On the development of diagnostic support algorithms based on CPET biosignals data via machine learning and wavelets
For preventing health complications and reducing the strain on healthcare systems, early identification of diseases is imperative. In this context, artificial intelligence has become increasingly prominent in the field of medicine, offering essential support for disease diagnosis. This article intro...
        Saved in:
      
    
          | Published in | PeerJ. Computer science Vol. 11; p. e2474 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        United States
          PeerJ. Ltd
    
        30.01.2025
     PeerJ Inc  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2376-5992 2376-5992  | 
| DOI | 10.7717/peerj-cs.2474 | 
Cover
| Abstract | For preventing health complications and reducing the strain on healthcare systems, early identification of diseases is imperative. In this context, artificial intelligence has become increasingly prominent in the field of medicine, offering essential support for disease diagnosis. This article introduces an algorithm that builds upon an earlier methodology to assess biosignals acquired through cardiopulmonary exercise testing (CPET) for identifying metabolic syndrome (MS), heart failure (HF), and healthy individuals (H). Leveraging support vector machine (SVM) technology, a well-known machine learning classification method, in combination with wavelet transforms for feature extraction, the algorithm takes an innovative approach. The model was trained on CPET data from 45 participants, including 15 with MS, 15 with HF, and 15 healthy controls. For binary classification tasks, the SVM with a polynomial kernel and 5-level wavelet transform (SVM-POL-BW5) outperformed similar methods described in the literature. Moreover, one of the main contributions of this study is the development of a multi-class classification algorithm using the SVM employing a linear kernel and 3-level wavelet transforms (SVM-LIN-MW3), reaching an average accuracy of 95%. In conclusion, the application of SVM-based algorithms combined with wavelet transforms to analyze CPET data shows promise in diagnosing various diseases, highlighting their adaptability and broader potential applications in healthcare. | 
    
|---|---|
| AbstractList | For preventing health complications and reducing the strain on healthcare systems, early identification of diseases is imperative. In this context, artificial intelligence has become increasingly prominent in the field of medicine, offering essential support for disease diagnosis. This article introduces an algorithm that builds upon an earlier methodology to assess biosignals acquired through cardiopulmonary exercise testing (CPET) for identifying metabolic syndrome (MS), heart failure (HF), and healthy individuals (H). Leveraging support vector machine (SVM) technology, a well-known machine learning classification method, in combination with wavelet transforms for feature extraction, the algorithm takes an innovative approach. The model was trained on CPET data from 45 participants, including 15 with MS, 15 with HF, and 15 healthy controls. For binary classification tasks, the SVM with a polynomial kernel and 5-level wavelet transform (SVM-POL-BW5) outperformed similar methods described in the literature. Moreover, one of the main contributions of this study is the development of a multi-class classification algorithm using the SVM employing a linear kernel and 3-level wavelet transforms (SVM-LIN-MW3), reaching an average accuracy of 95%. In conclusion, the application of SVM-based algorithms combined with wavelet transforms to analyze CPET data shows promise in diagnosing various diseases, highlighting their adaptability and broader potential applications in healthcare. For preventing health complications and reducing the strain on healthcare systems, early identification of diseases is imperative. In this context, artificial intelligence has become increasingly prominent in the field of medicine, offering essential support for disease diagnosis. This article introduces an algorithm that builds upon an earlier methodology to assess biosignals acquired through cardiopulmonary exercise testing (CPET) for identifying metabolic syndrome (MS), heart failure (HF), and healthy individuals (H). Leveraging support vector machine (SVM) technology, a well-known machine learning classification method, in combination with wavelet transforms for feature extraction, the algorithm takes an innovative approach. The model was trained on CPET data from 45 participants, including 15 with MS, 15 with HF, and 15 healthy controls. For binary classification tasks, the SVM with a polynomial kernel and 5-level wavelet transform (SVM-POL-BW5) outperformed similar methods described in the literature. Moreover, one of the main contributions of this study is the development of a multi-class classification algorithm using the SVM employing a linear kernel and 3-level wavelet transforms (SVM-LIN-MW3), reaching an average accuracy of 95%. In conclusion, the application of SVM-based algorithms combined with wavelet transforms to analyze CPET data shows promise in diagnosing various diseases, highlighting their adaptability and broader potential applications in healthcare.For preventing health complications and reducing the strain on healthcare systems, early identification of diseases is imperative. In this context, artificial intelligence has become increasingly prominent in the field of medicine, offering essential support for disease diagnosis. This article introduces an algorithm that builds upon an earlier methodology to assess biosignals acquired through cardiopulmonary exercise testing (CPET) for identifying metabolic syndrome (MS), heart failure (HF), and healthy individuals (H). Leveraging support vector machine (SVM) technology, a well-known machine learning classification method, in combination with wavelet transforms for feature extraction, the algorithm takes an innovative approach. The model was trained on CPET data from 45 participants, including 15 with MS, 15 with HF, and 15 healthy controls. For binary classification tasks, the SVM with a polynomial kernel and 5-level wavelet transform (SVM-POL-BW5) outperformed similar methods described in the literature. Moreover, one of the main contributions of this study is the development of a multi-class classification algorithm using the SVM employing a linear kernel and 3-level wavelet transforms (SVM-LIN-MW3), reaching an average accuracy of 95%. In conclusion, the application of SVM-based algorithms combined with wavelet transforms to analyze CPET data shows promise in diagnosing various diseases, highlighting their adaptability and broader potential applications in healthcare.  | 
    
