A Method for Fault Detection and Diagnostics in Ventilation Units Using Virtual Sensors

Buildings represent a significant portion of global energy consumption. Ventilation units are complex components, often customized for the specific building, responsible for a large part of energy consumption. Their faults impact buildings’ energy efficiency and occupancy comfort. In order to ensure...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 18; no. 11; p. 3931
Main Authors Mattera, Claudio Giovanni, Quevedo, Joseba, Escobet, Teresa, Shaker, Hamid Reza, Jradi, Muhyiddine
Format Journal Article Publication
LanguageEnglish
Published Switzerland Multidisciplinary Digital Publishing Institute (MDPI) 14.11.2018
MDPI
MDPI AG
Subjects
Online AccessGet full text
ISSN1424-8220
1424-8220
DOI10.3390/s18113931

Cover

Abstract Buildings represent a significant portion of global energy consumption. Ventilation units are complex components, often customized for the specific building, responsible for a large part of energy consumption. Their faults impact buildings’ energy efficiency and occupancy comfort. In order to ensure their correct operation, proper fault detection and diagnostics methods must be applied. Hardware redundancy, an effective approach to detect faults, leads to increased costs and space requirements. We propose exploiting physical relations inside ventilation units to create virtual sensors from other sensors’ readings, introducing redundancy in the system. We use two different measures to detect when a virtual sensor deviates from the physical one: coefficient of determination for linear models, and acceptable range. We tested our method on a real building at the University of Southern Denmark, developing three virtual sensors: temperature, airflow, and fan speed. We employed linear regression models, statistical models, and non-linear regression models. All models detected an anomalous strong oscillation in the temperature sensors. Readings fell outside the acceptable range and the coefficient of determination dropped. Our method showed promising results by introducing redundancy in the system, which can benefit several applications, such as fault detection and diagnostics and fault-tolerant control. Future work will be necessary to discover thresholds and set up automatic fault detection and diagnostics.
AbstractList Buildings represent a significant portion of global energy consumption. Ventilation units are complex components, often customized for the specific building, responsible for a large part of energy consumption. Their faults impact buildings' energy efficiency and occupancy comfort. In order to ensure their correct operation, proper fault detection and diagnostics methods must be applied. Hardware redundancy, an effective approach to detect faults, leads to increased costs and space requirements. We propose exploiting physical relations inside ventilation units to create virtual sensors from other sensors' readings, introducing redundancy in the system. We use two different measures to detect when a virtual sensor deviates from the physical one: coefficient of determination for linear models, and acceptable range. We tested our method on a real building at the University of Southern Denmark, developing three virtual sensors: temperature, airflow, and fan speed. We employed linear regression models, statistical models, and non-linear regression models. All models detected an anomalous strong oscillation in the temperature sensors. Readings fell outside the acceptable range and the coefficient of determination dropped. Our method showed promising results by introducing redundancy in the system, which can benefit several applications, such as fault detection and diagnostics and fault-tolerant control. Future work will be necessary to discover thresholds and set up automatic fault detection and diagnostics.
Buildings represent a significant portion of global energy consumption. Ventilation units are complex components, often customized for the specific building, responsible for a large part of energy consumption. Their faults impact buildings' energy efficiency and occupancy comfort. In order to ensure their correct operation, proper fault detection and diagnostics methods must be applied. Hardware redundancy, an effective approach to detect faults, leads to increased costs and space requirements. We propose exploiting physical relations inside ventilation units to create virtual sensors from other sensors' readings, introducing redundancy in the system. We use two different measures to detect when a virtual sensor deviates from the physical one: coefficient of determination for linear models, and acceptable range. We tested our method on a real building at the University of Southern Denmark, developing three virtual sensors: temperature, airflow, and fan speed. We employed linear regression models, statistical models, and non-linear regression models. All models detected an anomalous strong oscillation in the temperature sensors. Readings fell outside the acceptable range and the coefficient of determination dropped. Our method showed promising results by introducing redundancy in the system, which can benefit several applications, such as fault detection and diagnostics and fault-tolerant control. Future work will be necessary to discover thresholds and set up automatic fault detection and diagnostics.Buildings represent a significant portion of global energy consumption. Ventilation units are complex components, often customized for the specific building, responsible for a large part of energy consumption. Their faults impact buildings' energy efficiency and occupancy comfort. In order to ensure their correct operation, proper fault detection and diagnostics methods must be applied. Hardware redundancy, an effective approach to detect faults, leads to increased costs and space requirements. We propose exploiting physical relations inside ventilation units to create virtual sensors from other sensors' readings, introducing redundancy in the system. We use two different measures to detect when a virtual sensor deviates from the physical one: coefficient of determination for linear models, and acceptable range. We tested our method on a real building at the University of Southern Denmark, developing three virtual sensors: temperature, airflow, and fan speed. We employed linear regression models, statistical models, and non-linear regression models. All models detected an anomalous strong oscillation in the temperature sensors. Readings fell outside the acceptable range and the coefficient of determination dropped. Our method showed promising results by introducing redundancy in the system, which can benefit several applications, such as fault detection and diagnostics and fault-tolerant control. Future work will be necessary to discover thresholds and set up automatic fault detection and diagnostics.
Buildings represent a significant portion of global energy consumption. Ventilation units are complex components, often customized for the specific building, responsible for a large part of energy consumption. Their faults impact buildings’ energy efficiency and occupancy comfort. In order to ensure their correct operation, proper fault detection and diagnostics methods must be applied. Hardware redundancy, an effective approach to detect faults, leads to increased costs and space requirements. We propose exploiting physical relations inside ventilation units to create virtual sensors from other sensors’ readings, introducing redundancy in the system. We use two different measures to detect when a virtual sensor deviates from the physical one: coefficient of determination for linear models, and acceptable range. We tested our method on a real building at the University of Southern Denmark, developing three virtual sensors: temperature, airflow, and fan speed. We employed linear regression models, statistical models, and non-linear regression models. All models detected an anomalous strong oscillation in the temperature sensors. Readings fell outside the acceptable range and the coefficient of determination dropped. Our method showed promising results by introducing redundancy in the system, which can benefit several applications, such as fault detection and diagnostics and fault-tolerant control. Future work will be necessary to discover thresholds and set up automatic fault detection and diagnostics. Peer Reviewed
Author Shaker, Hamid Reza
Mattera, Claudio Giovanni
Jradi, Muhyiddine
Escobet, Teresa
Quevedo, Joseba
AuthorAffiliation 1 Center for Energy Informatics (CFEI), Maersk Mc-Kinney Moller Institute (MMMI), University of Southern Denmark (SDU), 5230 Odense, Denmark; hrsh@mmmi.sdu.dk (H.R.S.); mjr@mmmi.sdu.dk (M.J.)
2 Center for Supervision, Security and Automatic Control (CS 2 AC), Polytechnic University of Catalonia (UPC), 08034 Barcelona, Spain; joseba.quevedo@upc.edu (J.Q.); teresa.escobet@upc.edu (T.E.)
AuthorAffiliation_xml – name: 1 Center for Energy Informatics (CFEI), Maersk Mc-Kinney Moller Institute (MMMI), University of Southern Denmark (SDU), 5230 Odense, Denmark; hrsh@mmmi.sdu.dk (H.R.S.); mjr@mmmi.sdu.dk (M.J.)
– name: 2 Center for Supervision, Security and Automatic Control (CS 2 AC), Polytechnic University of Catalonia (UPC), 08034 Barcelona, Spain; joseba.quevedo@upc.edu (J.Q.); teresa.escobet@upc.edu (T.E.)
Author_xml – sequence: 1
  givenname: Claudio Giovanni
  orcidid: 0000-0002-3801-5617
  surname: Mattera
  fullname: Mattera, Claudio Giovanni
– sequence: 2
  givenname: Joseba
  orcidid: 0000-0002-7827-2896
  surname: Quevedo
  fullname: Quevedo, Joseba
– sequence: 3
  givenname: Teresa
  orcidid: 0000-0001-6090-1538
  surname: Escobet
  fullname: Escobet, Teresa
– sequence: 4
  givenname: Hamid Reza
  orcidid: 0000-0003-2858-8400
  surname: Shaker
  fullname: Shaker, Hamid Reza
– sequence: 5
  givenname: Muhyiddine
  orcidid: 0000-0002-3039-1845
  surname: Jradi
  fullname: Jradi, Muhyiddine
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30441797$$D View this record in MEDLINE/PubMed
BookMark eNp1UctuFDEQHKEg8oADP4B8hEhL_JoZzwUpygMiBXGADUerx9OzceS1F9sDyt_j7C6rBIEsy213dXW5-rDa88FjVb1m9L0QHT1JTDEmOsGeVQdMcjlTnNO9R_F-dZjSHaVcCKFeVPuCSsnarj2ovp-Sz5hvw0DGEMklTC6Tc8xosg2egB_IuYWFDylbk4j15AZ9tg7W6bm3OZF5sn5BbmzMEzjyFX0KMb2sno_gEr7ankfV_PLi29mn2fWXj1dnp9czI5XIMzaiqpnEjlIwnJtOIBfAueiwVVK1zJihxg77XjLDaUObxrR0aAZkUgGT4qi62vAOAe70KtolxHsdwOr1Q4gLDbFod6iHYex6I0H2qGSjypI9tPXIlWkoyLZwHW-4Jr-C-1_g3I6QUf3gtN45XcAfNuDV1C9xMMWWCO6JgqcZb2_1IvzUDW9ETZtCwDYEJk1GRzQYDeR14e7ysDlteWmuRCNKzdtt0xh-TJiyXtpk0DnwGKakORM145RKWqBvHuvbCfsz-gI42faPIaWIozY2r-da5Fr3zy-_-6vi__b8Bt0QzDw
CitedBy_id crossref_primary_10_3390_s21217139
crossref_primary_10_3390_en12244745
crossref_primary_10_3390_s21030853
crossref_primary_10_3390_s21217419
crossref_primary_10_1109_JSEN_2020_3033153
crossref_primary_10_1061_JAEIED_AEENG_1665
crossref_primary_10_3390_act12100389
crossref_primary_10_3390_en12030468
crossref_primary_10_1016_j_energy_2022_125282
crossref_primary_10_1007_s00170_024_14851_7
crossref_primary_10_3390_asi3030034
crossref_primary_10_1016_j_autcon_2021_103776
crossref_primary_10_1016_j_buildenv_2024_111320
crossref_primary_10_1016_j_applthermaleng_2023_120277
crossref_primary_10_3390_pr10020392
crossref_primary_10_1016_j_enbuild_2021_111493
crossref_primary_10_3390_s21041044
crossref_primary_10_3389_fbuil_2022_1013196
crossref_primary_10_3390_su14020681
crossref_primary_10_1016_j_jobe_2020_101635
crossref_primary_10_3846_transport_2022_16919
crossref_primary_10_1007_s00521_024_10560_0
crossref_primary_10_3390_su12176758
crossref_primary_10_1109_ACCESS_2020_3040980
crossref_primary_10_3389_frobt_2024_1224216
crossref_primary_10_1016_j_apenergy_2024_124479
crossref_primary_10_1016_j_buildenv_2019_04_036
crossref_primary_10_1016_j_enbuild_2024_115169
crossref_primary_10_1016_j_jobe_2020_101221
crossref_primary_10_1109_ACCESS_2020_2974769
crossref_primary_10_1007_s10010_023_00653_y
crossref_primary_10_3390_s22030778
crossref_primary_10_3390_machines10080686
crossref_primary_10_3390_s19133013
crossref_primary_10_1109_JIOT_2023_3266029
Cites_doi 10.1016/j.enbuild.2014.06.042
10.1080/10789669.2005.10391133
10.1080/10789669.2011.573051
10.5220/0006394103860397
10.1016/j.autcon.2018.03.036
10.1002/9781118577899
10.1016/S0967-0661(97)00046-4
10.1093/ijlct/cty019
10.1016/0893-6080(89)90020-8
10.1080/23744731.2017.1318008
10.1007/s12053-011-9116-8
10.1016/j.enbuild.2007.03.007
10.2166/hydro.2016.218
10.1016/j.engappai.2016.12.021
10.1016/j.conengprac.2015.11.005
10.1016/j.ijrefrig.2006.07.024
10.1016/j.egypro.2017.09.625
10.1109/ACC.1997.611885
10.1109/ISAECT.2018.8618755
10.1109/ETFA.2016.7733726
10.1145/2768510.2770935
10.1016/j.jspi.2010.01.008
10.1023/B:STCO.0000035301.49549.88
10.1109/ICBDSC.2016.7460392
10.1016/j.apenergy.2009.12.008
10.1080/10789669.2005.10391123
ContentType Journal Article
Publication
Contributor Universitat Politècnica de Catalunya. Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial
Universitat Politècnica de Catalunya. Departament d'Enginyeria Minera, Industrial i TIC
Universitat Politècnica de Catalunya. SAC - Sistemes Avançats de Control
Contributor_xml – sequence: 1
  fullname: Universitat Politècnica de Catalunya. Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial
– sequence: 2
  fullname: Universitat Politècnica de Catalunya. Departament d'Enginyeria Minera, Industrial i TIC
– sequence: 3
  fullname: Universitat Politècnica de Catalunya. SAC - Sistemes Avançats de Control
Copyright info:eu-repo/semantics/openAccess
2018 by the authors. 2018
Copyright_xml – notice: info:eu-repo/semantics/openAccess
– notice: 2018 by the authors. 2018
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
XX2
5PM
ADTOC
UNPAY
DOA
DOI 10.3390/s18113931
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Recercat
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
CrossRef



Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_ddf9bc4a4be84686864ba75f28c60a47
10.3390/s18113931
PMC6263506
oai_recercat_cat_2072_338363
30441797
10_3390_s18113931
Genre Journal Article
GrantInformation_xml – fundername: Innovationsfonden
  grantid: COORDICY
– fundername: Ministerio de Economía y Competitividad
  grantid: DPI2017-88403-R
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
ADRAZ
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IPNFZ
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RIG
RNS
RPM
TUS
UKHRP
XSB
~8M
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
7X8
PUEGO
XX2
5PM
ADTOC
IAO
ITC
UNPAY
ID FETCH-LOGICAL-c483t-1fe8514e900ac22c93e23a2239e784871ccd5e9ebb41c206066c70d6de148a143
IEDL.DBID M48
ISSN 1424-8220
IngestDate Fri Oct 03 12:46:31 EDT 2025
Sun Oct 26 02:15:45 EDT 2025
Tue Sep 30 16:56:55 EDT 2025
Sat Oct 18 14:41:19 EDT 2025
Fri Sep 05 07:12:19 EDT 2025
Thu Apr 03 07:07:38 EDT 2025
Thu Oct 16 04:36:55 EDT 2025
Thu Apr 24 23:09:59 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords smart buildings
fault detection and diagnosis
HVAC
virtual sensors
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c483t-1fe8514e900ac22c93e23a2239e784871ccd5e9ebb41c206066c70d6de148a143
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
This paper is an extended version of our paper published in International Symposium on Advanced Electrical and Communication Technologies (ISAECT) 2018.
ORCID 0000-0002-3039-1845
0000-0001-6090-1538
0000-0003-2858-8400
0000-0002-3801-5617
0000-0002-7827-2896
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s18113931
PMID 30441797
PQID 2135120040
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_ddf9bc4a4be84686864ba75f28c60a47
unpaywall_primary_10_3390_s18113931
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6263506
csuc_recercat_oai_recercat_cat_2072_338363
proquest_miscellaneous_2135120040
pubmed_primary_30441797
crossref_citationtrail_10_3390_s18113931
crossref_primary_10_3390_s18113931
PublicationCentury 2000
PublicationDate 20181114
PublicationDateYYYYMMDD 2018-11-14
PublicationDate_xml – month: 11
  year: 2018
  text: 20181114
  day: 14
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2018
Publisher Multidisciplinary Digital Publishing Institute (MDPI)
MDPI
MDPI AG
Publisher_xml – name: Multidisciplinary Digital Publishing Institute (MDPI)
– name: MDPI
– name: MDPI AG
References (ref_11) 2018; 15
Li (ref_20) 2011; 17
Jradi (ref_27) 2017; 132
Smola (ref_31) 2004; 14
Isermann (ref_8) 1997; 5
Kim (ref_14) 2018; 24
Yu (ref_7) 2014; 82
ref_34
ref_33
Katipamula (ref_12) 2005; 11
ref_30
Pedregosa (ref_28) 2011; 12
ref_19
ref_17
Renaud (ref_26) 2010; 140
ref_16
ref_15
Kusiak (ref_25) 2010; 87
Cotrufo (ref_21) 2018; 92
Hornik (ref_32) 1989; 2
Quevedo (ref_18) 2016; 49
ref_24
Katipamula (ref_13) 2005; 11
Li (ref_23) 2007; 30
Mattera (ref_35) 2018; 13
Quevedo (ref_10) 2016; 18
ref_1
ref_2
ref_29
Mills (ref_3) 2011; 4
Ortiz (ref_5) 2008; 40
ref_9
Verbert (ref_22) 2017; 59
ref_4
ref_6
References_xml – volume: 82
  start-page: 550
  year: 2014
  ident: ref_7
  article-title: A review of fault detection and diagnosis methodologies on air-handling units
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2014.06.042
– ident: ref_9
– volume: 15
  start-page: 211
  year: 2018
  ident: ref_11
  article-title: Burst Detection and Localization using Discrete Wavelet Transform and Cross-Correlation
  publication-title: Rev. Iberoam. Autom. Inf. Ind.
– volume: 11
  start-page: 169
  year: 2005
  ident: ref_12
  article-title: Methods for fault detection, diagnostics, and prognostics for building systems—A review, Part II
  publication-title: HVAC&R Res.
  doi: 10.1080/10789669.2005.10391133
– ident: ref_24
– volume: 17
  start-page: 619
  year: 2011
  ident: ref_20
  article-title: A review of virtual sensing technology and application in building systems
  publication-title: HVAC&R Res.
  doi: 10.1080/10789669.2011.573051
– ident: ref_17
  doi: 10.5220/0006394103860397
– volume: 92
  start-page: 166
  year: 2018
  ident: ref_21
  article-title: Virtual outdoor air flow meter for an existing HVAC system in heating mode
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2018.03.036
– ident: ref_30
  doi: 10.1002/9781118577899
– volume: 5
  start-page: 639
  year: 1997
  ident: ref_8
  article-title: Supervision, fault-detection and fault-diagnosis methods—An introduction
  publication-title: Control Eng. Pract.
  doi: 10.1016/S0967-0661(97)00046-4
– volume: 13
  start-page: 231
  year: 2018
  ident: ref_35
  article-title: Online Energy Simulator for building fault detection and diagnostics using dynamic energy performance model
  publication-title: Int. J. Low-Carbon Technol.
  doi: 10.1093/ijlct/cty019
– volume: 2
  start-page: 359
  year: 1989
  ident: ref_32
  article-title: Multilayer feedforward networks are universal approximators
  publication-title: Neural Netw.
  doi: 10.1016/0893-6080(89)90020-8
– ident: ref_1
– volume: 24
  start-page: 3
  year: 2018
  ident: ref_14
  article-title: A review of fault detection and diagnostics methods for building systems
  publication-title: Sci. Technol. Built Environ.
  doi: 10.1080/23744731.2017.1318008
– volume: 4
  start-page: 145
  year: 2011
  ident: ref_3
  article-title: Building commissioning: A golden opportunity for reducing energy costs and greenhouse gas emissions in the United States
  publication-title: Energy Effic.
  doi: 10.1007/s12053-011-9116-8
– volume: 40
  start-page: 394
  year: 2008
  ident: ref_5
  article-title: A review on buildings energy consumption information
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2007.03.007
– volume: 18
  start-page: 831
  year: 2016
  ident: ref_10
  article-title: Model- vs. data-based approaches applied to fault diagnosis in potable water supply networks
  publication-title: J. Hydroinform.
  doi: 10.2166/hydro.2016.218
– volume: 59
  start-page: 260
  year: 2017
  ident: ref_22
  article-title: Combining knowledge and historical data for system-level fault diagnosis of HVAC systems
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2016.12.021
– volume: 49
  start-page: 159
  year: 2016
  ident: ref_18
  article-title: A methodology and a software tool for sensor data validation/reconstruction: Application to the Catalonia regional water network
  publication-title: Control Eng. Pract.
  doi: 10.1016/j.conengprac.2015.11.005
– volume: 30
  start-page: 546
  year: 2007
  ident: ref_23
  article-title: Decoupling features and virtual sensors for diagnosis of faults in vapor compression air conditioners
  publication-title: Int. J. Refrig.
  doi: 10.1016/j.ijrefrig.2006.07.024
– volume: 132
  start-page: 21
  year: 2017
  ident: ref_27
  article-title: A World Class Energy Efficient University Building by Danish 2020 Standards
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2017.09.625
– ident: ref_6
– ident: ref_16
  doi: 10.1109/ACC.1997.611885
– ident: ref_4
– ident: ref_15
  doi: 10.1109/ISAECT.2018.8618755
– ident: ref_29
– volume: 12
  start-page: 2825
  year: 2011
  ident: ref_28
  article-title: Scikit-learn: Machine Learning in Python
  publication-title: J. Mach. Learn. Res.
– ident: ref_2
– ident: ref_19
  doi: 10.1109/ETFA.2016.7733726
– ident: ref_34
  doi: 10.1145/2768510.2770935
– volume: 140
  start-page: 1852
  year: 2010
  ident: ref_26
  article-title: A robust coefficient of determination for regression
  publication-title: J. Stat. Plan. Inference
  doi: 10.1016/j.jspi.2010.01.008
– volume: 14
  start-page: 199
  year: 2004
  ident: ref_31
  article-title: A tutorial on support vector regression
  publication-title: Stat. Comput.
  doi: 10.1023/B:STCO.0000035301.49549.88
– ident: ref_33
  doi: 10.1109/ICBDSC.2016.7460392
– volume: 87
  start-page: 2087
  year: 2010
  ident: ref_25
  article-title: Virtual models of indoor-air-quality sensors
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2009.12.008
– volume: 11
  start-page: 3
  year: 2005
  ident: ref_13
  article-title: Methods for fault detection, diagnostics, and prognostics for building systems—A review, Part I
  publication-title: HVAC&R Res.
  doi: 10.1080/10789669.2005.10391123
SSID ssj0023338
Score 2.4610467
Snippet Buildings represent a significant portion of global energy consumption. Ventilation units are complex components, often customized for the specific building,...
SourceID doaj
unpaywall
pubmedcentral
csuc
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 3931
SubjectTerms Algorithms
Automatic control
Automàtica i control
Computer Simulation
Control automàtic
Denmark
Detectors
Domòtica
Edificació
Edificis intel·ligents
Equipment Failure Analysis
fault detection and diagnosis
HVAC
Informàtica
Instal·lacions i acondicionament d'edificis
Intelligent buildings
Models, Statistical
smart buildings
User-Computer Interface
Ventilation
virtual sensors
Àrees temàtiques de la UPC
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Ni9QwFA8yF_Ugflu_iB8HEcqmSZo2x9V1WIT1orvuLaRJigNDZpm2iP-976WdMoMrXqT00DZt07yX5PejL79HyFsfuPK2KXPtlcplaKtcV22bNzqUKPbRupRs4uyLOj2Xny_Ly71UXxgTNsoDjw135H2rGyetbAJMlTVssrFV2fLaKWZlWkfOar0jUxPVEsC8Rh0hAaT-qIN5DKCOKA5mn4XrBjdp9V8HMP-Mk7w5xCv766ddr_cmoeVdcmdCj_R4rPU9ciPE--T2nqbgA_L9mJ6lrNAU4Chd2mHd05PQp4irSG309GSMrkN9ZrqK9ALjhcaIOIoItKMpjIBerLa4toR-BaK72XYPyfny07ePp_mUPSF3shZ9XrQB0JQMmjHrOHdaBC4soAEdqhpoSuGcL4MOTSMLxxkSGVcxr3wAhmQBRj0ii7iJ4QmhACm0tMLpKnCpmLC6laJuS1twD4RDZ-TdrlWNm6TFMcPF2gDFQAOY2QAZeT0XvRr1NK4r9B5NY2DMD1tne4Ma2PMB7pxV3CC7ViIjH9CA89OwbDoBXmQmLzL_8qKMvNqZ30D_wp8mNobN0BmOKQxxKGEZeTy6w_wqwVICN7i7OnCUg7ocXomrH0nDO4kAMZWRN7NL_b09nv6PT3xGbgHYq3EdZSGfk0W_HcILAFR98zL1nd97-R43
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELagewAOvBfCS-ZxQEjZOLbz8AkVlmqFtCsk6LKcIsd2oKJKqzxA8OuZSdKohUVCQlEOaZw0jseZ70tmviHkmXU8tjqPfGXj2JeuSHyVFIWfKxeh2EdhumITxyfx0Vy-PYvOtrL4MawSqPiie0hjFpYPHowFYRqEYSCUCIO1LV5-G94lgf_HmkpMqItkL44AjU_I3vzk3fRTl1Q0HN0LCglg90ENDi3E0-y4oYmpWzOI9p-HNP8MmLzUlmv947teLre80ewa0Zt-9EEoXw_aJj8wP3-TePyfjl4nVweoSqe9bd0gF1x5k1zZEjC8RT5O6XFXgpoC9qUz3S4beuiaLryrpLq09LAP5UMxaLoo6SkGJ_XhdxThbk27mAV6uqgwkYW-B1a9qurbZD578-H1kT-UavCNTEXjh4UD6CadYkwbzo0SjgsN0EO5JAVOFBpjI6dcnsvQcIasySTMxtYBHdOA2fbJpFyV7i6hgF-U1MKoxHEJPdaqkCItIh1yC-xGeeT5ZuQyM-iYYzmNZQZ8Bgc5GwfZI0_GputevOO8Ri9w-DNwMK4yuslQcHvcwJWzhGdI5WPhkVdoJOPZsG33w6r6nA1zPbO2ULmRWuYO0F0Ki8x1EhU8NTHTMvHI442JZTCZ8QuNLt2qrTOO9RLxucU8cqc3ufGvBOuqxcHRyY4x7lzL7p5y8aUTDO8Uh1jskaej2f79ftz7p1b3yWWAjilmZYbyAZk0VeseAjxr8kfDDPwFMSUzKw
  priority: 102
  providerName: Unpaywall
Title A Method for Fault Detection and Diagnostics in Ventilation Units Using Virtual Sensors
URI https://www.ncbi.nlm.nih.gov/pubmed/30441797
https://www.proquest.com/docview/2135120040
https://recercat.cat/handle/2072/338363
https://pubmed.ncbi.nlm.nih.gov/PMC6263506
https://www.mdpi.com/1424-8220/18/11/3931/pdf?version=1542186039
https://doaj.org/article/ddf9bc4a4be84686864ba75f28c60a47
UnpaywallVersion publishedVersion
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Journals in Chemistry
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: HH5
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: KQ8
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: KQ8
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: ASU
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: ABDBF
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: ADMLS
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: GX1
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: RPM
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 8FG
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M48
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1db9MwFLVG9wA8IL4JH5X5eEBIAcdx4vgBoY6tTEitJqCjPEWO42yVqnQkqWD_nnudNFpFkVCVSk2ctPK1c89prs8h5FVueZzrLPJVHse-sIX0lSwKP1M2QrGPwjizick0Pp6Jz_Novkc2HptdB9Y7qR36Sc2q5dvfPy8_wIR_j4wTKPu7GrIUABlcTb0PCUqhg8NE9A8TeBg6Q2tc0-VDPmStwND2qVtpaWDqtelE_Hchz78LKK-vywt9-Usvl1ey0_g2udXBSjpqx8EdsmfLu-TmFbHBe-T7iE6cXTQFnErHer1s6KFtXClWSXWZ08O27A6Fm-mipKdYSNSWylGEpjV19QX0dFHhohP6FRjwqqrvk9n46NvHY7-zVfCNSMLGDwoLMEtYxZg2nBsVWh5qgAnKygT4S2BMHllls0wEhjNkOEayPM4tUCcN-OoBGZSr0j4iFLCGEjo0SlouYhZqVYgwKSId8ByYiPLI602vpqbTHEfri2UK3AMDkPYB8MiLvulFK7Sxq9EbDE0KycBWRjcpimP3H3DjTPIUaXcceuQAA9hfDdu6HavqLO3mZZrnhcqM0CKzgMQSeIlMy6jgiYmZFtIjzzfhT2Hi4dMUXdrVuk45ehviPYZ55GE7HPqvCplzdoOz5dZA2fot20fKxbkT93bqQCz2yMt-SP27Px7_T6c9ITcA5SW4gDIQT8mgqdb2GSCpJhuSa3Iu4T0ZfxqS_YOj6cmXoftXYuhmEOybTU9GP_4A4Ywf0A
linkProvider Scholars Portal
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELagewAOvBfCS-ZxQEjZOLbz8AkVlmqFtCsk6LKcIsd2oKJKqzxA8OuZSdKohUVCQlEOaZw0jseZ70tmviHkmXU8tjqPfGXj2JeuSHyVFIWfKxeh2EdhumITxyfx0Vy-PYvOtrL4MawSqPiie0hjFpYPHowFYRqEYSCUCIO1LV5-G94lgf_HmkpMqItkL44AjU_I3vzk3fRTl1Q0HN0LCglg90ENDi3E0-y4oYmpWzOI9p-HNP8MmLzUlmv947teLre80ewa0Zt-9EEoXw_aJj8wP3-TePyfjl4nVweoSqe9bd0gF1x5k1zZEjC8RT5O6XFXgpoC9qUz3S4beuiaLryrpLq09LAP5UMxaLoo6SkGJ_XhdxThbk27mAV6uqgwkYW-B1a9qurbZD578-H1kT-UavCNTEXjh4UD6CadYkwbzo0SjgsN0EO5JAVOFBpjI6dcnsvQcIasySTMxtYBHdOA2fbJpFyV7i6hgF-U1MKoxHEJPdaqkCItIh1yC-xGeeT5ZuQyM-iYYzmNZQZ8Bgc5GwfZI0_GputevOO8Ri9w-DNwMK4yuslQcHvcwJWzhGdI5WPhkVdoJOPZsG33w6r6nA1zPbO2ULmRWuYO0F0Ki8x1EhU8NTHTMvHI442JZTCZ8QuNLt2qrTOO9RLxucU8cqc3ufGvBOuqxcHRyY4x7lzL7p5y8aUTDO8Uh1jskaej2f79ftz7p1b3yWWAjilmZYbyAZk0VeseAjxr8kfDDPwFMSUzKw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Method+for+Fault+Detection+and+Diagnostics+in+Ventilation+Units+Using+Virtual+Sensors&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Mattera%2C+Claudio+Giovanni&rft.au=Quevedo%2C+Joseba&rft.au=Escobet%2C+Teresa&rft.au=Shaker%2C+Hamid+Reza&rft.date=2018-11-14&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=18&rft.issue=11&rft.spage=3931&rft_id=info:doi/10.3390%2Fs18113931&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_s18113931
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon