs should be understood accordingly. Additional applications of NATALI are feasible, e.g. testing the quality of the optical data and identifying incorrect calibration or insufficient cloud screening. Blind tests on EARLINET data samples showed the capability of NATALI to retrieve the aerosol type from a large variety of data, with different levels of quality and physical content.
Atmospheric aerosols play a crucial role in the Earth's system, but their role is not completely understood, partly because of the large variability in their properties resulting from a large number of possible aerosol sources. Recently developed lidar-based techniques were able to retrieve the height distributions of optical and microphysical properties of fine-mode and coarse-mode particles, providing the types of the aerosols. One such technique is based on artificial neural networks (ANNs). In this article, a Neural Network Aerosol Typing Algorithm Based on Lidar Data (NATALI) was developed to estimate the most probable aerosol type from a set of multispectral lidar data. The algorithm was adjusted to run on the EARLINET 3β + 2α( + 1δ) profiles. The NATALI algorithm is based on the ability of specialized ANNs to resolve the overlapping values of the intensive optical parameters, calculated for each identified layer in the multiwavelength Raman lidar profiles. The ANNs were trained using synthetic data, for which a new aerosol model was developed. Two parallel typing schemes were implemented in order to accommodate data sets containing (or not) the measured linear particle depolarization ratios (LPDRs): (a) identification of 14 aerosol mixtures (high-resolution typing) if the LPDR is available in the input data files, and (b) identification of five predominant aerosol types (low-resolution typing) if the LPDR is not provided. For each scheme, three ANNs were run simultaneously, and a voting procedure selects the most probable aerosol type. The whole algorithm has been integrated into a Python application. The limitation of NATALI is that the results are strongly dependent on the input data, and thus the outputs should be understood accordingly. Additional applications of NATALI are feasible, e.g. testing the quality of the optical data and identifying incorrect calibration or insufficient cloud screening. Blind tests on EARLINET data samples showed the capability of NATALI to retrieve the aerosol type from a large variety of data, with different levels of quality and physical content.
Audience Academic
Author Nicolae, Victor
Andrei, Simona
Vasilescu, Jeni
Antonescu, Bogdan
Nicolae, Doina
Binietoglou, Ioannis
Talianu, Camelia
Author_xml – sequence: 1
  givenname: Doina
  surname: Nicolae
  fullname: Nicolae, Doina
– sequence: 2
  givenname: Jeni
  orcidid: 0000-0002-1256-8838
  surname: Vasilescu
  fullname: Vasilescu, Jeni
– sequence: 3
  givenname: Camelia
  surname: Talianu
  fullname: Talianu, Camelia
– sequence: 4
  givenname: Ioannis
  orcidid: 0000-0002-0065-9791
  surname: Binietoglou
  fullname: Binietoglou, Ioannis
– sequence: 5
  givenname: Victor
  surname: Nicolae
  fullname: Nicolae, Victor
– sequence: 6
  givenname: Simona
  surname: Andrei
  fullname: Andrei, Simona
– sequence: 7
  givenname: Bogdan
  orcidid: 0000-0003-1788-8424
  surname: Antonescu
  fullname: Antonescu, Bogdan
BookMark eNqNkUuLFDEUhQsZwZnRH-CuwJWLGvOspBYumsFHw4DgYx1u3UrKtNWVMkkx9r83My1qi4hkccPlfCe5515UZ3OYbVU9peRK0k68AFwaqhsqJKUNI1Q_qM5pq0mjOBNnv90fVRcp7QhhklBxXr3c1LNdI0yl5NsQv9RgY0hhavJh8fNYwzSG6PPnfd1DskMd5nryA8R6gAyPq4cOpmSf_KiX1afXrz5ev21u3r3ZXm9uGhSa50ZItJ0GJYXoLCLvB63o4OTAmARgyLiWDAeJ0FmqEYEppYTrhJC9447yy2p79B0C7MwS_R7iwQTw5r4R4mggZo-TNY51EgWKVtpeUFS6d4RjMbScSNFD8WJHr3Ve4HAL0_TTkBJzF6YpYRqqzX2Y5i7MAj07QksMX1ebstmFNc5lZsMoVZwTJcgv1QjlJ352IUfAvU9oNlKqtmWkbYvq6i-qcga791jW6nzpnwDPT4CiyfZbHmFNyWw_vD_V0qMWyxZTtO6_hlN_MOgzZF-eieCnf5DfATCCwDQ
CitedBy_id crossref_primary_10_1109_TGRS_2022_3201436
crossref_primary_10_5194_acp_20_8909_2020
crossref_primary_10_5194_acp_25_1639_2025
crossref_primary_10_5194_amt_16_2055_2023
crossref_primary_10_5194_acp_20_9265_2020
crossref_primary_10_3390_rs13112219
crossref_primary_10_2166_wcc_2021_336
crossref_primary_10_5194_amt_14_391_2021
crossref_primary_10_3390_rs13245001
crossref_primary_10_3390_rs12172769
crossref_primary_10_5194_amt_16_2485_2023
crossref_primary_10_5194_acp_21_2211_2021
crossref_primary_10_5194_acp_19_6235_2019
crossref_primary_10_1016_j_infrared_2021_103852
crossref_primary_10_5194_acp_22_3931_2022
crossref_primary_10_1364_OE_393625
crossref_primary_10_3390_atmos13091445
crossref_primary_10_5194_amt_17_4137_2024
crossref_primary_10_5194_acp_19_13097_2019
crossref_primary_10_5194_acp_20_13905_2020
crossref_primary_10_5194_amt_15_4881_2022
crossref_primary_10_1051_epjconf_202023708003
crossref_primary_10_3390_rs15174318
crossref_primary_10_5194_gmd_15_509_2022
crossref_primary_10_3390_s22010158
crossref_primary_10_5194_acp_20_10775_2020
crossref_primary_10_5194_acp_24_5025_2024
crossref_primary_10_3390_rs14051217
crossref_primary_10_5194_amt_16_6025_2023
crossref_primary_10_3390_rs12060965
crossref_primary_10_3390_atmos10090482
crossref_primary_10_1029_2022RG000796
crossref_primary_10_5194_acp_20_8003_2020
crossref_primary_10_5194_acp_25_3191_2025
crossref_primary_10_5194_amt_16_2353_2023
crossref_primary_10_3390_rs13132512
crossref_primary_10_5194_acp_19_10961_2019
crossref_primary_10_5194_amt_17_693_2024
crossref_primary_10_3389_feart_2021_801020
crossref_primary_10_1364_OE_427864
crossref_primary_10_1364_OE_496794
crossref_primary_10_1016_j_jqsrt_2019_106692
crossref_primary_10_5194_acp_21_3015_2021
crossref_primary_10_5194_amt_17_6119_2024
crossref_primary_10_3390_rs12233969
crossref_primary_10_3390_rs14246208
crossref_primary_10_1016_j_atmosenv_2021_118346
crossref_primary_10_1029_2021EA001816
Cites_doi 10.1029/2010JD014601
10.1364/AO.38.002358
10.5194/acp-16-7043-2016
10.1029/2004GL021105
10.1029/2010GL045999
10.1175/JAS-D-17-0034.1
10.5194/amt-5-73-2012
10.1007/s11356-016-6575-7
10.1175/JAS-D-16-0037.1
10.1175/1520-0477(1998)079<0831:OPOAAC>2.0.CO;2
10.5194/amt-10-4253-2017
10.1002/jgrd.50273
10.1175/1520-0469(2002)059<0590:VOAAOP>2.0.CO;2
10.1364/AO.41.002760
10.1103/PhysRevD.3.825
10.3390/ijerph13050508
10.5194/acp-15-8217-2015
10.1111/j.1600-0889.2011.00559.x
10.1051/epjconf/201817605005
10.1029/2004JD005756
10.1051/epjconf/201611901004
10.1007/s11869-015-0373-0
10.1073/pnas.1514043113
10.1111/j.1600-0889.2008.00390.x
10.5194/amt-6-3243-2013
10.1016/j.atmosenv.2017.09.022
10.2478/s11600-013-0167-4
10.1111/j.1600-0889.2008.00396.x
10.1016/S0034-4257(98)00031-5
10.1016/S1352-2310(99)00328-3
10.5194/acp-17-5931-2017
10.1016/j.atmosres.2011.08.002
10.5194/amt-7-419-2014
10.5194/acp-2018-370
10.5194/acp-11-2209-2011
10.1029/2009JD013099
10.1016/j.atmosenv.2011.06.017
10.5194/acp-16-11535-2016
10.1029/2002JD002862
10.1016/j.atmosenv.2016.06.002
10.5194/acp-15-13453-2015
10.5194/amt-6-1397-2013
10.1029/2003JD004153
10.1016/0030-4018(94)90731-5
10.5194/acp-12-3115-2012
10.1111/j.1600-0889.2011.00549.x
10.1109/34.824819
10.1364/AO.38.002346
10.1175/2009JTECHA1231.1
10.3390/rs9111199
10.1029/2009JD012147
10.5194/amt-5-1793-2012
10.1029/2008JD011497
10.5040/9781350392434
10.1364/AO.47.006734
10.1029/2009JD012520
10.1016/j.jqsrt.2016.06.034
10.1029/2004JD005124
10.5194/acp-13-2487-2013
10.5194/acp-16-5009-2016
10.1155/2012/356265
10.1029/2012JD018127
10.1029/2009JD011862
10.5194/acp-16-4987-2016
10.1007/s40641-017-0056-z
10.5194/amt-8-281-2015
10.1029/2011JD017090
10.1029/2012JD018338
10.5194/amt-7-3151-2014
10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
10.1126/science.1207374
10.5194/acp-10-11567-2010
10.5194/acp-13-6757-2013
10.1016/0022-4073(96)00002-7
10.1029/2009JD013472
10.5194/amt-3-569-2010
10.1007/s00521-012-1178-9
10.1002/2015JD023322
10.5194/amt-7-2389-2014
10.3390/rs10030412
10.1029/2000JD900408
10.1175/JAS-D-16-0361.1
10.1029/2001JD001109
10.1029/2010GL043809
10.1029/2007JD009028
10.5194/acp-15-11067-2015
10.1029/2006JD008292
10.5194/acp-18-5021-2018
10.1175/BAMS-D-14-00110.1
10.5194/acp-18-11375-2018
10.1029/2010JD014139
10.5194/amt-11-1119-2018
10.5194/acp-16-2341-2016
10.1111/j.1600-0889.2011.00556.x
10.1029/2000JD000202
10.1016/j.atmosenv.2004.12.029
10.1016/j.atmosres.2012.09.021
10.1016/j.atmosres.2007.03.006
10.30638/eemj.2017.223
10.1016/S0021-8502(03)00361-6
10.1002/jgrd.50324
10.5194/acp-13-10609-2013
10.1016/j.jcp.2015.06.045
ContentType Journal Article
Copyright COPYRIGHT 2018 Copernicus GmbH
2018. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2018 Copernicus GmbH
– notice: 2018. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ISR
7QH
7TG
7TN
7UA
8FD
8FE
8FG
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
GNUQQ
H8D
H96
HCIFZ
KL.
L.G
L7M
P5Z
P62
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PYCSY
ADTOC
UNPAY
DOA
DOI 10.5194/acp-18-14511-2018
DatabaseName CrossRef
Gale In Context: Science
Aqualine
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Water Resources Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Continental Europe Database
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection (Proquest)
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Environmental Science Collection
Unpaywall for CDI: Periodical Content
Unpaywall
Openly Available Collection - DOAJ
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Continental Europe Database
ProQuest SciTech Collection
Aqualine
Environmental Science Collection
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Environmental Science Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database

CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
EISSN 1680-7324
EndPage 14537
ExternalDocumentID oai_doaj_org_article_f295c4c465eb41c78bf03c277e3054ba
10.5194/acp-18-14511-2018
A557662066
10_5194_acp_18_14511_2018
GroupedDBID 23N
2WC
4P2
5GY
5VS
6J9
7XC
8FE
8FG
8FH
8R4
8R5
AAFWJ
AAYXX
ABUWG
ACGFO
ADBBV
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHGZY
AIAGR
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ATCPS
BCNDV
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
BPHCQ
CCPQU
CITATION
D1K
E3Z
EBS
EDH
EJD
FD6
GROUPED_DOAJ
GX1
H13
HCIFZ
HH5
IAO
IEA
IPNFZ
ISR
ITC
K6-
KQ8
OK1
OVT
P2P
P62
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PUEGO
PYCSY
Q2X
RIG
RKB
RNS
TR2
XSB
~02
7QH
7TG
7TN
7UA
8FD
AZQEC
C1K
DWQXO
F1W
GNUQQ
H8D
H96
KL.
L.G
L7M
PKEHL
PQEST
PQUKI
ADTOC
C1A
UNPAY
ID FETCH-LOGICAL-c483t-45ce98a75449ecc3bd871df5d225aa2c23852cd5ca9e18cca27774f9445bf3f13
IEDL.DBID UNPAY
ISSN 1680-7324
1680-7316
IngestDate Tue Oct 14 19:05:14 EDT 2025
Tue Aug 19 21:50:21 EDT 2025
Sat Jul 26 00:15:26 EDT 2025
Mon Oct 20 22:29:50 EDT 2025
Mon Oct 20 16:09:13 EDT 2025
Thu Oct 16 15:26:45 EDT 2025
Wed Oct 01 04:22:01 EDT 2025
Thu Apr 24 23:08:13 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 19
Language English
License https://creativecommons.org/licenses/by/4.0
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c483t-45ce98a75449ecc3bd871df5d225aa2c23852cd5ca9e18cca27774f9445bf3f13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0065-9791
0000-0003-1788-8424
0000-0002-1256-8838
OpenAccessLink https://proxy.k.utb.cz/login?url=https://acp.copernicus.org/articles/18/14511/2018/acp-18-14511-2018.pdf
PQID 2117330740
PQPubID 105744
PageCount 27
ParticipantIDs doaj_primary_oai_doaj_org_article_f295c4c465eb41c78bf03c277e3054ba
unpaywall_primary_10_5194_acp_18_14511_2018
proquest_journals_2117330740
gale_infotracmisc_A557662066
gale_infotracacademiconefile_A557662066
gale_incontextgauss_ISR_A557662066
crossref_primary_10_5194_acp_18_14511_2018
crossref_citationtrail_10_5194_acp_18_14511_2018
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-10-10
PublicationDateYYYYMMDD 2018-10-10
PublicationDate_xml – month: 10
  year: 2018
  text: 2018-10-10
  day: 10
PublicationDecade 2010
PublicationPlace Katlenburg-Lindau
PublicationPlace_xml – name: Katlenburg-Lindau
PublicationTitle Atmospheric chemistry and physics
PublicationYear 2018
Publisher Copernicus GmbH
Copernicus Publications
Publisher_xml – name: Copernicus GmbH
– name: Copernicus Publications
References ref57
ref56
ref59
ref58
ref53
ref52
ref55
ref54
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref100
ref101
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref13
ref12
ref15
ref14
ref97
ref96
ref11
ref99
ref10
ref98
ref17
ref16
ref19
ref18
ref93
ref92
ref95
ref94
ref91
ref90
ref89
ref86
ref85
ref88
ref87
ref82
ref81
ref84
ref83
ref80
ref79
ref108
ref78
ref109
ref106
ref107
ref75
ref104
ref74
ref105
ref77
ref102
ref76
ref103
ref2
ref1
ref71
ref111
ref70
ref73
ref72
ref110
ref68
ref67
ref69
ref64
ref63
ref66
ref65
ref60
ref62
ref61
References_xml – ident: ref48
  doi: 10.1029/2010JD014601
– ident: ref62
– ident: ref65
  doi: 10.1364/AO.38.002358
– ident: ref33
  doi: 10.5194/acp-16-7043-2016
– ident: ref70
  doi: 10.1029/2004GL021105
– ident: ref1
  doi: 10.1029/2010GL045999
– ident: ref30
  doi: 10.1175/JAS-D-17-0034.1
– ident: ref15
  doi: 10.5194/amt-5-73-2012
– ident: ref84
  doi: 10.1007/s11356-016-6575-7
– ident: ref24
  doi: 10.1175/JAS-D-16-0037.1
– ident: ref43
  doi: 10.1175/1520-0477(1998)079<0831:OPOAAC>2.0.CO;2
– ident: ref58
  doi: 10.5194/amt-10-4253-2017
– ident: ref50
  doi: 10.1002/jgrd.50273
– ident: ref23
  doi: 10.1175/1520-0469(2002)059<0590:VOAAOP>2.0.CO;2
– ident: ref52
  doi: 10.1364/AO.41.002760
– ident: ref110
  doi: 10.1103/PhysRevD.3.825
– ident: ref109
  doi: 10.3390/ijerph13050508
– ident: ref27
  doi: 10.5194/acp-15-8217-2015
– ident: ref29
  doi: 10.1111/j.1600-0889.2011.00559.x
– ident: ref73
  doi: 10.1051/epjconf/201817605005
– ident: ref66
  doi: 10.1029/2004JD005756
– ident: ref108
  doi: 10.1051/epjconf/201611901004
– ident: ref103
  doi: 10.1007/s11869-015-0373-0
– ident: ref92
  doi: 10.1073/pnas.1514043113
– ident: ref100
  doi: 10.1111/j.1600-0889.2008.00390.x
– ident: ref71
  doi: 10.5194/amt-6-3243-2013
– ident: ref46
  doi: 10.1016/j.atmosenv.2017.09.022
– ident: ref8
  doi: 10.2478/s11600-013-0167-4
– ident: ref26
  doi: 10.1111/j.1600-0889.2008.00396.x
– ident: ref44
  doi: 10.1016/S0034-4257(98)00031-5
– ident: ref88
  doi: 10.1016/S1352-2310(99)00328-3
– ident: ref74
– ident: ref78
  doi: 10.5194/acp-17-5931-2017
– ident: ref12
  doi: 10.1016/j.atmosres.2011.08.002
– ident: ref17
  doi: 10.5194/amt-7-419-2014
– ident: ref25
  doi: 10.5194/acp-2018-370
– ident: ref28
  doi: 10.5194/acp-11-2209-2011
– ident: ref87
  doi: 10.1029/2009JD013099
– ident: ref35
  doi: 10.1016/j.atmosenv.2011.06.017
– ident: ref38
  doi: 10.5194/acp-16-11535-2016
– ident: ref97
  doi: 10.1029/2002JD002862
– ident: ref41
  doi: 10.1016/j.atmosenv.2016.06.002
– ident: ref18
  doi: 10.5194/acp-15-13453-2015
– ident: ref16
  doi: 10.5194/amt-6-1397-2013
– ident: ref69
  doi: 10.1029/2003JD004153
– ident: ref59
  doi: 10.1016/0030-4018(94)90731-5
– ident: ref93
  doi: 10.5194/acp-12-3115-2012
– ident: ref101
  doi: 10.1111/j.1600-0889.2011.00549.x
– ident: ref45
  doi: 10.1109/34.824819
– ident: ref85
  doi: 10.1007/s11356-016-6575-7
– ident: ref64
  doi: 10.1364/AO.38.002346
– ident: ref76
  doi: 10.1175/2009JTECHA1231.1
– ident: ref94
  doi: 10.3390/rs9111199
– ident: ref82
  doi: 10.1029/2009JD012147
– ident: ref55
  doi: 10.5194/amt-5-1793-2012
– ident: ref39
  doi: 10.1029/2008JD011497
– ident: ref86
  doi: 10.5040/9781350392434
– ident: ref40
  doi: 10.1364/AO.47.006734
– ident: ref11
– ident: ref68
  doi: 10.1029/2009JD012520
– ident: ref10
  doi: 10.1016/j.jqsrt.2016.06.034
– ident: ref20
  doi: 10.1029/2004JD005124
– ident: ref36
  doi: 10.5194/acp-13-2487-2013
– ident: ref14
  doi: 10.5194/acp-16-5009-2016
– ident: ref61
  doi: 10.1155/2012/356265
– ident: ref32
  doi: 10.1029/2012JD018127
– ident: ref99
  doi: 10.1029/2009JD011862
– ident: ref13
  doi: 10.5194/acp-16-4987-2016
– ident: ref54
  doi: 10.1007/s40641-017-0056-z
– ident: ref22
  doi: 10.5194/amt-8-281-2015
– ident: ref102
  doi: 10.1029/2011JD017090
– ident: ref106
– ident: ref6
  doi: 10.1029/2012JD018338
– ident: ref98
  doi: 10.5194/amt-7-3151-2014
– ident: ref49
  doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
– ident: ref53
  doi: 10.1126/science.1207374
– ident: ref3
  doi: 10.5194/acp-10-11567-2010
– ident: ref21
  doi: 10.5194/acp-13-6757-2013
– ident: ref60
  doi: 10.1016/0022-4073(96)00002-7
– ident: ref57
  doi: 10.1029/2009JD013472
– ident: ref7
– ident: ref31
  doi: 10.5194/amt-3-569-2010
– ident: ref2
  doi: 10.1007/s00521-012-1178-9
– ident: ref47
  doi: 10.1002/2015JD023322
– ident: ref83
  doi: 10.5194/amt-7-2389-2014
– ident: ref95
  doi: 10.3390/rs10030412
– ident: ref51
– ident: ref77
  doi: 10.1029/2000JD900408
– ident: ref56
  doi: 10.1175/JAS-D-16-0361.1
– ident: ref4
  doi: 10.1029/2001JD001109
– ident: ref5
  doi: 10.1029/2010GL043809
– ident: ref81
  doi: 10.1029/2007JD009028
– ident: ref37
  doi: 10.5194/acp-15-11067-2015
– ident: ref67
  doi: 10.1029/2006JD008292
– ident: ref79
  doi: 10.5194/acp-18-5021-2018
– ident: ref96
  doi: 10.1175/BAMS-D-14-00110.1
– ident: ref104
  doi: 10.5194/acp-18-11375-2018
– ident: ref105
  doi: 10.1029/2010JD014139
– ident: ref42
– ident: ref9
  doi: 10.5194/amt-11-1119-2018
– ident: ref80
  doi: 10.5194/acp-16-2341-2016
– ident: ref34
  doi: 10.1111/j.1600-0889.2011.00556.x
– ident: ref107
  doi: 10.1029/2000JD000202
– ident: ref90
  doi: 10.1016/j.atmosenv.2004.12.029
– ident: ref19
  doi: 10.1016/j.atmosres.2012.09.021
– ident: ref75
  doi: 10.1016/j.atmosres.2007.03.006
– ident: ref63
  doi: 10.30638/eemj.2017.223
– ident: ref91
  doi: 10.1016/S0021-8502(03)00361-6
– ident: ref72
  doi: 10.1002/jgrd.50324
– ident: ref111
  doi: 10.5194/acp-13-10609-2013
– ident: ref89
  doi: 10.1016/j.jcp.2015.06.045
SSID ssj0025014
Score 2.4936452
Snippet Atmospheric aerosols play a crucial role in the Earth's system, but their role is not completely understood, partly because of the large variability in their...
Atmospheric aerosols play a crucial role in the Earth's system, but their role is not completely understood, partly because of the large variability in their...
SourceID doaj
unpaywall
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 14511
SubjectTerms Aerosols
Algorithms
Artificial neural networks
Atmospheric aerosols
Atmospheric research
Data
Data processing
Depolarization
Earth
Identification
Identification and classification
Lidar
Methods
Neural networks
Optical properties
Parameter identification
Profiles
Properties
Ratios
Resolution
Typing
SummonAdditionalLinks – databaseName: Openly Available Collection - DOAJ
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fi9QwEA5yL-qD-BOrdxJEFJRwbZO26YMP6-FxCueDenBvIZkk50Jtl90ucv_9zbTdZRfBe_Gx7aQ0k0lmvmbyDWNvQBE2rrywzuVC1UELayEXNS6FTlmiSKOzw-ffyrML9fWyuNwp9UU5YSM98Ki445jXBShQZRGcyqDSLqYS8qoKaKnKDaFRqusNmJqgFu2WEdQqdSqoNtO4n4nRijq2sBAZIici5kIboWofOx5pIO7_e3m-z-6u24W9_mObZsf_nD5kD6bAkc_GD37E7oT2MUvOMebtlsOvcf6WnzRzDECHqyfs44wTWSW2acdUb24DfkDXiP6aDklx21x1y3n_6zcnV-Z51_Jm7u2SU9boU3Zx-vnnyZmYiiUIUFr2QhUQam2Jz67GYZHOIxTysfA4Ya3NAV1zkYMvwNYh0zhuqMJKxVqpwkUZM_mMHbRdG54zXkpwWZVq0LFEeBm1lhGU9A6irFzwCUs3CjMwMYlTQYvGIKIgHRvUscm0GXRsSMcJe79tshhpNP4l_IlGYStIDNjDDbQLM9mFuc0uEvaaxtAQx0VLSTRXdr1amS8_vptZgSCrJB77hL2bhGKHPQA7nUlAPRAt1p7k4Z4kTkLYf7wxFTMtAiuD2LqSuIaqNGEftuZze_9f_I_-v2T36F3kZrP0kB30y3U4wvipd6-GqXIDkoMSyA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3ra9RAEB_q9YP6QXxitMoioqAszWOTbD4UuZaWKvSQaqHfln2ehZic90D63zuTS84eQv2YZBKys7Mz89vHbwDeWkHYuHRcG5NyUXnJtbYpr9AVGqGJIo3ODp9NitML8eUyv9yByXAWhrZVDj6xc9SutTRHvo9ApUTsXYr40-wXp6pRtLo6lNDQfWkFd9BRjN2B3ZSYsUawe3g8-Xq-gWC0ikYQrJAxp5pN63VOzGLEvrYzniCiIsIutB2qAnIjUnWE_v-67ftwd9XM9PVvXdc34tLJQ3jQJ5RsvLaAR7Djm8cQnWEu3M67KXP2jh3VV5iYdldP4GDMiMQS32nWW8CZ9vgDbc2X13R4iul6ig1f_vjJKMQ51jasvnJ6zmg36VO4ODn-fnTK-yIK3AqZLbnIra-kJp67CrsrMw4hkgu5w4GsdWoxZOepdbnVlU8k9mdaYkYYKiFyE7KQZM9g1LSNfw6syKxJylhaGQqEnUHKLFiROWNDVhrvIogHhSnbM4xToYtaIdIgHSvUsUqk6nSsSMcRfNi8MlvTa9wmfEi9sBEkZuzuRjufqn6gqZBWuRVWFLk3IrGlNCHOLDbKo2cTRkfwhvpQEfdFQ5trpnq1WKjP387VOEfwVRC_fQTve6HQYgus7s8qoB6ILmtLcm9LEgen3X48mIrqncNC_TXlCD5uzOf_7X9x-8dewj2SosCaxHswWs5X_hVmTEvzuh8GfwAnvxCb
  priority: 102
  providerName: ProQuest
Title A neural network aerosol-typing algorithm based on lidar data
URI https://www.proquest.com/docview/2117330740
https://acp.copernicus.org/articles/18/14511/2018/acp-18-14511-2018.pdf
https://doaj.org/article/f295c4c465eb41c78bf03c277e3054ba
UnpaywallVersion publishedVersion
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1680-7324
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0025014
  issn: 1680-7324
  databaseCode: HH5
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1680-7324
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0025014
  issn: 1680-7324
  databaseCode: KQ8
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1680-7324
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0025014
  issn: 1680-7324
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1680-7324
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0025014
  issn: 1680-7324
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVPQU
  databaseName: Continental Europe Database
  customDbUrl:
  eissn: 1680-7324
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0025014
  issn: 1680-7324
  databaseCode: BFMQW
  dateStart: 20100415
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/conteurope
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1680-7324
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0025014
  issn: 1680-7324
  databaseCode: BENPR
  dateStart: 20100415
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1680-7324
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0025014
  issn: 1680-7324
  databaseCode: 8FG
  dateStart: 20100415
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED9t7QPwwDciY1QRQiCB0uXDSZwHHrpp3UBqNQYV25NlO_FWkSVVmwqNv567JC2USSAknpK650rnu5zvl979DPBSM8LGcepIpXyHJRl3pNS-k2AoVEwSRRr1Do_G0fGEfTgLz7bgaNULIzV1MsyyeTHVy0VDFNxWiO15fI_OlfUQsOMtSjoeIiAacWikP0vNNnSjEJPyDnQn45PBOcGtiLsOnc_0895nzf-bmL2wm7-zsUPVRP43w_UduLUsZvL6m8zzX_aj4T24XGnSlKF87S8r1dfffyN5_A-q3oe7bc5qD5ppD2ArKx6CNcJ0u5zXb-XtV_ZBPsXct_70CN4NbOLJxDlFU2Vuywx1LXOnuqb-LFvmF-V8Wl1e2bSLpnZZ2Pk0lXObClYfw2R4-Png2GnPaXA040HlsFBnCZdEpZegRwQqRRSWmjDFWCGlrzErCH2dhlommcfRZfwYk06TMBYqExgveAKdoiyyp2BHgVZe7HLNTYTI1nAeGM2CVGkTxCpLLXBXthG6JTGnszRygWCGzClwrYTHRb1WgtbKgjfrKbOGweNPwvtk8LUgkW_XA2gd0VpHGD8JNdMsCjPFPB1zZdxAo1IZBk-mpAUvyF0E0WsUVL9zIZeLhXj_6VQMQsR3EVHoW_C6FTIlaqBl2w6B60CMXBuSuxuS-Pzrza9XXina-LMQCOvjAMM3cy14u_bUv-u_80_Sz-A2XWgr99xd6FTzZfYcc7RK9WCbD4960N0_HJ-c0nU4-vilV7_x6LXP5g_7szY1
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfG9jB4QHyKwAAL8SGBrOXDSZyHCnVjU8vWCo1N2ptnO3aZFJLSD0395_jbuEuTsgppPO2x7Tnqne27-8W-3xHy1nDExmnOlNYh45kVTCkTsgxcoeYKKdKwdngwTHpn_Ot5fL5Bfre1MHitsvWJtaPOK4PvyHcBqKSAvVPufx7_Ytg1Ck9X2xYaqmmtkHdqirGmsOPILq4Awk07_S8w3-_C8PDgdL_Hmi4DzHARzRiPjc2EQiK4DPSJdA4YIndxDitdqdBATItDk8dGZTYQoHCYQsrkMs5j7SIXRPDcO2SLRzwD8Le1dzD8drKCfHhqh5AvET7DHlHLc1XImviuMmMWAIJDgjBYq9h15FpkrBsI_Bsm7pHteTlWiytVFNfi4OEDcr9JYGl3ueIekg1bPiLeAHLvalK_oqfv6X5xCYlw_ekx6XQpkmbCmHJ55ZwqC3-gKthsgcVaVBUjMPTsx0-KITWnVUmLy1xNKN5efULObsWcT8lmWZX2GaFJZHSQ-sIIlwDMdUJEzvAo18ZFqba5R_zWYNI0jObYWKOQgGzQxhJsLAMhaxtLtLFHPq6GjJd0HjcJ7-EsrASRibv-opqMZLOxpQuz2HDDk9hqHphUaOdHBpSy4Em5Vh55g3MokWujxMs8IzWfTmX_-4nsxgD2EuTT98iHRshVoIFRTW0E2AHpudYkd9YkwRmY9Z_bpSIbZzSVf7eORz6tls__9X9-88Nek-3e6eBYHveHRy_IXRyBQT3wd8jmbDK3LyFbm-lXzZag5OK2d-EfOwNOOQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGkLg8IK4iMMBCXCSQ1VycxHmYUNkoK2MTgk3am7Edu0wKSWlTTf1r_DrOyaWsQhpPe2xrR_XxuX2xz3cIeWE4YuM0Z0rrkPHMCqaUCVkGrlBzhRRpWDt8cJjsHfNPJ_HJBvnd18LgtcreJzaOOq8MviMfAFBJAXun3B-47lrEl93Ru-kvhh2k8KS1b6fRqsi-XZ4BfJtvj3dhr1-G4ejD0c4e6zoMMMNFVDMeG5sJhSRwGawl0jngh9zFOWi5UqGBeBaHJo-NymwgYLFhCumSyziPtYtcEMFzr5CrKbK4Y5X66OMK7OF5HYK9RPgMu0O1J6qQL_GBMlMWAHZDajDQUuw3ci4mNq0D_g0QN8n1RTlVyzNVFOci4Og2udWlrnTY6todsmHLu8Q7gKy7mjUv5-krulOcQgrcfLpHtocU6TJhTtleNqfKwh-oClYvsUyLqmICYq1__KQYTHNalbQ4zdWM4r3V--T4UoT5gGyWVWkfEppERgepL4xwCQBcJ0TkDI9ybVyUapt7xO8FJk3HZY4tNQoJmAZlLEHGMhCykbFEGXvkzWrKtCXyuGjwe9yF1UDk4G6-qGYT2Zm0dGEWG254ElvNA5MK7fzIwKIs-FCulUee4x5KZNkoUV8najGfy_G3r3IYA8xLkEnfI6-7Qa6CFRjVVUWAHJCYa23k1tpIcANm_edeVWTnhubyr9F45O1Kff6__kcXP-wZuQa2Jz-PD_cfkxs4AaN54G-RzXq2sE8gTav108YeKPl-2Qb4BwkkS9M
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED-N7gF44BuRMZCFEEggd_lwEueBhzIxBtImBFQaT5bt2FtFllRtKjT-eu6atFAmgZB4SuKeK53vcr5fe_czwFMrCBvnJdfGxFwUTnKtbcwLDIVGaKJIo97ho-PscCzen6QnW_B21QujLXUyTN2sntjFvCMK7ivE9iK5R-fKRgjY8RYleYQIiEY4jQynpb8C21mKSfkAtsfHH0ZfCG5lMuR0PtPP-1h0_29i9iIuf8_GDrUk8r8crq_D1UU91RffdFX9sh8d3ISzlSZdGcrX4aI1Q_v9N5LH_6DqLbjR56xs1E27DVuuvgPBEabbzWz5qzx7xvarCea-y6e78GrEiCcT59RdlTnTDnVtKt5eUH8W09VpM5u0Z-eMdtGSNTWrJqWeMSpYvQfjgzef9w95f04Dt0ImLRepdYXURKVXoEckpkQUVvq0xFihdWwxK0hjW6ZWFy6S6DJxjkmnL4RIjU98lNyHQd3U7gGwLLEmykNppc8Q2XopE29FUhrrk9y4MoBwZRtlexJzOkujUghmyJwK10pFUi3XStFaBfBiPWXaMXj8Sfg1GXwtSOTbywG0juqto3xcpFZYkaXOiMjm0vgwsaiUw-ApjA7gCbmLInqNmup3TvViPlfvPn1UoxTxXUYU-gE874V8gxpY3bdD4DoQI9eG5O6GJL7_dvPjlVeqPv7MFcL6PMHwLcIAXq499e_67_yT9EO4RhfayqNwFwbtbOEeYY7Wmsf9-_cDX1IxIA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+neural+network+aerosol-typing+algorithm+based+on+lidar+data&rft.jtitle=Atmospheric+chemistry+and+physics&rft.au=Nicolae%2C+Doina&rft.au=Vasilescu%2C+Jeni&rft.au=Talianu%2C+Camelia&rft.au=Binietoglou%2C+Ioannis&rft.date=2018-10-10&rft.pub=Copernicus+GmbH&rft.issn=1680-7316&rft.volume=18&rft.issue=19&rft.spage=14511&rft_id=info:doi/10.5194%2Facp-18-14511-2018&rft.externalDocID=A557662066
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1680-7324&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1680-7324&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1680-7324&client=summon