Tau burden and the functional connectome in Alzheimer's disease and progressive supranuclear palsy
Prion-like, trans-neuronal spread of tau pathology in humans is controversial. By evaluating tau burden and functional connectivity in living patients, Cope et al. demonstrate relationships consistent with this in Alzheimer's disease but not progressive supranuclear palsy. Tau distribution in t...
Saved in:
Published in | Brain (London, England : 1878) Vol. 141; no. 2; pp. 550 - 567 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
01.02.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 0006-8950 1460-2156 1460-2156 |
DOI | 10.1093/brain/awx347 |
Cover
Abstract | Prion-like, trans-neuronal spread of tau pathology in humans is controversial. By evaluating tau burden and functional connectivity in living patients, Cope et al. demonstrate relationships consistent with this in Alzheimer's disease but not progressive supranuclear palsy. Tau distribution in the latter is better explained by metabolic demand and trophic support.
Abstract
Alzheimer's disease and progressive supranuclear palsy (PSP) represent neurodegenerative tauopathies with predominantly cortical versus subcortical disease burden. In Alzheimer's disease, neuropathology and atrophy preferentially affect 'hub' brain regions that are densely connected. It was unclear whether hubs are differentially affected by neurodegeneration because they are more likely to receive pathological proteins that propagate trans-neuronally, in a prion-like manner, or whether they are selectively vulnerable due to a lack of local trophic factors, higher metabolic demands, or differential gene expression. We assessed the relationship between tau burden and brain functional connectivity, by combining in vivo PET imaging using the ligand AV-1451, and graph theoretic measures of resting state functional MRI in 17 patients with Alzheimer's disease, 17 patients with PSP, and 12 controls. Strongly connected nodes displayed more tau pathology in Alzheimer's disease, independently of intrinsic connectivity network, validating the predictions of theories of trans-neuronal spread but not supporting a role for metabolic demands or deficient trophic support in tau accumulation. This was not a compensatory phenomenon, as the functional consequence of increasing tau burden in Alzheimer's disease was a progressive weakening of the connectivity of these same nodes, reducing weighted degree and local efficiency and resulting in weaker 'small-world' properties. Conversely, in PSP, unlike in Alzheimer's disease, those nodes that accrued pathological tau were those that displayed graph metric properties associated with increased metabolic demand and a lack of trophic support rather than strong functional connectivity. Together, these findings go some way towards explaining why Alzheimer's disease affects large scale connectivity networks throughout cortex while neuropathology in PSP is concentrated in a small number of subcortical structures. Further, we demonstrate that in PSP increasing tau burden in midbrain and deep nuclei was associated with strengthened cortico-cortical functional connectivity. Disrupted cortico-subcortical and cortico-brainstem interactions meant that information transfer took less direct paths, passing through a larger number of cortical nodes, reducing closeness centrality and eigenvector centrality in PSP, while increasing weighted degree, clustering, betweenness centrality and local efficiency. Our results have wide-ranging implications, from the validation of models of tau trafficking in humans to understanding the relationship between regional tau burden and brain functional reorganization. |
---|---|
AbstractList | Prion-like, trans-neuronal spread of tau pathology in humans is controversial. By evaluating tau burden and functional connectivity in living patients, Cope et al. demonstrate relationships consistent with this in Alzheimer's disease but not progressive supranuclear palsy. Tau distribution in the latter is better explained by metabolic demand and trophic support.
Abstract
Alzheimer's disease and progressive supranuclear palsy (PSP) represent neurodegenerative tauopathies with predominantly cortical versus subcortical disease burden. In Alzheimer's disease, neuropathology and atrophy preferentially affect 'hub' brain regions that are densely connected. It was unclear whether hubs are differentially affected by neurodegeneration because they are more likely to receive pathological proteins that propagate trans-neuronally, in a prion-like manner, or whether they are selectively vulnerable due to a lack of local trophic factors, higher metabolic demands, or differential gene expression. We assessed the relationship between tau burden and brain functional connectivity, by combining in vivo PET imaging using the ligand AV-1451, and graph theoretic measures of resting state functional MRI in 17 patients with Alzheimer's disease, 17 patients with PSP, and 12 controls. Strongly connected nodes displayed more tau pathology in Alzheimer's disease, independently of intrinsic connectivity network, validating the predictions of theories of trans-neuronal spread but not supporting a role for metabolic demands or deficient trophic support in tau accumulation. This was not a compensatory phenomenon, as the functional consequence of increasing tau burden in Alzheimer's disease was a progressive weakening of the connectivity of these same nodes, reducing weighted degree and local efficiency and resulting in weaker 'small-world' properties. Conversely, in PSP, unlike in Alzheimer's disease, those nodes that accrued pathological tau were those that displayed graph metric properties associated with increased metabolic demand and a lack of trophic support rather than strong functional connectivity. Together, these findings go some way towards explaining why Alzheimer's disease affects large scale connectivity networks throughout cortex while neuropathology in PSP is concentrated in a small number of subcortical structures. Further, we demonstrate that in PSP increasing tau burden in midbrain and deep nuclei was associated with strengthened cortico-cortical functional connectivity. Disrupted cortico-subcortical and cortico-brainstem interactions meant that information transfer took less direct paths, passing through a larger number of cortical nodes, reducing closeness centrality and eigenvector centrality in PSP, while increasing weighted degree, clustering, betweenness centrality and local efficiency. Our results have wide-ranging implications, from the validation of models of tau trafficking in humans to understanding the relationship between regional tau burden and brain functional reorganization. Prion-like, trans-neuronal spread of tau pathology in humans is controversial. By evaluating tau burden and functional connectivity in living patients, Cope et al. demonstrate relationships consistent with this in Alzheimer's disease but not progressive supranuclear palsy. Tau distribution in the latter is better explained by metabolic demand and trophic support. Alzheimer’s disease and progressive supranuclear palsy (PSP) represent neurodegenerative tauopathies with predominantly cortical versus subcortical disease burden. In Alzheimer’s disease, neuropathology and atrophy preferentially affect ‘hub’ brain regions that are densely connected. It was unclear whether hubs are differentially affected by neurodegeneration because they are more likely to receive pathological proteins that propagate trans-neuronally, in a prion-like manner, or whether they are selectively vulnerable due to a lack of local trophic factors, higher metabolic demands, or differential gene expression. We assessed the relationship between tau burden and brain functional connectivity, by combining in vivo PET imaging using the ligand AV-1451, and graph theoretic measures of resting state functional MRI in 17 patients with Alzheimer’s disease, 17 patients with PSP, and 12 controls. Strongly connected nodes displayed more tau pathology in Alzheimer’s disease, independently of intrinsic connectivity network, validating the predictions of theories of trans-neuronal spread but not supporting a role for metabolic demands or deficient trophic support in tau accumulation. This was not a compensatory phenomenon, as the functional consequence of increasing tau burden in Alzheimer’s disease was a progressive weakening of the connectivity of these same nodes, reducing weighted degree and local efficiency and resulting in weaker ‘small-world’ properties. Conversely, in PSP, unlike in Alzheimer’s disease, those nodes that accrued pathological tau were those that displayed graph metric properties associated with increased metabolic demand and a lack of trophic support rather than strong functional connectivity. Together, these findings go some way towards explaining why Alzheimer’s disease affects large scale connectivity networks throughout cortex while neuropathology in PSP is concentrated in a small number of subcortical structures. Further, we demonstrate that in PSP increasing tau burden in midbrain and deep nuclei was associated with strengthened cortico-cortical functional connectivity. Disrupted cortico-subcortical and cortico-brainstem interactions meant that information transfer took less direct paths, passing through a larger number of cortical nodes, reducing closeness centrality and eigenvector centrality in PSP, while increasing weighted degree, clustering, betweenness centrality and local efficiency. Our results have wide-ranging implications, from the validation of models of tau trafficking in humans to understanding the relationship between regional tau burden and brain functional reorganization. Alzheimer's disease and progressive supranuclear palsy (PSP) represent neurodegenerative tauopathies with predominantly cortical versus subcortical disease burden. In Alzheimer's disease, neuropathology and atrophy preferentially affect 'hub' brain regions that are densely connected. It was unclear whether hubs are differentially affected by neurodegeneration because they are more likely to receive pathological proteins that propagate trans-neuronally, in a prion-like manner, or whether they are selectively vulnerable due to a lack of local trophic factors, higher metabolic demands, or differential gene expression. We assessed the relationship between tau burden and brain functional connectivity, by combining in vivo PET imaging using the ligand AV-1451, and graph theoretic measures of resting state functional MRI in 17 patients with Alzheimer's disease, 17 patients with PSP, and 12 controls. Strongly connected nodes displayed more tau pathology in Alzheimer's disease, independently of intrinsic connectivity network, validating the predictions of theories of trans-neuronal spread but not supporting a role for metabolic demands or deficient trophic support in tau accumulation. This was not a compensatory phenomenon, as the functional consequence of increasing tau burden in Alzheimer's disease was a progressive weakening of the connectivity of these same nodes, reducing weighted degree and local efficiency and resulting in weaker 'small-world' properties. Conversely, in PSP, unlike in Alzheimer's disease, those nodes that accrued pathological tau were those that displayed graph metric properties associated with increased metabolic demand and a lack of trophic support rather than strong functional connectivity. Together, these findings go some way towards explaining why Alzheimer's disease affects large scale connectivity networks throughout cortex while neuropathology in PSP is concentrated in a small number of subcortical structures. Further, we demonstrate that in PSP increasing tau burden in midbrain and deep nuclei was associated with strengthened cortico-cortical functional connectivity. Disrupted cortico-subcortical and cortico-brainstem interactions meant that information transfer took less direct paths, passing through a larger number of cortical nodes, reducing closeness centrality and eigenvector centrality in PSP, while increasing weighted degree, clustering, betweenness centrality and local efficiency. Our results have wide-ranging implications, from the validation of models of tau trafficking in humans to understanding the relationship between regional tau burden and brain functional reorganization. Alzheimer's disease and progressive supranuclear palsy (PSP) represent neurodegenerative tauopathies with predominantly cortical versus subcortical disease burden. In Alzheimer's disease, neuropathology and atrophy preferentially affect 'hub' brain regions that are densely connected. It was unclear whether hubs are differentially affected by neurodegeneration because they are more likely to receive pathological proteins that propagate trans-neuronally, in a prion-like manner, or whether they are selectively vulnerable due to a lack of local trophic factors, higher metabolic demands, or differential gene expression. We assessed the relationship between tau burden and brain functional connectivity, by combining in vivo PET imaging using the ligand AV-1451, and graph theoretic measures of resting state functional MRI in 17 patients with Alzheimer's disease, 17 patients with PSP, and 12 controls. Strongly connected nodes displayed more tau pathology in Alzheimer's disease, independently of intrinsic connectivity network, validating the predictions of theories of trans-neuronal spread but not supporting a role for metabolic demands or deficient trophic support in tau accumulation. This was not a compensatory phenomenon, as the functional consequence of increasing tau burden in Alzheimer's disease was a progressive weakening of the connectivity of these same nodes, reducing weighted degree and local efficiency and resulting in weaker 'small-world' properties. Conversely, in PSP, unlike in Alzheimer's disease, those nodes that accrued pathological tau were those that displayed graph metric properties associated with increased metabolic demand and a lack of trophic support rather than strong functional connectivity. Together, these findings go some way towards explaining why Alzheimer's disease affects large scale connectivity networks throughout cortex while neuropathology in PSP is concentrated in a small number of subcortical structures. Further, we demonstrate that in PSP increasing tau burden in midbrain and deep nuclei was associated with strengthened cortico-cortical functional connectivity. Disrupted cortico-subcortical and cortico-brainstem interactions meant that information transfer took less direct paths, passing through a larger number of cortical nodes, reducing closeness centrality and eigenvector centrality in PSP, while increasing weighted degree, clustering, betweenness centrality and local efficiency. Our results have wide-ranging implications, from the validation of models of tau trafficking in humans to understanding the relationship between regional tau burden and brain functional reorganization.Alzheimer's disease and progressive supranuclear palsy (PSP) represent neurodegenerative tauopathies with predominantly cortical versus subcortical disease burden. In Alzheimer's disease, neuropathology and atrophy preferentially affect 'hub' brain regions that are densely connected. It was unclear whether hubs are differentially affected by neurodegeneration because they are more likely to receive pathological proteins that propagate trans-neuronally, in a prion-like manner, or whether they are selectively vulnerable due to a lack of local trophic factors, higher metabolic demands, or differential gene expression. We assessed the relationship between tau burden and brain functional connectivity, by combining in vivo PET imaging using the ligand AV-1451, and graph theoretic measures of resting state functional MRI in 17 patients with Alzheimer's disease, 17 patients with PSP, and 12 controls. Strongly connected nodes displayed more tau pathology in Alzheimer's disease, independently of intrinsic connectivity network, validating the predictions of theories of trans-neuronal spread but not supporting a role for metabolic demands or deficient trophic support in tau accumulation. This was not a compensatory phenomenon, as the functional consequence of increasing tau burden in Alzheimer's disease was a progressive weakening of the connectivity of these same nodes, reducing weighted degree and local efficiency and resulting in weaker 'small-world' properties. Conversely, in PSP, unlike in Alzheimer's disease, those nodes that accrued pathological tau were those that displayed graph metric properties associated with increased metabolic demand and a lack of trophic support rather than strong functional connectivity. Together, these findings go some way towards explaining why Alzheimer's disease affects large scale connectivity networks throughout cortex while neuropathology in PSP is concentrated in a small number of subcortical structures. Further, we demonstrate that in PSP increasing tau burden in midbrain and deep nuclei was associated with strengthened cortico-cortical functional connectivity. Disrupted cortico-subcortical and cortico-brainstem interactions meant that information transfer took less direct paths, passing through a larger number of cortical nodes, reducing closeness centrality and eigenvector centrality in PSP, while increasing weighted degree, clustering, betweenness centrality and local efficiency. Our results have wide-ranging implications, from the validation of models of tau trafficking in humans to understanding the relationship between regional tau burden and brain functional reorganization. |
Author | Cope, Thomas E Bevan-Jones, W Richard Rittman, Timothy Allinson, Kieren Passamonti, Luca Rowe, James B Vatansever, Deniz Vazquez Rodriguez, Patricia Jones, P Simon O'Brien, John T Borchert, Robin J |
AuthorAffiliation | 3 Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, UK 6 Medical Research Council Cognition and Brain Sciences Unit, Cambridge, UK 2 Department of Psychology, University of York, York, UK 4 Department of Psychiatry, University of Cambridge, Cambridge, UK 1 Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK 5 Department of Pathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK |
AuthorAffiliation_xml | – name: 4 Department of Psychiatry, University of Cambridge, Cambridge, UK – name: 1 Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK – name: 2 Department of Psychology, University of York, York, UK – name: 3 Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, UK – name: 5 Department of Pathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK – name: 6 Medical Research Council Cognition and Brain Sciences Unit, Cambridge, UK |
Author_xml | – sequence: 1 givenname: Thomas E surname: Cope fullname: Cope, Thomas E email: thomascope@gmail.com organization: Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK – sequence: 2 givenname: Timothy surname: Rittman fullname: Rittman, Timothy organization: Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK – sequence: 3 givenname: Robin J surname: Borchert fullname: Borchert, Robin J organization: Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK – sequence: 4 givenname: P Simon surname: Jones fullname: Jones, P Simon organization: Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK – sequence: 5 givenname: Deniz surname: Vatansever fullname: Vatansever, Deniz organization: Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK – sequence: 6 givenname: Kieren surname: Allinson fullname: Allinson, Kieren organization: Department of Pathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK – sequence: 7 givenname: Luca surname: Passamonti fullname: Passamonti, Luca organization: Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK – sequence: 8 givenname: Patricia surname: Vazquez Rodriguez fullname: Vazquez Rodriguez, Patricia organization: Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK – sequence: 9 givenname: W Richard surname: Bevan-Jones fullname: Bevan-Jones, W Richard organization: Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK – sequence: 10 givenname: John T surname: O'Brien fullname: O'Brien, John T organization: Department of Psychiatry, University of Cambridge, Cambridge, UK – sequence: 11 givenname: James B surname: Rowe fullname: Rowe, James B organization: Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29293892$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kc1v1DAQxS1URLeFG2fkWzkQOrETb3xBqiq-pEpcytma2JOuUWIHOy6Uv560WypAAs1hDvN7b8Z-R-wgxECMPa_hdQ1anvYJfTjFb99ls33ENnWjoBJ1qw7YBgBU1ekWDtlRzl8A6kYK9YQdCi207LTYsP4SC-9LchQ4BseXHfGhBLv4GHDkNoZAdokTcR_42fhjR36idJK585kw051oTvEqUc7-mnguc8JQ7EiY-IxjvnnKHg9rp2f3_Zh9fvf28vxDdfHp_cfzs4vKNp1YKgSnQeAgyXUK2vUda-nW2oactta6QUlohQOhQIpBE0LdO60E9Fvlul4eszd737n0EzlLYUk4mjn5CdONiejNn5Pgd-YqXpu2k1vZ6tXg5b1Bil8L5cVMPlsaRwwUSza17hqhRCe2K_ri910PS3597Aq82gM2xZwTDQ9IDeY2N3OXm9nntuLiL9z6BW9DWC_1479EJ3tRLPP_7X8CDIyueA |
CitedBy_id | crossref_primary_10_1002_hbm_70083 crossref_primary_10_1016_j_mcn_2018_12_001 crossref_primary_10_3389_fncom_2022_885126 crossref_primary_10_1038_s41583_023_00731_8 crossref_primary_10_1038_s41582_021_00541_5 crossref_primary_10_1016_j_media_2023_102812 crossref_primary_10_1038_s41582_020_0333_7 crossref_primary_10_1007_s00702_023_02613_w crossref_primary_10_1016_j_clinph_2019_05_027 crossref_primary_10_1002_alz_12209 crossref_primary_10_1093_procel_pwae026 crossref_primary_10_1177_25424823241307617 crossref_primary_10_1007_s12041_018_0962_4 crossref_primary_10_12677_JISP_2022_114019 crossref_primary_10_3389_fncel_2024_1338502 crossref_primary_10_1002_alz_12452 crossref_primary_10_1007_s12011_021_02938_1 crossref_primary_10_1371_journal_pone_0277257 crossref_primary_10_1016_j_neurobiolaging_2020_03_009 crossref_primary_10_1038_s41380_023_02215_8 crossref_primary_10_1093_cercor_bhaa319 crossref_primary_10_3389_fninf_2022_886365 crossref_primary_10_1136_jnnp_2019_322402 crossref_primary_10_26599_JNR_2019_9040003 crossref_primary_10_1002_mds_29887 crossref_primary_10_1016_j_media_2025_103463 crossref_primary_10_1053_j_sult_2021_07_007 crossref_primary_10_1016_j_nicl_2020_102419 crossref_primary_10_1016_j_conctc_2023_101165 crossref_primary_10_1016_j_nbd_2020_105120 crossref_primary_10_1007_s11357_025_01528_6 crossref_primary_10_1016_j_nicl_2019_101848 crossref_primary_10_1126_sciadv_abd1327 crossref_primary_10_1162_netn_a_00395 crossref_primary_10_1016_j_neurobiolaging_2018_10_004 crossref_primary_10_1093_braincomms_fcad305 crossref_primary_10_1007_s11910_024_01365_8 crossref_primary_10_1093_brain_awz122 crossref_primary_10_1097_WCO_0000000000000570 crossref_primary_10_1002_acn3_631 crossref_primary_10_1016_j_nbas_2022_100054 crossref_primary_10_1109_TMI_2024_3502545 crossref_primary_10_1093_braincomms_fcae198 crossref_primary_10_3233_JAD_231276 crossref_primary_10_3390_biom12111573 crossref_primary_10_3390_pharmaceutics13071002 crossref_primary_10_1097_WCO_0000000000000578 crossref_primary_10_3390_ijms23010165 crossref_primary_10_3390_cells12242776 crossref_primary_10_1002_ange_201913029 crossref_primary_10_1093_brain_awab130 crossref_primary_10_7554_eLife_49298 crossref_primary_10_1038_d41586_018_05723_8 crossref_primary_10_1007_s00259_024_06954_w crossref_primary_10_1002_hbm_25454 crossref_primary_10_1002_hbm_26388 crossref_primary_10_1007_s00259_019_04394_5 crossref_primary_10_3390_biology12040564 crossref_primary_10_1523_JNEUROSCI_1622_21_2022 crossref_primary_10_3233_JAD_215596 crossref_primary_10_3389_fchem_2022_886382 crossref_primary_10_1093_brain_awz154 crossref_primary_10_1016_j_neurobiolaging_2022_02_013 crossref_primary_10_1002_hbm_25448 crossref_primary_10_1016_j_dadm_2019_01_011 crossref_primary_10_3233_JAD_231362 crossref_primary_10_1093_braincomms_fcz013 crossref_primary_10_3389_fneur_2019_01266 crossref_primary_10_1136_jnnp_2020_322924 crossref_primary_10_1002_alz_14296 crossref_primary_10_1002_hbm_24473 crossref_primary_10_1093_cercor_bhaa184 crossref_primary_10_1097_WCO_0000000000000957 crossref_primary_10_1002_anie_201913029 crossref_primary_10_3389_fnins_2022_909861 crossref_primary_10_1177_1756286419843447 crossref_primary_10_1016_j_biopsych_2021_02_973 crossref_primary_10_3233_JAD_201596 crossref_primary_10_1093_brain_awy180 crossref_primary_10_1159_000516164 crossref_primary_10_1007_s11910_018_0898_3 crossref_primary_10_1002_alz_14349 crossref_primary_10_1093_braincomms_fcae459 crossref_primary_10_1016_j_nicl_2024_103727 crossref_primary_10_1093_brain_awy176 crossref_primary_10_1177_1179069518772380 crossref_primary_10_1093_brain_awz026 crossref_primary_10_1002_ana_26465 crossref_primary_10_3233_JAD_230367 crossref_primary_10_3389_fneur_2018_00070 crossref_primary_10_1001_jamaneurol_2018_2505 crossref_primary_10_1093_braincomms_fcaa060 crossref_primary_10_1109_TPAMI_2021_3081744 crossref_primary_10_2967_jnumed_118_225508 crossref_primary_10_3389_fmolb_2022_1050768 crossref_primary_10_1007_s11682_021_00531_7 crossref_primary_10_1038_s41583_023_00779_6 crossref_primary_10_1007_s10577_018_9573_4 crossref_primary_10_1016_j_brainresbull_2023_110777 crossref_primary_10_3389_fnagi_2025_1506478 crossref_primary_10_1016_j_neuroscience_2019_11_018 crossref_primary_10_2967_jnumed_117_206300 crossref_primary_10_1007_s00259_022_05952_0 crossref_primary_10_1523_JNEUROSCI_0990_21_2021 crossref_primary_10_1016_j_nicl_2023_103443 crossref_primary_10_1016_j_neuroimage_2020_117301 crossref_primary_10_1093_brain_awaa019 crossref_primary_10_1126_scitranslmed_aba7394 crossref_primary_10_1016_j_toxicon_2023_107110 crossref_primary_10_1093_cercor_bhad505 crossref_primary_10_1089_brain_2020_0902 crossref_primary_10_1111_febs_16055 crossref_primary_10_1093_cercor_bhz024 crossref_primary_10_2174_1568026620666200110161105 crossref_primary_10_1126_sciadv_aau3333 crossref_primary_10_3390_brainsci12020146 crossref_primary_10_3390_biom10111487 crossref_primary_10_1016_S1474_4422_19_30161_9 crossref_primary_10_3233_JAD_201376 crossref_primary_10_1016_j_neulet_2019_04_022 crossref_primary_10_3389_fnagi_2019_00208 crossref_primary_10_1136_bmjopen_2021_055135 crossref_primary_10_7554_eLife_62114 crossref_primary_10_1093_brain_awab218 crossref_primary_10_1146_annurev_pathmechdis_051222_120750 crossref_primary_10_3233_JAD_210234 crossref_primary_10_1186_s13195_019_0563_3 crossref_primary_10_1002_mds_28188 crossref_primary_10_1016_j_bj_2018_03_001 crossref_primary_10_1016_j_drudis_2022_01_016 crossref_primary_10_1080_14737175_2023_2174016 crossref_primary_10_3389_fninf_2021_630172 crossref_primary_10_1007_s00259_020_05183_1 crossref_primary_10_1002_hbm_26342 crossref_primary_10_1016_j_neurobiolaging_2018_12_009 crossref_primary_10_7554_eLife_49132 crossref_primary_10_3389_fnagi_2021_666437 crossref_primary_10_1016_j_brainres_2022_147955 crossref_primary_10_1016_j_ebiom_2023_104835 crossref_primary_10_1007_s00415_020_10040_0 crossref_primary_10_1002_alz_12867 crossref_primary_10_1002_glia_23572 crossref_primary_10_1002_mp_16655 crossref_primary_10_1016_j_nicl_2019_101788 crossref_primary_10_1016_j_jad_2020_04_054 crossref_primary_10_1016_j_neurol_2022_03_001 crossref_primary_10_1038_s41467_019_14159_1 crossref_primary_10_3389_fnins_2020_566876 crossref_primary_10_1016_j_neurobiolaging_2021_01_016 crossref_primary_10_1038_s41435_020_00113_5 crossref_primary_10_1089_brain_2020_0889 crossref_primary_10_1038_s41467_020_15701_2 crossref_primary_10_1111_jnc_15598 crossref_primary_10_1093_brain_awad189 crossref_primary_10_1093_brain_awab282 crossref_primary_10_1111_febs_16270 crossref_primary_10_1162_netn_a_00339 crossref_primary_10_3390_healthcare13050452 crossref_primary_10_1001_jamaneurol_2023_4038 crossref_primary_10_1007_s00401_019_02087_9 crossref_primary_10_1016_j_nicl_2019_101795 crossref_primary_10_1016_j_nicl_2021_102850 crossref_primary_10_1038_s41398_022_02114_6 crossref_primary_10_3389_fnagi_2021_758053 crossref_primary_10_1038_s41583_019_0177_6 crossref_primary_10_3389_fimmu_2019_01139 crossref_primary_10_1080_07317115_2019_1694115 crossref_primary_10_1002_alz_14266 crossref_primary_10_1002_mds_29339 crossref_primary_10_1021_acs_jmedchem_4c02563 crossref_primary_10_1038_s41598_021_96971_8 crossref_primary_10_1093_brain_awz100 crossref_primary_10_1093_brain_awy252 crossref_primary_10_1016_j_parkreldis_2019_07_001 crossref_primary_10_1093_brain_awac004 crossref_primary_10_1002_hbm_26689 crossref_primary_10_1038_s41582_021_00529_1 crossref_primary_10_1126_sciadv_abh1448 crossref_primary_10_3390_brainsci12101355 crossref_primary_10_1002_ana_26543 |
Cites_doi | 10.1093/brain/awh508 10.1093/brain/awf082 10.1016/j.neuroimage.2011.10.018 10.1126/science.1141736 10.1089/brain.2012.0073 10.3389/fnsys.2010.00147 10.1016/j.neuron.2013.07.035 10.1136/bmjopen-2016-013187 10.1002/ana.1159 10.1016/j.celrep.2014.12.034 10.1016/j.jalz.2012.11.008 10.1371/journal.pone.0013788 10.1212/WNL.0b013e3181b23564 10.1371/journal.pone.0031302 10.1016/j.neuron.2016.01.028 10.1016/j.neuroimage.2007.07.007 10.1093/cercor/bhj127 10.1126/science.1255555 10.1523/JNEUROSCI.2642-12.2013 10.1002/ana.24321 10.1126/science.1691865 10.1038/nrn3801 10.1093/brain/awu132 10.1007/s00401-014-1371-2 10.1016/j.neuroimage.2013.12.039 10.1007/BF02778005 10.1002/ana.410240308 10.1002/ana.410100602 10.1038/nrneurol.2013.221 10.1038/nrn2194 10.1093/brain/aww023 10.1212/WNL.47.1.1 10.1073/pnas.1301175110 10.3233/JAD-2010-1220 10.1371/journal.pcbi.1005104 10.1038/ncb1901 10.1073/pnas.0308627101 10.1093/brain/awx171 10.1007/s00401-015-1503-3 10.1073/pnas.0135058100 10.1093/brain/awx163 10.1016/j.neuron.2011.12.040 10.1016/j.cpet.2017.02.005 10.1074/jbc.M110.148460 10.1073/pnas.0914402107 10.1093/brain/aww027 10.1093/brain/aww163 10.1002/ana.20009 10.1093/brain/aww195 10.1007/BF00308809 10.1038/nrn2967 10.2307/202051 10.1093/brain/aws327 10.1002/ana.24546 10.1126/science.1132814 10.1016/j.neuroimage.2011.12.028 10.1523/JNEUROSCI.5062-08.2009 10.1007/s00415-011-6205-8 10.1016/j.jalz.2011.03.005 10.1084/jem.20160833 10.1093/brain/awm032 10.1038/nm.3457 10.1016/j.neuron.2012.03.004 10.1093/brain/awv338 10.1073/pnas.0905267106 10.1371/journal.pone.0012200 10.1093/brain/awm104 10.1038/nm.4011 10.1002/mds.26987 10.1074/jbc.M114.589309 10.1126/scitranslmed.aaf2362 10.1371/journal.pcbi.1002582 10.1007/s00401-014-1254-6 10.1162/jocn_a_00077 10.1038/nature23002 10.1016/0197-4580(95)00021-6 10.1056/NEJM198403083101021 10.3233/JAD-122059 10.1016/j.neuron.2011.06.031 10.1073/pnas.1301725110 10.1016/j.neurobiolaging.2016.09.001 10.1136/jnnp.37.2.121 10.1002/ana.23844 10.1016/j.nicl.2015.07.011 |
ContentType | Journal Article |
Copyright | The Author(s) (2018). Published by Oxford University Press on behalf of the Guarantors of Brain. 2018 The Author(s) (2018). Published by Oxford University Press on behalf of the Guarantors of Brain. |
Copyright_xml | – notice: The Author(s) (2018). Published by Oxford University Press on behalf of the Guarantors of Brain. 2018 – notice: The Author(s) (2018). Published by Oxford University Press on behalf of the Guarantors of Brain. |
DBID | TOX AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1093/brain/awx347 |
DatabaseName | Oxford Journals Open Access Collection CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: TOX name: Oxford Journals Open Access Collection url: https://academic.oup.com/journals/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1460-2156 |
EndPage | 567 |
ExternalDocumentID | PMC5837359 29293892 10_1093_brain_awx347 10.1093/brain/awx347 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Wellcome Trust sequence: 0 grantid: JBR 103838 funderid: 10.13039/100004440 – fundername: PSP Association sequence: 0 funderid: 10.13039/100011707 – fundername: National Institutes of Health sequence: 0 funderid: 10.13039/100000002 – fundername: National Institute for Health Research sequence: 0 grantid: RG64473 funderid: 10.13039/501100000272 – fundername: Medical Research Council sequence: 0 grantid: MC-A060-5PQ30 funderid: 10.13039/501100000265 – fundername: Medical Research Council grantid: G1100464 – fundername: Wellcome Trust – fundername: Medical Research Council grantid: MC_U105597119 – fundername: Medical Research Council grantid: MR/M009041/1 – fundername: Wellcome Trust grantid: JBR 103838 – fundername: Medical Research Council grantid: MR/M024873/1 – fundername: Medical Research Council grantid: MC-A060-5PQ30 – fundername: Medical Research Council grantid: MC_UU_00005/12 – fundername: ; ; ; – fundername: ; ; ; grantid: RG64473 – fundername: ; ; ; grantid: MC-A060-5PQ30 – fundername: ; ; ; grantid: JBR 103838 |
GroupedDBID | --- -E4 -~X .2P .I3 .XZ .ZR 0R~ 1TH 23N 2WC 4.4 482 48X 53G 5GY 5RE 5VS 5WA 5WD 6PF 70D AABZA AACZT AAIMJ AAJKP AAJQQ AAMDB AAMVS AAOGV AAPNW AAPQZ AAPXW AARHZ AAUAY AAUQX AAVAP AAVLN AAWTL ABEJV ABEUO ABIVO ABIXL ABJNI ABKDP ABLJU ABMNT ABNHQ ABNKS ABPTD ABQLI ABQNK ABWST ABXVV ABZBJ ACGFS ACIWK ACPRK ACUFI ACUTJ ACUTO ACYHN ADBBV ADEYI ADEZT ADGKP ADGZP ADHKW ADHZD ADIPN ADJQC ADOCK ADQBN ADRIX ADRTK ADVEK ADYVW ADZXQ AEGPL AEJOX AEKSI AELWJ AEMDU AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AFXAL AFXEN AGINJ AGKEF AGQXC AGSYK AGUTN AHMBA AHMMS AHXPO AIJHB AJEEA AKWXX ALMA_UNASSIGNED_HOLDINGS ALUQC APIBT APWMN ARIXL ATGXG AXUDD AYOIW BAWUL BAYMD BCRHZ BEYMZ BHONS BQDIO BR6 BSWAC BTRTY BVRKM C45 CDBKE COF CS3 CZ4 DAKXR DIK DILTD DU5 D~K E3Z EBS EE~ EJD EMOBN ENERS F5P F9B FECEO FHSFR FLUFQ FOEOM FOTVD FQBLK GAUVT GJXCC GX1 H13 H5~ HAR HW0 HZ~ IOX J21 J5H JXSIZ KAQDR KBUDW KOP KQ8 KSI KSN L7B M-Z M49 MHKGH ML0 N9A NGC NLBLG NOMLY NOYVH NU- O9- OAUYM OAWHX OBOKY OCZFY ODMLO OHH OJQWA OJZSN OK1 OPAEJ OVD OWPYF P2P PAFKI PEELM PQQKQ Q1. Q5Y R44 RD5 RIG ROL ROX ROZ RUSNO RW1 RXO TCURE TEORI TJX TLC TOX TR2 VVN W8F WH7 WOQ X7H YAYTL YKOAZ YSK YXANX ZKX ~91 AAYXX ABDFA ABGNP ABPQP ABVGC ABXZS ADNBA AEMQT AFYAG AGORE AJBYB AJNCP ALXQX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c482t-a0d902af3ed860514646495cc4ed9cccdf63052d026032f9ea01bd9620b76d8b3 |
IEDL.DBID | TOX |
ISSN | 0006-8950 1460-2156 |
IngestDate | Tue Sep 23 05:48:04 EDT 2025 Sun Sep 28 12:15:20 EDT 2025 Mon Jul 21 06:05:32 EDT 2025 Tue Jul 01 00:46:09 EDT 2025 Thu Apr 24 23:10:21 EDT 2025 Fri Dec 06 10:16:16 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | tau functional connectivity graph theory Alzheimer's disease progressive supranuclear palsy Alzheimer’s disease |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. http://creativecommons.org/licenses/by/4.0 The Author(s) (2018). Published by Oxford University Press on behalf of the Guarantors of Brain. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c482t-a0d902af3ed860514646495cc4ed9cccdf63052d026032f9ea01bd9620b76d8b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 John T. O’Brien and James B. Rowe contributed equally to this work. |
OpenAccessLink | https://dx.doi.org/10.1093/brain/awx347 |
PMID | 29293892 |
PQID | 1984262827 |
PQPubID | 23479 |
PageCount | 18 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5837359 proquest_miscellaneous_1984262827 pubmed_primary_29293892 crossref_primary_10_1093_brain_awx347 crossref_citationtrail_10_1093_brain_awx347 oup_primary_10_1093_brain_awx347 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-02-01 |
PublicationDateYYYYMMDD | 2018-02-01 |
PublicationDate_xml | – month: 02 year: 2018 text: 2018-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Brain (London, England : 1878) |
PublicationTitleAlternate | Brain |
PublicationYear | 2018 |
Publisher | Oxford University Press |
Publisher_xml | – sequence: 0 name: Oxford University Press – name: Oxford University Press |
References | Ahmed ( key 20180328174732_awx347-B2) 2014; 127 Goedert ( key 20180328174732_awx347-B32) 2015; 349 Clavaguera ( key 20180328174732_awx347-B19) 2009; 11 Cordato ( key 20180328174732_awx347-B20) 2005; 128 Greicius ( key 20180328174732_awx347-B36) 2003; 100 Crossley ( key 20180328174732_awx347-B22) 2014; 137 Xia ( key 20180328174732_awx347-B89) 2017; 12 Ossenkoppele ( key 20180328174732_awx347-B62) 2015; 77 Braak ( key 20180328174732_awx347-B13) 2013; 9 Chien ( key 20180328174732_awx347-B17) 2013; 34 Taniguchi-Watanabe ( key 20180328174732_awx347-B84) 2016; 131 Zhou ( key 20180328174732_awx347-B91) 2012; 73 Cordato ( key 20180328174732_awx347-B21) 2002; 125 Stam ( key 20180328174732_awx347-B82) 2006; 17 Durrett ( key 20180328174732_awx347-B26) 2010; 107 Saxena ( key 20180328174732_awx347-B74) 2011; 71 Power ( key 20180328174732_awx347-B65) 2012; 59 Gardner ( key 20180328174732_awx347-B31) 2013; 73 Chennu ( key 20180328174732_awx347-B16) 2017; 140 Maestú ( key 20180328174732_awx347-B54) 2015; 9 Klunk ( key 20180328174732_awx347-B46) 2004; 55 Jones ( key 20180328174732_awx347-B44) 2015; 139 Kundu ( key 20180328174732_awx347-B48) 2012; 60 Power ( key 20180328174732_awx347-B66) 2013; 79 Baker ( key 20180328174732_awx347-B7) 1994; 8 Liu ( key 20180328174732_awx347-B52) 2012; 7 The Mathworks Inc ( key 20180328174732_awx347-B85) 2015 Clavaguera ( key 20180328174732_awx347-B18) 2013; 110 Ashburner ( key 20180328174732_awx347-B6) 2007; 38 Passamonti ( key 20180328174732_awx347-B64) 2017; 140 Foster ( key 20180328174732_awx347-B30) 1988; 24 Joyce ( key 20180328174732_awx347-B45) 2010; 5 Ossenkoppele ( key 20180328174732_awx347-B63) 2016; 139 (Pt 5) Stam ( key 20180328174732_awx347-B83) 2014; 15 Roberson ( key 20180328174732_awx347-B72) 2007; 316 Alexander-Bloch ( key 20180328174732_awx347-B4) 2010; 4 Buckner ( key 20180328174732_awx347-B15) 2009; 29 Falcon ( key 20180328174732_awx347-B28) 2015; 290 Johnson ( key 20180328174732_awx347-B43) 2016; 79 de Haan ( key 20180328174732_awx347-B25) 2012; 8 Ellison ( key 20180328174732_awx347-B27) 2012 R Core Team ( key 20180328174732_awx347-B68) 2016 Nonaka ( key 20180328174732_awx347-B60) 2010; 285 Dai ( key 20180328174732_awx347-B24) 2014 Kundu ( key 20180328174732_awx347-B47) 2013; 110 Schofield ( key 20180328174732_awx347-B75) 2012; 259 Schwarz ( key 20180328174732_awx347-B78) 2016; 139 Höglinger ( key 20180328174732_awx347-B40) 2017; 32 Sisodia ( key 20180328174732_awx347-B79) 1990; 248 Bevan-Jones ( key 