A Method for Fault Detection and Diagnostics in Ventilation Units Using Virtual Sensors
Buildings represent a significant portion of global energy consumption. Ventilation units are complex components, often customized for the specific building, responsible for a large part of energy consumption. Their faults impact buildings’ energy efficiency and occupancy comfort. In order to ensure...
Saved in:
| Published in | Sensors (Basel, Switzerland) Vol. 18; no. 11; p. 3931 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article Publication |
| Language | English |
| Published |
Switzerland
Multidisciplinary Digital Publishing Institute (MDPI)
14.11.2018
MDPI MDPI AG |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1424-8220 1424-8220 |
| DOI | 10.3390/s18113931 |
Cover
| Abstract | Buildings represent a significant portion of global energy consumption. Ventilation units are complex components, often customized for the specific building, responsible for a large part of energy consumption. Their faults impact buildings’ energy efficiency and occupancy comfort. In order to ensure their correct operation, proper fault detection and diagnostics methods must be applied. Hardware redundancy, an effective approach to detect faults, leads to increased costs and space requirements. We propose exploiting physical relations inside ventilation units to create virtual sensors from other sensors’ readings, introducing redundancy in the system. We use two different measures to detect when a virtual sensor deviates from the physical one: coefficient of determination for linear models, and acceptable range. We tested our method on a real building at the University of Southern Denmark, developing three virtual sensors: temperature, airflow, and fan speed. We employed linear regression models, statistical models, and non-linear regression models. All models detected an anomalous strong oscillation in the temperature sensors. Readings fell outside the acceptable range and the coefficient of determination dropped. Our method showed promising results by introducing redundancy in the system, which can benefit several applications, such as fault detection and diagnostics and fault-tolerant control. Future work will be necessary to discover thresholds and set up automatic fault detection and diagnostics. |
|---|---|
| AbstractList | Buildings represent a significant portion of global energy consumption. Ventilation units are complex components, often customized for the specific building, responsible for a large part of energy consumption. Their faults impact buildings' energy efficiency and occupancy comfort. In order to ensure their correct operation, proper fault detection and diagnostics methods must be applied. Hardware redundancy, an effective approach to detect faults, leads to increased costs and space requirements. We propose exploiting physical relations inside ventilation units to create virtual sensors from other sensors' readings, introducing redundancy in the system. We use two different measures to detect when a virtual sensor deviates from the physical one: coefficient of determination for linear models, and acceptable range. We tested our method on a real building at the University of Southern Denmark, developing three virtual sensors: temperature, airflow, and fan speed. We employed linear regression models, statistical models, and non-linear regression models. All models detected an anomalous strong oscillation in the temperature