| ArticleNumber | e2474 | 
    
| Audience | Academic | 
    
| Author | Fonseca-Pinto, Rui Pinheiro, Rafael F.  | 
    
| Author_xml | – sequence: 1 givenname: Rafael F. surname: Pinheiro fullname: Pinheiro, Rafael F. – sequence: 2 givenname: Rui surname: Fonseca-Pinto fullname: Fonseca-Pinto, Rui  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40062300$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqFkktv1DAUhSNUREvpki2yxAYWGey87CyrUYGRKhVBWVvXr4xHiR1sp6X_HrdTRswKe2Hr6jvH9-r4dXHivNNF8ZbgFaWEfpq1DrtSxlXV0OZFcVbVtCvbvq9O_rmfFhcx7jDGpCV59a-K0wbjrqoxPivijUNpq5HSd3r086RdQt4gZWFwPiYrUVzm2YeEYBx8sGk7RSQgaoW8Q-tvV7dIWB_t4GCMSEECdGcBTSC31mk0agjOugGBU-ge8hs6xTfFS5NpffF8nhc_P1_drr-W1zdfNuvL61I2rE5ljWlbSUaEqZlRQvWkF7IhLe0wGBBaMWUINqajmoLuSAcd0E4LaFlHm0rU58Vm76s87Pgc7AThgXuw_Kngw8Ah5BFHzQEAUylYZ6q6YUoAE5RVrK2aHghIk71We6_FzfBwD-N4MCSYP4bBn8LgMvLHMLLgw14wB_9r0THxyUapxxGc9kvkNaFtx9q2Jxl9v0cHyK1YZ3wKIB9xfsmqtqlwm9M6dHBE5a30ZGX-F8bm-pHg45EgM0n_TgMsMfLNj-_H7LvnbhcxaXWY7e9HyUC5B2TwMQZt_jP-H94Y0Sc | 
    
| Cites_doi | 10.1155/2019/4912174 10.15386/mpr-1884 10.3389/fcvm.2021.698117 10.21037/atm-20-1127 10.1016/j.jacc.2008.02.032 10.1109/ACCESS.2019.2947701 10.1016/j.diabres.2022.109924 10.3389/fcvm.2021.704145 10.1109/JBHI.2022.3163402 10.1016/j.jcmg.2021.06.015 10.3390/electronics12214423 10.1016/j.mayocp.2016.10.003 10.1162/15324430152733133 10.3390/app11020796 10.13005/bpj/1525 10.1016/j.eswa.2006.02.005 10.1186/s12874-017-0313-9 10.1613/jair.105 10.1249/MSS.0000000000003293 10.1142/S0219622019500457 10.1016/j.bspc.2022.104103 10.1007/s11042-023-16529-w 10.1161/01.CIR.101.23.e215 10.21037/jtd-20-1061b 10.1186/s12938-017-0406-z 10.36001/ijphm.2018.v9i2.2737 10.1089/met.2021.0130 10.1155/2023/6530719 10.1177/2047487319859450 10.1186/s12968-022-00851-7 10.1016/j.compbiomed.2015.03.005 10.13026/7ezk-j442 10.1080/15438627.2021.1954513 10.3390/s23020826 10.1186/s13040-022-00299-6 10.1016/j.compbiomed.2021.105168 10.1155/2021/5516248 10.1152/japplphysiol.00655.2018 10.1016/j.neuroimage.2023.120253 10.1016/j.jcmg.2019.10.017 10.1038/s41598-023-31381-6 10.1016/j.smhl.2022.100303 10.3390/app14083337 10.3390/a14110301 10.1109/TKDE.2019.2912815  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2025 Pinheiro and Fonseca-Pinto. COPYRIGHT 2025 PeerJ. Ltd.  | 
    
| Copyright_xml | – notice: 2025 Pinheiro and Fonseca-Pinto. – notice: COPYRIGHT 2025 PeerJ. Ltd.  | 
    
| DBID | AAYXX CITATION NPM ISR 7X8 ADTOC UNPAY DOA  | 
    
| DOI | 10.7717/peerj-cs.2474 | 
    
| DatabaseName | CrossRef PubMed Gale In Context: Science MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic  | 
    
| DatabaseTitleList | PubMed CrossRef MEDLINE - Academic  | 
    
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Computer Science | 
    
| EISSN | 2376-5992 | 
    
| ExternalDocumentID | oai_doaj_org_article_aaa07cb86f2348dba8b78285249a1acf 10.7717/peerj-cs.2474 A825420562 40062300 10_7717_peerj_cs_2474  | 
    
| Genre | Journal Article | 
    
| GroupedDBID | 53G 5VS 8FE 8FG AAFWJ AAYXX ABUWG ADBBV AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS ARAPS ARCSS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO FRP GNUQQ GROUPED_DOAJ HCIFZ IAO ICD IEA ISR ITC K6V K7- M~E OK1 P62 PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PUEGO RPM H13 NPM 7X8 ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c483t-30752c81bf38fdbd919bc415760afabed8df10ff67e7ae616a6a76eba586742b3 | 
    
| IEDL.DBID | DOA | 
    
| ISSN | 2376-5992 | 
    
| IngestDate | Fri Oct 03 12:46:35 EDT 2025 Sun Oct 26 04:09:30 EDT 2025 Thu Sep 04 20:21:47 EDT 2025 Mon Oct 20 22:43:58 EDT 2025 Mon Oct 20 16:52:00 EDT 2025 Thu Oct 16 15:37:30 EDT 2025 Wed Mar 12 01:34:54 EDT 2025 Wed Oct 01 02:45:12 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Multi-class classification Metabolic diseases CPET Early diagnosis systems Heart disease  | 
    
| Language | English | 
    
| License | https://creativecommons.org/licenses/by/4.0 2025 Pinheiro and Fonseca-Pinto. cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c483t-30752c81bf38fdbd919bc415760afabed8df10ff67e7ae616a6a76eba586742b3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23  | 
    
| OpenAccessLink | https://doaj.org/article/aaa07cb86f2348dba8b78285249a1acf | 
    
| PMID | 40062300 | 
    
| PQID | 3175685591 | 
    
| PQPubID | 23479 | 
    
| PageCount | e2474 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_aaa07cb86f2348dba8b78285249a1acf unpaywall_primary_10_7717_peerj_cs_2474 proquest_miscellaneous_3175685591 gale_infotracmisc_A825420562 gale_infotracacademiconefile_A825420562 gale_incontextgauss_ISR_A825420562 pubmed_primary_40062300 crossref_primary_10_7717_peerj_cs_2474  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2025-01-30 | 
    
| PublicationDateYYYYMMDD | 2025-01-30 | 
    
| PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-30 day: 30  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | United States | 
    
| PublicationPlace_xml | – name: United States | 
    
| PublicationTitle | PeerJ. Computer science | 
    
| PublicationTitleAlternate | PeerJ Comput Sci | 
    
| PublicationYear | 2025 | 
    
| Publisher | PeerJ. Ltd PeerJ Inc  | 
    
| Publisher_xml | – name: PeerJ. Ltd – name: PeerJ Inc  | 
    
| References | Gaitán (10.7717/peerj-cs.2474/ref-15) 2019; 18 Rodriguez (10.7717/peerj-cs.2474/ref-41) 2022; 20 Saito (10.7717/peerj-cs.2474/ref-43) 2023; 13 Spolaôr (10.7717/peerj-cs.2474/ref-47) 2024; 83 Heiston (10.7717/peerj-cs.2474/ref-21) 2019; 126 Kumar (10.7717/peerj-cs.2474/ref-26) 2024 Zhou (10.7717/peerj-cs.2474/ref-53) 2021; 8 Hansen (10.7717/peerj-cs.2474/ref-19) 2019; 26 Inbar (10.7717/peerj-cs.2474/ref-22) 2021; 2021 Prusa (10.7717/peerj-cs.2474/ref-38) 2015 Noubiap (10.7717/peerj-cs.2474/ref-35) 2022; 188 Wong (10.7717/peerj-cs.2474/ref-50) 2019; 32 Goldberger (10.7717/peerj-cs.2474/ref-17) 2000; 101 Haq (10.7717/peerj-cs.2474/ref-20) 2019; 7 Malin (10.7717/peerj-cs.2474/ref-29) 2019; 2019 Thölke (10.7717/peerj-cs.2474/ref-49) 2023; 277 Niaz (10.7717/peerj-cs.2474/ref-34) 2022 Zignoli (10.7717/peerj-cs.2474/ref-54) 2023; 23 Gao (10.7717/peerj-cs.2474/ref-16) 2021; 14 Chen (10.7717/peerj-cs.2474/ref-11) 2023; 2023 Purwowiyoto (10.7717/peerj-cs.2474/ref-39) 2021; 94 Bowen (10.7717/peerj-cs.2474/ref-8) 2020; 8 Dietterich (10.7717/peerj-cs.2474/ref-13) 1994; 2 Mongin (10.7717/peerj-cs.2474/ref-32) 2021 Kehri (10.7717/peerj-cs.2474/ref-25) 2018; 11 Chakraborty (10.7717/peerj-cs.2474/ref-10) 2022; 26 Gopinath (10.7717/peerj-cs.2474/ref-18) 2018; 9 Portella (10.7717/peerj-cs.2474/ref-37) 2022; 26 Dhivya (10.7717/peerj-cs.2474/ref-12) 2018 Li (10.7717/peerj-cs.2474/ref-27) 2021; 8 Brown (10.7717/peerj-cs.2474/ref-9) 2022; 15 Sadaiyandi (10.7717/peerj-cs.2474/ref-42) 2023; 12 Kaminsky (10.7717/peerj-cs.2474/ref-24) 2017; 92 Sordo (10.7717/peerj-cs.2474/ref-46) 2005 Allwein (10.7717/peerj-cs.2474/ref-1) 2000; 1 Althnian (10.7717/peerj-cs.2474/ref-2) 2021; 11 Schwendinger (10.7717/peerj-cs.2474/ref-44) 2024; 56 Epstein (10.7717/peerj-cs.2474/ref-14) 2008; 51 Michelucci (10.7717/peerj-cs.2474/ref-30) 2021; 14 Xing (10.7717/peerj-cs.2474/ref-52) 2011 Asgari (10.7717/peerj-cs.2474/ref-3) 2015; 60 Boser (10.7717/peerj-cs.2474/ref-7) 1992 Pinheiro (10.7717/peerj-cs.2474/ref-36) 2023 Bilchick (10.7717/peerj-cs.2474/ref-6) 2020; 13 Subasi (10.7717/peerj-cs.2474/ref-48) 2007; 32 Mongin (10.7717/peerj-cs.2474/ref-31) 2021; 31 Iniyan (10.7717/peerj-cs.2474/ref-23) 2023; 79 Rahman (10.7717/peerj-cs.2474/ref-40) 2017; 17 Xin (10.7717/peerj-cs.2474/ref-51) 2017; 16 Auger (10.7717/peerj-cs.2474/ref-4) 2022; 24 Morales (10.7717/peerj-cs.2474/ref-33) 2020; 19 Luo (10.7717/peerj-cs.2474/ref-28) 2021; 13 Serhal (10.7717/peerj-cs.2474/ref-45) 2022; 142 Bezerra (10.7717/peerj-cs.2474/ref-5) 2024; 14  | 
    
| References_xml | – volume: 2019 start-page: 1 issue: 9179 year: 2019 ident: 10.7717/peerj-cs.2474/ref-29 article-title: Impact of short-term continuous and interval exercise training on endothelial function and glucose metabolism in prediabetes publication-title: Journal of Diabetes Research doi: 10.1155/2019/4912174 – volume: 18 start-page: 636 issue: 4 year: 2019 ident: 10.7717/peerj-cs.2474/ref-15 article-title: Two weeks of interval training enhances fat oxidation during exercise in obese adults with prediabetes publication-title: Journal of Sports Science & Medicine – volume: 94 start-page: 15 issue: 1 year: 2021 ident: 10.7717/peerj-cs.2474/ref-39 article-title: Metabolic syndrome and heart failure: mechanism and management publication-title: Medicine and Pharmacy Reports doi: 10.15386/mpr-1884 – volume: 8 start-page: 698117 year: 2021 ident: 10.7717/peerj-cs.2474/ref-53 article-title: Association between metabolic syndrome and an increased risk of hospitalization for heart failure in population of HFpEF publication-title: Frontiers in Cardiovascular Medicine doi: 10.3389/fcvm.2021.698117 – volume: 8 start-page: 827 issue: 13 year: 2020 ident: 10.7717/peerj-cs.2474/ref-8 article-title: Statistics of heart failure and mechanical circulatory support in 2020 publication-title: Annals of Translational Medicine doi: 10.21037/atm-20-1127 – start-page: 193 year: 2005 ident: 10.7717/peerj-cs.2474/ref-46 article-title: On sample size and classification accuracy: a performance comparison – volume: 51 start-page: e1 issue: 21 year: 2008 ident: 10.7717/peerj-cs.2474/ref-14 article-title: ACC/AHA/HRS, 2008 guidelines for device-based therapy of cardiac rhythm abnormalities: a report of the American College of Cardiology/American Heart Association task force on practice guidelines (writing committee to revise the ACC/AHA/NASPE, 2002 guideline update for implantation of cardiac pacemakers and antiarrhythmia devices) developed in collaboration with the american association for thoracic surgery and society of thoracic surgeons publication-title: Journal of the American College of Cardiology doi: 10.1016/j.jacc.2008.02.032 – volume: 7 start-page: 151482–151492 year: 2019 ident: 10.7717/peerj-cs.2474/ref-20 article-title: Combining multiple feature-ranking techniques and clustering of variables for feature selection publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2947701 – volume: 188 start-page: 109924 issue: 4 year: 2022 ident: 10.7717/peerj-cs.2474/ref-35 article-title: Geographic distribution of metabolic syndrome and its components in the general adult population: a meta-analysis of global data from 28 million individuals publication-title: Diabetes Research and Clinical Practice doi: 10.1016/j.diabres.2022.109924 – volume: 8 start-page: 704145 year: 2021 ident: 10.7717/peerj-cs.2474/ref-27 article-title: Impact of metabolic syndrome and it’s components on prognosis in patients with cardiovascular diseases: a meta-analysis publication-title: Frontiers in Cardiovascular Medicine doi: 10.3389/fcvm.2021.704145 – start-page: 247 year: 2011 ident: 10.7717/peerj-cs.2474/ref-52 article-title: Extracting interpretable features for early classification on time series – volume: 26 start-page: 4228 issue: 8 year: 2022 ident: 10.7717/peerj-cs.2474/ref-37 article-title: Using machine learning to identify organ system specific limitations to exercise via cardiopulmonary exercise testing publication-title: IEEE Journal of Biomedical and Health Informatics doi: 10.1109/JBHI.2022.3163402 – volume: 14 start-page: 2369 issue: 12 year: 2021 ident: 10.7717/peerj-cs.2474/ref-16 article-title: Cardiac magnetic resonance assessment of response to cardiac resynchronization therapy and programming strategies publication-title: Cardiovascular Imaging doi: 10.1016/j.jcmg.2021.06.015 – volume: 12 start-page: 4423 issue: 21 year: 2023 ident: 10.7717/peerj-cs.2474/ref-42 article-title: Stratified sampling-based deep learning approach to increase prediction accuracy of unbalanced dataset publication-title: Electronics doi: 10.3390/electronics12214423 – volume: 92 start-page: 228 year: 2017 ident: 10.7717/peerj-cs.2474/ref-24 article-title: Reference standards for cardiorespiratory fitness measured with cardiopulmonary exercise testing using cycle ergometry: data from the fitness registry and the importance of exercise national database (friend) registry publication-title: Mayo Clinic Proceedings doi: 10.1016/j.mayocp.2016.10.003 – volume: 1 start-page: 113 issue: Dec year: 2000 ident: 10.7717/peerj-cs.2474/ref-1 article-title: Reducing multiclass to binary: a unifying approach for margin classifiers publication-title: Journal of Machine Learning Research doi: 10.1162/15324430152733133 – volume: 11 start-page: 796 issue: 2 year: 2021 ident: 10.7717/peerj-cs.2474/ref-2 article-title: Impact of dataset size on classification performance: an empirical evaluation in the medical domain publication-title: Applied Sciences doi: 10.3390/app11020796 – volume: 11 start-page: 1583 issue: 3 year: 2018 ident: 10.7717/peerj-cs.2474/ref-25 article-title: Emg signal analysis for diagnosis of muscular dystrophy using wavelet transform, SVM and ANN publication-title: Biomedical and Pharmacology Journal doi: 10.13005/bpj/1525 – volume: 32 start-page: 1084 issue: 4 year: 2007 ident: 10.7717/peerj-cs.2474/ref-48 article-title: Eeg signal classification using wavelet feature extraction and a mixture of expert model publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2006.02.005 – volume: 17 start-page: 1 issue: 1 year: 2017 ident: 10.7717/peerj-cs.2474/ref-40 article-title: Performance of firth-and logf-type penalized methods in risk prediction for small or sparse binary data publication-title: BMC Medical Research Methodology doi: 10.1186/s12874-017-0313-9 – volume: 2 start-page: 263 year: 1994 ident: 10.7717/peerj-cs.2474/ref-13 article-title: Solving multiclass learning problems via error-correcting output codes publication-title: Journal of Artificial Intelligence Research doi: 10.1613/jair.105 – volume: 56 start-page: 159 issue: 2 year: 2024 ident: 10.7717/peerj-cs.2474/ref-44 article-title: Using machine learning–based algorithms to identify and quantify exercise limitations in clinical practice: are we there yet? publication-title: Medicine & Science in Sports & Exercise doi: 10.1249/MSS.0000000000003293 – volume: 19 start-page: 283 issue: 01 year: 2020 ident: 10.7717/peerj-cs.2474/ref-33 article-title: Lamda-had, an extension to the lamda classifier in the context of supervised learning publication-title: International Journal of Information Technology & Decision Making doi: 10.1142/S0219622019500457 – volume: 79 start-page: 104103 year: 2023 ident: 10.7717/peerj-cs.2474/ref-23 article-title: Wavelet transformation and vertical stacking based image classification applying machine learning publication-title: Biomedical Signal Processing and Control doi: 10.1016/j.bspc.2022.104103 – volume: 83 start-page: 27305 issue: 9 year: 2024 ident: 10.7717/peerj-cs.2474/ref-47 article-title: Fine-tuning pre-trained neural networks for medical image classification in small clinical datasets publication-title: Multimedia Tools and Applications doi: 10.1007/s11042-023-16529-w – volume: 101 start-page: e215–e220 issue: 23 year: 2000 ident: 10.7717/peerj-cs.2474/ref-17 article-title: Physiobank, physiotoolkit, and physionet: components of a new research resource for complex physiologic signals publication-title: Circulation doi: 10.1161/01.CIR.101.23.e215 – volume: 13 start-page: 178 issue: 1 year: 2021 ident: 10.7717/peerj-cs.2474/ref-28 article-title: The value of cardiopulmonary exercise testing in the diagnosis of pulmonary hypertension publication-title: Journal of Thoracic Disease doi: 10.21037/jtd-20-1061b – volume: 16 start-page: 1 year: 2017 ident: 10.7717/peerj-cs.2474/ref-51 article-title: Paroxysmal atrial fibrillation recognition based on multi-scale wavelet α-entropy publication-title: Biomedical Engineering Online doi: 10.1186/s12938-017-0406-z – volume: 9 issue: 2 year: 2018 ident: 10.7717/peerj-cs.2474/ref-18 article-title: Scalable fault models for diagnosis in a synchronous generator using feature mapping and transformation techniques publication-title: International Journal of Prognostics and Health Management doi: 10.36001/ijphm.2018.v9i2.2737 – start-page: 1 year: 2024 ident: 10.7717/peerj-cs.2474/ref-26 article-title: Analysis of feature noise on standard svm with linear kernel – volume: 20 start-page: 414 issue: 7 year: 2022 ident: 10.7717/peerj-cs.2474/ref-41 article-title: Cardiopulmonary exercise responses in individuals with metabolic syndrome: the ball state adult fitness longitudinal lifestyle study publication-title: Metabolic Syndrome and Related Disorders doi: 10.1089/met.2021.0130 – volume: 2023 start-page: 6530719 issue: 1 year: 2023 ident: 10.7717/peerj-cs.2474/ref-11 article-title: Classification prediction of breast cancer based on machine learning publication-title: Computational Intelligence and Neuroscience doi: 10.1155/2023/6530719 – volume: 26 start-page: 1921 issue: 18 year: 2019 ident: 10.7717/peerj-cs.2474/ref-19 article-title: Exercise training intensity determination in cardiovascular rehabilitation: should the guidelines be reconsidered? publication-title: European Journal of Preventive Cardiology doi: 10.1177/2047487319859450 – volume: 24 start-page: 1 issue: 1 year: 2022 ident: 10.7717/peerj-cs.2474/ref-4 article-title: Reproducibility of global and segmental myocardial strain using cine DENSE at 3 t: a multicenter cardiovascular magnetic resonance study in healthy subjects and patients with heart disease publication-title: Journal of Cardiovascular Magnetic Resonance