Breeding wheat for drought tolerance: Progress and technologies

Recurrent drought associated with climate change is among the principal constraints to global productivity of wheat(Triticum aestivum(L.) and T. turgidum(L.)). Numerous efforts to mitigate drought through breeding resilient varieties are underway across the world. Progress is, however, hampered beca...

Full description

Saved in:
Bibliographic Details
Published inJournal of Integrative Agriculture Vol. 15; no. 5; pp. 935 - 943
Main Authors Mwadzingeni, Learnmore, Shimelis, Hussein, Dube, Ernest, Laing, Mark D, Tsilo, Toi J
Format Journal Article
LanguageEnglish
Published Colege of Agriculture, Engineering and Science, University of KwaZulu-Natal/African Centre for Crop Improvement, Scottsvile 3209, South Africa%Agricultural Research Council-Smal Grain Institute ARC-SGI, Bethlehem 9700, South Africa 01.05.2016
Elsevier
Subjects
Online AccessGet full text
ISSN2095-3119
2352-3425
DOI10.1016/S2095-3119(15)61102-9

Cover

Abstract Recurrent drought associated with climate change is among the principal constraints to global productivity of wheat(Triticum aestivum(L.) and T. turgidum(L.)). Numerous efforts to mitigate drought through breeding resilient varieties are underway across the world. Progress is, however, hampered because drought tolerance is a complex trait that is controlled by many genes and its full expression is affected by the environment. Furthermore, wheat has a structurally intricate and large genome. Consequently, breeding for drought tolerance requires the integration of various knowledge systems and methodologies from multiple disciplines in plant sciences. This review summarizes the progress made in dry land wheat improvement, advances in knowledge, complementary methodologies, and perspectives towards breeding for drought tolerance in the crop to create a coherent overview. Phenotypic, biochemical and genomics-assisted selection methodologies are discussed as leading research components used to exploit genetic variation. Advances in phenomic and genomic technologies are highlighted as options to circumvent existing bottlenecks in phenotypic and genomic selection, and gene transfer. The prospects of further integration of these technologies with other omics technologies are also provided.
AbstractList Recurrent drought associated with climate change is among the principal constraints to global productivity of wheat(Triticum aestivum(L.) and T. turgidum(L.)). Numerous efforts to mitigate drought through breeding resilient varieties are underway across the world. Progress is, however, hampered because drought tolerance is a complex trait that is controlled by many genes and its full expression is affected by the environment. Furthermore, wheat has a structurally intricate and large genome. Consequently, breeding for drought tolerance requires the integration of various knowledge systems and methodologies from multiple disciplines in plant sciences. This review summarizes the progress made in dry land wheat improvement, advances in knowledge, complementary methodologies, and perspectives towards breeding for drought tolerance in the crop to create a coherent overview. Phenotypic, biochemical and genomics-assisted selection methodologies are discussed as leading research components used to exploit genetic variation. Advances in phenomic and genomic technologies are highlighted as options to circumvent existing bottlenecks in phenotypic and genomic selection, and gene transfer. The prospects of further integration of these technologies with other omics technologies are also provided.
Recurrent drought associated with climate change is among the principal constraints to global productivity of wheat (Triticum aestivum (L.) and T. turgidum (L.)). Numerous efforts to mitigate drought through breeding resilient varieties are underway across the world. Progress is, however, hampered because drought tolerance is a complex trait that is controlled by many genes and its full expression is affected by the environment. Furthermore, wheat has a structurally intricate and large genome. Consequently, breeding for drought tolerance requires the integration of various knowledge systems and methodologies from multiple disciplines in plant sciences. This review summarizes the progress made in dry land wheat improvement, advances in knowledge, complementary methodologies, and perspectives towards breeding for drought tolerance in the crop to create a coherent overview. Phenotypic, biochemical and genomics-assisted selection methodologies are discussed as leading research components used to exploit genetic variation. Advances in phenomic and genomic technologies are highlighted as options to circumvent existing bottlenecks in phenotypic and genomic selection, and gene transfer. The prospects of further integration of these technologies with other omics technologies are also provided.
Recurrent drought associated with climate change is among the principal constraints to global productivity of wheat (Triticum aestivum (L.) andT. turgidum (L.)). Numerous efforts to mitigate drought through breeding resilient varieties are underway across the world. Progress is, however, hampered because drought tolerance is a complex trait that is controled by many genes and its ful expression is affected by the environment. Furthermore, wheat has a structuraly intricate and large genome. Consequently, breeding for drought tolerance requires the integration of various knowledge systems and methodologies from multiple disciplines in plant sciences. This review summarizes the progress made in dry land wheat improvement, advances in knowledge, complementary methodologies, and perspectives towards breeding for drought tolerance in the crop to create a coherent overview. Phenotypic, biochemical and genomics-assisted selection methodologies are discussed as leading research components used to exploit genetic variation. Advances in phenomic and genomic technologies are highlighted as options to circumvent existing bottlenecks in phenotypic and genomic selection, and gene transfer. The prospects of further integration of these technologies with other omics technologies are also provided.
Author Learnmore Mwadzingeni Hussein Shimelis Ernest Dube Mark D Laing Toi J Tsilo
AuthorAffiliation College of Agriculture, Engineering and Science, University of KwaZulu-Natal/African Centre for Crop Improvement, Scottsville 3209, South Africa Agricultural Research Council-Small Grain Institute (ARC-SGI), Bethlehem 9700, South Africa
AuthorAffiliation_xml – name: Colege of Agriculture, Engineering and Science, University of KwaZulu-Natal/African Centre for Crop Improvement, Scottsvile 3209, South Africa%Agricultural Research Council-Smal Grain Institute ARC-SGI, Bethlehem 9700, South Africa
Author_xml – sequence: 1
  givenname: Learnmore
  surname: Mwadzingeni
  fullname: Mwadzingeni, Learnmore
– sequence: 2
  givenname: Hussein
  surname: Shimelis
  fullname: Shimelis, Hussein
– sequence: 3
  givenname: Ernest
  surname: Dube
  fullname: Dube, Ernest
– sequence: 4
  givenname: Mark D
  surname: Laing
  fullname: Laing, Mark D
– sequence: 5
  givenname: Toi J
  surname: Tsilo
  fullname: Tsilo, Toi J
BookMark eNqFkc1u1DAUhSNUJErpI1SKWLWLgH9iJxarMuKnUgVIwNq641xnPKR2a3tUyqPwLLwTr4AzaVmwYWXL_s7Rvec8rQ588FhVJ5S8oITKl58ZUaLhlKpTKs4kpYQ16lF1yLhgDW-ZOCj3B-RJdZzSlhBChSBE9ofV-euIODg_1rcbhFzbEOshht24yXUOE0bwBn__-ll_imGMmFINfqgzmo0PUxgdpmfVYwtTwuP786j6-vbNl9X75vLju4vV-WVj2p7lBlnLu25oaS-VIlKKdcsRrbUEWEfWnVAUxUAsh952g7Kg1i3re1ZAEP0g-VF1sfgOAbb6OroriHc6gNP7hxBHDTE7M6FmFFFaKHqOLTUSwEhBhTGWE0BJitfZ4nUL3oIf9Tbsoi_T6x-jv_v2XSMr2ZKSES3s6cJex3Czw5T1lUsGpwk8hl3SbI5Tdkqogr5aUBNDShGtNi5DdsHnCG7SlOi5M73vTM-FaCr0vjM9q8U_6ocl_6c7WXQWgoYxuqRXH-b5OaGsm_-f3_tugh9vStd_jaXslWyZ7PkfUQ-v6Q
CitedBy_id crossref_primary_10_1016_j_csbj_2024_01_020
crossref_primary_10_1016_j_envexpbot_2022_104902
crossref_primary_10_1371_journal_pone_0221849
crossref_primary_10_32604_phyton_2023_046811
crossref_primary_10_1080_07352689_2020_1778924
crossref_primary_10_3390_agronomy14040817
crossref_primary_10_7124_FEEO_v29_1403
crossref_primary_10_7124_FEEO_v31_1483
crossref_primary_10_7717_peerj_14421
crossref_primary_10_1007_s12298_017_0492_1
crossref_primary_10_1186_s12863_023_01140_7
crossref_primary_10_1016_S2095_3119_19_62825_X
crossref_primary_10_1007_s12892_020_00041_w
crossref_primary_10_1111_pbr_13088
crossref_primary_10_7717_peerj_11428
crossref_primary_10_1007_s10681_018_2245_9
crossref_primary_10_61186_jcb_15_46_166
crossref_primary_10_1016_j_plaphy_2017_05_007
crossref_primary_10_1080_09064710_2021_1984564
crossref_primary_10_1111_pbr_12609
crossref_primary_10_3389_fpls_2024_1443681
crossref_primary_10_1007_s42976_022_00335_5
crossref_primary_10_31073_mvis201909_12
crossref_primary_10_3390_agronomy14040826
crossref_primary_10_30970_vlubs_2020_82_05
crossref_primary_10_1007_s42976_020_00017_0
crossref_primary_10_3390_plants12142664
crossref_primary_10_1016_j_plaphy_2019_12_036
crossref_primary_10_1038_s41598_019_49915_2
crossref_primary_10_1038_s41598_021_83372_0
crossref_primary_10_1016_j_scienta_2019_03_043
crossref_primary_10_3390_plants11070986
crossref_primary_10_1016_j_eja_2023_126910
crossref_primary_10_1016_j_plaphy_2020_08_049
crossref_primary_10_1038_s41598_022_26869_6
crossref_primary_10_1093_jxb_ery226
crossref_primary_10_3389_fpls_2022_857829
crossref_primary_10_3390_ijms222413658
crossref_primary_10_7124_FEEO_v35_1653
crossref_primary_10_1007_s12033_021_00350_7
crossref_primary_10_1016_j_heliyon_2023_e21629
crossref_primary_10_3390_life14020183
crossref_primary_10_1038_s41598_021_91351_8
crossref_primary_10_3390_plants10112379
crossref_primary_10_3390_plants14010035
crossref_primary_10_1016_j_csbj_2020_12_018
crossref_primary_10_1111_ppa_13166
crossref_primary_10_1016_j_plaphy_2022_02_025
crossref_primary_10_3390_plants11101331
crossref_primary_10_1007_s10681_022_03072_2
crossref_primary_10_7124_FEEO_v33_1560
crossref_primary_10_1155_2024_2126734
crossref_primary_10_1002_csc2_20319
crossref_primary_10_1186_s12870_023_04614_z
crossref_primary_10_2298_GENSR2201187E
crossref_primary_10_1556_0806_47_2019_005
crossref_primary_10_1021_acs_jafc_4c10789
crossref_primary_10_1016_j_envexpbot_2021_104393
crossref_primary_10_3390_agronomy13122892
crossref_primary_10_1007_s12298_025_01557_7
crossref_primary_10_1007_s42729_021_00529_6
crossref_primary_10_1016_j_agwat_2020_106591
crossref_primary_10_1080_23311932_2016_1191323
crossref_primary_10_1590_1413_7054201943001719
crossref_primary_10_15407_agrisp6_02_018
crossref_primary_10_1080_01904167_2023_2226172
crossref_primary_10_1186_s12870_020_02581_3
crossref_primary_10_2134_agronj2018_06_0381
crossref_primary_10_3390_genes12040494
crossref_primary_10_1016_j_eja_2023_126972
crossref_primary_10_1007_s40502_019_00458_8
crossref_primary_10_1556_0806_47_2019_05
crossref_primary_10_1080_15427528_2017_1345816
crossref_primary_10_1007_s42976_020_00043_y
crossref_primary_10_31734_agronomy2020_01_141
crossref_primary_10_3390_plants11172190
crossref_primary_10_1017_S1479262121000435
crossref_primary_10_1016_j_fcr_2023_109201
crossref_primary_10_1071_CP17387
crossref_primary_10_1186_s12870_024_05620_5
crossref_primary_10_3390_ijms22041723
crossref_primary_10_1371_journal_pone_0171692
crossref_primary_10_1080_07352689_2018_1514718
crossref_primary_10_3390_agronomy11040695
crossref_primary_10_62810_jnsr_v2iSpecial_Issue_130
crossref_primary_10_3390_ijms20133350
crossref_primary_10_1016_j_crmicr_2024_100285
crossref_primary_10_1016_j_jprot_2017_03_024
crossref_primary_10_3389_fpls_2016_01276
crossref_primary_10_3389_fpls_2024_1319938
crossref_primary_10_3390_su14169818
crossref_primary_10_1016_j_envexpbot_2024_106047
crossref_primary_10_1016_j_plaphy_2024_109415
crossref_primary_10_1007_s12298_020_00918_8
crossref_primary_10_1186_s41065_019_0093_9
crossref_primary_10_1016_j_eja_2020_126196
crossref_primary_10_3390_agronomy13122968
crossref_primary_10_1017_S1479262120000398
crossref_primary_10_3389_fpls_2022_983600
crossref_primary_10_1016_j_jplph_2022_153895
crossref_primary_10_3389_fpls_2021_765645
crossref_primary_10_3390_agronomy8040044
crossref_primary_10_1007_s11033_019_04691_0
crossref_primary_10_1080_02571862_2024_2389408
crossref_primary_10_1111_pbr_12812
crossref_primary_10_1016_j_rhisph_2024_100850
crossref_primary_10_3389_fpls_2018_01994
crossref_primary_10_1007_s11033_024_09345_4
crossref_primary_10_1007_s11248_019_00111_y
crossref_primary_10_3389_fchem_2017_00106
crossref_primary_10_1088_1755_1315_1262_5_052055
crossref_primary_10_38211_joarps_2022_3_1_24
crossref_primary_10_1080_23311932_2023_2296094
crossref_primary_10_3390_plants13233381
crossref_primary_10_3389_fpls_2022_904392
crossref_primary_10_1093_jxb_eraa487
crossref_primary_10_1016_j_scitotenv_2020_139082
crossref_primary_10_15446_rfnam_v75n3_100638
crossref_primary_10_1038_s41598_023_38961_6
crossref_primary_10_1002_fsat_3104_5_x
crossref_primary_10_3390_plants9070829
crossref_primary_10_7124_FEEO_v26_1274
crossref_primary_10_1007_s41207_023_00446_3
crossref_primary_10_3390_agriculture8050067
crossref_primary_10_1186_s43141_021_00171_w
crossref_primary_10_3389_fpls_2020_01149
Cites_doi 10.2135/cropsci1998.0011183X003800060011x
10.1016/j.copbio.2014.11.027
10.1016/j.jplph.2007.05.001
10.1371/journal.pone.0097047
10.1016/j.copbio.2011.11.003
10.4236/ajps.2011.21010
10.3354/cr00797
10.1038/nmeth.2089
10.1016/j.plaphy.2010.11.009
10.1007/s10681-012-0675-3
10.1016/j.pbi.2011.03.020
10.1093/jxb/erq152
10.1111/pbi.12153
10.1093/jxb/erl164
10.2135/cropsci2007.04.0191
10.1111/j.1365-3040.2009.01956.x
10.2135/cropsci2002.1441
10.1007/s00122-012-1964-x
10.1007/s00122-007-0540-2
10.1111/pbr.12217
10.1104/pp.102.003616
10.1016/j.tplants.2013.09.008
10.1007/s10681-011-0559-y
10.1016/j.copbio.2006.02.002
10.3732/ajb.1100309
10.1016/j.measurement.2014.04.007
10.17221/227/2010-CJFS
10.2135/cropsci2008.03.0131
10.1007/s00122-008-0846-8
10.1017/S1479262111000207
10.1016/j.fcr.2009.03.009
10.1111/j.1365-313X.2006.02891.x
10.17221/3249-CJGPB
10.1007/s10681-010-0242-8
10.2135/cropsci2011.10.0574
10.1111/j.1744-7348.2005.04048.x
10.1016/j.jplph.2014.05.005
10.1071/FP06055
10.1016/j.plaphy.2011.05.011
10.1007/s00122-010-1351-4
10.1111/j.1439-0523.2011.01941.x
10.1016/j.biotechadv.2009.11.005
10.1071/FP09121
10.2135/cropsci2011.05.0267
10.1007/s00122-012-1904-9
10.1007/s10681-011-0585-9
10.3835/plantgenome2012.06.0006
10.1016/S0168-9452(99)00247-2
10.1093/mp/ssq016
10.1007/s00122-012-1927-2
10.1007/s10681-010-0155-6
10.1111/j.1744-7348.2005.040058.x
10.1371/journal.pone.0019379
10.1111/j.1365-3040.2009.02107.x
10.1146/annurev-arplant-050213-040000
10.1080/07352689.2014.870417
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
CorporateAuthor Learnmore Mwadzingeni
CorporateAuthor_xml – name: Learnmore Mwadzingeni
DBID 2RA
92L
CQIGP
W95
~WA
FBQ
AAYXX
CITATION
7S9
L.6
2B.
4A8
92I
93N
PSX
TCJ
DOA
DOI 10.1016/S2095-3119(15)61102-9
DatabaseName 维普_期刊
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-农业科学
中文科技期刊数据库- 镜像站点
AGRIS
CrossRef
AGRICOLA
AGRICOLA - Academic
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA



Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ : Directory of Open Access Journals [open access]
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
DocumentTitleAlternate Breeding wheat for drought tolerance: Progress and technologies
EISSN 2352-3425
EndPage 943
ExternalDocumentID oai_doaj_org_article_21ee6fa4283e41c6aac6515ccf30ae60
zgnykx_e201605001
10_1016_S2095_3119_15_61102_9
CN2016301279
668964268
GroupedDBID --M
-04
-0D
-SD
-S~
.~1
0R~
1B1
1~.
1~5
2B.
2B~
2RA
4.4
457
4G.
5VR
7-5
8P~
92G
92I
92L
92M
93N
93Q
9D9
9DD
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AATLK
AAXUO
ABGRD
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ADEZE
ADMUD
ADQTV
AEBSH
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFUIB
AFXIZ
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CAJED
CAJUS
CBWCG
CCEZO
CHDYS
CQIGP
EBS
EFJIC
EFLBG
EJD
FA0
FDB
FIRID
FNPLU
FYGXN
GBLVA
GROUPED_DOAJ
HZ~
JUIAU
KOM
M41
MO0
NCXOZ
O-L
O9-
OAUVE
OK1
P-8
P-9
PC.
Q--
Q-3
Q38
R-D
RIG
ROL
RT4
SDF
SDG
SES
SSA
SSZ
T5K
T8T
TCJ
TGD
U1F
U1G
U5D
U5N
W95
~G-
~WA
ABPIF
FBQ
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7S9
ACLOT
EFKBS
L.6
~HD
4A8
PSX
ID FETCH-LOGICAL-c482t-e24377d4186990665b43eefff0a270b7591e5d0f3a8f7d9fa9b4288265ba58d63
IEDL.DBID DOA
ISSN 2095-3119
IngestDate Mon Sep 08 19:52:10 EDT 2025
Thu May 29 03:54:11 EDT 2025
Sun Sep 28 11:54:51 EDT 2025
Thu Apr 24 23:12:00 EDT 2025
Tue Jul 01 01:08:39 EDT 2025
Tue Nov 07 23:20:55 EST 2023
Wed Feb 14 10:18:59 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords genomic selection
drought tolerance
wheat
phenotyping
genotyping
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c482t-e24377d4186990665b43eefff0a270b7591e5d0f3a8f7d9fa9b4288265ba58d63
Notes 10-1039/S
Recurrent drought associated with climate change is among the principal constraints to global productivity of wheat(Triticum aestivum(L.) and T. turgidum(L.)). Numerous efforts to mitigate drought through breeding resilient varieties are underway across the world. Progress is, however, hampered because drought tolerance is a complex trait that is controlled by many genes and its full expression is affected by the environment. Furthermore, wheat has a structurally intricate and large genome. Consequently, breeding for drought tolerance requires the integration of various knowledge systems and methodologies from multiple disciplines in plant sciences. This review summarizes the progress made in dry land wheat improvement, advances in knowledge, complementary methodologies, and perspectives towards breeding for drought tolerance in the crop to create a coherent overview. Phenotypic, biochemical and genomics-assisted selection methodologies are discussed as leading research components used to exploit genetic variation. Advances in phenomic and genomic technologies are highlighted as options to circumvent existing bottlenecks in phenotypic and genomic selection, and gene transfer. The prospects of further integration of these technologies with other omics technologies are also provided.
drought tolerance, genomic selection, genotyping, phenotyping, wheat
http://www.sciencedirect.com/science/article/pii/S2095311915611029
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://doaj.org/article/21ee6fa4283e41c6aac6515ccf30ae60
PQID 2000167959
PQPubID 24069
PageCount 9
ParticipantIDs doaj_primary_oai_doaj_org_article_21ee6fa4283e41c6aac6515ccf30ae60
wanfang_journals_zgnykx_e201605001
proquest_miscellaneous_2000167959
crossref_citationtrail_10_1016_S2095_3119_15_61102_9
crossref_primary_10_1016_S2095_3119_15_61102_9
fao_agris_CN2016301279
chongqing_primary_668964268
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-05-01
PublicationDateYYYYMMDD 2016-05-01
PublicationDate_xml – month: 05
  year: 2016
  text: 2016-05-01
  day: 01
PublicationDecade 2010
PublicationTitle Journal of Integrative Agriculture
PublicationTitleAlternate Agricultural Sciences in China
PublicationYear 2016
Publisher Colege of Agriculture, Engineering and Science, University of KwaZulu-Natal/African Centre for Crop Improvement, Scottsvile 3209, South Africa%Agricultural Research Council-Smal Grain Institute ARC-SGI, Bethlehem 9700, South Africa
Elsevier
Publisher_xml – name: Colege of Agriculture, Engineering and Science, University of KwaZulu-Natal/African Centre for Crop Improvement, Scottsvile 3209, South Africa%Agricultural Research Council-Smal Grain Institute ARC-SGI, Bethlehem 9700, South Africa
– name: Elsevier
References Sharma (10.1016/S2095-3119(15)61102-9_bib57) 2013; 8
Valliyodan (10.1016/S2095-3119(15)61102-9_bib65) 2006; 17
Berkman (10.1016/S2095-3119(15)61102-9_bib8) 2012; 99
Kumar (10.1016/S2095-3119(15)61102-9_bib34) 2010; 174
Abebe (10.1016/S2095-3119(15)61102-9_bib1) 2003; 131
Lopes (10.1016/S2095-3119(15)61102-9_bib38) 2010; 37
Su (10.1016/S2095-3119(15)61102-9_bib62) 2014; 54
Vendruscolo (10.1016/S2095-3119(15)61102-9_bib66) 2007; 164
Mir (10.1016/S2095-3119(15)61102-9_bib43) 2012; 125
Pinto (10.1016/S2095-3119(15)61102-9_bib51) 2010; 121
Balla (10.1016/S2095-3119(15)61102-9_bib6) 2011; 29
Xu (10.1016/S2095-3119(15)61102-9_bib67) 2008; 48
Gupta (10.1016/S2095-3119(15)61102-9_bib24) 2011; 2
Ashraf (10.1016/S2095-3119(15)61102-9_bib5) 2010; 28
Hameed (10.1016/S2095-3119(15)61102-9_bib25) 2011; 49
Trethowan (10.1016/S2095-3119(15)61102-9_bib63) 2002; 42
Omar (10.1016/S2095-3119(15)61102-9_bib48) 2010; 95
Paux (10.1016/S2095-3119(15)61102-9_bib49) 2006; 48
Reynolds (10.1016/S2095-3119(15)61102-9_bib54) 2005; 146
Dvorak (10.1016/S2095-3119(15)61102-9_bib16) 2011; 47
Golabadi (10.1016/S2095-3119(15)61102-9_bib23) 2011; 177
Poland (10.1016/S2095-3119(15)61102-9_bib52) 2012; 5
Hu (10.1016/S2095-3119(15)61102-9_bib27) 2014; 65
Slafer (10.1016/S2095-3119(15)61102-9_bib61) 2005; 146
Ahmad (10.1016/S2095-3119(15)61102-9_bib2) 2014; 16
Deikman (10.1016/S2095-3119(15)61102-9_bib14) 2012; 23
Langridge (10.1016/S2095-3119(15)61102-9_bib35) 2015; 32
Edwards (10.1016/S2095-3119(15)61102-9_bib17) 2013; 126
Mohamed (10.1016/S2095-3119(15)61102-9_bib44) 2013; 8
Nezhad (10.1016/S2095-3119(15)61102-9_bib46) 2012; 186
Czyczyło-Mysza (10.1016/S2095-3119(15)61102-9_bib13) 2011; 9
Rong (10.1016/S2095-3119(15)61102-9_bib55) 2014; 12
Schneider (10.1016/S2095-3119(15)61102-9_bib56) 2012; 9
10.1016/S2095-3119(15)61102-9_bib36
Blum (10.1016/S2095-3119(15)61102-9_bib10) 2009; 112
Majer (10.1016/S2095-3119(15)61102-9_bib39) 2008; 52
Manes (10.1016/S2095-3119(15)61102-9_bib40) 2012; 52
Spielmeyer (10.1016/S2095-3119(15)61102-9_bib59) 2007; 115
Dodig (10.1016/S2095-3119(15)61102-9_bib15) 2012; 131
Nevo (10.1016/S2095-3119(15)61102-9_bib45) 2010; 33
Peleg (10.1016/S2095-3119(15)61102-9_bib50) 2009; 32
Yang (10.1016/S2095-3119(15)61102-9_bib68) 2010; 3
Reddy (10.1016/S2095-3119(15)61102-9_bib53) 2014; 171
Khakwani (10.1016/S2095-3119(15)61102-9_bib31) 2011; 33
Fleury (10.1016/S2095-3119(15)61102-9_bib22) 2010; 61
Mathews (10.1016/S2095-3119(15)61102-9_bib42) 2008; 117
Bennett (10.1016/S2095-3119(15)61102-9_bib7) 2012; 125
Kumar (10.1016/S2095-3119(15)61102-9_bib33) 2012; 186
Khakwani (10.1016/S2095-3119(15)61102-9_bib32) 2012; 44
Li (10.1016/S2095-3119(15)61102-9_bib37) 2009; 39
Yin (10.1016/S2095-3119(15)61102-9_bib69) 2014; 33
Honsdorf (10.1016/S2095-3119(15)61102-9_bib26) 2014; 9
Zhu (10.1016/S2095-3119(15)61102-9_bib70) 2011; 14
Ehdaie (10.1016/S2095-3119(15)61102-9_bib18) 2012; 186
CIMMYT (International Maize and Wheat Improvement Center) (10.1016/S2095-3119(15)61102-9_bib12)
Elshire (10.1016/S2095-3119(15)61102-9_bib19) 2011; 6
Fischer (10.1016/S2095-3119(15)61102-9_bib21) 1998; 38
Jha (10.1016/S2095-3119(15)61102-9_bib30) 2014; 133
Alexander (10.1016/S2095-3119(15)61102-9_bib3) 2012; 52
Fernandez (10.1016/S2095-3119(15)61102-9_bib20) 1992
Iyer-Pascuzzi (10.1016/S2095-3119(15)61102-9_bib29) 2010; 152
Shinozaki (10.1016/S2095-3119(15)61102-9_bib58) 2007; 58
Nio (10.1016/S2095-3119(15)61102-9_bib47) 2011; 49
Araus (10.1016/S2095-3119(15)61102-9_bib4) 2014; 19
Umezawa (10.1016/S2095-3119(15)61102-9_bib64) 2006; 17
Bernardo (10.1016/S2095-3119(15)61102-9_bib9) 2008; 48
Manschadi (10.1016/S2095-3119(15)61102-9_bib41) 2006; 33
Sivamani (10.1016/S2095-3119(15)61102-9_bib60) 2000; 155
Blum (10.1016/S2095-3119(15)61102-9_bib11) 2010
Ibrahim (10.1016/S2095-3119(15)61102-9_bib28) 2012; 2
References_xml – volume: 38
  start-page: 1467
  year: 1998
  ident: 10.1016/S2095-3119(15)61102-9_bib21
  article-title: Wheat yield progress associated with higher stomatal conductance and photosynthetic rate, and cooler canopies
  publication-title: Crop Science
  doi: 10.2135/cropsci1998.0011183X003800060011x
– volume: 32
  start-page: 130
  year: 2015
  ident: 10.1016/S2095-3119(15)61102-9_bib35
  article-title: Genomic tools to assist breeding for drought tolerance
  publication-title: Current Opinion in Biotechnology
  doi: 10.1016/j.copbio.2014.11.027
– volume: 52
  start-page: 97
  year: 2008
  ident: 10.1016/S2095-3119(15)61102-9_bib39
  article-title: Testing drought tolerance of wheat by complex stress diagnostic system installed in greenhouse
  publication-title: Acta Biologica Szegediensis
– volume: 164
  start-page: 1367
  year: 2007
  ident: 10.1016/S2095-3119(15)61102-9_bib66
  article-title: Stress-induced synthesis of proline confers tolerance to water deficit in transgenic wheat
  publication-title: Journal of Plant Physiology
  doi: 10.1016/j.jplph.2007.05.001
– volume: 9
  start-page: 1
  year: 2014
  ident: 10.1016/S2095-3119(15)61102-9_bib26
  article-title: High-throughput phenotyping to detect drought tolerance QTL in wild barley introgression lines
  publication-title: PLOS ONE
  doi: 10.1371/journal.pone.0097047
– volume: 23
  start-page: 243
  year: 2012
  ident: 10.1016/S2095-3119(15)61102-9_bib14
  article-title: Drought tolerance through biotechnology: Improving translation from the laboratory to farmers' fields
  publication-title: Current Opinion in Biotechnology
  doi: 10.1016/j.copbio.2011.11.003
– volume: 2
  start-page: 70
  year: 2011
  ident: 10.1016/S2095-3119(15)61102-9_bib24
  article-title: Stem reserve mobilization and sink activity in wheat under drought conditions
  publication-title: American Journal of Plant Sciences
  doi: 10.4236/ajps.2011.21010
– volume: 39
  start-page: 31
  year: 2009
  ident: 10.1016/S2095-3119(15)61102-9_bib37
  article-title: Climate change and drought: A risk assessment of crop-yield impacts
  publication-title: Climate Research
  doi: 10.3354/cr00797
– volume: 9
  start-page: 671
  year: 2012
  ident: 10.1016/S2095-3119(15)61102-9_bib56
  article-title: NIH Image to Image J: 25 years of image analysis
  publication-title: Nature Methods
  doi: 10.1038/nmeth.2089
– volume: 49
  start-page: 178
  year: 2011
  ident: 10.1016/S2095-3119(15)61102-9_bib25
  article-title: Differential changes in antioxidants, proteases, and lipid peroxidation in flag leaves of wheat genotypes under different levels of water deficit conditions
  publication-title: Plant Physiology and Biochemistry
  doi: 10.1016/j.plaphy.2010.11.009
– volume: 186
  start-page: 265
  year: 2012
  ident: 10.1016/S2095-3119(15)61102-9_bib33
  article-title: Genomic characterization of drought tolerance-related traits in spring wheat
  publication-title: Euphytica
  doi: 10.1007/s10681-012-0675-3
– volume: 14
  start-page: 310
  year: 2011
  ident: 10.1016/S2095-3119(15)61102-9_bib70
  article-title: From lab to field, new approaches to phenotyping root system architecture
  publication-title: Current Opinion in Plant Biology
  doi: 10.1016/j.pbi.2011.03.020
– volume: 61
  start-page: 3211
  year: 2010
  ident: 10.1016/S2095-3119(15)61102-9_bib22
  article-title: Genetic and genomic tools to improve drought tolerance in wheat
  publication-title: Journal of Experimental Botany
  doi: 10.1093/jxb/erq152
– volume: 12
  start-page: 468
  year: 2014
  ident: 10.1016/S2095-3119(15)61102-9_bib55
  article-title: The ERF transcription factor TaERF3 promotes tolerance to salt and drought stresses in wheat
  publication-title: Plant Biotechnology Journal
  doi: 10.1111/pbi.12153
– volume: 152
  start-page: 1148
  year: 2010
  ident: 10.1016/S2095-3119(15)61102-9_bib29
  article-title: Imaging and analysis platform for automatic phenotyping and trait ranking of plant root systems
  publication-title: Breakthrough Technologies
– volume: 58
  start-page: 221
  year: 2007
  ident: 10.1016/S2095-3119(15)61102-9_bib58
  article-title: Gene networks involved in drought stress response and tolerance
  publication-title: Journal of Experimental Botany
  doi: 10.1093/jxb/erl164
– volume: 95
  start-page: 117
  year: 2010
  ident: 10.1016/S2095-3119(15)61102-9_bib48
  article-title: Improving wheat production under drought conditions by using diallel crossing system. Drought Index
  publication-title: Options Méditerranéennes
– volume: 48
  start-page: 391
  year: 2008
  ident: 10.1016/S2095-3119(15)61102-9_bib67
  article-title: Marker-assisted selection in plant breeding: From publications to practice
  publication-title: Crop Science
  doi: 10.2135/cropsci2007.04.0191
– start-page: 1
  year: 2010
  ident: 10.1016/S2095-3119(15)61102-9_bib11
– volume: 32
  start-page: 758
  year: 2009
  ident: 10.1016/S2095-3119(15)61102-9_bib50
  article-title: Genomic dissection of drought resistance in durum wheat×wild emmer wheat recombinant inbreed line population
  publication-title: Plant Cell Environment
  doi: 10.1111/j.1365-3040.2009.01956.x
– volume: 42
  start-page: 1441
  year: 2002
  ident: 10.1016/S2095-3119(15)61102-9_bib63
  article-title: Progress in breeding wheat for yield and adaptation in global drought affected environments
  publication-title: Crop Science
  doi: 10.2135/cropsci2002.1441
– volume: 126
  start-page: 1
  year: 2013
  ident: 10.1016/S2095-3119(15)61102-9_bib17
  article-title: Accessing complex crop genomes with next-generation sequencing
  publication-title: Theoretical and Applied Genetics
  doi: 10.1007/s00122-012-1964-x
– volume: 2
  start-page: 619
  year: 2012
  ident: 10.1016/S2095-3119(15)61102-9_bib28
  article-title: QTL analysis of drought tolerance for seedling root morphological traits in an advanced backcross population of spring wheat
  publication-title: International Journal of Agricultural Sciences
– volume: 33
  start-page: 135
  year: 2011
  ident: 10.1016/S2095-3119(15)61102-9_bib31
  article-title: Drought tolerance screening of wheat varieties by inducing water stress conditions
  publication-title: Songklanakarin Journal of Science and Technology
– volume: 115
  start-page: 59
  year: 2007
  ident: 10.1016/S2095-3119(15)61102-9_bib59
  article-title: A QTL on chromosome 6A in bread wheat (Triticum aestivum L.) is associated with longer coleoptiles, greater seedling vigour and final plant height
  publication-title: Theoretical and Applied Genetics
  doi: 10.1007/s00122-007-0540-2
– volume: 133
  start-page: 679
  year: 2014
  ident: 10.1016/S2095-3119(15)61102-9_bib30
  article-title: Heat stress in crop plants: Its nature, impacts and integrated breeding strategies to improve heat tolerance
  publication-title: Plant Breeding
  doi: 10.1111/pbr.12217
– volume: 131
  start-page: 1748
  year: 2003
  ident: 10.1016/S2095-3119(15)61102-9_bib1
  article-title: Tolerance of mannitol-accumulating transgenic wheat to water stress and salinity
  publication-title: Plant Physiology
  doi: 10.1104/pp.102.003616
– volume: 19
  start-page: 52
  year: 2014
  ident: 10.1016/S2095-3119(15)61102-9_bib4
  article-title: Field high-throughput phenotyping: The new crop breeding frontier
  publication-title: Trends in Plant Science
  doi: 10.1016/j.tplants.2013.09.008
– volume: 186
  start-page: 127
  year: 2012
  ident: 10.1016/S2095-3119(15)61102-9_bib46
  article-title: QTL analysis for thousand-grain weight under terminal drought stress in bread wheat (Triticum aestivum L.)
  publication-title: Euphytica
  doi: 10.1007/s10681-011-0559-y
– volume: 17
  start-page: 113
  year: 2006
  ident: 10.1016/S2095-3119(15)61102-9_bib64
  article-title: Engineering drought tolerance in plants: Discovering and tailoring genes to unlock the future
  publication-title: Current Opinion in Biotechnology
  doi: 10.1016/j.copbio.2006.02.002
– volume: 99
  start-page: 365
  year: 2012
  ident: 10.1016/S2095-3119(15)61102-9_bib8
  article-title: Next-generation sequencing applications for wheat crop improvement
  publication-title: American Journal of Botany
  doi: 10.3732/ajb.1100309
– volume: 54
  start-page: 92
  year: 2014
  ident: 10.1016/S2095-3119(15)61102-9_bib62
  article-title: A critical review of soil moisture measurement
  publication-title: Measurement
  doi: 10.1016/j.measurement.2014.04.007
– volume: 29
  start-page: 117
  year: 2011
  ident: 10.1016/S2095-3119(15)61102-9_bib6
  article-title: Quality of winter wheat in relation to heat and drought shock after anthesis
  publication-title: Czech Journal of Food Sciences
  doi: 10.17221/227/2010-CJFS
– volume: 48
  start-page: 1649
  year: 2008
  ident: 10.1016/S2095-3119(15)61102-9_bib9
  article-title: Molecular markers and selection for complex traits in plants: Learning from the last 20 years
  publication-title: Crop Science
  doi: 10.2135/cropsci2008.03.0131
– volume: 117
  start-page: 1077
  year: 2008
  ident: 10.1016/S2095-3119(15)61102-9_bib42
  article-title: Multi-environment QTL mixed models for drought stress adaptation in wheat
  publication-title: Theoretical and Appllied Genetics
  doi: 10.1007/s00122-008-0846-8
– volume: 9
  start-page: 291
  year: 2011
  ident: 10.1016/S2095-3119(15)61102-9_bib13
  article-title: Mapping QTLs for yield components and chlorophyll a fluorescence parameters in wheat under three levels of water availability
  publication-title: Plant Genetic Resources
  doi: 10.1017/S1479262111000207
– volume: 112
  start-page: 119
  year: 2009
  ident: 10.1016/S2095-3119(15)61102-9_bib10
  article-title: Effective use of water (EUW) and not water-use efficiency (WUE) is the target of crop yield improvement under drought stress
  publication-title: Field Crops Research
  doi: 10.1016/j.fcr.2009.03.009
– volume: 48
  start-page: 463
  year: 2006
  ident: 10.1016/S2095-3119(15)61102-9_bib49
  article-title: Characterizing the composition and evolution of homoeologous genomes in hexaploid wheat through BAC-end sequencing on chromosome 3B
  publication-title: The Plant Journal
  doi: 10.1111/j.1365-313X.2006.02891.x
– volume: 47
  start-page: S20
  year: 2011
  ident: 10.1016/S2095-3119(15)61102-9_bib16
  article-title: NI Vavilov's theory of centres of diversity in the light of current understanding of wheat diversity, domestication and evolution
  publication-title: Czech Journal of Genetics and Plant Breeding
  doi: 10.17221/3249-CJGPB
– volume: 177
  start-page: 207
  year: 2011
  ident: 10.1016/S2095-3119(15)61102-9_bib23
  article-title: Identification of microsatellite markers linked with yield components under drought stress at terminal growth stages in durum wheat
  publication-title: Euphytica
  doi: 10.1007/s10681-010-0242-8
– volume: 52
  start-page: 1543
  year: 2012
  ident: 10.1016/S2095-3119(15)61102-9_bib40
  article-title: Genetic yield gains of the CIMMYT international semi-arid wheat yield trials from 1994 to 2010
  publication-title: Crop Science
  doi: 10.2135/cropsci2011.10.0574
– volume: 146
  start-page: 61
  year: 2005
  ident: 10.1016/S2095-3119(15)61102-9_bib61
  article-title: Promising eco-physiological traits for genetic improvement of cereal yields in Mediterranean environments
  publication-title: Annals of Applied Biology
  doi: 10.1111/j.1744-7348.2005.04048.x
– volume: 171
  start-page: 1289
  year: 2014
  ident: 10.1016/S2095-3119(15)61102-9_bib53
  article-title: Physiology and transcriptomics of water-deficit stress responses in wheat cultivars TAM 111 and TAM 112
  publication-title: Journal of Plant Physiology
  doi: 10.1016/j.jplph.2014.05.005
– volume: 33
  start-page: 823
  year: 2006
  ident: 10.1016/S2095-3119(15)61102-9_bib41
  article-title: The role of root architectural traits in adaptation of wheat to water-limited environments
  publication-title: Functional Plant Biology
  doi: 10.1071/FP06055
– volume: 49
  start-page: 1126
  year: 2011
  ident: 10.1016/S2095-3119(15)61102-9_bib47
  article-title: Pattern of solutes accumulated during leaf osmotic adjustment as related to duration of water deficit for wheat at the reproductive stage
  publication-title: Plant Physiology and Biochemistry
  doi: 10.1016/j.plaphy.2011.05.011
– ident: 10.1016/S2095-3119(15)61102-9_bib12
– start-page: 257
  year: 1992
  ident: 10.1016/S2095-3119(15)61102-9_bib20
  article-title: Effective selection criteria for assessing plant stress tolerance
– volume: 121
  start-page: 1001
  year: 2010
  ident: 10.1016/S2095-3119(15)61102-9_bib51
  article-title: Heat and drought adaptive QTL in a wheat population designed to minimize confounding agronomic effects
  publication-title: Theoretical and Applied Genetics
  doi: 10.1007/s00122-010-1351-4
– volume: 131
  start-page: 369
  year: 2012
  ident: 10.1016/S2095-3119(15)61102-9_bib15
  article-title: Comparison of responses to drought stress of 100 wheat accessions and landraces to identify opportunities for improving wheat drought resistance
  publication-title: Plant Breeding
  doi: 10.1111/j.1439-0523.2011.01941.x
– volume: 44
  start-page: 879
  year: 2012
  ident: 10.1016/S2095-3119(15)61102-9_bib32
  article-title: Growth and yield response of wheat varieties to water stress at booting and anthesis stages of development
  publication-title: Pakistan Journal of Botany
– volume: 28
  start-page: 169
  year: 2010
  ident: 10.1016/S2095-3119(15)61102-9_bib5
  article-title: Inducing drought tolerance in plants: Recent advances
  publication-title: Biotechnology Advances
  doi: 10.1016/j.biotechadv.2009.11.005
– volume: 37
  start-page: 147
  year: 2010
  ident: 10.1016/S2095-3119(15)61102-9_bib38
  article-title: Partitioning of assimilates to deeper roots is associated with cooler canopies and increased yield under drought in wheat
  publication-title: Functional Plant Biology
  doi: 10.1071/FP09121
– volume: 8
  start-page: 6663
  year: 2013
  ident: 10.1016/S2095-3119(15)61102-9_bib57
  article-title: Does low yield heterosis limit commercial hybrids in wheat?
  publication-title: African Journal of Agricultural Research
– volume: 52
  start-page: 253
  year: 2012
  ident: 10.1016/S2095-3119(15)61102-9_bib3
  article-title: Mapping and quantitative trait loci analysis of drought tolerance in a spring wheat population using amplified fragment length polymorphism and diversity array technology markers
  publication-title: Crop Science
  doi: 10.2135/cropsci2011.05.0267
– volume: 125
  start-page: 625
  year: 2012
  ident: 10.1016/S2095-3119(15)61102-9_bib43
  article-title: Integrated genomics, physiology and breeding approaches for improving drought tolerance in crops
  publication-title: Theoretical and Applied Genetics
  doi: 10.1007/s00122-012-1904-9
– volume: 186
  start-page: 219
  year: 2012
  ident: 10.1016/S2095-3119(15)61102-9_bib18
  article-title: Root system plasticity to drought influences grain yield in bread wheat
  publication-title: Euphytica
  doi: 10.1007/s10681-011-0585-9
– ident: 10.1016/S2095-3119(15)61102-9_bib36
– volume: 17
  start-page: 113
  year: 2006
  ident: 10.1016/S2095-3119(15)61102-9_bib65
  article-title: Understanding regulatory networks and engineering for enhanced drought tolerance in plants
  publication-title: Current Opinion in Biotechnology
– volume: 16
  start-page: 862
  year: 2014
  ident: 10.1016/S2095-3119(15)61102-9_bib2
  article-title: Identification of QTLs for drought tolerance traits on wheat chromosome 2A using association mapping
  publication-title: International Journal of Agriculture and Biology
– volume: 5
  start-page: 103
  year: 2012
  ident: 10.1016/S2095-3119(15)61102-9_bib52
  article-title: Genomic selection in wheat breeding using genotyping-by-sequencing
  publication-title: Plant Genome
  doi: 10.3835/plantgenome2012.06.0006
– volume: 155
  start-page: 1
  year: 2000
  ident: 10.1016/S2095-3119(15)61102-9_bib60
  article-title: Improved biomass productivity and water use efficiency under water deficit conditions in transgenic wheat constitutively expressing the barley HVA1 gene
  publication-title: Plant Science
  doi: 10.1016/S0168-9452(99)00247-2
– volume: 3
  start-page: 469
  year: 2010
  ident: 10.1016/S2095-3119(15)61102-9_bib68
  article-title: Narrowing down the targets: Towards successful genetic engineering of drought-tolerant crops
  publication-title: Molecular Plant
  doi: 10.1093/mp/ssq016
– volume: 125
  start-page: 1473
  year: 2012
  ident: 10.1016/S2095-3119(15)61102-9_bib7
  article-title: Detection of two major grain yield QTLs in bread wheat (Triticum aestivum L.) under heat, drought and high yield potential environments
  publication-title: Theoretical and Applied Genetics
  doi: 10.1007/s00122-012-1927-2
– volume: 174
  start-page: 437
  year: 2010
  ident: 10.1016/S2095-3119(15)61102-9_bib34
  article-title: Identification of QTLs for stay green trait in wheat (Triticum aestivum L.) in the ‘Chirya 3′×’Sonalika'population
  publication-title: Euphytica
  doi: 10.1007/s10681-010-0155-6
– volume: 146
  start-page: 239
  year: 2005
  ident: 10.1016/S2095-3119(15)61102-9_bib54
  article-title: Prospects for utilising plant-adaptive mechanisms to improve wheat and other crops in drought- and salinity-prone environments
  publication-title: Annals of Applied Biology
  doi: 10.1111/j.1744-7348.2005.040058.x
– volume: 6
  start-page: 1
  year: 2011
  ident: 10.1016/S2095-3119(15)61102-9_bib19
  article-title: A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0019379
– volume: 8
  start-page: 5197
  year: 2013
  ident: 10.1016/S2095-3119(15)61102-9_bib44
  article-title: Additive main effects and multiplicative interaction (AMMI) and GGE-biplot analysis of genotype×environment interactions for grain yield in bread wheat (Triticum aestivum L.)
  publication-title: Journal of Agricultural Research
– volume: 33
  start-page: 670
  year: 2010
  ident: 10.1016/S2095-3119(15)61102-9_bib45
  article-title: Drought and salt tolerances in wild relatives for wheat and barley improvement
  publication-title: Plant, Cell & Environment
  doi: 10.1111/j.1365-3040.2009.02107.x
– volume: 65
  start-page: 715
  year: 2014
  ident: 10.1016/S2095-3119(15)61102-9_bib27
  article-title: Genetic engineering and breeding of drought-resistant crops
  publication-title: Annual Review of Plant Biology
  doi: 10.1146/annurev-arplant-050213-040000
– volume: 33
  start-page: 205
  year: 2014
  ident: 10.1016/S2095-3119(15)61102-9_bib69
  article-title: Functional genomics of drought tolerance in bioenergy crops
  publication-title: Critical Reviews in Plant Sciences
  doi: 10.1080/07352689.2014.870417
SSID ssj0001550068
Score 2.4329193
SecondaryResourceType review_article
Snippet Recurrent drought associated with climate change is among the principal constraints to global productivity of wheat(Triticum aestivum(L.) and T. turgidum(L.))....
Recurrent drought associated with climate change is among the principal constraints to global productivity of wheat (Triticum aestivum (L.) and T. turgidum...
Recurrent drought associated with climate change is among the principal constraints to global productivity of wheat (Triticum aestivum (L.) andT. turgidum...
SourceID doaj
wanfang
proquest
crossref
fao
chongqing
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 935
SubjectTerms arid lands
climate change
drought
drought tolerance
gene transfer
genes
genetic variation
genomic selection
genomics
genotyping
marker-assisted selection
phenotype
phenotyping
Triticum aestivum
wheat
反复干旱
圆锥小麦
基因组学
基因组技术
多基因控制
小麦生产
抗旱育种
知识系统
Title Breeding wheat for drought tolerance: Progress and technologies
URI http://lib.cqvip.com/qk/86610A/201605/668964268.html
https://www.proquest.com/docview/2000167959
https://d.wanfangdata.com.cn/periodical/zgnykx-e201605001
https://doaj.org/article/21ee6fa4283e41c6aac6515ccf30ae60
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagEhIcUHlULIXKIA5wSGvHsRNzQW1FVSFRIUGl3qxxYi8SldPupqrgwG_vTJIN21MvXC1nlMyM5xHb38fYO52XJRQiZKXUVVbIssl8ZSEzXqlGgYlVj7b_9cQcnxZfzvTZGtUXnQkb4IEHxe3lMgQTgXDBQiFrA1ATe3ddRyUgmL5bF1asNVPD_WBNlx-IWQ5rCAw00v67vrP3fRp8L_UHgxkwzyyBK_xs0_wSU8atJNVj-WPqidDeKkMfXEOKkOZr-ehokz0eC0m-P3zAE3YvpKfs0f58MYJphGfs08FiyE38mkIux_qUNz0tT8e79jwQp0b4yL_RES0MeBxSw7vVr3bsoJ-z06PPPw6Ps5EwIauLKu-yQOiCZVMQzZSlPRVfqBBijALyUvhSWxl0I6KCKpaNjWA96hUbDO1BV41RW2wjtSm8YFxpAVid1Wg8qrEAVBC1Ut77ulBVaGZse9KWuxiAMZwxlcV-xlQzVqz05-oRa5woL87ddKiMTODIBE5q15vA2RnbnR5bybzjgQMyzjSZsLL7AfQgN3qQu8uDZmwLTesADbR0hydYERlFG_Io_c3K2g4XHe2kQArt1ZK4O-n6htU45-3oBm5c_Ev3Z55-_8KwQ5IE-qF8-T9ec5s9JIHDYctXbKNbXIXXWBB1fofd3_0rd_oVcAPDCgBl
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Breeding+wheat+for+drought+tolerance%EF%BC%9A+Progress+and+technologies&rft.jtitle=%E5%86%9C%E4%B8%9A%E7%A7%91%E5%AD%A6%E5%AD%A6%E6%8A%A5%EF%BC%9A%E8%8B%B1%E6%96%87%E7%89%88&rft.au=Learnmore+Mwadzingeni+Hussein+Shimelis+Ernest+Dube+Mark+D+Laing+Toi+J+Tsilo&rft.date=2016-05-01&rft.issn=2095-3119&rft.eissn=2352-3425&rft.issue=5&rft.spage=935&rft.epage=943&rft_id=info:doi/10.1016%2FS2095-3119%2815%2961102-9&rft.externalDocID=668964268
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F86610A%2F86610A.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzgnykx-e%2Fzgnykx-e.jpg