sensors. Readings fell outside the acceptable range and the coefficient of determination dropped. Our method showed promising results by introducing redundancy in the system, which can benefit several applications, such as fault detection and diagnostics and fault-tolerant control. Future work will be necessary to discover thresholds and set up automatic fault detection and diagnostics. Buildings represent a significant portion of global energy consumption. Ventilation units are complex components, often customized for the specific building, responsible for a large part of energy consumption. Their faults impact buildings' energy efficiency and occupancy comfort. In order to ensure their correct operation, proper fault detection and diagnostics methods must be applied. Hardware redundancy, an effective approach to detect faults, leads to increased costs and space requirements. We propose exploiting physical relations inside ventilation units to create virtual sensors from other sensors' readings, introducing redundancy in the system. We use two different measures to detect when a virtual sensor deviates from the physical one: coefficient of determination for linear models, and acceptable range. We tested our method on a real building at the University of Southern Denmark, developing three virtual sensors: temperature, airflow, and fan speed. We employed linear regression models, statistical models, and non-linear regression models. All models detected an anomalous strong oscillation in the temperature sensors. Readings fell outside the acceptable range and the coefficient of determination dropped. Our method showed promising results by introducing redundancy in the system, which can benefit several applications, such as fault detection and diagnostics and fault-tolerant control. Future work will be necessary to discover thresholds and set up automatic fault detection and diagnostics.Buildings represent a significant portion of global energy consumption. Ventilation units are complex components, often customized for the specific building, responsible for a large part of energy consumption. Their faults impact buildings' energy efficiency and occupancy comfort. In order to ensure their correct operation, proper fault detection and diagnostics methods must be applied. Hardware redundancy, an effective approach to detect faults, leads to increased costs and space requirements. We propose exploiting physical relations inside ventilation units to create virtual sensors from other sensors' readings, introducing redundancy in the system. We use two different measures to detect when a virtual sensor deviates from the physical one: coefficient of determination for linear models, and acceptable range. We tested our method on a real building at the University of Southern Denmark, developing three virtual sensors: temperature, airflow, and fan speed. We employed linear regression models, statistical models, and non-linear regression models. All models detected an anomalous strong oscillation in the temperature sensors. Readings fell outside the acceptable range and the coefficient of determination dropped. Our method showed promising results by introducing redundancy in the system, which can benefit several applications, such as fault detection and diagnostics and fault-tolerant control. Future work will be necessary to discover thresholds and set up automatic fault detection and diagnostics. Buildings represent a significant portion of global energy consumption. Ventilation units are complex components, often customized for the specific building, responsible for a large part of energy consumption. Their faults impact buildings’ energy efficiency and occupancy comfort. In order to ensure their correct operation, proper fault detection and diagnostics methods must be applied. Hardware redundancy, an effective approach to detect faults, leads to increased costs and space requirements. We propose exploiting physical relations inside ventilation units to create virtual sensors from other sensors’ readings, introducing redundancy in the system. We use two different measures to detect when a virtual sensor deviates from the physical one: coefficient of determination for linear models, and acceptable range. We tested our method on a real building at the University of Southern Denmark, developing three virtual sensors: temperature, airflow, and fan speed. We employed linear regression models, statistical models, and non-linear regression models. All models detected an anomalous strong oscillation in the temperature sensors. Readings fell outside the acceptable range and the coefficient of determination dropped. Our method showed promising results by introducing redundancy in the system, which can benefit several applications, such as fault detection and diagnostics and fault-tolerant control. Future work will be necessary to discover thresholds and set up automatic fault detection and diagnostics. Peer Reviewed |
| Author | Shaker, Hamid Reza Mattera, Claudio Giovanni Jradi, Muhyiddine Escobet, Teresa Quevedo, Joseba |
| AuthorAffiliation | 1 Center for Energy Informatics (CFEI), Maersk Mc-Kinney Moller Institute (MMMI), University of Southern Denmark (SDU), 5230 Odense, Denmark; hrsh@mmmi.sdu.dk (H.R.S.); mjr@mmmi.sdu.dk (M.J.) 2 Center for Supervision, Security and Automatic Control (CS 2 AC), Polytechnic University of Catalonia (UPC), 08034 Barcelona, Spain; joseba.quevedo@upc.edu (J.Q.); teresa.escobet@upc.edu (T.E.) |
| AuthorAffiliation_xml | – name: 1 Center for Energy Informatics (CFEI), Maersk Mc-Kinney Moller Institute (MMMI), University of Southern Denmark (SDU), 5230 Odense, Denmark; hrsh@mmmi.sdu.dk (H.R.S.); mjr@mmmi.sdu.dk (M.J.) – name: 2 Center for Supervision, Security and Automatic Control (CS 2 AC), Polytechnic University of Catalonia (UPC), 08034 Barcelona, Spain; joseba.quevedo@upc.edu (J.Q.); teresa.escobet@upc.edu (T.E.) |
| Author_xml | – sequence: 1 givenname: Claudio Giovanni orcidid: 0000-0002-3801-5617 surname: Mattera fullname: Mattera, Claudio Giovanni – sequence: 2 givenname: Joseba orcidid: 0000-0002-7827-2896 surname: Quevedo fullname: Quevedo, Joseba – sequence: 3 givenname: Teresa orcidid: 0000-0001-6090-1538 surname: Escobet fullname: Escobet, Teresa – sequence: 4 givenname: Hamid Reza orcidid: 0000-0003-2858-8400 surname: Shaker fullname: Shaker, Hamid Reza – sequence: 5 givenname: Muhyiddine orcidid: 0000-0002-3039-1845 surname: Jradi fullname: Jradi, Muhyiddine |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30441797$$D View this record in MEDLINE/PubMed |
| BookMark | eNp1UctuFDEQHKEg8oADP4B8hEhL_JoZzwUpygMiBXGADUerx9OzceS1F9sDyt_j7C6rBIEsy213dXW5-rDa88FjVb1m9L0QHT1JTDEmOsGeVQdMcjlTnNO9R_F-dZjSHaVcCKFeVPuCSsnarj2ovp-Sz5hvw0DGEMklTC6Tc8xosg2egB_IuYWFDylbk4j15AZ9tg7W6bm3OZF5sn5BbmzMEzjyFX0KMb2sno_gEr7ankfV_PLi29mn2fWXj1dnp9czI5XIMzaiqpnEjlIwnJtOIBfAueiwVVK1zJihxg77XjLDaUObxrR0aAZkUgGT4qi62vAOAe70KtolxHsdwOr1Q4gLDbFod6iHYex6I0H2qGSjypI9tPXIlWkoyLZwHW-4Jr-C-1_g3I6QUf3gtN45XcAfNuDV1C9xMMWWCO6JgqcZb2_1IvzUDW9ETZtCwDYEJk1GRzQYDeR14e7ysDlteWmuRCNKzdtt0xh-TJiyXtpk0DnwGKakORM145RKWqBvHuvbCfsz-gI42faPIaWIozY2r-da5Fr3zy-_-6vi__b8Bt0QzDw |
| CitedBy_id | crossref_primary_10_3390_s21217139 crossref_primary_10_3390_en12244745 crossref_primary_10_3390_s21030853 crossref_primary_10_3390_s21217419 crossref_primary_10_1109_JSEN_2020_3033153 crossref_primary_10_1061_JAEIED_AEENG_1665 crossref_primary_10_3390_act12100389 crossref_primary_10_3390_en12030468 crossref_primary_10_1016_j_energy_2022_125282 crossref_primary_10_1007_s00170_024_14851_7 crossref_primary_10_3390_asi3030034 crossref_primary_10_1016_j_autcon_2021_103776 crossref_primary_10_1016_j_buildenv_2024_111320 crossref_primary_10_1016_j_applthermaleng_2023_120277 crossref_primary_10_3390_pr10020392 crossref_primary_10_1016_j_enbuild_2021_111493 crossref_primary_10_3390_s21041044 crossref_primary_10_3389_fbuil_2022_1013196 crossref_primary_10_3390_su14020681 crossref_primary_10_1016_j_jobe_2020_101635 crossref_primary_10_3846_transport_2022_16919 crossref_primary_10_1007_s00521_024_10560_0 crossref_primary_10_3390_su12176758 crossref_primary_10_1109_ACCESS_2020_3040980 crossref_primary_10_3389_frobt_2024_1224216 crossref_primary_10_1016_j_apenergy_2024_124479 crossref_primary_10_1016_j_buildenv_2019_04_036 crossref_primary_10_1016_j_enbuild_2024_115169 crossref_primary_10_1016_j_jobe_2020_101221 crossref_primary_10_1109_ACCESS_2020_2974769 crossref_primary_10_1007_s10010_023_00653_y crossref_primary_10_3390_s22030778 crossref_primary_10_3390_machines10080686 crossref_primary_10_3390_s19133013 crossref_primary_10_1109_JIOT_2023_3266029 |
| Cites_doi | 10.1016/j.enbuild.2014.06.042 10.1080/10789669.2005.10391133 10.1080/10789669.2011.573051 10.5220/0006394103860397 10.1016/j.autcon.2018.03.036 10.1002/9781118577899 10.1016/S0967-0661(97)00046-4 10.1093/ijlct/cty019 10.1016/0893-6080(89)90020-8 10.1080/23744731.2017.1318008 10.1007/s12053-011-9116-8 10.1016/j.enbuild.2007.03.007 10.2166/hydro.2016.218 10.1016/j.engappai.2016.12.021 10.1016/j.conengprac.2015.11.005 10.1016/j.ijrefrig.2006.07.024 10.1016/j.egypro.2017.09.625 10.1109/ACC.1997.611885 10.1109/ISAECT.2018.8618755 10.1109/ETFA.2016.7733726 10.1145/2768510.2770935 10.1016/j.jspi.2010.01.008 10.1023/B:STCO.0000035301.49549.88 10.1109/ICBDSC.2016.7460392 10.1016/j.apenergy.2009.12.008 10.1080/10789669.2005.10391123 |
| ContentType | Journal Article Publication |
| Contributor | Universitat Politècnica de Catalunya. Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial Universitat Politècnica de Catalunya. Departament d'Enginyeria Minera, Industrial i TIC Universitat Politècnica de Catalunya. SAC - Sistemes Avançats de Control |
| Contributor_xml | – sequence: 1 fullname: Universitat Politècnica de Catalunya. Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial – sequence: 2 fullname: Universitat Politècnica de Catalunya. Departament d'Enginyeria Minera, Industrial i TIC – sequence: 3 fullname: Universitat Politècnica de Catalunya. SAC - Sistemes Avançats de Control |
| Copyright | info:eu-repo/semantics/openAccess 2018 by the authors. 2018 |
| Copyright_xml | – notice: info:eu-repo/semantics/openAccess – notice: 2018 by the authors. 2018 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 XX2 5PM ADTOC UNPAY DOA |