doi: 10.1186/s12968-022-00851-7 – start-page: 1 year: 2018 ident: 10.7717/peerj-cs.2474/ref-12 article-title: Wavelet based MRI brain image classification using radial basis function in svm – volume: 60 start-page: 132 year: 2015 ident: 10.7717/peerj-cs.2474/ref-3 article-title: Automatic detection of atrial fibrillation using stationary wavelet transform and support vector machine publication-title: Computers in Biology and Medicine doi: 10.1016/j.compbiomed.2015.03.005 – start-page: 485 year: 2022 ident: 10.7717/peerj-cs.2474/ref-34 article-title: Class imbalance problems in machine learning: a review of methods and future challenges – year: 2021 ident: 10.7717/peerj-cs.2474/ref-32 article-title: Treadmill maximal exercise tests from the exercise physiology and human performance lab of the university of malaga. Physionet, version 1.0.1 doi: 10.13026/7ezk-j442 – volume: 31 start-page: 157 issue: 2 year: 2021 ident: 10.7717/peerj-cs.2474/ref-31 article-title: Heart rate recovery to assess fitness: comparison of different calculation methods in a large cross-sectional study publication-title: Research in Sports Medicine doi: 10.1080/15438627.2021.1954513 – start-page: 144 year: 1992 ident: 10.7717/peerj-cs.2474/ref-7 article-title: A training algorithm for optimal margin classifiers – volume: 23 start-page: 826 issue: 2 year: 2023 ident: 10.7717/peerj-cs.2474/ref-54 article-title: Machine learning models for the automatic detection of exercise thresholds in cardiopulmonary exercising tests: from regression to generation to explanation publication-title: Sensors doi: 10.3390/s23020826 – volume: 15 start-page: 16 issue: 1 year: 2022 ident: 10.7717/peerj-cs.2474/ref-9 article-title: Neural network methods for diagnosing patient conditions from cardiopulmonary exercise testing data publication-title: BioData Mining doi: 10.1186/s13040-022-00299-6 – volume: 142 start-page: 105168 issue: 3 year: 2022 ident: 10.7717/peerj-cs.2474/ref-45 article-title: Overview on prediction, detection, and classification of atrial fibrillation using wavelets and AI on ECG publication-title: Computers in Biology and Medicine doi: 10.1016/j.compbiomed.2021.105168 – volume: 2021 start-page: 1 issue: 2 year: 2021 ident: 10.7717/peerj-cs.2474/ref-22 article-title: A machine learning approach to the interpretation of cardiopulmonary exercise tests: development and validation publication-title: Pulmonary Medicine doi: 10.1155/2021/5516248 – volume: 126 start-page: 746 issue: 3 year: 2019 ident: 10.7717/peerj-cs.2474/ref-21 article-title: Two weeks of exercise training intensity on appetite regulation in obese adults with prediabetes publication-title: Journal of Applied Physiology doi: 10.1152/japplphysiol.00655.2018 – volume: 277 start-page: 120253 year: 2023 ident: 10.7717/peerj-cs.2474/ref-49 article-title: Class imbalance should not throw you off balance: choosing the right classifiers and performance metrics for brain decoding with imbalanced data publication-title: NeuroImage doi: 10.1016/j.neuroimage.2023.120253 – start-page: 159 year: 2023 ident: 10.7717/peerj-cs.2474/ref-36 article-title: Algorithm for diagnosis of metabolic syndrome and heart failure using cpet biosignals via svm and wavelet transforms – volume: 13 start-page: 924 issue: 4 year: 2020 ident: 10.7717/peerj-cs.2474/ref-6 article-title: CMR DENSE and the seattle heart failure model inform survival and arrhythmia risk after crt publication-title: Cardiovascular Imaging doi: 10.1016/j.jcmg.2019.10.017 – volume: 13 start-page: 4355 issue: 1 year: 2023 ident: 10.7717/peerj-cs.2474/ref-43 article-title: Diagnostic value of expired gas analysis in heart failure with preserved ejection fraction publication-title: Scientific Reports doi: 10.1038/s41598-023-31381-6 – volume: 26 start-page: 100303 issue: 10 year: 2022 ident: 10.7717/peerj-cs.2474/ref-10 article-title: A machine learning approach to identify fall risk for older adults publication-title: Smart Health doi: 10.1016/j.smhl.2022.100303 – start-page: 96 year: 2015 ident: 10.7717/peerj-cs.2474/ref-38 article-title: The effect of dataset size on training tweet sentiment classifiers – volume: 14 start-page: 3337 issue: 8 year: 2024 ident: 10.7717/peerj-cs.2474/ref-5 article-title: Impacts of feature selection on predicting machine failures by machine learning algorithms publication-title: Applied Sciences doi: 10.3390/app14083337 – volume: 14 start-page: 301 issue: 11 year: 2021 ident: 10.7717/peerj-cs.2474/ref-30 article-title: A model-agnostic algorithm for bayes error determination in binary classification publication-title: Algorithms doi: 10.3390/a14110301 – volume: 32 start-page: 1586 issue: 8 year: 2019 ident: 10.7717/peerj-cs.2474/ref-50 article-title: Reliable accuracy estimates from k-fold cross validation publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2019.2912815  | 
    
| SSID | ssj0001511119 | 
    
| Score | 2.284007 | 
    
| Snippet | For preventing health complications and reducing the strain on healthcare systems, early identification of diseases is imperative. In this context, artificial... | 
    
| SourceID | doaj unpaywall proquest gale pubmed crossref  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Index Database  | 
    
| StartPage | e2474 | 
    
| SubjectTerms | Algorithms Artificial intelligence CPET Early diagnosis systems Heart disease Machine learning Metabolic diseases Multi-class classification Type 2 diabetes  | 
    
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEF5BeoBLyxtDQQtCcHLq53p9DFWjgkSpoJHKaTX7CqGpHcU2Ffx6dmwnJFQCrvbY8o5nPd-sv_2GkFcaAhmHNvRjmyo_0ZH0IdLSd9jVJa8IQHPcO_zhhB1Pkvfn6XlPosG9MBv_7zNXaRwsjFl-81U1jJIsuUl2WOog94DsTE5OR1_axnEZczfOo04_8_o1W_mmleW__vHdyD63mmIBP65gPt9IM-M9Ml49YMcuuRg2tRyqn39oN_5zBHfIbg806aiLjLvkhinukb1VEwfaz-n7pPpYUAcCqf7NHqKlpbqj4LmLadUsEKRTmE_L5az-ellRzH2algU9PD06o3JWIg3EBTJFwin9PgN62ZI0De27UkwpFJpeAba5qKsHZDI-Ojs89vtODL5KeFzjAlUaKYdwbcytljoPc6lc6s9YABak0VzbMLCWZSYDw0IGDDJmJKScudpbxg_JoCgL85jQkMmUOVSZKo5CMXGe5DLmKlI2zgDC1COvV-9LLDrBDeEKFXSlaF0pVCXQlR55i29zbYQ62e0B53zRTzsBAEGmJGc2ihOuJXCZoWafKzohBGU98hJjQaASRoFUmyk0VSXeff4kRlg7R4gPPfKmN7JlvQQF_c4FNyAUz9qy3N-ydFNVbZ1-sQo5gaeQ31aYsqkEojjGXXUXeuRRF4vrgSW4zzUOAvcY6-D8u2ue_LflU3I7wobGAS5C7pNBvWzMM4eyavm8n2O_ABWAJ6M priority: 102 providerName: Unpaywall  | 
    
| Title | On the development of diagnostic support algorithms based on CPET biosignals data via machine learning and wavelets | 
    
| URI | https://www.ncbi.nlm.nih.gov/pubmed/40062300 https://www.proquest.com/docview/3175685591 https://doi.org/10.7717/peerj-cs.2474 https://doaj.org/article/aaa07cb86f2348dba8b78285249a1acf  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 11 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2376-5992 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001511119 issn: 2376-5992 databaseCode: DOA dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2376-5992 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001511119 issn: 2376-5992 databaseCode: M~E dateStart: 20150101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2376-5992 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001511119 issn: 2376-5992 databaseCode: RPM dateStart: 20170101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2376-5992 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001511119 issn: 2376-5992 databaseCode: BENPR dateStart: 20150527 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2376-5992 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001511119 issn: 2376-5992 databaseCode: 8FG dateStart: 20150527 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZgOcCFN0tgqQxCcAqbp-Mcu6uWBYlSLVtpOVnjVynqJlWTsOLf40nS0goJLhyTTCTbM_Z8Y818Q8hrDYGMQxv6sU2Vn-hI-hBp6Tvs6pxXBKA51g5_mrCzWfLxMr3cafWFOWEdPXC3cMcAEGRKcmajOOFaApcZsq65sAFCUBZP34DnO8FUVx-MR0HekWpmLmQ5Xhmz_u6r6l2UZMmeE2q5-v88kXdc0u2mWMHPa1gud3zP-D6524NGOuwG-4DcMMVDcm_TkIH2-_MRqT4X1AE6qn9nAtHSUt2l07mfadWsEHBTWM7L9aL-dlVR9GOalgU9nY4uqFyUmNLhjJJi8ij9sQB61SZcGtp3mJhTKDS9BmxZUVePyWw8ujg98_uuCr5KeFzjZVMaKYdWbcytljoPc6mcG89YABak0VzbMLCWZSYDw0IGDDJmJKScuThaxk_IQVEW5imhIZMpcwgxVRxJX-I8yWXMVaRsnAGEqUfebJZZrDryDOGCDtSHaPUhVCVQHx45QSVshZDzun3hLEH0liD-ZQkeeYUqFMhqUWDazByaqhIfvpyLIcbBEWI9j7zthWxZr0FBX4XgJoREWHuSR3uSbtupvc8vN5Yi8BPmqhWmbCqBiIxxF6mFHjnsTGg7sQRrVuMgcMPY2tTfl-bZ_1ia5-ROhH2LA7xrPCIH9boxLxyYquWA3OTj9wNy62Q0mZ4P2l3knmaT6fDrL0G9I6g | 
    
| linkProvider | Directory of Open Access Journals | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEF5BeoBLyxtDQQtCcHLq53p9DFWjgkSpoJHKaTX7CqGpHcU2Ffx6dmwnJFQCrvbY8o5nPd-sv_2GkFcaAhmHNvRjmyo_0ZH0IdLSd9jVJa8IQHPcO_zhhB1Pkvfn6XlPosG9MBv_7zNXaRwsjFl-81U1jJIsuUl2WOog94DsTE5OR1_axnEZczfOo04_8_o1W_mmleW__vHdyD63mmIBP65gPt9IM-M9Ml49YMcuuRg2tRyqn39oN_5zBHfIbg806aiLjLvkhinukb1VEwfaz-n7pPpYUAcCqf7NHqKlpbqj4LmLadUsEKRTmE_L5az-ellRzH2algU9PD06o3JWIg3EBTJFwin9PgN62ZI0De27UkwpFJpeAba5qKsHZDI-Ojs89vtODL5KeFzjAlUaKYdwbcytljoPc6lc6s9YABak0VzbMLCWZSYDw0IGDDJmJKScudpbxg_JoCgL85jQkMmUOVSZKo5CMXGe5DLmKlI2zgDC1COvV-9LLDrBDeEKFXSlaF0pVCXQlR55i29zbYQ62e0B53zRTzsBAEGmJGc2ihOuJXCZoWafKzohBGU98hJjQaASRoFUmyk0VSXeff4kRlg7R4gPPfKmN7JlvQQF_c4FNyAUz9qy3N-ydFNVbZ1-sQo5gaeQ31aYsqkEojjGXXUXeuRRF4vrgSW4zzUOAvcY6-D8u2ue_LflU3I7wobGAS5C7pNBvWzMM4eyavm8n2O_ABWAJ6M | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+development+of+diagnostic+support+algorithms+based+on+CPET+biosignals+data+via+machine+learning+and+wavelets&rft.jtitle=PeerJ.+Computer+science&rft.au=Pinheiro%2C+Rafael+F&rft.au=Fonseca-Pinto%2C+Rui&rft.date=2025-01-30&rft.pub=PeerJ.+Ltd&rft.issn=2376-5992&rft.eissn=2376-5992&rft.volume=11&rft.spage=e2474&rft_id=info:doi/10.7717%2Fpeerj-cs.2474&rft.externalDBID=ISR&rft.externalDocID=A825420562 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2376-5992&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2376-5992&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2376-5992&client=summon |