On the development of diagnostic support algorithms based on CPET biosignals data via machine learning and wavelets

For preventing health complications and reducing the strain on healthcare systems, early identification of diseases is imperative. In this context, artificial intelligence has become increasingly prominent in the field of medicine, offering essential support for disease diagnosis. This article intro...

Full description

Saved in:
Bibliographic Details
Published inPeerJ. Computer science Vol. 11; p. e2474
Main Authors Pinheiro, Rafael F., Fonseca-Pinto, Rui
Format Journal Article
LanguageEnglish
Published United States PeerJ. Ltd 30.01.2025
PeerJ Inc
Subjects
Online AccessGet full text
ISSN2376-5992
2376-5992
DOI10.7717/peerj-cs.2474

Cover

Abstract For preventing health complications and reducing the strain on healthcare systems, early identification of diseases is imperative. In this context, artificial intelligence has become increasingly prominent in the field of medicine, offering essential support for disease diagnosis. This article introduces an algorithm that builds upon an earlier methodology to assess biosignals acquired through cardiopulmonary exercise testing (CPET) for identifying metabolic syndrome (MS), heart failure (HF), and healthy individuals (H). Leveraging support vector machine (SVM) technology, a well-known machine learning classification method, in combination with wavelet transforms for feature extraction, the algorithm takes an innovative approach. The model was trained on CPET data from 45 participants, including 15 with MS, 15 with HF, and 15 healthy controls. For binary classification tasks, the SVM with a polynomial kernel and 5-level wavelet transform (SVM-POL-BW5) outperformed similar methods described in the literature. Moreover, one of the main contributions of this study is the development of a multi-class classification algorithm using the SVM employing a linear kernel and 3-level wavelet transforms (SVM-LIN-MW3), reaching an average accuracy of 95%. In conclusion, the application of SVM-based algorithms combined with wavelet transforms to analyze CPET data shows promise in diagnosing various diseases, highlighting their adaptability and broader potential applications in healthcare.
AbstractList For preventing health complications and reducing the strain on healthcare systems, early identification of diseases is imperative. In this context, artificial intelligence has become increasingly prominent in the field of medicine, offering essential support for disease diagnosis. This article introduces an algorithm that builds upon an earlier methodology to assess biosignals acquired through cardiopulmonary exercise testing (CPET) for identifying metabolic syndrome (MS), heart failure (HF), and healthy individuals (H). Leveraging support vector machine (SVM) technology, a well-known machine learning classification method, in combination with wavelet transforms for feature extraction, the algorithm takes an innovative approach. The model was trained on CPET data from 45 participants, including 15 with MS, 15 with HF, and 15 healthy controls. For binary classification tasks, the SVM with a polynomial kernel and 5-level wavelet transform (SVM-POL-BW5) outperformed similar methods described in the literature. Moreover, one of the main contributions of this study is the development of a multi-class classification algorithm using the SVM employing a linear kernel and 3-level wavelet transforms (SVM-LIN-MW3), reaching an average accuracy of 95%. In conclusion, the application of SVM-based algorithms combined with wavelet transforms to analyze CPET data shows promise in diagnosing various diseases, highlighting their adaptability and broader potential applications in healthcare.
For preventing health complications and reducing the strain on healthcare systems, early identification of diseases is imperative. In this context, artificial intelligence has become increasingly prominent in the field of medicine, offering essential support for disease diagnosis. This article introduces an algorithm that builds upon an earlier methodology to assess biosignals acquired through cardiopulmonary exercise testing (CPET) for identifying metabolic syndrome (MS), heart failure (HF), and healthy individuals (H). Leveraging support vector machine (SVM) technology, a well-known machine learning classification method, in combination with wavelet transforms for feature extraction, the algorithm takes an innovative approach. The model was trained on CPET data from 45 participants, including 15 with MS, 15 with HF, and 15 healthy controls. For binary classification tasks, the SVM with a polynomial kernel and 5-level wavelet transform (SVM-POL-BW5) outperformed similar methods described in the literature. Moreover, one of the main contributions of this study is the development of a multi-class classification algorithm using the SVM employing a linear kernel and 3-level wavelet transforms (SVM-LIN-MW3), reaching an average accuracy of 95%. In conclusion, the application of SVM-based algorithms combined with wavelet transforms to analyze CPET data shows promise in diagnosing various diseases, highlighting their adaptability and broader potential applications in healthcare.For preventing health complications and reducing the strain on healthcare systems, early identification of diseases is imperative. In this context, artificial intelligence has become increasingly prominent in the field of medicine, offering essential support for disease diagnosis. This article introduces an algorithm that builds upon an earlier methodology to assess biosignals acquired through cardiopulmonary exercise testing (CPET) for identifying metabolic syndrome (MS), heart failure (HF), and healthy individuals (H). Leveraging support vector machine (SVM) technology, a well-known machine learning classification method, in combination with wavelet transforms for feature extraction, the algorithm takes an innovative approach. The model was trained on CPET data from 45 participants, including 15 with MS, 15 with HF, and 15 healthy controls. For binary classification tasks, the SVM with a polynomial kernel and 5-level wavelet transform (SVM-POL-BW5) outperformed similar methods described in the literature. Moreover, one of the main contributions of this study is the development of a multi-class classification algorithm using the SVM employing a linear kernel and 3-level wavelet transforms (SVM-LIN-MW3), reaching an average accuracy of 95%. In conclusion, the application of SVM-based algorithms combined with wavelet transforms to analyze CPET data shows promise in diagnosing various diseases, highlighting their adaptability and broader potential applications in healthcare.
ArticleNumber e2474
Audience Academic
Author Fonseca-Pinto, Rui
Pinheiro, Rafael F.
Author_xml – sequence: 1
  givenname: Rafael F.
  surname: Pinheiro
  fullname: Pinheiro, Rafael F.
– sequence: 2
  givenname: Rui
  surname: Fonseca-Pinto
  fullname: Fonseca-Pinto, Rui
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40062300$$D View this record in MEDLINE/PubMed
BookMark eNqFkktv1DAUhSNUREvpki2yxAYWGey87CyrUYGRKhVBWVvXr4xHiR1sp6X_HrdTRswKe2Hr6jvH9-r4dXHivNNF8ZbgFaWEfpq1DrtSxlXV0OZFcVbVtCvbvq9O_rmfFhcx7jDGpCV59a-K0wbjrqoxPivijUNpq5HSd3r086RdQt4gZWFwPiYrUVzm2YeEYBx8sGk7RSQgaoW8Q-tvV7dIWB_t4GCMSEECdGcBTSC31mk0agjOugGBU-ge8hs6xTfFS5NpffF8nhc_P1_drr-W1zdfNuvL61I2rE5ljWlbSUaEqZlRQvWkF7IhLe0wGBBaMWUINqajmoLuSAcd0E4LaFlHm0rU58Vm76s87Pgc7AThgXuw_Kngw8Ah5BFHzQEAUylYZ6q6YUoAE5RVrK2aHghIk71We6_FzfBwD-N4MCSYP4bBn8LgMvLHMLLgw14wB_9r0THxyUapxxGc9kvkNaFtx9q2Jxl9v0cHyK1YZ3wKIB9xfsmqtqlwm9M6dHBE5a30ZGX-F8bm-pHg45EgM0n_TgMsMfLNj-_H7LvnbhcxaXWY7e9HyUC5B2TwMQZt_jP-H94Y0Sc
Cites_doi 10.1155/2019/4912174
10.15386/mpr-1884
10.3389/fcvm.2021.698117
10.21037/atm-20-1127
10.1016/j.jacc.2008.02.032
10.1109/ACCESS.2019.2947701
10.1016/j.diabres.2022.109924
10.3389/fcvm.2021.704145
10.1109/JBHI.2022.3163402
10.1016/j.jcmg.2021.06.015
10.3390/electronics12214423
10.1016/j.mayocp.2016.10.003
10.1162/15324430152733133
10.3390/app11020796
10.13005/bpj/1525
10.1016/j.eswa.2006.02.005
10.1186/s12874-017-0313-9
10.1613/jair.105
10.1249/MSS.0000000000003293
10.1142/S0219622019500457
10.1016/j.bspc.2022.104103
10.1007/s11042-023-16529-w
10.1161/01.CIR.101.23.e215
10.21037/jtd-20-1061b
10.1186/s12938-017-0406-z
10.36001/ijphm.2018.v9i2.2737
10.1089/met.2021.0130
10.1155/2023/6530719
10.1177/2047487319859450
10.1186/s12968-022-00851-7
10.1016/j.compbiomed.2015.03.005
10.13026/7ezk-j442
10.1080/15438627.2021.1954513
10.3390/s23020826
10.1186/s13040-022-00299-6
10.1016/j.compbiomed.2021.105168
10.1155/2021/5516248
10.1152/japplphysiol.00655.2018
10.1016/j.neuroimage.2023.120253
10.1016/j.jcmg.2019.10.017
10.1038/s41598-023-31381-6
10.1016/j.smhl.2022.100303
10.3390/app14083337
10.3390/a14110301
10.1109/TKDE.2019.2912815
ContentType Journal Article
Copyright 2025 Pinheiro and Fonseca-Pinto.
COPYRIGHT 2025 PeerJ. Ltd.
Copyright_xml – notice: 2025 Pinheiro and Fonseca-Pinto.
– notice: COPYRIGHT 2025 PeerJ. Ltd.
DBID AAYXX
CITATION
NPM
ISR
7X8
ADTOC
UNPAY
DOA
DOI 10.7717/peerj-cs.2474
DatabaseName CrossRef
PubMed
Gale In Context: Science
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed


CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2376-5992
ExternalDocumentID oai_doaj_org_article_aaa07cb86f2348dba8b78285249a1acf
10.7717/peerj-cs.2474
A825420562
40062300
10_7717_peerj_cs_2474
Genre Journal Article
GroupedDBID 53G
5VS
8FE
8FG
AAFWJ
AAYXX
ABUWG
ADBBV
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
FRP
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ICD
IEA
ISR
ITC
K6V
K7-
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PUEGO
RPM
H13
NPM
7X8
ADTOC
UNPAY
ID FETCH-LOGICAL-c483t-30752c81bf38fdbd919bc415760afabed8df10ff67e7ae616a6a76eba586742b3
IEDL.DBID DOA
ISSN 2376-5992
IngestDate Fri Oct 03 12:46:35 EDT 2025
Sun Oct 26 04:09:30 EDT 2025
Thu Sep 04 20:21:47 EDT 2025
Mon Oct 20 22:43:58 EDT 2025
Mon Oct 20 16:52:00 EDT 2025
Thu Oct 16 15:37:30 EDT 2025
Wed Mar 12 01:34:54 EDT 2025
Wed Oct 01 02:45:12 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Multi-class classification
Metabolic diseases
CPET
Early diagnosis systems
Heart disease
Language English
License https://creativecommons.org/licenses/by/4.0
2025 Pinheiro and Fonseca-Pinto.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c483t-30752c81bf38fdbd919bc415760afabed8df10ff67e7ae616a6a76eba586742b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/aaa07cb86f2348dba8b78285249a1acf
PMID 40062300
PQID 3175685591
PQPubID 23479
PageCount e2474
ParticipantIDs doaj_primary_oai_doaj_org_article_aaa07cb86f2348dba8b78285249a1acf
unpaywall_primary_10_7717_peerj_cs_2474
proquest_miscellaneous_3175685591
gale_infotracmisc_A825420562
gale_infotracacademiconefile_A825420562
gale_incontextgauss_ISR_A825420562
pubmed_primary_40062300
crossref_primary_10_7717_peerj_cs_2474
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-01-30
PublicationDateYYYYMMDD 2025-01-30
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-30
  day: 30
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle PeerJ. Computer science
PublicationTitleAlternate PeerJ Comput Sci
PublicationYear 2025
Publisher PeerJ. Ltd
PeerJ Inc
Publisher_xml – name: PeerJ. Ltd
– name: PeerJ Inc
References Gaitán (10.7717/peerj-cs.2474/ref-15) 2019; 18
Rodriguez (10.7717/peerj-cs.2474/ref-41) 2022; 20
Saito (10.7717/peerj-cs.2474/ref-43) 2023; 13
Spolaôr (10.7717/peerj-cs.2474/ref-47) 2024; 83
Heiston (10.7717/peerj-cs.2474/ref-21) 2019; 126
Kumar (10.7717/peerj-cs.2474/ref-26) 2024
Zhou (10.7717/peerj-cs.2474/ref-53) 2021; 8
Hansen (10.7717/peerj-cs.2474/ref-19) 2019; 26
Inbar (10.7717/peerj-cs.2474/ref-22) 2021; 2021
Prusa (10.7717/peerj-cs.2474/ref-38) 2015
Noubiap (10.7717/peerj-cs.2474/ref-35) 2022; 188
Wong (10.7717/peerj-cs.2474/ref-50) 2019; 32
Goldberger (10.7717/peerj-cs.2474/ref-17) 2000; 101
Haq (10.7717/peerj-cs.2474/ref-20) 2019; 7
Malin (10.7717/peerj-cs.2474/ref-29) 2019; 2019
Thölke (10.7717/peerj-cs.2474/ref-49) 2023; 277
Niaz (10.7717/peerj-cs.2474/ref-34) 2022
Zignoli (10.7717/peerj-cs.2474/ref-54) 2023; 23
Gao (10.7717/peerj-cs.2474/ref-16) 2021; 14
Chen (10.7717/peerj-cs.2474/ref-11) 2023; 2023
Purwowiyoto (10.7717/peerj-cs.2474/ref-39) 2021; 94
Bowen (10.7717/peerj-cs.2474/ref-8) 2020; 8
Dietterich (10.7717/peerj-cs.2474/ref-13) 1994; 2
Mongin (10.7717/peerj-cs.2474/ref-32) 2021
Kehri (10.7717/peerj-cs.2474/ref-25) 2018; 11
Chakraborty (10.7717/peerj-cs.2474/ref-10) 2022; 26
Gopinath (10.7717/peerj-cs.2474/ref-18) 2018; 9
Portella (10.7717/peerj-cs.2474/ref-37) 2022; 26
Dhivya (10.7717/peerj-cs.2474/ref-12) 2018
Li (10.7717/peerj-cs.2474/ref-27) 2021; 8
Brown (10.7717/peerj-cs.2474/ref-9) 2022; 15
Sadaiyandi (10.7717/peerj-cs.2474/ref-42) 2023; 12
Kaminsky (10.7717/peerj-cs.2474/ref-24) 2017; 92
Sordo (10.7717/peerj-cs.2474/ref-46) 2005
Allwein (10.7717/peerj-cs.2474/ref-1) 2000; 1
Althnian (10.7717/peerj-cs.2474/ref-2) 2021; 11
Schwendinger (10.7717/peerj-cs.2474/ref-44) 2024; 56
Epstein (10.7717/peerj-cs.2474/ref-14) 2008; 51
Michelucci (10.7717/peerj-cs.2474/ref-30) 2021; 14
Xing (10.7717/peerj-cs.2474/ref-52) 2011
Asgari (10.7717/peerj-cs.2474/ref-3) 2015; 60
Boser (10.7717/peerj-cs.2474/ref-7) 1992
Pinheiro (10.7717/peerj-cs.2474/ref-36) 2023
Bilchick (10.7717/peerj-cs.2474/ref-6) 2020; 13
Subasi (10.7717/peerj-cs.2474/ref-48) 2007; 32
Mongin (10.7717/peerj-cs.2474/ref-31) 2021; 31
Iniyan (10.7717/peerj-cs.2474/ref-23) 2023; 79
Rahman (10.7717/peerj-cs.2474/ref-40) 2017; 17
Xin (10.7717/peerj-cs.2474/ref-51) 2017; 16
Auger (10.7717/peerj-cs.2474/ref-4) 2022; 24
Morales (10.7717/peerj-cs.2474/ref-33) 2020; 19
Luo (10.7717/peerj-cs.2474/ref-28) 2021; 13
Serhal (10.7717/peerj-cs.2474/ref-45) 2022; 142
Bezerra (10.7717/peerj-cs.2474/ref-5) 2024; 14
References_xml – volume: 2019
  start-page: 1
  issue: 9179
  year: 2019
  ident: 10.7717/peerj-cs.2474/ref-29
  article-title: Impact of short-term continuous and interval exercise training on endothelial function and glucose metabolism in prediabetes
  publication-title: Journal of Diabetes Research
  doi: 10.1155/2019/4912174
– volume: 18
  start-page: 636
  issue: 4
  year: 2019
  ident: 10.7717/peerj-cs.2474/ref-15
  article-title: Two weeks of interval training enhances fat oxidation during exercise in obese adults with prediabetes
  publication-title: Journal of Sports Science & Medicine
– volume: 94
  start-page: 15
  issue: 1
  year: 2021
  ident: 10.7717/peerj-cs.2474/ref-39
  article-title: Metabolic syndrome and heart failure: mechanism and management
  publication-title: Medicine and Pharmacy Reports
  doi: 10.15386/mpr-1884
– volume: 8
  start-page: 698117
  year: 2021
  ident: 10.7717/peerj-cs.2474/ref-53
  article-title: Association between metabolic syndrome and an increased risk of hospitalization for heart failure in population of HFpEF
  publication-title: Frontiers in Cardiovascular Medicine
  doi: 10.3389/fcvm.2021.698117
– volume: 8
  start-page: 827
  issue: 13
  year: 2020
  ident: 10.7717/peerj-cs.2474/ref-8
  article-title: Statistics of heart failure and mechanical circulatory support in 2020
  publication-title: Annals of Translational Medicine
  doi: 10.21037/atm-20-1127
– start-page: 193
  year: 2005
  ident: 10.7717/peerj-cs.2474/ref-46
  article-title: On sample size and classification accuracy: a performance comparison
– volume: 51
  start-page: e1
  issue: 21
  year: 2008
  ident: 10.7717/peerj-cs.2474/ref-14
  article-title: ACC/AHA/HRS, 2008 guidelines for device-based therapy of cardiac rhythm abnormalities: a report of the American College of Cardiology/American Heart Association task force on practice guidelines (writing committee to revise the ACC/AHA/NASPE, 2002 guideline update for implantation of cardiac pacemakers and antiarrhythmia devices) developed in collaboration with the american association for thoracic surgery and society of thoracic surgeons
  publication-title: Journal of the American College of Cardiology
  doi: 10.1016/j.jacc.2008.02.032
– volume: 7
  start-page: 151482–151492
  year: 2019
  ident: 10.7717/peerj-cs.2474/ref-20
  article-title: Combining multiple feature-ranking techniques and clustering of variables for feature selection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2947701
– volume: 188
  start-page: 109924
  issue: 4
  year: 2022
  ident: 10.7717/peerj-cs.2474/ref-35
  article-title: Geographic distribution of metabolic syndrome and its components in the general adult population: a meta-analysis of global data from 28 million individuals
  publication-title: Diabetes Research and Clinical Practice
  doi: 10.1016/j.diabres.2022.109924
– volume: 8
  start-page: 704145
  year: 2021
  ident: 10.7717/peerj-cs.2474/ref-27
  article-title: Impact of metabolic syndrome and it’s components on prognosis in patients with cardiovascular diseases: a meta-analysis
  publication-title: Frontiers in Cardiovascular Medicine
  doi: 10.3389/fcvm.2021.704145
– start-page: 247
  year: 2011
  ident: 10.7717/peerj-cs.2474/ref-52
  article-title: Extracting interpretable features for early classification on time series
– volume: 26
  start-page: 4228
  issue: 8
  year: 2022
  ident: 10.7717/peerj-cs.2474/ref-37
  article-title: Using machine learning to identify organ system specific limitations to exercise via cardiopulmonary exercise testing
  publication-title: IEEE Journal of Biomedical and Health Informatics
  doi: 10.1109/JBHI.2022.3163402
– volume: 14
  start-page: 2369
  issue: 12
  year: 2021
  ident: 10.7717/peerj-cs.2474/ref-16
  article-title: Cardiac magnetic resonance assessment of response to cardiac resynchronization therapy and programming strategies
  publication-title: Cardiovascular Imaging
  doi: 10.1016/j.jcmg.2021.06.015
– volume: 12
  start-page: 4423
  issue: 21
  year: 2023
  ident: 10.7717/peerj-cs.2474/ref-42
  article-title: Stratified sampling-based deep learning approach to increase prediction accuracy of unbalanced dataset
  publication-title: Electronics
  doi: 10.3390/electronics12214423
– volume: 92
  start-page: 228
  year: 2017
  ident: 10.7717/peerj-cs.2474/ref-24
  article-title: Reference standards for cardiorespiratory fitness measured with cardiopulmonary exercise testing using cycle ergometry: data from the fitness registry and the importance of exercise national database (friend) registry
  publication-title: Mayo Clinic Proceedings
  doi: 10.1016/j.mayocp.2016.10.003
– volume: 1
  start-page: 113
  issue: Dec
  year: 2000
  ident: 10.7717/peerj-cs.2474/ref-1
  article-title: Reducing multiclass to binary: a unifying approach for margin classifiers
  publication-title: Journal of Machine Learning Research
  doi: 10.1162/15324430152733133
– volume: 11
  start-page: 796
  issue: 2
  year: 2021
  ident: 10.7717/peerj-cs.2474/ref-2
  article-title: Impact of dataset size on classification performance: an empirical evaluation in the medical domain
  publication-title: Applied Sciences
  doi: 10.3390/app11020796
– volume: 11
  start-page: 1583
  issue: 3
  year: 2018
  ident: 10.7717/peerj-cs.2474/ref-25
  article-title: Emg signal analysis for diagnosis of muscular dystrophy using wavelet transform, SVM and ANN
  publication-title: Biomedical and Pharmacology Journal
  doi: 10.13005/bpj/1525
– volume: 32
  start-page: 1084
  issue: 4
  year: 2007
  ident: 10.7717/peerj-cs.2474/ref-48
  article-title: Eeg signal classification using wavelet feature extraction and a mixture of expert model
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2006.02.005
– volume: 17
  start-page: 1
  issue: 1
  year: 2017
  ident: 10.7717/peerj-cs.2474/ref-40
  article-title: Performance of firth-and logf-type penalized methods in risk prediction for small or sparse binary data
  publication-title: BMC Medical Research Methodology
  doi: 10.1186/s12874-017-0313-9
– volume: 2
  start-page: 263
  year: 1994
  ident: 10.7717/peerj-cs.2474/ref-13
  article-title: Solving multiclass learning problems via error-correcting output codes
  publication-title: Journal of Artificial Intelligence Research
  doi: 10.1613/jair.105
– volume: 56
  start-page: 159
  issue: 2
  year: 2024
  ident: 10.7717/peerj-cs.2474/ref-44
  article-title: Using machine learning–based algorithms to identify and quantify exercise limitations in clinical practice: are we there yet?
  publication-title: Medicine & Science in Sports & Exercise
  doi: 10.1249/MSS.0000000000003293
– volume: 19
  start-page: 283
  issue: 01
  year: 2020
  ident: 10.7717/peerj-cs.2474/ref-33
  article-title: Lamda-had, an extension to the lamda classifier in the context of supervised learning
  publication-title: International Journal of Information Technology & Decision Making
  doi: 10.1142/S0219622019500457
– volume: 79
  start-page: 104103
  year: 2023
  ident: 10.7717/peerj-cs.2474/ref-23
  article-title: Wavelet transformation and vertical stacking based image classification applying machine learning
  publication-title: Biomedical Signal Processing and Control
  doi: 10.1016/j.bspc.2022.104103
– volume: 83
  start-page: 27305
  issue: 9
  year: 2024
  ident: 10.7717/peerj-cs.2474/ref-47
  article-title: Fine-tuning pre-trained neural networks for medical image classification in small clinical datasets
  publication-title: Multimedia Tools and Applications
  doi: 10.1007/s11042-023-16529-w
– volume: 101
  start-page: e215–e220
  issue: 23
  year: 2000
  ident: 10.7717/peerj-cs.2474/ref-17
  article-title: Physiobank, physiotoolkit, and physionet: components of a new research resource for complex physiologic signals
  publication-title: Circulation
  doi: 10.1161/01.CIR.101.23.e215
– volume: 13
  start-page: 178
  issue: 1
  year: 2021
  ident: 10.7717/peerj-cs.2474/ref-28
  article-title: The value of cardiopulmonary exercise testing in the diagnosis of pulmonary hypertension
  publication-title: Journal of Thoracic Disease
  doi: 10.21037/jtd-20-1061b
– volume: 16
  start-page: 1
  year: 2017
  ident: 10.7717/peerj-cs.2474/ref-51
  article-title: Paroxysmal atrial fibrillation recognition based on multi-scale wavelet α-entropy
  publication-title: Biomedical Engineering Online
  doi: 10.1186/s12938-017-0406-z
– volume: 9
  issue: 2
  year: 2018
  ident: 10.7717/peerj-cs.2474/ref-18
  article-title: Scalable fault models for diagnosis in a synchronous generator using feature mapping and transformation techniques
  publication-title: International Journal of Prognostics and Health Management
  doi: 10.36001/ijphm.2018.v9i2.2737
– start-page: 1
  year: 2024
  ident: 10.7717/peerj-cs.2474/ref-26
  article-title: Analysis of feature noise on standard svm with linear kernel
– volume: 20
  start-page: 414
  issue: 7
  year: 2022
  ident: 10.7717/peerj-cs.2474/ref-41
  article-title: Cardiopulmonary exercise responses in individuals with metabolic syndrome: the ball state adult fitness longitudinal lifestyle study
  publication-title: Metabolic Syndrome and Related Disorders
  doi: 10.1089/met.2021.0130
– volume: 2023
  start-page: 6530719
  issue: 1
  year: 2023
  ident: 10.7717/peerj-cs.2474/ref-11
  article-title: Classification prediction of breast cancer based on machine learning
  publication-title: Computational Intelligence and Neuroscience
  doi: 10.1155/2023/6530719
– volume: 26
  start-page: 1921
  issue: 18
  year: 2019
  ident: 10.7717/peerj-cs.2474/ref-19
  article-title: Exercise training intensity determination in cardiovascular rehabilitation: should the guidelines be reconsidered?
  publication-title: European Journal of Preventive Cardiology
  doi: 10.1177/2047487319859450
– volume: 24
  start-page: 1
  issue: 1
  year: 2022
  ident: 10.7717/peerj-cs.2474/ref-4
  article-title: Reproducibility of global and segmental myocardial strain using cine DENSE at 3 t: a multicenter cardiovascular magnetic resonance study in healthy subjects and patients with heart disease
  publication-title: Journal of Cardiovascular Magnetic Resonance
  doi: 10.1186/s12968-022-00851-7
– start-page: 1
  year: 2018
  ident: 10.7717/peerj-cs.2474/ref-12
  article-title: Wavelet based MRI brain image classification using radial basis function in svm
– volume: 60
  start-page: 132
  year: 2015
  ident: 10.7717/peerj-cs.2474/ref-3
  article-title: Automatic detection of atrial fibrillation using stationary wavelet transform and support vector machine
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2015.03.005
– start-page: 485
  year: 2022
  ident: 10.7717/peerj-cs.2474/ref-34
  article-title: Class imbalance problems in machine learning: a review of methods and future challenges
– year: 2021
  ident: 10.7717/peerj-cs.2474/ref-32
  article-title: Treadmill maximal exercise tests from the exercise physiology and human performance lab of the university of malaga. Physionet, version 1.0.1
  doi: 10.13026/7ezk-j442
– volume: 31
  start-page: 157
  issue: 2
  year: 2021
  ident: 10.7717/peerj-cs.2474/ref-31
  article-title: Heart rate recovery to assess fitness: comparison of different calculation methods in a large cross-sectional study
  publication-title: Research in Sports Medicine
  doi: 10.1080/15438627.2021.1954513
– start-page: 144
  year: 1992
  ident: 10.7717/peerj-cs.2474/ref-7
  article-title: A training algorithm for optimal margin classifiers
– volume: 23
  start-page: 826
  issue: 2
  year: 2023
  ident: 10.7717/peerj-cs.2474/ref-54
  article-title: Machine learning models for the automatic detection of exercise thresholds in cardiopulmonary exercising tests: from regression to generation to explanation
  publication-title: Sensors
  doi: 10.3390/s23020826
– volume: 15
  start-page: 16
  issue: 1
  year: 2022
  ident: 10.7717/peerj-cs.2474/ref-9
  article-title: Neural network methods for diagnosing patient conditions from cardiopulmonary exercise testing data
  publication-title: BioData Mining
  doi: 10.1186/s13040-022-00299-6
– volume: 142
  start-page: 105168
  issue: 3
  year: 2022
  ident: 10.7717/peerj-cs.2474/ref-45
  article-title: Overview on prediction, detection, and classification of atrial fibrillation using wavelets and AI on ECG
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2021.105168
– volume: 2021
  start-page: 1
  issue: 2
  year: 2021
  ident: 10.7717/peerj-cs.2474/ref-22
  article-title: A machine learning approach to the interpretation of cardiopulmonary exercise tests: development and validation
  publication-title: Pulmonary Medicine
  doi: 10.1155/2021/5516248
– volume: 126
  start-page: 746
  issue: 3
  year: 2019
  ident: 10.7717/peerj-cs.2474/ref-21
  article-title: Two weeks of exercise training intensity on appetite regulation in obese adults with prediabetes
  publication-title: Journal of Applied Physiology
  doi: 10.1152/japplphysiol.00655.2018
– volume: 277
  start-page: 120253
  year: 2023
  ident: 10.7717/peerj-cs.2474/ref-49
  article-title: Class imbalance should not throw you off balance: choosing the right classifiers and performance metrics for brain decoding with imbalanced data
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2023.120253
– start-page: 159
  year: 2023
  ident: 10.7717/peerj-cs.2474/ref-36
  article-title: Algorithm for diagnosis of metabolic syndrome and heart failure using cpet biosignals via svm and wavelet transforms
– volume: 13
  start-page: 924
  issue: 4
  year: 2020
  ident: 10.7717/peerj-cs.2474/ref-6
  article-title: CMR DENSE and the seattle heart failure model inform survival and arrhythmia risk after crt
  publication-title: Cardiovascular Imaging
  doi: 10.1016/j.jcmg.2019.10.017
– volume: 13
  start-page: 4355
  issue: 1
  year: 2023
  ident: 10.7717/peerj-cs.2474/ref-43
  article-title: Diagnostic value of expired gas analysis in heart failure with preserved ejection fraction
  publication-title: Scientific Reports
  doi: 10.1038/s41598-023-31381-6
– volume: 26
  start-page: 100303
  issue: 10
  year: 2022
  ident: 10.7717/peerj-cs.2474/ref-10
  article-title: A machine learning approach to identify fall risk for older adults
  publication-title: Smart Health
  doi: 10.1016/j.smhl.2022.100303
– start-page: 96
  year: 2015
  ident: 10.7717/peerj-cs.2474/ref-38
  article-title: The effect of dataset size on training tweet sentiment classifiers
– volume: 14
  start-page: 3337
  issue: 8
  year: 2024
  ident: 10.7717/peerj-cs.2474/ref-5
  article-title: Impacts of feature selection on predicting machine failures by machine learning algorithms
  publication-title: Applied Sciences
  doi: 10.3390/app14083337
– volume: 14
  start-page: 301
  issue: 11
  year: 2021
  ident: 10.7717/peerj-cs.2474/ref-30
  article-title: A model-agnostic algorithm for bayes error determination in binary classification
  publication-title: Algorithms
  doi: 10.3390/a14110301
– volume: 32
  start-page: 1586
  issue: 8
  year: 2019
  ident: 10.7717/peerj-cs.2474/ref-50
  article-title: Reliable accuracy estimates from k-fold cross validation
  publication-title: IEEE Transactions on Knowledge and Data Engineering
  doi: 10.1109/TKDE.2019.2912815
SSID ssj0001511119
Score 2.284007
Snippet For preventing health complications and reducing the strain on healthcare systems, early identification of diseases is imperative. In this context, artificial...
SourceID doaj
unpaywall
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage e2474
SubjectTerms Algorithms
Artificial intelligence
CPET
Early diagnosis systems
Heart disease
Machine learning
Metabolic diseases
Multi-class classification
Type 2 diabetes
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEF5BeoBLyxtDQQtCcHLq53p9DFWjgkSpoJHKaTX7CqGpHcU2Ffx6dmwnJFQCrvbY8o5nPd-sv_2GkFcaAhmHNvRjmyo_0ZH0IdLSd9jVJa8IQHPcO_zhhB1Pkvfn6XlPosG9MBv_7zNXaRwsjFl-81U1jJIsuUl2WOog94DsTE5OR1_axnEZczfOo04_8_o1W_mmleW__vHdyD63mmIBP65gPt9IM-M9Ml49YMcuuRg2tRyqn39oN_5zBHfIbg806aiLjLvkhinukb1VEwfaz-n7pPpYUAcCqf7NHqKlpbqj4LmLadUsEKRTmE_L5az-ellRzH2algU9PD06o3JWIg3EBTJFwin9PgN62ZI0De27UkwpFJpeAba5qKsHZDI-Ojs89vtODL5KeFzjAlUaKYdwbcytljoPc6lc6s9YABak0VzbMLCWZSYDw0IGDDJmJKScudpbxg_JoCgL85jQkMmUOVSZKo5CMXGe5DLmKlI2zgDC1COvV-9LLDrBDeEKFXSlaF0pVCXQlR55i29zbYQ62e0B53zRTzsBAEGmJGc2ihOuJXCZoWafKzohBGU98hJjQaASRoFUmyk0VSXeff4kRlg7R4gPPfKmN7JlvQQF_c4FNyAUz9qy3N-ydFNVbZ1-sQo5gaeQ31aYsqkEojjGXXUXeuRRF4vrgSW4zzUOAvcY6-D8u2ue_LflU3I7wobGAS5C7pNBvWzMM4eyavm8n2O_ABWAJ6M
  priority: 102
  providerName: Unpaywall
Title On the development of diagnostic support algorithms based on CPET biosignals data via machine learning and wavelets
URI https://www.ncbi.nlm.nih.gov/pubmed/40062300
https://www.proquest.com/docview/3175685591
https://doi.org/10.7717/peerj-cs.2474
https://doaj.org/article/aaa07cb86f2348dba8b78285249a1acf
UnpaywallVersion publishedVersion
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: M~E
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: RPM
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: BENPR
  dateStart: 20150527
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2376-5992
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001511119
  issn: 2376-5992
  databaseCode: 8FG
  dateStart: 20150527
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZgOcCFN0tgqQxCcAqbp-Mcu6uWBYlSLVtpOVnjVynqJlWTsOLf40nS0goJLhyTTCTbM_Z8Y818Q8hrDYGMQxv6sU2Vn-hI-hBp6Tvs6pxXBKA51g5_mrCzWfLxMr3cafWFOWEdPXC3cMcAEGRKcmajOOFaApcZsq65sAFCUBZP34DnO8FUVx-MR0HekWpmLmQ5Xhmz_u6r6l2UZMmeE2q5-v88kXdc0u2mWMHPa1gud3zP-D6524NGOuwG-4DcMMVDcm_TkIH2-_MRqT4X1AE6qn9nAtHSUt2l07mfadWsEHBTWM7L9aL-dlVR9GOalgU9nY4uqFyUmNLhjJJi8ij9sQB61SZcGtp3mJhTKDS9BmxZUVePyWw8ujg98_uuCr5KeFzjZVMaKYdWbcytljoPc6mcG89YABak0VzbMLCWZSYDw0IGDDJmJKScuThaxk_IQVEW5imhIZMpcwgxVRxJX-I8yWXMVaRsnAGEqUfebJZZrDryDOGCDtSHaPUhVCVQHx45QSVshZDzun3hLEH0liD-ZQkeeYUqFMhqUWDazByaqhIfvpyLIcbBEWI9j7zthWxZr0FBX4XgJoREWHuSR3uSbtupvc8vN5Yi8BPmqhWmbCqBiIxxF6mFHjnsTGg7sQRrVuMgcMPY2tTfl-bZ_1ia5-ROhH2LA7xrPCIH9boxLxyYquWA3OTj9wNy62Q0mZ4P2l3knmaT6fDrL0G9I6g
linkProvider Directory of Open Access Journals
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEF5BeoBLyxtDQQtCcHLq53p9DFWjgkSpoJHKaTX7CqGpHcU2Ffx6dmwnJFQCrvbY8o5nPd-sv_2GkFcaAhmHNvRjmyo_0ZH0IdLSd9jVJa8IQHPcO_zhhB1Pkvfn6XlPosG9MBv_7zNXaRwsjFl-81U1jJIsuUl2WOog94DsTE5OR1_axnEZczfOo04_8_o1W_mmleW__vHdyD63mmIBP65gPt9IM-M9Ml49YMcuuRg2tRyqn39oN_5zBHfIbg806aiLjLvkhinukb1VEwfaz-n7pPpYUAcCqf7NHqKlpbqj4LmLadUsEKRTmE_L5az-ellRzH2algU9PD06o3JWIg3EBTJFwin9PgN62ZI0De27UkwpFJpeAba5qKsHZDI-Ojs89vtODL5KeFzjAlUaKYdwbcytljoPc6lc6s9YABak0VzbMLCWZSYDw0IGDDJmJKScudpbxg_JoCgL85jQkMmUOVSZKo5CMXGe5DLmKlI2zgDC1COvV-9LLDrBDeEKFXSlaF0pVCXQlR55i29zbYQ62e0B53zRTzsBAEGmJGc2ihOuJXCZoWafKzohBGU98hJjQaASRoFUmyk0VSXeff4kRlg7R4gPPfKmN7JlvQQF_c4FNyAUz9qy3N-ydFNVbZ1-sQo5gaeQ31aYsqkEojjGXXUXeuRRF4vrgSW4zzUOAvcY6-D8u2ue_LflU3I7wobGAS5C7pNBvWzMM4eyavm8n2O_ABWAJ6M
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+development+of+diagnostic+support+algorithms+based+on+CPET+biosignals+data+via+machine+learning+and+wavelets&rft.jtitle=PeerJ.+Computer+science&rft.au=Pinheiro%2C+Rafael+F&rft.au=Fonseca-Pinto%2C+Rui&rft.date=2025-01-30&rft.pub=PeerJ.+Ltd&rft.issn=2376-5992&rft.eissn=2376-5992&rft.volume=11&rft.spage=e2474&rft_id=info:doi/10.7717%2Fpeerj-cs.2474&rft.externalDBID=ISR&rft.externalDocID=A825420562
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2376-5992&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2376-5992&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2376-5992&client=summon