| DOI | 10.3390/s18113931 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Recercat PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_ddf9bc4a4be84686864ba75f28c60a47 10.3390/s18113931 PMC6263506 oai_recercat_cat_2072_338363 30441797 10_3390_s18113931 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: Innovationsfonden grantid: COORDICY – fundername: Ministerio de Economía y Competitividad grantid: DPI2017-88403-R |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS ADRAZ AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IPNFZ KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RIG RNS RPM TUS UKHRP XSB ~8M ALIPV CGR CUY CVF ECM EIF NPM 7X8 PUEGO XX2 5PM ADTOC IAO ITC UNPAY |
| ID | FETCH-LOGICAL-c483t-1fe8514e900ac22c93e23a2239e784871ccd5e9ebb41c206066c70d6de148a143 |
| IEDL.DBID | M48 |
| ISSN | 1424-8220 |
| IngestDate | Fri Oct 03 12:46:31 EDT 2025 Sun Oct 26 02:15:45 EDT 2025 Tue Sep 30 16:56:55 EDT 2025 Sat Oct 18 14:41:19 EDT 2025 Fri Sep 05 07:12:19 EDT 2025 Thu Apr 03 07:07:38 EDT 2025 Thu Oct 16 04:36:55 EDT 2025 Thu Apr 24 23:09:59 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Keywords | smart buildings fault detection and diagnosis HVAC virtual sensors |
| Language | English |
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c483t-1fe8514e900ac22c93e23a2239e784871ccd5e9ebb41c206066c70d6de148a143 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 This paper is an extended version of our paper published in International Symposium on Advanced Electrical and Communication Technologies (ISAECT) 2018. |
| ORCID | 0000-0002-3039-1845 0000-0001-6090-1538 0000-0003-2858-8400 0000-0002-3801-5617 0000-0002-7827-2896 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s18113931 |
| PMID | 30441797 |
| PQID | 2135120040 |
| PQPubID | 23479 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_ddf9bc4a4be84686864ba75f28c60a47 unpaywall_primary_10_3390_s18113931 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6263506 csuc_recercat_oai_recercat_cat_2072_338363 proquest_miscellaneous_2135120040 pubmed_primary_30441797 crossref_citationtrail_10_3390_s18113931 crossref_primary_10_3390_s18113931 |
| PublicationCentury | 2000 |
| PublicationDate | 20181114 |
| PublicationDateYYYYMMDD | 2018-11-14 |
| PublicationDate_xml | – month: 11 year: 2018 text: 20181114 day: 14 |
| PublicationDecade | 2010 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationTitleAlternate | Sensors (Basel) |
| PublicationYear | 2018 |
| Publisher | Multidisciplinary Digital Publishing Institute (MDPI) MDPI MDPI AG |
| Publisher_xml | – name: Multidisciplinary Digital Publishing Institute (MDPI) – name: MDPI – name: MDPI AG |
| References | (ref_11) 2018; 15 Li (ref_20) 2011; 17 Jradi (ref_27) 2017; 132 Smola (ref_31) 2004; 14 Isermann (ref_8) 1997; 5 Kim (ref_14) 2018; 24 Yu (ref_7) 2014; 82 ref_34 ref_33 Katipamula (ref_12) 2005; 11 ref_30 Pedregosa (ref_28) 2011; 12 ref_19 ref_17 Renaud (ref_26) 2010; 140 ref_16 ref_15 Kusiak (ref_25) 2010; 87 Cotrufo (ref_21) 2018; 92 Hornik (ref_32) 1989; 2 Quevedo (ref_18) 2016; 49 ref_24 Katipamula (ref_13) 2005; 11 Li (ref_23) 2007; 30 Mattera (ref_35) 2018; 13 Quevedo (ref_10) 2016; 18 ref_1 ref_2 ref_29 Mills (ref_3) 2011; 4 Ortiz (ref_5) 2008; 40 ref_9 Verbert (ref_22) 2017; 59 ref_4 ref_6 |
| References_xml | – volume: 82 start-page: 550 year: 2014 ident: ref_7 article-title: A review of fault detection and diagnosis methodologies on air-handling units publication-title: Energy Build. doi: 10.1016/j.enbuild.2014.06.042 – ident: ref_9 – volume: 15 start-page: 211 year: 2018 ident: ref_11 article-title: Burst Detection and Localization using Discrete Wavelet Transform and Cross-Correlation publication-title: Rev. Iberoam. Autom. Inf. Ind. – volume: 11 start-page: 169 year: 2005 ident: ref_12 article-title: Methods for fault detection, diagnostics, and prognostics for building systems—A review, Part II publication-title: HVAC&R Res. doi: 10.1080/10789669.2005.10391133 – ident: ref_24 – volume: 17 start-page: 619 year: 2011 ident: ref_20 article-title: A review of virtual sensing technology and application in building systems publication-title: HVAC&R Res. doi: 10.1080/10789669.2011.573051 – ident: ref_17 doi: 10.5220/0006394103860397 – volume: 92 start-page: 166 year: 2018 ident: ref_21 article-title: Virtual outdoor air flow meter for an existing HVAC system in heating mode publication-title: Autom. Constr. doi: 10.1016/j.autcon.2018.03.036 – ident: ref_30 doi: 10.1002/9781118577899 – volume: 5 start-page: 639 year: 1997 ident: ref_8 article-title: Supervision, fault-detection and fault-diagnosis methods—An introduction publication-title: Control Eng. Pract. doi: 10.1016/S0967-0661(97)00046-4 – volume: 13 start-page: 231 year: 2018 ident: ref_35 article-title: Online Energy Simulator for building fault detection and diagnostics using dynamic energy performance model publication-title: Int. J. Low-Carbon Technol. doi: 10.1093/ijlct/cty019 – volume: 2 start-page: 359 year: 1989 ident: ref_32 article-title: Multilayer feedforward networks are universal approximators publication-title: Neural Netw. doi: 10.1016/0893-6080(89)90020-8 – ident: ref_1 – volume: 24 start-page: 3 year: 2018 ident: ref_14 article-title: A review of fault detection and diagnostics methods for building systems publication-title: Sci. Technol. Built Environ. doi: 10.1080/23744731.2017.1318008 – volume: 4 start-page: 145 year: 2011 ident: ref_3 article-title: Building commissioning: A golden opportunity for reducing energy costs and greenhouse gas emissions in the United States publication-title: Energy Effic. doi: 10.1007/s12053-011-9116-8 – volume: 40 start-page: 394 year: 2008 ident: ref_5 article-title: A review on buildings energy consumption information publication-title: Energy Build. doi: 10.1016/j.enbuild.2007.03.007 – volume: 18 start-page: 831 year: 2016 ident: ref_10 article-title: Model- vs. data-based approaches applied to fault diagnosis in potable water supply networks publication-title: J. Hydroinform. doi: 10.2166/hydro.2016.218 – volume: 59 start-page: 260 year: 2017 ident: ref_22 article-title: Combining knowledge and historical data for system-level fault diagnosis of HVAC systems publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2016.12.021 – volume: 49 start-page: 159 year: 2016 ident: ref_18 article-title: A methodology and a software tool for sensor data validation/reconstruction: Application to the Catalonia regional water network publication-title: Control Eng. Pract. doi: 10.1016/j.conengprac.2015.11.005 – volume: 30 start-page: 546 year: 2007 ident: ref_23 article-title: Decoupling features and virtual sensors for diagnosis of faults in vapor compression air conditioners publication-title: Int. J. Refrig. doi: 10.1016/j.ijrefrig.2006.07.024 – volume: 132 start-page: 21 year: 2017 ident: ref_27 article-title: A World Class Energy Efficient University Building by Danish 2020 Standards publication-title: Energy Procedia doi: 10.1016/j.egypro.2017.09.625 – ident: ref_6 – ident: ref_16 doi: 10.1109/ACC.1997.611885 – ident: ref_4 – ident: ref_15 doi: 10.1109/ISAECT.2018.8618755 – ident: ref_29 – volume: 12 start-page: 2825 year: 2011 ident: ref_28 article-title: Scikit-learn: Machine Learning in Python publication-title: J. Mach. Learn. Res. – ident: ref_2 – ident: ref_19 doi: 10.1109/ETFA.2016.7733726 – ident: ref_34 doi: 10.1145/2768510.2770935 – volume: 140 start-page: 1852 year: 2010 ident: ref_26 article-title: A robust coefficient of determination for regression publication-title: J. Stat. Plan. Inference doi: 10.1016/j.jspi.2010.01.008 – volume: 14 start-page: 199 year: 2004 ident: ref_31 article-title: A tutorial on support vector regression publication-title: Stat. Comput. doi: 10.1023/B:STCO.0000035301.49549.88 – ident: ref_33 doi: 10.1109/ICBDSC.2016.7460392 – volume: 87 start-page: 2087 year: 2010 ident: ref_25 article-title: Virtual models of indoor-air-quality sensors publication-title: Appl. Energy doi: 10.1016/j.apenergy.2009.12.008 – volume: 11 start-page: 3 year: 2005 ident: ref_13 article-title: Methods for fault detection, diagnostics, and prognostics for building systems—A review, Part I publication-title: HVAC&R Res. doi: 10.1080/10789669.2005.10391123 |
| SSID | ssj0023338 |
| Score | 2.4610467 |
| Snippet | Buildings represent a significant portion of global energy consumption. Ventilation units are complex components, often customized for the specific building,... |
| SourceID | doaj unpaywall pubmedcentral csuc proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 3931 |
| SubjectTerms | Algorithms Automatic control Automàtica i control Computer Simulation Control automàtic Denmark Detectors Domòtica Edificació Edificis intel·ligents Equipment Failure Analysis fault detection and diagnosis HVAC Informàtica Instal·lacions i acondicionament d'edificis Intelligent buildings Models, Statistical smart buildings User-Computer Interface Ventilation virtual sensors Àrees temàtiques de la UPC |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Ni9QwFA8yF_Ugflu_iB8HEcqmSZo2x9V1WIT1orvuLaRJigNDZpm2iP-976WdMoMrXqT00DZt07yX5PejL79HyFsfuPK2KXPtlcplaKtcV22bNzqUKPbRupRs4uyLOj2Xny_Ly71UXxgTNsoDjw135H2rGyetbAJMlTVssrFV2fLaKWZlWkfOar0jUxPVEsC8Rh0hAaT-qIN5DKCOKA5mn4XrBjdp9V8HMP-Mk7w5xCv766ddr_cmoeVdcmdCj_R4rPU9ciPE--T2nqbgA_L9mJ6lrNAU4Chd2mHd05PQp4irSG309GSMrkN9ZrqK9ALjhcaIOIoItKMpjIBerLa4toR-BaK72XYPyfny07ePp_mUPSF3shZ9XrQB0JQMmjHrOHdaBC4soAEdqhpoSuGcL4MOTSMLxxkSGVcxr3wAhmQBRj0ii7iJ4QmhACm0tMLpKnCpmLC6laJuS1twD4RDZ-TdrlWNm6TFMcPF2gDFQAOY2QAZeT0XvRr1NK4r9B5NY2DMD1tne4Ma2PMB7pxV3CC7ViIjH9CA89OwbDoBXmQmLzL_8qKMvNqZ30D_wp8mNobN0BmOKQxxKGEZeTy6w_wqwVICN7i7OnCUg7ocXomrH0nDO4kAMZWRN7NL_b09nv6PT3xGbgHYq3EdZSGfk0W_HcILAFR98zL1nd97-R43 priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELagewAOvBfCS-ZxQEjZOLbz8AkVlmqFtCsk6LKcIsd2oKJKqzxA8OuZSdKohUVCQlEOaZw0jseZ70tmviHkmXU8tjqPfGXj2JeuSHyVFIWfKxeh2EdhumITxyfx0Vy-PYvOtrL4MawSqPiie0hjFpYPHowFYRqEYSCUCIO1LV5-G94lgf_HmkpMqItkL44AjU_I3vzk3fRTl1Q0HN0LCglg90ENDi3E0-y4oYmpWzOI9p-HNP8MmLzUlmv947teLre80ewa0Zt-9EEoXw_aJj8wP3-TePyfjl4nVweoSqe9bd0gF1x5k1zZEjC8RT5O6XFXgpoC9qUz3S4beuiaLryrpLq09LAP5UMxaLoo6SkGJ_XhdxThbk27mAV6uqgwkYW-B1a9qurbZD578-H1kT-UavCNTEXjh4UD6CadYkwbzo0SjgsN0EO5JAVOFBpjI6dcnsvQcIasySTMxtYBHdOA2fbJpFyV7i6hgF-U1MKoxHEJPdaqkCItIh1yC-xGeeT5ZuQyM-iYYzmNZQZ8Bgc5GwfZI0_GputevOO8Ri9w-DNwMK4yuslQcHvcwJWzhGdI5WPhkVdoJOPZsG33w6r6nA1zPbO2ULmRWuYO0F0Ki8x1EhU8NTHTMvHI442JZTCZ8QuNLt2qrTOO9RLxucU8cqc3ufGvBOuqxcHRyY4x7lzL7p5y8aUTDO8Uh1jskaej2f79ftz7p1b3yWWAjilmZYbyAZk0VeseAjxr8kfDDPwFMSUzKw priority: 102 providerName: Unpaywall |
| Title | A Method for Fault Detection and Diagnostics in Ventilation Units Using Virtual Sensors |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/30441797 https://www.proquest.com/docview/2135120040 https://recercat.cat/handle/2072/338363 https://pubmed.ncbi.nlm.nih.gov/PMC6263506 https://www.mdpi.com/1424-8220/18/11/3931/pdf?version=1542186039 https://doaj.org/article/ddf9bc4a4be84686864ba75f28c60a47 |
| UnpaywallVersion | publishedVersion |
| Volume | 18 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Journals in Chemistry customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: HH5 dateStart: 20010101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20010101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20030101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: ASU customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ABDBF dateStart: 20081201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ADMLS dateStart: 20081201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 20010101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: RPM dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 8FG dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1424-8220 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M48 dateStart: 20030101 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1db9MwFLVG9wA8IL4JH5X5eEBIAcdx4vgBoY6tTEitJqCjPEWO42yVqnQkqWD_nnudNFpFkVCVSk2ctPK1c89prs8h5FVueZzrLPJVHse-sIX0lSwKP1M2QrGPwjizick0Pp6Jz_Novkc2HptdB9Y7qR36Sc2q5dvfPy8_wIR_j4wTKPu7GrIUABlcTb0PCUqhg8NE9A8TeBg6Q2tc0-VDPmStwND2qVtpaWDqtelE_Hchz78LKK-vywt9-Usvl1ey0_g2udXBSjpqx8EdsmfLu-TmFbHBe-T7iE6cXTQFnErHer1s6KFtXClWSXWZ08O27A6Fm-mipKdYSNSWylGEpjV19QX0dFHhohP6FRjwqqrvk9n46NvHY7-zVfCNSMLGDwoLMEtYxZg2nBsVWh5qgAnKygT4S2BMHllls0wEhjNkOEayPM4tUCcN-OoBGZSr0j4iFLCGEjo0SlouYhZqVYgwKSId8ByYiPLI602vpqbTHEfri2UK3AMDkPYB8MiLvulFK7Sxq9EbDE0KycBWRjcpimP3H3DjTPIUaXcceuQAA9hfDdu6HavqLO3mZZrnhcqM0CKzgMQSeIlMy6jgiYmZFtIjzzfhT2Hi4dMUXdrVuk45ehviPYZ55GE7HPqvCplzdoOz5dZA2fot20fKxbkT93bqQCz2yMt-SP27Px7_T6c9ITcA5SW4gDIQT8mgqdb2GSCpJhuSa3Iu4T0ZfxqS_YOj6cmXoftXYuhmEOybTU9GP_4A4Ywf0A |
| linkProvider | Scholars Portal |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELagewAOvBfCS-ZxQEjZOLbz8AkVlmqFtCsk6LKcIsd2oKJKqzxA8OuZSdKohUVCQlEOaZw0jseZ70tmviHkmXU8tjqPfGXj2JeuSHyVFIWfKxeh2EdhumITxyfx0Vy-PYvOtrL4MawSqPiie0hjFpYPHowFYRqEYSCUCIO1LV5-G94lgf_HmkpMqItkL44AjU_I3vzk3fRTl1Q0HN0LCglg90ENDi3E0-y4oYmpWzOI9p-HNP8MmLzUlmv947teLre80ewa0Zt-9EEoXw_aJj8wP3-TePyfjl4nVweoSqe9bd0gF1x5k1zZEjC8RT5O6XFXgpoC9qUz3S4beuiaLryrpLq09LAP5UMxaLoo6SkGJ_XhdxThbk27mAV6uqgwkYW-B1a9qurbZD578-H1kT-UavCNTEXjh4UD6CadYkwbzo0SjgsN0EO5JAVOFBpjI6dcnsvQcIasySTMxtYBHdOA2fbJpFyV7i6hgF-U1MKoxHEJPdaqkCItIh1yC-xGeeT5ZuQyM-iYYzmNZQZ8Bgc5GwfZI0_GputevOO8Ri9w-DNwMK4yuslQcHvcwJWzhGdI5WPhkVdoJOPZsG33w6r6nA1zPbO2ULmRWuYO0F0Ki8x1EhU8NTHTMvHI442JZTCZ8QuNLt2qrTOO9RLxucU8cqc3ufGvBOuqxcHRyY4x7lzL7p5y8aUTDO8Uh1jskaej2f79ftz7p1b3yWWAjilmZYbyAZk0VeseAjxr8kfDDPwFMSUzKw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Method+for+Fault+Detection+and+Diagnostics+in+Ventilation+Units+Using+Virtual+Sensors&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Mattera%2C+Claudio+Giovanni&rft.au=Quevedo%2C+Joseba&rft.au=Escobet%2C+Teresa&rft.au=Shaker%2C+Hamid+Reza&rft.date=2018-11-14&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=18&rft.issue=11&rft.spage=3931&rft_id=info:doi/10.3390%2Fs18113931&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_s18113931 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |