Breeding wheat for drought tolerance: Progress and technologies
Recurrent drought associated with climate change is among the principal constraints to global productivity of wheat(Triticum aestivum(L.) and T. turgidum(L.)). Numerous efforts to mitigate drought through breeding resilient varieties are underway across the world. Progress is, however, hampered beca...
Saved in:
Published in | Journal of Integrative Agriculture Vol. 15; no. 5; pp. 935 - 943 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Colege of Agriculture, Engineering and Science, University of KwaZulu-Natal/African Centre for Crop Improvement, Scottsvile 3209, South Africa%Agricultural Research Council-Smal Grain Institute ARC-SGI, Bethlehem 9700, South Africa
01.05.2016
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 2095-3119 2352-3425 |
DOI | 10.1016/S2095-3119(15)61102-9 |
Cover
Abstract | Recurrent drought associated with climate change is among the principal constraints to global productivity of wheat(Triticum aestivum(L.) and T. turgidum(L.)). Numerous efforts to mitigate drought through breeding resilient varieties are underway across the world. Progress is, however, hampered because drought tolerance is a complex trait that is controlled by many genes and its full expression is affected by the environment. Furthermore, wheat has a structurally intricate and large genome. Consequently, breeding for drought tolerance requires the integration of various knowledge systems and methodologies from multiple disciplines in plant sciences. This review summarizes the progress made in dry land wheat improvement, advances in knowledge, complementary methodologies, and perspectives towards breeding for drought tolerance in the crop to create a coherent overview. Phenotypic, biochemical and genomics-assisted selection methodologies are discussed as leading research components used to exploit genetic variation. Advances in phenomic and genomic technologies are highlighted as options to circumvent existing bottlenecks in phenotypic and genomic selection, and gene transfer. The prospects of further integration of these technologies with other omics technologies are also provided. |
---|---|
AbstractList | Recurrent drought associated with climate change is among the principal constraints to global productivity of wheat(Triticum aestivum(L.) and T. turgidum(L.)). Numerous efforts to mitigate drought through breeding resilient varieties are underway across the world. Progress is, however, hampered because drought tolerance is a complex trait that is controlled by many genes and its full expression is affected by the environment. Furthermore, wheat has a structurally intricate and large genome. Consequently, breeding for drought tolerance requires the integration of various knowledge systems and methodologies from multiple disciplines in plant sciences. This review summarizes the progress made in dry land wheat improvement, advances in knowledge, complementary methodologies, and perspectives towards breeding for drought tolerance in the crop to create a coherent overview. Phenotypic, biochemical and genomics-assisted selection methodologies are discussed as leading research components used to exploit genetic variation. Advances in phenomic and genomic technologies are highlighted as options to circumvent existing bottlenecks in phenotypic and genomic selection, and gene transfer. The prospects of further integration of these technologies with other omics technologies are also provided. Recurrent drought associated with climate change is among the principal constraints to global productivity of wheat (Triticum aestivum (L.) and T. turgidum (L.)). Numerous efforts to mitigate drought through breeding resilient varieties are underway across the world. Progress is, however, hampered because drought tolerance is a complex trait that is controlled by many genes and its full expression is affected by the environment. Furthermore, wheat has a structurally intricate and large genome. Consequently, breeding for drought tolerance requires the integration of various knowledge systems and methodologies from multiple disciplines in plant sciences. This review summarizes the progress made in dry land wheat improvement, advances in knowledge, complementary methodologies, and perspectives towards breeding for drought tolerance in the crop to create a coherent overview. Phenotypic, biochemical and genomics-assisted selection methodologies are discussed as leading research components used to exploit genetic variation. Advances in phenomic and genomic technologies are highlighted as options to circumvent existing bottlenecks in phenotypic and genomic selection, and gene transfer. The prospects of further integration of these technologies with other omics technologies are also provided. Recurrent drought associated with climate change is among the principal constraints to global productivity of wheat (Triticum aestivum (L.) andT. turgidum (L.)). Numerous efforts to mitigate drought through breeding resilient varieties are underway across the world. Progress is, however, hampered because drought tolerance is a complex trait that is controled by many genes and its ful expression is affected by the environment. Furthermore, wheat has a structuraly intricate and large genome. Consequently, breeding for drought tolerance requires the integration of various knowledge systems and methodologies from multiple disciplines in plant sciences. This review summarizes the progress made in dry land wheat improvement, advances in knowledge, complementary methodologies, and perspectives towards breeding for drought tolerance in the crop to create a coherent overview. Phenotypic, biochemical and genomics-assisted selection methodologies are discussed as leading research components used to exploit genetic variation. Advances in phenomic and genomic technologies are highlighted as options to circumvent existing bottlenecks in phenotypic and genomic selection, and gene transfer. The prospects of further integration of these technologies with other omics technologies are also provided. |
Author | Learnmore Mwadzingeni Hussein Shimelis Ernest Dube Mark D Laing Toi J Tsilo |
AuthorAffiliation | College of Agriculture, Engineering and Science, University of KwaZulu-Natal/African Centre for Crop Improvement, Scottsville 3209, South Africa Agricultural Research Council-Small Grain Institute (ARC-SGI), Bethlehem 9700, South Africa |
AuthorAffiliation_xml | – name: Colege of Agriculture, Engineering and Science, University of KwaZulu-Natal/African Centre for Crop Improvement, Scottsvile 3209, South Africa%Agricultural Research Council-Smal Grain Institute ARC-SGI, Bethlehem 9700, South Africa |
Author_xml | – sequence: 1 givenname: Learnmore surname: Mwadzingeni fullname: Mwadzingeni, Learnmore – sequence: 2 givenname: Hussein surname: Shimelis fullname: Shimelis, Hussein – sequence: 3 givenname: Ernest surname: Dube fullname: Dube, Ernest – sequence: 4 givenname: Mark D surname: Laing fullname: Laing, Mark D – sequence: 5 givenname: Toi J surname: Tsilo fullname: Tsilo, Toi J |
BookMark | eNqFkc1u1DAUhSNUJErpI1SKWLWLgH9iJxarMuKnUgVIwNq641xnPKR2a3tUyqPwLLwTr4AzaVmwYWXL_s7Rvec8rQ588FhVJ5S8oITKl58ZUaLhlKpTKs4kpYQ16lF1yLhgDW-ZOCj3B-RJdZzSlhBChSBE9ofV-euIODg_1rcbhFzbEOshht24yXUOE0bwBn__-ll_imGMmFINfqgzmo0PUxgdpmfVYwtTwuP786j6-vbNl9X75vLju4vV-WVj2p7lBlnLu25oaS-VIlKKdcsRrbUEWEfWnVAUxUAsh952g7Kg1i3re1ZAEP0g-VF1sfgOAbb6OroriHc6gNP7hxBHDTE7M6FmFFFaKHqOLTUSwEhBhTGWE0BJitfZ4nUL3oIf9Tbsoi_T6x-jv_v2XSMr2ZKSES3s6cJex3Czw5T1lUsGpwk8hl3SbI5Tdkqogr5aUBNDShGtNi5DdsHnCG7SlOi5M73vTM-FaCr0vjM9q8U_6ocl_6c7WXQWgoYxuqRXH-b5OaGsm_-f3_tugh9vStd_jaXslWyZ7PkfUQ-v6Q |
CitedBy_id | crossref_primary_10_1016_j_csbj_2024_01_020 crossref_primary_10_1016_j_envexpbot_2022_104902 crossref_primary_10_1371_journal_pone_0221849 crossref_primary_10_32604_phyton_2023_046811 crossref_primary_10_1080_07352689_2020_1778924 crossref_primary_10_3390_agronomy14040817 crossref_primary_10_7124_FEEO_v29_1403 crossref_primary_10_7124_FEEO_v31_1483 crossref_primary_10_7717_peerj_14421 crossref_primary_10_1007_s12298_017_0492_1 crossref_primary_10_1186_s12863_023_01140_7 crossref_primary_10_1016_S2095_3119_19_62825_X crossref_primary_10_1007_s12892_020_00041_w crossref_primary_10_1111_pbr_13088 crossref_primary_10_7717_peerj_11428 crossref_primary_10_1007_s10681_018_2245_9 crossref_primary_10_61186_jcb_15_46_166 crossref_primary_10_1016_j_plaphy_2017_05_007 crossref_primary_10_1080_09064710_2021_1984564 crossref_primary_10_1111_pbr_12609 crossref_primary_10_3389_fpls_2024_1443681 crossref_primary_10_1007_s42976_022_00335_5 crossref_primary_10_31073_mvis201909_12 crossref_primary_10_3390_agronomy14040826 crossref_primary_10_30970_vlubs_2020_82_05 crossref_primary_10_1007_s42976_020_00017_0 crossref_primary_10_3390_plants12142664 crossref_primary_10_1016_j_plaphy_2019_12_036 crossref_primary_10_1038_s41598_019_49915_2 crossref_primary_10_1038_s41598_021_83372_0 crossref_primary_10_1016_j_scienta_2019_03_043 crossref_primary_10_3390_plants11070986 crossref_primary_10_1016_j_eja_2023_126910 crossref_primary_10_1016_j_plaphy_2020_08_049 crossref_primary_10_1038_s41598_022_26869_6 crossref_primary_10_1093_jxb_ery226 crossref_primary_10_3389_fpls_2022_857829 crossref_primary_10_3390_ijms222413658 crossref_primary_10_7124_FEEO_v35_1653 crossref_primary_10_1007_s12033_021_00350_7 crossref_primary_10_1016_j_heliyon_2023_e21629 crossref_primary_10_3390_life14020183 crossref_primary_10_1038_s41598_021_91351_8 crossref_primary_10_3390_plants10112379 crossref_primary_10_3390_plants14010035 crossref_primary_10_1016_j_csbj_2020_12_018 crossref_primary_10_1111_ppa_13166 crossref_primary_10_1016_j_plaphy_2022_02_025 crossref_primary_10_3390_plants11101331 crossref_primary_10_1007_s10681_022_03072_2 crossref_primary_10_7124_FEEO_v33_1560 crossref_primary_10_1155_2024_2126734 crossref_primary_10_1002_csc2_20319 crossref_primary_10_1186_s12870_023_04614_z crossref_primary_10_2298_GENSR2201187E crossref_primary_10_1556_0806_47_2019_005 crossref_primary_10_1021_acs_jafc_4c10789 crossref_primary_10_1016_j_envexpbot_2021_104393 crossref_primary_10_3390_agronomy13122892 crossref_primary_10_1007_s12298_025_01557_7 crossref_primary_10_1007_s42729_021_00529_6 crossref_primary_10_1016_j_agwat_2020_106591 crossref_primary_10_1080_23311932_2016_1191323 crossref_primary_10_1590_1413_7054201943001719 crossref_primary_10_15407_agrisp6_02_018 crossref_primary_10_1080_01904167_2023_2226172 crossref_primary_10_1186_s12870_020_02581_3 crossref_primary_10_2134_agronj2018_06_0381 crossref_primary_10_3390_genes12040494 crossref_primary_10_1016_j_eja_2023_126972 crossref_primary_10_1007_s40502_019_00458_8 crossref_primary_10_1556_0806_47_2019_05 crossref_primary_10_1080_15427528_2017_1345816 crossref_primary_10_1007_s42976_020_00043_y crossref_primary_10_31734_agronomy2020_01_141 crossref_primary_10_3390_plants11172190 crossref_primary_10_1017_S1479262121000435 crossref_primary_10_1016_j_fcr_2023_109201 crossref_primary_10_1071_CP17387 crossref_primary_10_1186_s12870_024_05620_5 crossref_primary_10_3390_ijms22041723 crossref_primary_10_1371_journal_pone_0171692 crossref_primary_10_1080_07352689_2018_1514718 crossref_primary_10_3390_agronomy11040695 crossref_primary_10_62810_jnsr_v2iSpecial_Issue_130 crossref_primary_10_3390_ijms20133350 crossref_primary_10_1016_j_crmicr_2024_100285 crossref_primary_10_1016_j_jprot_2017_03_024 crossref_primary_10_3389_fpls_2016_01276 crossref_primary_10_3389_fpls_2024_1319938 crossref_primary_10_3390_su14169818 crossref_primary_10_1016_j_envexpbot_2024_106047 crossref_primary_10_1016_j_plaphy_2024_109415 crossref_primary_10_1007_s12298_020_00918_8 crossref_primary_10_1186_s41065_019_0093_9 crossref_primary_10_1016_j_eja_2020_126196 crossref_primary_10_3390_agronomy13122968 crossref_primary_10_1017_S1479262120000398 crossref_primary_10_3389_fpls_2022_983600 crossref_primary_10_1016_j_jplph_2022_153895 crossref_primary_10_3389_fpls_2021_765645 crossref_primary_10_3390_agronomy8040044 crossref_primary_10_1007_s11033_019_04691_0 crossref_primary_10_1080_02571862_2024_2389408 crossref_primary_10_1111_pbr_12812 crossref_primary_10_1016_j_rhisph_2024_100850 crossref_primary_10_3389_fpls_2018_01994 crossref_primary_10_1007_s11033_024_09345_4 crossref_primary_10_1007_s11248_019_00111_y crossref_primary_10_3389_fchem_2017_00106 crossref_primary_10_1088_1755_1315_1262_5_052055 crossref_primary_10_38211_joarps_2022_3_1_24 crossref_primary_10_1080_23311932_2023_2296094 crossref_primary_10_3390_plants13233381 crossref_primary_10_3389_fpls_2022_904392 crossref_primary_10_1093_jxb_eraa487 crossref_primary_10_1016_j_scitotenv_2020_139082 crossref_primary_10_15446_rfnam_v75n3_100638 crossref_primary_10_1038_s41598_023_38961_6 crossref_primary_10_1002_fsat_3104_5_x crossref_primary_10_3390_plants9070829 crossref_primary_10_7124_FEEO_v26_1274 crossref_primary_10_1007_s41207_023_00446_3 crossref_primary_10_3390_agriculture8050067 crossref_primary_10_1186_s43141_021_00171_w crossref_primary_10_3389_fpls_2020_01149 |
Cites_doi | 10.2135/cropsci1998.0011183X003800060011x 10.1016/j.copbio.2014.11.027 10.1016/j.jplph.2007.05.001 10.1371/journal.pone.0097047 10.1016/j.copbio.2011.11.003 10.4236/ajps.2011.21010 10.3354/cr00797 10.1038/nmeth.2089 10.1016/j.plaphy.2010.11.009 10.1007/s10681-012-0675-3 10.1016/j.pbi.2011.03.020 10.1093/jxb/erq152 10.1111/pbi.12153 10.1093/jxb/erl164 10.2135/cropsci2007.04.0191 10.1111/j.1365-3040.2009.01956.x 10.2135/cropsci2002.1441 10.1007/s00122-012-1964-x 10.1007/s00122-007-0540-2 10.1111/pbr.12217 10.1104/pp.102.003616 10.1016/j.tplants.2013.09.008 10.1007/s10681-011-0559-y 10.1016/j.copbio.2006.02.002 10.3732/ajb.1100309 10.1016/j.measurement.2014.04.007 10.17221/227/2010-CJFS 10.2135/cropsci2008.03.0131 10.1007/s00122-008-0846-8 10.1017/S1479262111000207 10.1016/j.fcr.2009.03.009 10.1111/j.1365-313X.2006.02891.x 10.17221/3249-CJGPB 10.1007/s10681-010-0242-8 10.2135/cropsci2011.10.0574 10.1111/j.1744-7348.2005.04048.x 10.1016/j.jplph.2014.05.005 10.1071/FP06055 10.1016/j.plaphy.2011.05.011 10.1007/s00122-010-1351-4 10.1111/j.1439-0523.2011.01941.x 10.1016/j.biotechadv.2009.11.005 10.1071/FP09121 10.2135/cropsci2011.05.0267 10.1007/s00122-012-1904-9 10.1007/s10681-011-0585-9 10.3835/plantgenome2012.06.0006 10.1016/S0168-9452(99)00247-2 10.1093/mp/ssq016 10.1007/s00122-012-1927-2 10.1007/s10681-010-0155-6 10.1111/j.1744-7348.2005.040058.x 10.1371/journal.pone.0019379 10.1111/j.1365-3040.2009.02107.x 10.1146/annurev-arplant-050213-040000 10.1080/07352689.2014.870417 |
ContentType | Journal Article |
Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
CorporateAuthor | Learnmore Mwadzingeni |
CorporateAuthor_xml | – name: Learnmore Mwadzingeni |
DBID | 2RA 92L CQIGP W95 ~WA FBQ AAYXX CITATION 7S9 L.6 2B. 4A8 92I 93N PSX TCJ DOA |
DOI | 10.1016/S2095-3119(15)61102-9 |
DatabaseName | 维普_期刊 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库-农业科学 中文科技期刊数据库- 镜像站点 AGRIS CrossRef AGRICOLA AGRICOLA - Academic Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ : Directory of Open Access Journals [open access] url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture |
DocumentTitleAlternate | Breeding wheat for drought tolerance: Progress and technologies |
EISSN | 2352-3425 |
EndPage | 943 |
ExternalDocumentID | oai_doaj_org_article_21ee6fa4283e41c6aac6515ccf30ae60 zgnykx_e201605001 10_1016_S2095_3119_15_61102_9 CN2016301279 668964268 |
GroupedDBID | --M -04 -0D -SD -S~ .~1 0R~ 1B1 1~. 1~5 2B. 2B~ 2RA 4.4 457 4G. 5VR 7-5 8P~ 92G 92I 92L 92M 93N 93Q 9D9 9DD AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AATLK AAXUO ABGRD ABMAC ABXDB ABYKQ ACDAQ ACGFS ACRLP ADEZE ADMUD ADQTV AEBSH AEKER AENEX AEQOU AFKWA AFTJW AFUIB AFXIZ AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CAJED CAJUS CBWCG CCEZO CHDYS CQIGP EBS EFJIC EFLBG EJD FA0 FDB FIRID FNPLU FYGXN GBLVA GROUPED_DOAJ HZ~ JUIAU KOM M41 MO0 NCXOZ O-L O9- OAUVE OK1 P-8 P-9 PC. Q-- Q-3 Q38 R-D RIG ROL RT4 SDF SDG SES SSA SSZ T5K T8T TCJ TGD U1F U1G U5D U5N W95 ~G- ~WA ABPIF FBQ AAHBH AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGCQF AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7S9 ACLOT EFKBS L.6 ~HD 4A8 PSX |
ID | FETCH-LOGICAL-c482t-e24377d4186990665b43eefff0a270b7591e5d0f3a8f7d9fa9b4288265ba58d63 |
IEDL.DBID | DOA |
ISSN | 2095-3119 |
IngestDate | Mon Sep 08 19:52:10 EDT 2025 Thu May 29 03:54:11 EDT 2025 Sun Sep 28 11:54:51 EDT 2025 Thu Apr 24 23:12:00 EDT 2025 Tue Jul 01 01:08:39 EDT 2025 Tue Nov 07 23:20:55 EST 2023 Wed Feb 14 10:18:59 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | genomic selection drought tolerance wheat phenotyping genotyping |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c482t-e24377d4186990665b43eefff0a270b7591e5d0f3a8f7d9fa9b4288265ba58d63 |
Notes | 10-1039/S Recurrent drought associated with climate change is among the principal constraints to global productivity of wheat(Triticum aestivum(L.) and T. turgidum(L.)). Numerous efforts to mitigate drought through breeding resilient varieties are underway across the world. Progress is, however, hampered because drought tolerance is a complex trait that is controlled by many genes and its full expression is affected by the environment. Furthermore, wheat has a structurally intricate and large genome. Consequently, breeding for drought tolerance requires the integration of various knowledge systems and methodologies from multiple disciplines in plant sciences. This review summarizes the progress made in dry land wheat improvement, advances in knowledge, complementary methodologies, and perspectives towards breeding for drought tolerance in the crop to create a coherent overview. Phenotypic, biochemical and genomics-assisted selection methodologies are discussed as leading research components used to exploit genetic variation. Advances in phenomic and genomic technologies are highlighted as options to circumvent existing bottlenecks in phenotypic and genomic selection, and gene transfer. The prospects of further integration of these technologies with other omics technologies are also provided. drought tolerance, genomic selection, genotyping, phenotyping, wheat http://www.sciencedirect.com/science/article/pii/S2095311915611029 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://doaj.org/article/21ee6fa4283e41c6aac6515ccf30ae60 |
PQID | 2000167959 |
PQPubID | 24069 |
PageCount | 9 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_21ee6fa4283e41c6aac6515ccf30ae60 wanfang_journals_zgnykx_e201605001 proquest_miscellaneous_2000167959 crossref_citationtrail_10_1016_S2095_3119_15_61102_9 crossref_primary_10_1016_S2095_3119_15_61102_9 fao_agris_CN2016301279 chongqing_primary_668964268 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-05-01 |
PublicationDateYYYYMMDD | 2016-05-01 |
PublicationDate_xml | – month: 05 year: 2016 text: 2016-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Journal of Integrative Agriculture |
PublicationTitleAlternate | Agricultural Sciences in China |
PublicationYear | 2016 |
Publisher | Colege of Agriculture, Engineering and Science, University of KwaZulu-Natal/African Centre for Crop Improvement, Scottsvile 3209, South Africa%Agricultural Research Council-Smal Grain Institute ARC-SGI, Bethlehem 9700, South Africa Elsevier |
Publisher_xml | – name: Colege of Agriculture, Engineering and Science, University of KwaZulu-Natal/African Centre for Crop Improvement, Scottsvile 3209, South Africa%Agricultural Research Council-Smal Grain Institute ARC-SGI, Bethlehem 9700, South Africa – name: Elsevier |
References | Sharma (10.1016/S2095-3119(15)61102-9_bib57) 2013; 8 Valliyodan (10.1016/S2095-3119(15)61102-9_bib65) 2006; 17 Berkman (10.1016/S2095-3119(15)61102-9_bib8) 2012; 99 Kumar (10.1016/S2095-3119(15)61102-9_bib34) 2010; 174 Abebe (10.1016/S2095-3119(15)61102-9_bib1) 2003; 131 Lopes (10.1016/S2095-3119(15)61102-9_bib38) 2010; 37 Su (10.1016/S2095-3119(15)61102-9_bib62) 2014; 54 Vendruscolo (10.1016/S2095-3119(15)61102-9_bib66) 2007; 164 Mir (10.1016/S2095-3119(15)61102-9_bib43) 2012; 125 Pinto (10.1016/S2095-3119(15)61102-9_bib51) 2010; 121 Balla (10.1016/S2095-3119(15)61102-9_bib6) 2011; 29 Xu (10.1016/S2095-3119(15)61102-9_bib67) 2008; 48 Gupta (10.1016/S2095-3119(15)61102-9_bib24) 2011; 2 Ashraf (10.1016/S2095-3119(15)61102-9_bib5) 2010; 28 Hameed (10.1016/S2095-3119(15)61102-9_bib25) 2011; 49 Trethowan (10.1016/S2095-3119(15)61102-9_bib63) 2002; 42 Omar (10.1016/S2095-3119(15)61102-9_bib48) 2010; 95 Paux (10.1016/S2095-3119(15)61102-9_bib49) 2006; 48 Reynolds (10.1016/S2095-3119(15)61102-9_bib54) 2005; 146 Dvorak (10.1016/S2095-3119(15)61102-9_bib16) 2011; 47 Golabadi (10.1016/S2095-3119(15)61102-9_bib23) 2011; 177 Poland (10.1016/S2095-3119(15)61102-9_bib52) 2012; 5 Hu (10.1016/S2095-3119(15)61102-9_bib27) 2014; 65 Slafer (10.1016/S2095-3119(15)61102-9_bib61) 2005; 146 Ahmad (10.1016/S2095-3119(15)61102-9_bib2) 2014; 16 Deikman (10.1016/S2095-3119(15)61102-9_bib14) 2012; 23 Langridge (10.1016/S2095-3119(15)61102-9_bib35) 2015; 32 Edwards (10.1016/S2095-3119(15)61102-9_bib17) 2013; 126 Mohamed (10.1016/S2095-3119(15)61102-9_bib44) 2013; 8 Nezhad (10.1016/S2095-3119(15)61102-9_bib46) 2012; 186 Czyczyło-Mysza (10.1016/S2095-3119(15)61102-9_bib13) 2011; 9 Rong (10.1016/S2095-3119(15)61102-9_bib55) 2014; 12 Schneider (10.1016/S2095-3119(15)61102-9_bib56) 2012; 9 10.1016/S2095-3119(15)61102-9_bib36 Blum (10.1016/S2095-3119(15)61102-9_bib10) 2009; 112 Majer (10.1016/S2095-3119(15)61102-9_bib39) 2008; 52 Manes (10.1016/S2095-3119(15)61102-9_bib40) 2012; 52 Spielmeyer (10.1016/S2095-3119(15)61102-9_bib59) 2007; 115 Dodig (10.1016/S2095-3119(15)61102-9_bib15) 2012; 131 Nevo (10.1016/S2095-3119(15)61102-9_bib45) 2010; 33 Peleg (10.1016/S2095-3119(15)61102-9_bib50) 2009; 32 Yang (10.1016/S2095-3119(15)61102-9_bib68) 2010; 3 Reddy (10.1016/S2095-3119(15)61102-9_bib53) 2014; 171 Khakwani (10.1016/S2095-3119(15)61102-9_bib31) 2011; 33 Fleury (10.1016/S2095-3119(15)61102-9_bib22) 2010; 61 Mathews (10.1016/S2095-3119(15)61102-9_bib42) 2008; 117 Bennett (10.1016/S2095-3119(15)61102-9_bib7) 2012; 125 Kumar (10.1016/S2095-3119(15)61102-9_bib33) 2012; 186 Khakwani (10.1016/S2095-3119(15)61102-9_bib32) 2012; 44 Li (10.1016/S2095-3119(15)61102-9_bib37) 2009; 39 Yin (10.1016/S2095-3119(15)61102-9_bib69) 2014; 33 Honsdorf (10.1016/S2095-3119(15)61102-9_bib26) 2014; 9 Zhu (10.1016/S2095-3119(15)61102-9_bib70) 2011; 14 Ehdaie (10.1016/S2095-3119(15)61102-9_bib18) 2012; 186 CIMMYT (International Maize and Wheat Improvement Center) (10.1016/S2095-3119(15)61102-9_bib12) Elshire (10.1016/S2095-3119(15)61102-9_bib19) 2011; 6 Fischer (10.1016/S2095-3119(15)61102-9_bib21) 1998; 38 Jha (10.1016/S2095-3119(15)61102-9_bib30) 2014; 133 Alexander (10.1016/S2095-3119(15)61102-9_bib3) 2012; 52 Fernandez (10.1016/S2095-3119(15)61102-9_bib20) 1992 Iyer-Pascuzzi (10.1016/S2095-3119(15)61102-9_bib29) 2010; 152 Shinozaki (10.1016/S2095-3119(15)61102-9_bib58) 2007; 58 Nio (10.1016/S2095-3119(15)61102-9_bib47) 2011; 49 Araus (10.1016/S2095-3119(15)61102-9_bib4) 2014; 19 Umezawa (10.1016/S2095-3119(15)61102-9_bib64) 2006; 17 Bernardo (10.1016/S2095-3119(15)61102-9_bib9) 2008; 48 Manschadi (10.1016/S2095-3119(15)61102-9_bib41) 2006; 33 Sivamani (10.1016/S2095-3119(15)61102-9_bib60) 2000; 155 Blum (10.1016/S2095-3119(15)61102-9_bib11) 2010 Ibrahim (10.1016/S2095-3119(15)61102-9_bib28) 2012; 2 |
References_xml | – volume: 38 start-page: 1467 year: 1998 ident: 10.1016/S2095-3119(15)61102-9_bib21 article-title: Wheat yield progress associated with higher stomatal conductance and photosynthetic rate, and cooler canopies publication-title: Crop Science doi: 10.2135/cropsci1998.0011183X003800060011x – volume: 32 start-page: 130 year: 2015 ident: 10.1016/S2095-3119(15)61102-9_bib35 article-title: Genomic tools to assist breeding for drought tolerance publication-title: Current Opinion in Biotechnology doi: 10.1016/j.copbio.2014.11.027 – volume: 52 start-page: 97 year: 2008 ident: 10.1016/S2095-3119(15)61102-9_bib39 article-title: Testing drought tolerance of wheat by complex stress diagnostic system installed in greenhouse publication-title: Acta Biologica Szegediensis – volume: 164 start-page: 1367 year: 2007 ident: 10.1016/S2095-3119(15)61102-9_bib66 article-title: Stress-induced synthesis of proline confers tolerance to water deficit in transgenic wheat publication-title: Journal of Plant Physiology doi: 10.1016/j.jplph.2007.05.001 – volume: 9 start-page: 1 year: 2014 ident: 10.1016/S2095-3119(15)61102-9_bib26 article-title: High-throughput phenotyping to detect drought tolerance QTL in wild barley introgression lines publication-title: PLOS ONE doi: 10.1371/journal.pone.0097047 – volume: 23 start-page: 243 year: 2012 ident: 10.1016/S2095-3119(15)61102-9_bib14 article-title: Drought tolerance through biotechnology: Improving translation from the laboratory to farmers' fields publication-title: Current Opinion in Biotechnology doi: 10.1016/j.copbio.2011.11.003 – volume: 2 start-page: 70 year: 2011 ident: 10.1016/S2095-3119(15)61102-9_bib24 article-title: Stem reserve mobilization and sink activity in wheat under drought conditions publication-title: American Journal of Plant Sciences doi: 10.4236/ajps.2011.21010 – volume: 39 start-page: 31 year: 2009 ident: 10.1016/S2095-3119(15)61102-9_bib37 article-title: Climate change and drought: A risk assessment of crop-yield impacts publication-title: Climate Research doi: 10.3354/cr00797 – volume: 9 start-page: 671 year: 2012 ident: 10.1016/S2095-3119(15)61102-9_bib56 article-title: NIH Image to Image J: 25 years of image analysis publication-title: Nature Methods doi: 10.1038/nmeth.2089 – volume: 49 start-page: 178 year: 2011 ident: 10.1016/S2095-3119(15)61102-9_bib25 article-title: Differential changes in antioxidants, proteases, and lipid peroxidation in flag leaves of wheat genotypes under different levels of water deficit conditions publication-title: Plant Physiology and Biochemistry doi: 10.1016/j.plaphy.2010.11.009 – volume: 186 start-page: 265 year: 2012 ident: 10.1016/S2095-3119(15)61102-9_bib33 article-title: Genomic characterization of drought tolerance-related traits in spring wheat publication-title: Euphytica doi: 10.1007/s10681-012-0675-3 – volume: 14 start-page: 310 year: 2011 ident: 10.1016/S2095-3119(15)61102-9_bib70 article-title: From lab to field, new approaches to phenotyping root system architecture publication-title: Current Opinion in Plant Biology doi: 10.1016/j.pbi.2011.03.020 – volume: 61 start-page: 3211 year: 2010 ident: 10.1016/S2095-3119(15)61102-9_bib22 article-title: Genetic and genomic tools to improve drought tolerance in wheat publication-title: Journal of Experimental Botany doi: 10.1093/jxb/erq152 – volume: 12 start-page: 468 year: 2014 ident: 10.1016/S2095-3119(15)61102-9_bib55 article-title: The ERF transcription factor TaERF3 promotes tolerance to salt and drought stresses in wheat publication-title: Plant Biotechnology Journal doi: 10.1111/pbi.12153 – volume: 152 start-page: 1148 year: 2010 ident: 10.1016/S2095-3119(15)61102-9_bib29 article-title: Imaging and analysis platform for automatic phenotyping and trait ranking of plant root systems publication-title: Breakthrough Technologies – volume: 58 start-page: 221 year: 2007 ident: 10.1016/S2095-3119(15)61102-9_bib58 article-title: Gene networks involved in drought stress response and tolerance publication-title: Journal of Experimental Botany doi: 10.1093/jxb/erl164 – volume: 95 start-page: 117 year: 2010 ident: 10.1016/S2095-3119(15)61102-9_bib48 article-title: Improving wheat production under drought conditions by using diallel crossing system. Drought Index publication-title: Options Méditerranéennes – volume: 48 start-page: 391 year: 2008 ident: 10.1016/S2095-3119(15)61102-9_bib67 article-title: Marker-assisted selection in plant breeding: From publications to practice publication-title: Crop Science doi: 10.2135/cropsci2007.04.0191 – start-page: 1 year: 2010 ident: 10.1016/S2095-3119(15)61102-9_bib11 – volume: 32 start-page: 758 year: 2009 ident: 10.1016/S2095-3119(15)61102-9_bib50 article-title: Genomic dissection of drought resistance in durum wheat×wild emmer wheat recombinant inbreed line population publication-title: Plant Cell Environment doi: 10.1111/j.1365-3040.2009.01956.x – volume: 42 start-page: 1441 year: 2002 ident: 10.1016/S2095-3119(15)61102-9_bib63 article-title: Progress in breeding wheat for yield and adaptation in global drought affected environments publication-title: Crop Science doi: 10.2135/cropsci2002.1441 – volume: 126 start-page: 1 year: 2013 ident: 10.1016/S2095-3119(15)61102-9_bib17 article-title: Accessing complex crop genomes with next-generation sequencing publication-title: Theoretical and Applied Genetics doi: 10.1007/s00122-012-1964-x – volume: 2 start-page: 619 year: 2012 ident: 10.1016/S2095-3119(15)61102-9_bib28 article-title: QTL analysis of drought tolerance for seedling root morphological traits in an advanced backcross population of spring wheat publication-title: International Journal of Agricultural Sciences – volume: 33 start-page: 135 year: 2011 ident: 10.1016/S2095-3119(15)61102-9_bib31 article-title: Drought tolerance screening of wheat varieties by inducing water stress conditions publication-title: Songklanakarin Journal of Science and Technology – volume: 115 start-page: 59 year: 2007 ident: 10.1016/S2095-3119(15)61102-9_bib59 article-title: A QTL on chromosome 6A in bread wheat (Triticum aestivum L.) is associated with longer coleoptiles, greater seedling vigour and final plant height publication-title: Theoretical and Applied Genetics doi: 10.1007/s00122-007-0540-2 – volume: 133 start-page: 679 year: 2014 ident: 10.1016/S2095-3119(15)61102-9_bib30 article-title: Heat stress in crop plants: Its nature, impacts and integrated breeding strategies to improve heat tolerance publication-title: Plant Breeding doi: 10.1111/pbr.12217 – volume: 131 start-page: 1748 year: 2003 ident: 10.1016/S2095-3119(15)61102-9_bib1 article-title: Tolerance of mannitol-accumulating transgenic wheat to water stress and salinity publication-title: Plant Physiology doi: 10.1104/pp.102.003616 – volume: 19 start-page: 52 year: 2014 ident: 10.1016/S2095-3119(15)61102-9_bib4 article-title: Field high-throughput phenotyping: The new crop breeding frontier publication-title: Trends in Plant Science doi: 10.1016/j.tplants.2013.09.008 – volume: 186 start-page: 127 year: 2012 ident: 10.1016/S2095-3119(15)61102-9_bib46 article-title: QTL analysis for thousand-grain weight under terminal drought stress in bread wheat (Triticum aestivum L.) publication-title: Euphytica doi: 10.1007/s10681-011-0559-y – volume: 17 start-page: 113 year: 2006 ident: 10.1016/S2095-3119(15)61102-9_bib64 article-title: Engineering drought tolerance in plants: Discovering and tailoring genes to unlock the future publication-title: Current Opinion in Biotechnology doi: 10.1016/j.copbio.2006.02.002 – volume: 99 start-page: 365 year: 2012 ident: 10.1016/S2095-3119(15)61102-9_bib8 article-title: Next-generation sequencing applications for wheat crop improvement publication-title: American Journal of Botany doi: 10.3732/ajb.1100309 – volume: 54 start-page: 92 year: 2014 ident: 10.1016/S2095-3119(15)61102-9_bib62 article-title: A critical review of soil moisture measurement publication-title: Measurement doi: 10.1016/j.measurement.2014.04.007 – volume: 29 start-page: 117 year: 2011 ident: 10.1016/S2095-3119(15)61102-9_bib6 article-title: Quality of winter wheat in relation to heat and drought shock after anthesis publication-title: Czech Journal of Food Sciences doi: 10.17221/227/2010-CJFS – volume: 48 start-page: 1649 year: 2008 ident: 10.1016/S2095-3119(15)61102-9_bib9 article-title: Molecular markers and selection for complex traits in plants: Learning from the last 20 years publication-title: Crop Science doi: 10.2135/cropsci2008.03.0131 – volume: 117 start-page: 1077 year: 2008 ident: 10.1016/S2095-3119(15)61102-9_bib42 article-title: Multi-environment QTL mixed models for drought stress adaptation in wheat publication-title: Theoretical and Appllied Genetics doi: 10.1007/s00122-008-0846-8 – volume: 9 start-page: 291 year: 2011 ident: 10.1016/S2095-3119(15)61102-9_bib13 article-title: Mapping QTLs for yield components and chlorophyll a fluorescence parameters in wheat under three levels of water availability publication-title: Plant Genetic Resources doi: 10.1017/S1479262111000207 – volume: 112 start-page: 119 year: 2009 ident: 10.1016/S2095-3119(15)61102-9_bib10 article-title: Effective use of water (EUW) and not water-use efficiency (WUE) is the target of crop yield improvement under drought stress publication-title: Field Crops Research doi: 10.1016/j.fcr.2009.03.009 – volume: 48 start-page: 463 year: 2006 ident: 10.1016/S2095-3119(15)61102-9_bib49 article-title: Characterizing the composition and evolution of homoeologous genomes in hexaploid wheat through BAC-end sequencing on chromosome 3B publication-title: The Plant Journal doi: 10.1111/j.1365-313X.2006.02891.x – volume: 47 start-page: S20 year: 2011 ident: 10.1016/S2095-3119(15)61102-9_bib16 article-title: NI Vavilov's theory of centres of diversity in the light of current understanding of wheat diversity, domestication and evolution publication-title: Czech Journal of Genetics and Plant Breeding doi: 10.17221/3249-CJGPB – volume: 177 start-page: 207 year: 2011 ident: 10.1016/S2095-3119(15)61102-9_bib23 article-title: Identification of microsatellite markers linked with yield components under drought stress at terminal growth stages in durum wheat publication-title: Euphytica doi: 10.1007/s10681-010-0242-8 – volume: 52 start-page: 1543 year: 2012 ident: 10.1016/S2095-3119(15)61102-9_bib40 article-title: Genetic yield gains of the CIMMYT international semi-arid wheat yield trials from 1994 to 2010 publication-title: Crop Science doi: 10.2135/cropsci2011.10.0574 – volume: 146 start-page: 61 year: 2005 ident: 10.1016/S2095-3119(15)61102-9_bib61 article-title: Promising eco-physiological traits for genetic improvement of cereal yields in Mediterranean environments publication-title: Annals of Applied Biology doi: 10.1111/j.1744-7348.2005.04048.x – volume: 171 start-page: 1289 year: 2014 ident: 10.1016/S2095-3119(15)61102-9_bib53 article-title: Physiology and transcriptomics of water-deficit stress responses in wheat cultivars TAM 111 and TAM 112 publication-title: Journal of Plant Physiology doi: 10.1016/j.jplph.2014.05.005 – volume: 33 start-page: 823 year: 2006 ident: 10.1016/S2095-3119(15)61102-9_bib41 article-title: The role of root architectural traits in adaptation of wheat to water-limited environments publication-title: Functional Plant Biology doi: 10.1071/FP06055 – volume: 49 start-page: 1126 year: 2011 ident: 10.1016/S2095-3119(15)61102-9_bib47 article-title: Pattern of solutes accumulated during leaf osmotic adjustment as related to duration of water deficit for wheat at the reproductive stage publication-title: Plant Physiology and Biochemistry doi: 10.1016/j.plaphy.2011.05.011 – ident: 10.1016/S2095-3119(15)61102-9_bib12 – start-page: 257 year: 1992 ident: 10.1016/S2095-3119(15)61102-9_bib20 article-title: Effective selection criteria for assessing plant stress tolerance – volume: 121 start-page: 1001 year: 2010 ident: 10.1016/S2095-3119(15)61102-9_bib51 article-title: Heat and drought adaptive QTL in a wheat population designed to minimize confounding agronomic effects publication-title: Theoretical and Applied Genetics doi: 10.1007/s00122-010-1351-4 – volume: 131 start-page: 369 year: 2012 ident: 10.1016/S2095-3119(15)61102-9_bib15 article-title: Comparison of responses to drought stress of 100 wheat accessions and landraces to identify opportunities for improving wheat drought resistance publication-title: Plant Breeding doi: 10.1111/j.1439-0523.2011.01941.x – volume: 44 start-page: 879 year: 2012 ident: 10.1016/S2095-3119(15)61102-9_bib32 article-title: Growth and yield response of wheat varieties to water stress at booting and anthesis stages of development publication-title: Pakistan Journal of Botany – volume: 28 start-page: 169 year: 2010 ident: 10.1016/S2095-3119(15)61102-9_bib5 article-title: Inducing drought tolerance in plants: Recent advances publication-title: Biotechnology Advances doi: 10.1016/j.biotechadv.2009.11.005 – volume: 37 start-page: 147 year: 2010 ident: 10.1016/S2095-3119(15)61102-9_bib38 article-title: Partitioning of assimilates to deeper roots is associated with cooler canopies and increased yield under drought in wheat publication-title: Functional Plant Biology doi: 10.1071/FP09121 – volume: 8 start-page: 6663 year: 2013 ident: 10.1016/S2095-3119(15)61102-9_bib57 article-title: Does low yield heterosis limit commercial hybrids in wheat? publication-title: African Journal of Agricultural Research – volume: 52 start-page: 253 year: 2012 ident: 10.1016/S2095-3119(15)61102-9_bib3 article-title: Mapping and quantitative trait loci analysis of drought tolerance in a spring wheat population using amplified fragment length polymorphism and diversity array technology markers publication-title: Crop Science doi: 10.2135/cropsci2011.05.0267 – volume: 125 start-page: 625 year: 2012 ident: 10.1016/S2095-3119(15)61102-9_bib43 article-title: Integrated genomics, physiology and breeding approaches for improving drought tolerance in crops publication-title: Theoretical and Applied Genetics doi: 10.1007/s00122-012-1904-9 – volume: 186 start-page: 219 year: 2012 ident: 10.1016/S2095-3119(15)61102-9_bib18 article-title: Root system plasticity to drought influences grain yield in bread wheat publication-title: Euphytica doi: 10.1007/s10681-011-0585-9 – ident: 10.1016/S2095-3119(15)61102-9_bib36 – volume: 17 start-page: 113 year: 2006 ident: 10.1016/S2095-3119(15)61102-9_bib65 article-title: Understanding regulatory networks and engineering for enhanced drought tolerance in plants publication-title: Current Opinion in Biotechnology – volume: 16 start-page: 862 year: 2014 ident: 10.1016/S2095-3119(15)61102-9_bib2 article-title: Identification of QTLs for drought tolerance traits on wheat chromosome 2A using association mapping publication-title: International Journal of Agriculture and Biology – volume: 5 start-page: 103 year: 2012 ident: 10.1016/S2095-3119(15)61102-9_bib52 article-title: Genomic selection in wheat breeding using genotyping-by-sequencing publication-title: Plant Genome doi: 10.3835/plantgenome2012.06.0006 – volume: 155 start-page: 1 year: 2000 ident: 10.1016/S2095-3119(15)61102-9_bib60 article-title: Improved biomass productivity and water use efficiency under water deficit conditions in transgenic wheat constitutively expressing the barley HVA1 gene publication-title: Plant Science doi: 10.1016/S0168-9452(99)00247-2 – volume: 3 start-page: 469 year: 2010 ident: 10.1016/S2095-3119(15)61102-9_bib68 article-title: Narrowing down the targets: Towards successful genetic engineering of drought-tolerant crops publication-title: Molecular Plant doi: 10.1093/mp/ssq016 – volume: 125 start-page: 1473 year: 2012 ident: 10.1016/S2095-3119(15)61102-9_bib7 article-title: Detection of two major grain yield QTLs in bread wheat (Triticum aestivum L.) under heat, drought and high yield potential environments publication-title: Theoretical and Applied Genetics doi: 10.1007/s00122-012-1927-2 – volume: 174 start-page: 437 year: 2010 ident: 10.1016/S2095-3119(15)61102-9_bib34 article-title: Identification of QTLs for stay green trait in wheat (Triticum aestivum L.) in the ‘Chirya 3′×’Sonalika'population publication-title: Euphytica doi: 10.1007/s10681-010-0155-6 – volume: 146 start-page: 239 year: 2005 ident: 10.1016/S2095-3119(15)61102-9_bib54 article-title: Prospects for utilising plant-adaptive mechanisms to improve wheat and other crops in drought- and salinity-prone environments publication-title: Annals of Applied Biology doi: 10.1111/j.1744-7348.2005.040058.x – volume: 6 start-page: 1 year: 2011 ident: 10.1016/S2095-3119(15)61102-9_bib19 article-title: A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species publication-title: PLoS ONE doi: 10.1371/journal.pone.0019379 – volume: 8 start-page: 5197 year: 2013 ident: 10.1016/S2095-3119(15)61102-9_bib44 article-title: Additive main effects and multiplicative interaction (AMMI) and GGE-biplot analysis of genotype×environment interactions for grain yield in bread wheat (Triticum aestivum L.) publication-title: Journal of Agricultural Research – volume: 33 start-page: 670 year: 2010 ident: 10.1016/S2095-3119(15)61102-9_bib45 article-title: Drought and salt tolerances in wild relatives for wheat and barley improvement publication-title: Plant, Cell & Environment doi: 10.1111/j.1365-3040.2009.02107.x – volume: 65 start-page: 715 year: 2014 ident: 10.1016/S2095-3119(15)61102-9_bib27 article-title: Genetic engineering and breeding of drought-resistant crops publication-title: Annual Review of Plant Biology doi: 10.1146/annurev-arplant-050213-040000 – volume: 33 start-page: 205 year: 2014 ident: 10.1016/S2095-3119(15)61102-9_bib69 article-title: Functional genomics of drought tolerance in bioenergy crops publication-title: Critical Reviews in Plant Sciences doi: 10.1080/07352689.2014.870417 |
SSID | ssj0001550068 |
Score | 2.4329193 |
SecondaryResourceType | review_article |
Snippet | Recurrent drought associated with climate change is among the principal constraints to global productivity of wheat(Triticum aestivum(L.) and T. turgidum(L.)).... Recurrent drought associated with climate change is among the principal constraints to global productivity of wheat (Triticum aestivum (L.) and T. turgidum... Recurrent drought associated with climate change is among the principal constraints to global productivity of wheat (Triticum aestivum (L.) andT. turgidum... |
SourceID | doaj wanfang proquest crossref fao chongqing |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 935 |
SubjectTerms | arid lands climate change drought drought tolerance gene transfer genes genetic variation genomic selection genomics genotyping marker-assisted selection phenotype phenotyping Triticum aestivum wheat 反复干旱 圆锥小麦 基因组学 基因组技术 多基因控制 小麦生产 抗旱育种 知识系统 |
Title | Breeding wheat for drought tolerance: Progress and technologies |
URI | http://lib.cqvip.com/qk/86610A/201605/668964268.html https://www.proquest.com/docview/2000167959 https://d.wanfangdata.com.cn/periodical/zgnykx-e201605001 https://doaj.org/article/21ee6fa4283e41c6aac6515ccf30ae60 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagEhIcUHlULIXKIA5wSGvHsRNzQW1FVSFRIUGl3qxxYi8SldPupqrgwG_vTJIN21MvXC1nlMyM5xHb38fYO52XJRQiZKXUVVbIssl8ZSEzXqlGgYlVj7b_9cQcnxZfzvTZGtUXnQkb4IEHxe3lMgQTgXDBQiFrA1ATe3ddRyUgmL5bF1asNVPD_WBNlx-IWQ5rCAw00v67vrP3fRp8L_UHgxkwzyyBK_xs0_wSU8atJNVj-WPqidDeKkMfXEOKkOZr-ehokz0eC0m-P3zAE3YvpKfs0f58MYJphGfs08FiyE38mkIux_qUNz0tT8e79jwQp0b4yL_RES0MeBxSw7vVr3bsoJ-z06PPPw6Ps5EwIauLKu-yQOiCZVMQzZSlPRVfqBBijALyUvhSWxl0I6KCKpaNjWA96hUbDO1BV41RW2wjtSm8YFxpAVid1Wg8qrEAVBC1Ut77ulBVaGZse9KWuxiAMZwxlcV-xlQzVqz05-oRa5woL87ddKiMTODIBE5q15vA2RnbnR5bybzjgQMyzjSZsLL7AfQgN3qQu8uDZmwLTesADbR0hydYERlFG_Io_c3K2g4XHe2kQArt1ZK4O-n6htU45-3oBm5c_Ev3Z55-_8KwQ5IE-qF8-T9ec5s9JIHDYctXbKNbXIXXWBB1fofd3_0rd_oVcAPDCgBl |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Breeding+wheat+for+drought+tolerance%EF%BC%9A+Progress+and+technologies&rft.jtitle=%E5%86%9C%E4%B8%9A%E7%A7%91%E5%AD%A6%E5%AD%A6%E6%8A%A5%EF%BC%9A%E8%8B%B1%E6%96%87%E7%89%88&rft.au=Learnmore+Mwadzingeni+Hussein+Shimelis+Ernest+Dube+Mark+D+Laing+Toi+J+Tsilo&rft.date=2016-05-01&rft.issn=2095-3119&rft.eissn=2352-3425&rft.issue=5&rft.spage=935&rft.epage=943&rft_id=info:doi/10.1016%2FS2095-3119%2815%2961102-9&rft.externalDocID=668964268 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F86610A%2F86610A.jpg http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzgnykx-e%2Fzgnykx-e.jpg |