Histidine protonation states are key in the LigI catalytic reaction mechanism

Lignin is one of the world's most abundant organic polymers, and 2‐pyrone‐4,6‐dicarboxylate lactonase (LigI) catalyzes the hydrolysis of 2‐pyrone‐4,6‐dicarboxylate (PDC) in the degradation of lignin. The pH has profound effects on enzyme catalysis and therefore we studied this in the context of...

Full description

Saved in:
Bibliographic Details
Published inProteins, structure, function, and bioinformatics Vol. 90; no. 1; pp. 123 - 130
Main Authors Zhao, Li Na, Mondal, Dibyendu, Li, Weifeng, Mu, Yuguang, Kaldis, Philipp
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.01.2022
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text
ISSN0887-3585
1097-0134
1097-0134
DOI10.1002/prot.26191

Cover

Abstract Lignin is one of the world's most abundant organic polymers, and 2‐pyrone‐4,6‐dicarboxylate lactonase (LigI) catalyzes the hydrolysis of 2‐pyrone‐4,6‐dicarboxylate (PDC) in the degradation of lignin. The pH has profound effects on enzyme catalysis and therefore we studied this in the context of LigI. We found that changes of the pH mostly affects surface residues, while the residues at the active site are more subject to changes of the surrounding microenvironment. In accordance with this, a high pH facilitates the deprotonation of the substrate. Detailed free energy calculations by the empirical valence bond (EVB) approach revealed that the overall hydrolysis reaction is more likely when the three active site histidines (His31, His33 and His180) are protonated at the ɛ site, however, protonation at the δ site may be favored during specific steps of the reaction. Our studies have uncovered the determinant role of the protonation state of the active site residues His31, His33 and His180 in the hydrolysis of PDC.
AbstractList Lignin is one of the world's most abundant organic polymers, and 2-pyrone-4,6-dicarboxylate lactonase (LigI) catalyzes the hydrolysis of 2-pyrone-4,6-dicarboxylate (PDC) in the degradation of lignin. The pH has profound effects on enzyme catalysis and therefore we studied this in the context of LigI. We found that changes of the pH mostly affects surface residues, while the residues at the active site are more subject to changes of the surrounding microenvironment. In accordance with this, a high pH facilitates the deprotonation of the substrate. Detailed free energy calculations by the empirical valence bond (EVB) approach revealed that the overall hydrolysis reaction is more likely when the three active site histidines (His31, His33 and His180) are protonated at the ɛ site, however, protonation at the δ site may be favored during specific steps of the reaction. Our studies have uncovered the determinant role of the protonation state of the active site residues His31, His33 and His180 in the hydrolysis of PDC.
Lignin is one of the world's most abundant organic polymers, and 2‐pyrone‐4,6‐dicarboxylate lactonase (LigI) catalyzes the hydrolysis of 2‐pyrone‐4,6‐dicarboxylate (PDC) in the degradation of lignin. The pH has profound effects on enzyme catalysis and therefore we studied this in the context of LigI. We found that changes of the pH mostly affects surface residues, while the residues at the active site are more subject to changes of the surrounding microenvironment. In accordance with this, a high pH facilitates the deprotonation of the substrate. Detailed free energy calculations by the empirical valence bond (EVB) approach revealed that the overall hydrolysis reaction is more likely when the three active site histidines (His31, His33 and His180) are protonated at the ɛ site, however, protonation at the δ site may be favored during specific steps of the reaction. Our studies have uncovered the determinant role of the protonation state of the active site residues His31, His33 and His180 in the hydrolysis of PDC.
Lignin is one of the world's most abundant organic polymers, and 2-pyrone-4,6-dicarboxylate lactonase (LigI) catalyzes the hydrolysis of 2-pyrone-4,6-dicarboxylate (PDC) in the degradation of lignin. The pH has profound effects on enzyme catalysis and therefore we studied this in the context of LigI. We found that changes of the pH mostly affects surface residues, while the residues at the active site are more subject to changes of the surrounding microenvironment. In accordance with this, a high pH facilitates the deprotonation of the substrate. Detailed free energy calculations by the empirical valence bond (EVB) approach revealed that the overall hydrolysis reaction is more likely when the three active site histidines (His31, His33 and His180) are protonated at the &ip.eop; site, however, protonation at the δ site may be favored during specific steps of the reaction. Our studies have uncovered the determinant role of the protonation state of the active site residues His31, His33 and His180 in the hydrolysis of PDC.
Lignin is one of the world's most abundant organic polymers, and 2-pyrone-4,6-dicarboxylate lactonase (LigI) catalyzes the hydrolysis of 2-pyrone-4,6-dicarboxylate (PDC) in the degradation of lignin. The pH has profound effects on enzyme catalysis and therefore we studied this in the context of LigI. We found that changes of the pH mostly affects surface residues, while the residues at the active site are more subject to changes of the surrounding microenvironment. In accordance with this, a high pH facilitates the deprotonation of the substrate. Detailed free energy calculations by the empirical valence bond (EVB) approach revealed that the overall hydrolysis reaction is more likely when the three active site histidines (His31, His33 and His180) are protonated at the ɛ site, however, protonation at the δ site may be favored during specific steps of the reaction. Our studies have uncovered the determinant role of the protonation state of the active site residues His31, His33 and His180 in the hydrolysis of PDC.Lignin is one of the world's most abundant organic polymers, and 2-pyrone-4,6-dicarboxylate lactonase (LigI) catalyzes the hydrolysis of 2-pyrone-4,6-dicarboxylate (PDC) in the degradation of lignin. The pH has profound effects on enzyme catalysis and therefore we studied this in the context of LigI. We found that changes of the pH mostly affects surface residues, while the residues at the active site are more subject to changes of the surrounding microenvironment. In accordance with this, a high pH facilitates the deprotonation of the substrate. Detailed free energy calculations by the empirical valence bond (EVB) approach revealed that the overall hydrolysis reaction is more likely when the three active site histidines (His31, His33 and His180) are protonated at the ɛ site, however, protonation at the δ site may be favored during specific steps of the reaction. Our studies have uncovered the determinant role of the protonation state of the active site residues His31, His33 and His180 in the hydrolysis of PDC.
Author Mu, Yuguang
Mondal, Dibyendu
Li, Weifeng
Kaldis, Philipp
Zhao, Li Na
Author_xml – sequence: 1
  givenname: Li Na
  orcidid: 0000-0001-6552-0929
  surname: Zhao
  fullname: Zhao, Li Na
  email: lina.zhao@med.lu.se
  organization: Lund University
– sequence: 2
  givenname: Dibyendu
  orcidid: 0000-0002-5047-6985
  surname: Mondal
  fullname: Mondal, Dibyendu
  organization: University of California
– sequence: 3
  givenname: Weifeng
  orcidid: 0000-0002-0244-2908
  surname: Li
  fullname: Li, Weifeng
  organization: Shandong University
– sequence: 4
  givenname: Yuguang
  orcidid: 0000-0002-2499-026X
  surname: Mu
  fullname: Mu, Yuguang
  organization: Nanyang Technological University
– sequence: 5
  givenname: Philipp
  orcidid: 0000-0002-7247-7591
  surname: Kaldis
  fullname: Kaldis, Philipp
  email: philipp.kaldis@med.lu.se
  organization: Lund University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34318530$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1v1DAQhi1URLeFCz8AReKCQCnj2ImdI6qAVlpUhMrZmjgT1iVf2I5W-fdkN6WHCvXkyzPzvvP4jJ30Q0-MveZwwQGyj6Mf4kVW8JI_YxsOpUqBC3nCNqC1SkWu81N2FsIdABSlKF6wUyEF17mADft25UJ0tespOawZeoxu6JMQMVJI0FPym-bE9UncUbJ1v64TixHbOTqbeEJ7pDuyO-xd6F6y5w22gV7dv-fs55fPt5dX6fbm6_Xlp21qpRY81VKArWyRaQAlMlISbK0qpNpWHJBkjqXIaqq0RK6WnpCrQmW54KqqNWlxzj6se6d-xHmPbWtG7zr0s-FgDlLM4RpzlLLQuNJhT-NUPaADOjMOfjnHeAqE3u5MO5lAZqFaZ48qgoFCy6rRYKxquJESlNE6K02jFCoQpW4qu2S8WzOW3D8ThWg6Fyy1LfY0TMFkeZ6XhQZ1qPP2EXo3TL5ffC19oeQFBykX6s09NVUd1Q-l_33dAsAKWD-E4Kkx1sVj5ejRtf8X8f7RyJPW-ArvXUvzE6T5_uPmdp35C_vryYE
CitedBy_id crossref_primary_10_1111_febs_16439
crossref_primary_10_1371_journal_pcbi_1010140
Cites_doi 10.3390/ijms19020335
10.1021/ct100578z
10.1021/ja108943n
10.1021/cr0503106
10.1021/bi300307b
10.1063/1.456845
10.1039/B907354J
10.1016/j.jmgm.2015.06.011
10.1128/JB.187.15.5067-5074.2005
10.1002/jcc.540140205
10.1021/jp0517192
10.1002/1873-3468.13799
10.1021/jp500795p
10.1186/1758-2946-4-17
10.1002/prot.25796
10.1039/C7CS00566K
10.1021/ja00540a008
10.1021/jp034688o
10.1021/acscatal.8b04324
10.3389/fnmol.2018.00467
10.1021/ct200133y
10.1111/1758-2229.12597
10.1128/JB.181.1.55-62.1999
10.1246/bcsj.80.2436
10.1016/j.bpj.2013.06.047
10.1021/jp963412w
10.1021/bi951077g
10.1128/mr.57.3.605-622.1993
10.1002/pi.4990270104
10.1021/bi0024714
10.1039/C8SC03208D
10.1002/jcc.540050204
10.1074/jbc.M703392200
ContentType Journal Article
Copyright 2021 The Authors. published by Wiley Periodicals LLC.
2021 The Authors. Proteins: Structure, Function, and Bioinformatics published by Wiley Periodicals LLC.
2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 The Authors. published by Wiley Periodicals LLC.
– notice: 2021 The Authors. Proteins: Structure, Function, and Bioinformatics published by Wiley Periodicals LLC.
– notice: 2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
CorporateAuthor Lunds universitet
Profile areas and other strong research environments
Department of Clinical Sciences, Malmö
Metabolic disorders and liver disease
Lund University
Strategiska forskningsområden (SFO)
Ophthalmology (Malmö)
EXODIAB: Excellence of Diabetes Research in Sweden
Faculty of Medicine
Oftalmologi (Malmö)
Strategic research areas (SRA)
Medicinska fakulteten
Metabolism och leversjukdomar
Profilområden och andra starka forskningsmiljöer
Institutionen för kliniska vetenskaper, Malmö
CorporateAuthor_xml – name: Faculty of Medicine
– name: Medicinska fakulteten
– name: Strategiska forskningsområden (SFO)
– name: Metabolism och leversjukdomar
– name: Institutionen för kliniska vetenskaper, Malmö
– name: Strategic research areas (SRA)
– name: Lunds universitet
– name: Metabolic disorders and liver disease
– name: Profilområden och andra starka forskningsmiljöer
– name: Lund University
– name: EXODIAB: Excellence of Diabetes Research in Sweden
– name: Profile areas and other strong research environments
– name: Ophthalmology (Malmö)
– name: Department of Clinical Sciences, Malmö
– name: Oftalmologi (Malmö)
DBID 24P
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QO
7QP
7QR
7TK
7TM
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
RC3
7X8
ADTPV
AGCHP
AOWAS
D8T
D95
ZZAVC
ADTOC
UNPAY
DOI 10.1002/prot.26191
DatabaseName Wiley Online Library Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
SwePub
SWEPUB Lunds universitet full text
SwePub Articles
SWEPUB Freely available online
SWEPUB Lunds universitet
SwePub Articles full text
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Technology Research Database
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Genetics Abstracts
Biotechnology Research Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE
CrossRef
Virology and AIDS Abstracts


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
Biology
EISSN 1097-0134
EndPage 130
ExternalDocumentID 10.1002/prot.26191
oai_portal_research_lu_se_publications_0684bf80_c7f1_4407_8829_f77a70398fbc
34318530
10_1002_prot_26191
PROT26191
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Faculty of Medicine, Lund University
– fundername: Crafoord Foundation
– fundername: IngaBritt och Arne Lundbergs Forskningsstiftelse
  funderid: LU2020‐0013
– fundername: Astar International fellowship
– fundername: Swedish Foundation for Strategic Research Dnr
  funderid: IRC15‐0067
– fundername: Swedish Research Council, Strategic Research Area EXODIAB
  funderid: Dnr 2009 1039
GroupedDBID -~X
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADZMN
AEEZP
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BLYAC
BMNLL
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FA8
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LH6
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NDZJH
NF~
NNB
O66
O9-
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RBB
RIWAO
RJQFR
RNS
ROL
RWI
RX1
SAMSI
SUPJJ
SV3
UB1
V2E
W8V
W99
WBFHL
WBKPD
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WSB
WXSBR
WYISQ
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
AIQQE
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QO
7QP
7QR
7TK
7TM
7U9
8FD
C1K
FR3
H94
K9.
M7N
P64
RC3
7X8
ADTPV
AGCHP
AOWAS
D8T
D95
ZZAVC
ADTOC
UNPAY
ID FETCH-LOGICAL-c4831-8430cbc62800732e740cd7baedcb10ae45a932deb84a175300576725317bd8e83
IEDL.DBID DR2
ISSN 0887-3585
1097-0134
IngestDate Tue Aug 19 17:06:46 EDT 2025
Tue Sep 09 22:29:10 EDT 2025
Fri Jul 11 07:36:17 EDT 2025
Fri Jul 25 12:16:39 EDT 2025
Mon Jul 21 05:25:07 EDT 2025
Wed Oct 01 01:19:16 EDT 2025
Thu Apr 24 22:57:00 EDT 2025
Wed Jan 22 16:28:29 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords EVB
2-pyrone-4,6-dicarboxylate lactonase
LigI reaction mechanism
lactonase
histidine protonation state
Language English
License Attribution
2021 The Authors. Proteins: Structure, Function, and Bioinformatics published by Wiley Periodicals LLC.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4831-8430cbc62800732e740cd7baedcb10ae45a932deb84a175300576725317bd8e83
Notes Funding information
Astar International fellowship; IngaBritt och Arne Lundbergs Forskningsstiftelse, Grant/Award Number: LU2020‐0013; Swedish Foundation for Strategic Research Dnr, Grant/Award Number: IRC15‐0067; Swedish Research Council, Strategic Research Area EXODIAB, Grant/Award Number: Dnr 2009 1039; Faculty of Medicine, Lund University; Crafoord Foundation
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6552-0929
0000-0002-5047-6985
0000-0002-7247-7591
0000-0002-2499-026X
0000-0002-0244-2908
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fprot.26191
PMID 34318530
PQID 2609161044
PQPubID 1016441
PageCount 8
ParticipantIDs unpaywall_primary_10_1002_prot_26191
swepub_primary_oai_portal_research_lu_se_publications_0684bf80_c7f1_4407_8829_f77a70398fbc
proquest_miscellaneous_2555968071
proquest_journals_2609161044
pubmed_primary_34318530
crossref_citationtrail_10_1002_prot_26191
crossref_primary_10_1002_prot_26191
wiley_primary_10_1002_prot_26191_PROT26191
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2022
2022-01-00
20220101
2022
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: January 2022
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: United States
– name: Hokoben
PublicationTitle Proteins, structure, function, and bioinformatics
PublicationTitleAlternate Proteins
PublicationYear 2022
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2014; 118
2019; 9
2007; 282
2019; 53
2013; 105
2010; 145
1996; 35
2017; 9
2001; 40
2011; 133
2011; 7
2018; 47
2012; 51
2018; 19
1993; 14
2018; 9
1993; 57
2003; 107
2005; 187
2020; 594
2015; 61
1989; 91
1997; 101
1984; 5
1999; 181
2007; 80
2005; 109
2020; 88
1992; 27
2018; 11
2012; 4
2006; 106
1980; 102
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
Kulkarni Y (e_1_2_8_31_1) 2019; 53
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_16_1
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_30_1
References_xml – volume: 47
  start-page: 852
  year: 2018
  end-page: 908
  article-title: Chemicals from lignin: an interplay of lignocellulose fractionation, depolymerisation, and upgrading
  publication-title: Chem Soc Rev
– volume: 7
  start-page: 2284
  year: 2011
  end-page: 2295
  article-title: Improved treatment of ligands and coupling effects in empirical calculation and rationalization of pKa values
  publication-title: J Chem Theory Comput
– volume: 187
  start-page: 5067
  year: 2005
  end-page: 5074
  article-title: Characterization of the gallate dioxygenase gene: three distinct ring cleavage dioxygenases are involved in syringate degradation by SYK‐6
  publication-title: J Bacteriol
– volume: 133
  start-page: 1534
  year: 2011
  end-page: 1544
  article-title: Protonation, tautomerization, and rotameric structure of histidine: a comprehensive study by magic‐angle‐spinning solid‐state NMR
  publication-title: J Am Chem Soc
– volume: 19
  start-page: 335
  year: 2018
  article-title: Lignins: biosynthesis and biological functions in plants
  publication-title: Int J Mol Sci
– volume: 105
  start-page: 993
  year: 2013
  end-page: 1003
  article-title: Characterizing a histidine switch controlling pH‐dependent conformational changes of the influenza virus hemagglutinin
  publication-title: Biophys J
– volume: 145
  start-page: 71
  year: 2010
  end-page: 106
  article-title: The EVB as a quantitative tool for formulating simulations and analyzing biological and chemical reactions
  publication-title: Faraday Discuss
– volume: 107
  start-page: 9380
  year: 2003
  end-page: 9386
  article-title: First principles calculations of aqueous pKa values for organic and inorganic acids using COSMO−RS reveal an inconsistency in the slope of the pKa scale
  publication-title: J Phys Chem A
– volume: 102
  start-page: 6218
  year: 1980
  end-page: 6226
  article-title: An empirical valence bond approach for comparing reactions in solutions and in enzymes
  publication-title: J Am Chem Soc
– volume: 40
  start-page: 1984
  year: 2001
  end-page: 1995
  article-title: The structural basis for the perturbed pK of the catalytic base in 4‐oxalocrotonate tautomerase: kinetic and structural effects of mutations of Phe‐50
  publication-title: Biochemistry
– volume: 109
  start-page: 17715
  year: 2005
  end-page: 17733
  article-title: pKa calculations in solution and proteins with QM/MM free energy perturbation simulations: a quantitative test of QM/MM protocols
  publication-title: J Phys Chem B
– volume: 9
  start-page: 1329
  year: 2019
  end-page: 1336
  article-title: Exploring the catalytic mechanism of Cas9 using information inferred from endonuclease VII
  publication-title: ACS Catal
– volume: 101
  start-page: 4458
  year: 1997
  end-page: 4472
  article-title: Consistent calculations of pKa's of ionizable residues in proteins: semi‐microscopic and microscopic approaches
  publication-title: J Phys Chem B
– volume: 57
  start-page: 605
  year: 1993
  end-page: 622
  article-title: Molecular biology of the lignin‐degrading basidiomycete Phanerochaete chrysosporium
  publication-title: Microbiol Rev
– volume: 53
  start-page: 69
  year: 2019
  end-page: 104
  article-title: Chapter three—computational physical organic chemistry using the empirical valence bond approach
  publication-title: Advances in Physical Organic Chemistry
– volume: 282
  start-page: 24239
  year: 2007
  end-page: 24245
  article-title: Concerted protonation of key histidines triggers membrane interaction of the diphtheria toxin T domain
  publication-title: J Biol Chem
– volume: 80
  start-page: 2436
  year: 2007
  end-page: 2442
  article-title: Molecular properties of 2‐Pyrone‐4,6‐dicarboxylic acid (PDC) as a stable metabolic intermediate of lignin isolated by fractional precipitation with Na+ ion
  publication-title: BCSJ
– volume: 11
  start-page: 467
  year: 2018
  article-title: Dopamine autoxidation is controlled by acidic pH
  publication-title: Front Mol Neurosci
– volume: 9
  start-page: 8127
  year: 2018
  end-page: 8133
  article-title: Gold‐catalyzed conversion of lignin to low molecular weight aromatics
  publication-title: Chem Sci
– volume: 594
  start-page: 2128
  year: 2020
  end-page: 2139
  article-title: Cascading proton transfers are a hallmark of the catalytic mechanism of SAM‐dependent methyltransferases
  publication-title: FEBS Lett
– volume: 51
  start-page: 3497
  year: 2012
  end-page: 3507
  article-title: Structure and catalytic mechanism of LigI: insight into the amidohydrolase enzymes of cog3618 and lignin degradation
  publication-title: Biochemistry
– volume: 61
  start-page: 21
  year: 2015
  end-page: 29
  article-title: Theoretical study of the hydrolysis mechanism of 2‐pyrone‐4,6‐dicarboxylate (PDC) catalyzed by LigI
  publication-title: J Mol Graph Model
– volume: 181
  start-page: 55
  year: 1999
  end-page: 62
  article-title: Genetic and biochemical characterization of a 2‐pyrone‐4, 6‐dicarboxylic acid hydrolase involved in the protocatechuate 4,5‐cleavage pathway of SYK‐6
  publication-title: J Bacteriol
– volume: 91
  start-page: 3647
  year: 1989
  end-page: 3661
  article-title: A surface constrained all‐atom solvent model for effective simulations of polar solutions
  publication-title: J Chem Phys
– volume: 118
  start-page: 4326
  year: 2014
  end-page: 4332
  article-title: Examining electrostatic preorganization in monoamine oxidases a and B by structural comparison and pKa calculations
  publication-title: J Phys Chem B
– volume: 7
  start-page: 525
  year: 2011
  end-page: 537
  article-title: PROPKA3: consistent treatment of internal and surface residues in empirical pKa predictions
  publication-title: J Chem Theory Comput
– volume: 106
  start-page: 3210
  year: 2006
  end-page: 3235
  article-title: Electrostatic basis for enzyme catalysis
  publication-title: Chem Rev
– volume: 4
  start-page: 17
  year: 2012
  article-title: Avogadro: an advanced semantic chemical editor, visualization, and analysis platform
  publication-title: J Chem
– volume: 5
  start-page: 129
  year: 1984
  end-page: 145
  article-title: An approach to computing electrostatic charges for molecules
  publication-title: J Comput Chem
– volume: 27
  start-page: 17
  year: 1992
  end-page: 22
  article-title: Polyesters from lignin. 1. The reaction of Kraft lignin with dicarboxylic acid chlorides
  publication-title: Polym Int
– volume: 9
  start-page: 679
  year: 2017
  end-page: 705
  article-title: Bacterial catabolism of lignin‐derived aromatics: new findings in a recent decade: update on bacterial lignin catabolism
  publication-title: Environ Microbiol Rep
– volume: 14
  start-page: 161
  year: 1993
  end-page: 185
  article-title: Microscopic and semimicroscopic calculations of electrostatic energies in proteins by the POLARIS and ENZYMIX programs
  publication-title: J Comput Chem
– volume: 88
  start-page: 260
  year: 2020
  end-page: 264
  article-title: Exploring alternative catalytic mechanisms of the Cas9 HNH domain
  publication-title: Proteins Struct Funct Bioinform
– volume: 35
  start-page: 803
  year: 1996
  end-page: 813
  article-title: Catalytic role of the amino‐terminal proline in 4‐oxalocrotonate tautomerase: affinity labeling and heteronuclear NMR studies
  publication-title: Biochemistry
– ident: e_1_2_8_2_1
  doi: 10.3390/ijms19020335
– ident: e_1_2_8_27_1
  doi: 10.1021/ct100578z
– volume: 53
  start-page: 69
  year: 2019
  ident: e_1_2_8_31_1
  article-title: Chapter three—computational physical organic chemistry using the empirical valence bond approach
  publication-title: Advances in Physical Organic Chemistry
– ident: e_1_2_8_12_1
  doi: 10.1021/ja108943n
– ident: e_1_2_8_35_1
  doi: 10.1021/cr0503106
– ident: e_1_2_8_9_1
  doi: 10.1021/bi300307b
– ident: e_1_2_8_20_1
  doi: 10.1063/1.456845
– ident: e_1_2_8_23_1
  doi: 10.1039/B907354J
– ident: e_1_2_8_11_1
  doi: 10.1016/j.jmgm.2015.06.011
– ident: e_1_2_8_8_1
  doi: 10.1128/JB.187.15.5067-5074.2005
– ident: e_1_2_8_21_1
  doi: 10.1002/jcc.540140205
– ident: e_1_2_8_17_1
  doi: 10.1021/jp0517192
– ident: e_1_2_8_32_1
  doi: 10.1002/1873-3468.13799
– ident: e_1_2_8_18_1
  doi: 10.1021/jp500795p
– ident: e_1_2_8_24_1
  doi: 10.1186/1758-2946-4-17
– ident: e_1_2_8_34_1
  doi: 10.1002/prot.25796
– ident: e_1_2_8_5_1
  doi: 10.1039/C7CS00566K
– ident: e_1_2_8_22_1
  doi: 10.1021/ja00540a008
– ident: e_1_2_8_15_1
  doi: 10.1021/jp034688o
– ident: e_1_2_8_33_1
  doi: 10.1021/acscatal.8b04324
– ident: e_1_2_8_26_1
  doi: 10.3389/fnmol.2018.00467
– ident: e_1_2_8_16_1
  doi: 10.1021/ct200133y
– ident: e_1_2_8_3_1
  doi: 10.1111/1758-2229.12597
– ident: e_1_2_8_30_1
  doi: 10.1128/JB.181.1.55-62.1999
– ident: e_1_2_8_10_1
  doi: 10.1246/bcsj.80.2436
– ident: e_1_2_8_13_1
  doi: 10.1016/j.bpj.2013.06.047
– ident: e_1_2_8_19_1
  doi: 10.1021/jp963412w
– ident: e_1_2_8_28_1
  doi: 10.1021/bi951077g
– ident: e_1_2_8_7_1
  doi: 10.1128/mr.57.3.605-622.1993
– ident: e_1_2_8_4_1
  doi: 10.1002/pi.4990270104
– ident: e_1_2_8_29_1
  doi: 10.1021/bi0024714
– ident: e_1_2_8_6_1
  doi: 10.1039/C8SC03208D
– ident: e_1_2_8_25_1
  doi: 10.1002/jcc.540050204
– ident: e_1_2_8_14_1
  doi: 10.1074/jbc.M703392200
SSID ssj0006936
Score 2.3868117
Snippet Lignin is one of the world's most abundant organic polymers, and 2‐pyrone‐4,6‐dicarboxylate lactonase (LigI) catalyzes the hydrolysis of...
Lignin is one of the world's most abundant organic polymers, and 2-pyrone-4,6-dicarboxylate lactonase (LigI) catalyzes the hydrolysis of...
SourceID unpaywall
swepub
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 123
SubjectTerms 2‐pyrone‐4,6‐dicarboxylate lactonase
Biologi
Biological Sciences
Carboxylic Ester Hydrolases - chemistry
Carboxylic Ester Hydrolases - metabolism
Catalysis
Catalytic Domain
EVB
Free energy
Histidine
Histidine - chemistry
Histidine - metabolism
histidine protonation state
Hydrolysis
lactonase
LigI reaction mechanism
Lignin
Lignin - chemistry
Lignin - metabolism
Microenvironments
Natural Sciences
Naturvetenskap
pH effects
Polymers
Protonation
Protons
Reaction mechanisms
Residues
Substrates
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3ha9QwFA9yQ4YfnG46K1MiDkGhR9ukTfrxHI4pbg7ZwfRLSNJED-96x-7KOP96X5K23FSG4LdC0pakLy-_33t9vyB0aGimC5vLWFpCY8pzE5fSkJhVJc-023ATV5x8elacjOmHy_xyo4o_6EP0ATe3Mry_dgt8Udng59vsfuaq1VZDxwGA_2wVLsU0QFvjs_PRl17gM_encro8K7BmQnuF0s2bb-5JfwDNXkX0Htpu6oVcX8vp9CaY9bvR8Q6S3TjCTyg_hs1KDfXP3yQe_2egD9D9FqriUbCth-iOqXfR3qgGmj5b41fY_zzqo_K76O7b7mr7qDtCbg-dOhGSCeyOBrtHz0PkEfsipiWWVwaDC8GTGgMKxR8n395jH01awwsxgFlfcoFnxhUnT5azR2h8_O7i6CRuz2-INeUkjTmFD610kXGXD8wMo4mumJKm0ipNpKG5BPRYGcWpdIKhrjC2YBl4BaYqbjh5jAb1vDZPEC5tYlXKkoprQhNiwaa0zVLLCAc-RKsIve6-oNCtuLk7Y2MqgixzJtwwhZ_BCL3s-y6CpMdfex10hiDaZb2EFoBXADgpjdCLvhkm1WVZZG3mDfTJgaQVHKBbhPaDAfWvIdQVq5MkQl-DRfUtTuU7EC7Rqjx9F9NGLI1YbIRvRVJwqixPhGY2FRTYuACKVArLmATfXXKrdIQOeyu9dYBvvNXd0kWcf_504a-e_tszD9BgddWYZ4DTVup5uxR_ASp0PiY
  priority: 102
  providerName: Unpaywall
Title Histidine protonation states are key in the LigI catalytic reaction mechanism
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fprot.26191
https://www.ncbi.nlm.nih.gov/pubmed/34318530
https://www.proquest.com/docview/2609161044
https://www.proquest.com/docview/2555968071
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/prot.26191
UnpaywallVersion publishedVersion
Volume 90
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0887-3585
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1097-0134
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006936
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3raxQxEB9qRaoffLQ-VusRsQgKe91HdjcLfjmLpYqtR-lBK0hIskl7eLd39O6Q8693kn2cVSnot0BmNySZSX4zyfwCsKNppFKTCF-YmPqUJdrPhY79rMhZpOyGG9jk5MOj9GBAP54mp2vwtsmFqfgh2oCbtQy3XlsDF3K2uyINtTwGXYv_re8Txok7oz1ecUeluXsfsLIiBMUtN2m0u_r06m70B8Rs-UPvwMainIrldzEaXYWxbh_avwdfmx5U10--dRdz2VU_fiN3_N8u3oe7NUAlvUqjHsCaLjdhq1eicz5eklfEXRl1sfhNuPWuKW3sNQ_HbcGhpR4Z4p6oif31pIo3Epe6NCPiUhNcOMiwJIg9yafh-QfiYkhLbJAghHWJFmSsbUrycDZ-CIP99yd7B379aoOvKItDn1GcXqnSiNlTwEhnNFBFJoUulAwDoWkiEDMWWjIqLE2oTYdNswjXgkwWTLP4EayXk1I_AZKbwMgwCwqmYhrEBjVJmSg0WczQC6KFB6-b2eOqpjS3L2uMeEXGHHHbTe5G0IOXrey0IvL4q9R2owS8NuYZ1iCoQphJqQcv2mocVHu2Iko9WaBMgq5ZyhCwefC4Up62mZjaFPU48OBLpU1tjeX2rtwsXnM7XfDRgs80n_4StOVByqg0LOAqMyGn6INzdIxybrJM4IqdMyOVBzuthl7bwTdO464R4f3jzyeu9PRfhJ_B7cimhrjw1Daszy8X-jkCtrnswI2I9jvOPDtwc3DU7539BJI-Prg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3faxQxEB6kIqcPoq0_VqtGLILC2mw2t5t9rMVy1bta5ArFl5DNJnpwt3f0esj9985k97YWpeBbILNkk8kk30wyXwD2nBQ2830TG5_KWKq-iwvj0jivCiUsbbickpNHJ9ngTH4-75-3d3MoF6bhh-gCbmQZYb0mA6eA9P4VaygRGXwgBwCdn9syE5wmtZCn3UKcFeGFwMaOEBZ37KRi_-rb6_vRXyCzYxC9B71VvTDrX2Y6vQ5kw0509ADutxCSHTQ6fwi3XL0NOwc1us-zNXvLwqXOEC3fhjsfN6Xe4eZptx0YETnIBHctx-gX501EkIXkoiUzF46habNJzRAdsuHkxzELUZ41NsgQZIZUCDZzlDQ8Wc4ewdnRp_HhIG7fVYitVGkSK4kKKG0mFJ3TCZdLbqu8NK6yZcKNk32DqK5ypZKGiDwpYTXLBVprXlbKqfQxbNXz2j0FVnjuyyTnlbKp5KlHXVsvEp-nCv0UWUXwbjO62rak4_T2xVQ3dMlCUzd10EQEbzrZRUO18U-p3Y2SdGtuS6xB2INAUMoIXnfVOKh0-mFqN1-hTB-dp0whpIrgSaPcrplUUhJ5yiP43mi7qyH27cYR0i370k89Xeml04s_wqqaZ0qWXnFtc59oiV6yRtel0D7PDa6phfKljWCvm0E3dvB9mFw3iOjTb1_HofTsf4RfQW8wHg318Pjky3O4KyiRIwSTdmHr8mLlXiC8uixfBiP6DfWzHxA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1taxQxEB5KRVs_-NJqXa0asQgKe92X7G4W_FKrR6ttLaWFIkhIsoke3u0dvVvk_PVOsi9nVQr6LZDZDUlmkmcmmScAW5pGKjWJ8IWJqU9Zov1c6NjPipxFym64gU1OPjxK987o-_PkfAlet7kwNT9EF3CzluHWa2vgk8JsL0hDLY9Bz-J_9H2u0RTdKwuJThbkUWnuHgiszQhRcUdOGm0vvr28Hf2BMTsC0ZuwUpUTMf8uhsPLONZtRP3b8LntQn3_5Fuvmsme-vEbu-P_9vEO3GoQKtmpVeouLOlyDdZ3SvTOR3Pygrg7oy4YvwbX37Slld325bh1OLTcIwPcFDWxvx7XAUficpemRFxogisHGZQEwSc5GHzZJy6INMcGCWJYl2lBRtrmJA-mo3tw1n93urvnN882-IqyOPQZxfmVKo2YPQaMdEYDVWRS6ELJMBCaJgJBY6Elo8LyhNp82DSLcDHIZME0i-_Dcjku9QMguQmMDLOgYCqmQWxQlZSJQpPFDN0gWnjwsp09rhpOc_u0xpDXbMwRt93kbgQ9eN7JTmomj79KbbZKwBtrnmINoirEmZR68KyrxkG1hyui1OMKZRL0zVKGiM2DjVp5umZianPU48CDT7U2dTWW3Lv2s3hD7vSVDys-1XzyS9SWBymj0rCAq8yEnKITztEzyrnJMoFLds6MVB5sdRp6ZQdfOY27QoQfn3w8daWH_yL8FG4cv-3zg_2jD49gNbJpIi5UtQnLs4tKP0bwNpNPnI3-BOgcPvw
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3ha9QwFA9yQ4YfnG46K1MiDkGhR9ukTfrxHI4pbg7ZwfRLSNJED-96x-7KOP96X5K23FSG4LdC0pakLy-_33t9vyB0aGimC5vLWFpCY8pzE5fSkJhVJc-023ATV5x8elacjOmHy_xyo4o_6EP0ATe3Mry_dgt8Udng59vsfuaq1VZDxwGA_2wVLsU0QFvjs_PRl17gM_encro8K7BmQnuF0s2bb-5JfwDNXkX0Htpu6oVcX8vp9CaY9bvR8Q6S3TjCTyg_hs1KDfXP3yQe_2egD9D9FqriUbCth-iOqXfR3qgGmj5b41fY_zzqo_K76O7b7mr7qDtCbg-dOhGSCeyOBrtHz0PkEfsipiWWVwaDC8GTGgMKxR8n395jH01awwsxgFlfcoFnxhUnT5azR2h8_O7i6CRuz2-INeUkjTmFD610kXGXD8wMo4mumJKm0ipNpKG5BPRYGcWpdIKhrjC2YBl4BaYqbjh5jAb1vDZPEC5tYlXKkoprQhNiwaa0zVLLCAc-RKsIve6-oNCtuLk7Y2MqgixzJtwwhZ_BCL3s-y6CpMdfex10hiDaZb2EFoBXADgpjdCLvhkm1WVZZG3mDfTJgaQVHKBbhPaDAfWvIdQVq5MkQl-DRfUtTuU7EC7Rqjx9F9NGLI1YbIRvRVJwqixPhGY2FRTYuACKVArLmATfXXKrdIQOeyu9dYBvvNXd0kWcf_504a-e_tszD9BgddWYZ4DTVup5uxR_ASp0PiY
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Histidine+protonation+states+are+key+in+the+LigI+catalytic+reaction+mechanism&rft.jtitle=Proteins%2C+structure%2C+function%2C+and+bioinformatics&rft.au=Zhao%2C+Lina&rft.au=Mondal%2C+Dibyendu&rft.au=Li%2C+Weifeng&rft.au=Mu%2C+Yuguang&rft.date=2022&rft.issn=0887-3585&rft.volume=90&rft.issue=1&rft.spage=123&rft_id=info:doi/10.1002%2Fprot.26191&rft.externalDocID=oai_portal_research_lu_se_publications_0684bf80_c7f1_4407_8829_f77a70398fbc
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0887-3585&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0887-3585&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0887-3585&client=summon