20180328174732_awx347-B9) 2017 Granovetter ( key 20180328174732_awx347-B35) 1983 Brier ( key 20180328174732_awx347-B14) 2016; 8 Raj ( key 20180328174732_awx347-B70) 2015; 10 Schöll ( key 20180328174732_awx347-B76) 2016; 89 Markesbery ( key 20180328174732_awx347-B56) 2010; 19 Okello ( key 20180328174732_awx347-B61) 2009; 73 Nisbet ( key 20180328174732_awx347-B59) 2015; 129 Xia ( key 20180328174732_awx347-B88) 2013; 9 Fitzpatrick ( key 20180328174732_awx347-B29) 2017; 547 Sanz-Arigita ( key 20180328174732_awx347-B73) 2010; 5 Guo ( key 20180328174732_awx347-B39) 2016; 213 Abdelnour ( key 20180328174732_awx347-B1) 2014; 90 Smith ( key 20180328174732_awx347-B80) 2016; 139 Litvan ( key 20180328174732_awx347-B51) 1996; 47 McKhann ( key 20180328174732_awx347-B57) 2011; 7 Appel ( key 20180328174732_awx347-B5) 1981; 10 Ypma ( key 20180328174732_awx347-B90) 2016; 12 Williams ( key 20180328174732_awx347-B87) 2007; 130 D'Antona ( key 20180328174732_awx347-B23) 1985; 108 (Pt 3) Prusiner ( key 20180328174732_awx347-B67) 1984; 310 Raj ( key 20180328174732_awx347-B69) 2012; 73 Goedert ( key 20180328174732_awx347-B33) 2006; 314 Whitfield-Gabrieli ( key 20180328174732_awx347-B86) 2012; 2 Schöll ( key 20180328174732_awx347-B77) 2017; 140 Ittner ( key 20180328174732_awx347-B42) 2011; 12 Iba ( key 20180328174732_awx347-B41) 2013; 33 Mandelli ( key 20180328174732_awx347-B55) 2016; 139 (Pt 10) Ballatore ( key 20180328174732_awx347-B8) 2007; 8 Smith ( key 20180328174732_awx347-B81) 2009; 106 Braak ( key 20180328174732_awx347-B12) 1995; 16 Liu ( key 20180328174732_awx347-B53) 2001; 50 Greicius ( key 20180328174732_awx347-B37) 2004; 101 Rittman ( key 20180328174732_awx347-B71) 2016; 48 Laird ( key 20180328174732_awx347-B49) 2011; 23 Bevan-Jones ( key 20180328174732_awx347-B10) 2017; 7 Braak ( key 20180328174732_awx347-B11) 1991; 82 Golbe ( key 20180328174732_awx347-B34) 2007; 130 Albert ( key 20180328174732_awx347-B3) 1974; 37 Guo ( key 20180328174732_awx347-B38) 2014; 20 Lehmann ( key 20180328174732_awx347-B50) 2013; 136 Myeku ( key 20180328174732_awx347-B58) 2016; 22 |
References_xml | – volume: 128 start-page: 1259 year: 2005 ident: key 20180328174732_awx347-B20 article-title: Clinical deficits correlate with regional cerebral atrophy in progressive supranuclear palsy publication-title: Brain doi: 10.1093/brain/awh508 – volume: 125 start-page: 789 year: 2002 ident: key 20180328174732_awx347-B21 article-title: Frontal atrophy correlates with behavioural changes in progressive supranuclear palsy publication-title: Brain doi: 10.1093/brain/awf082 – volume-title: Neuropathology: a reference text of CNS pathology year: 2012 ident: key 20180328174732_awx347-B27 – volume: 59 start-page: 2142 year: 2012 ident: key 20180328174732_awx347-B65 article-title: Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.10.018 – volume: 316 start-page: 750 year: 2007 ident: key 20180328174732_awx347-B72 article-title: Reducing endogenous tau ameliorates amyloid ß-induced deficits in an Alzheimer's disease mouse model publication-title: Science doi: 10.1126/science.1141736 – volume: 2 start-page: 125 year: 2012 ident: key 20180328174732_awx347-B86 article-title: Conn: a functional connectivity toolbox for correlated and anticorrelated brain networks publication-title: Brain Connect doi: 10.1089/brain.2012.0073 – volume: 4 start-page: 147 year: 2010 ident: key 20180328174732_awx347-B4 article-title: Disrupted modularity and local connectivity of brain functional networks in childhood-onset schizophrenia publication-title: Front Syst Neurosci doi: 10.3389/fnsys.2010.00147 – volume: 79 start-page: 798 year: 2013 ident: key 20180328174732_awx347-B66 article-title: Evidence for hubs in human functional brain networks publication-title: Neuron doi: 10.1016/j.neuron.2013.07.035 – volume: 7 start-page: e013187 year: 2017 ident: key 20180328174732_awx347-B10 article-title: Neuroimaging of Inflammation in Memory and Related Other Disorders (NIMROD) study protocol: a deep phenotyping cohort study of the role of brain inflammation in dementia, depression and other neurological illnesses publication-title: BMJ Open doi: 10.1136/bmjopen-2016-013187 – volume: 50 start-page: 494 year: 2001 ident: key 20180328174732_awx347-B53 article-title: Relationship of the extended tau haplotype to tau biochemistry and neuropathology in progressive supranuclear palsy publication-title: Ann Neurol doi: 10.1002/ana.1159 – volume: 10 start-page: 359 year: 2015 ident: key 20180328174732_awx347-B70 article-title: Network diffusion model of progression predicts longitudinal patterns of atrophy and metabolism in Alzheimer’s disease publication-title: Cell Rep doi: 10.1016/j.celrep.2014.12.034 – volume: 9 start-page: 666 year: 2013 ident: key 20180328174732_awx347-B88 article-title: [18 F] T807, a novel tau positron emission tomography imaging agent for Alzheimer's disease publication-title: Alzheimers Dement doi: 10.1016/j.jalz.2012.11.008 – volume: 5 start-page: e13788 year: 2010 ident: key 20180328174732_awx347-B73 article-title: Loss of ‘small-world’networks in Alzheimer's disease: graph analysis of FMRI resting-state functional connectivity publication-title: PLoS One doi: 10.1371/journal.pone.0013788 – volume: 73 start-page: 754 year: 2009 ident: key 20180328174732_awx347-B61 article-title: Conversion of amyloid positive and negative MCI to AD over 3 years An 11C-PIB PET study publication-title: Neurology doi: 10.1212/WNL.0b013e3181b23564 – volume: 7 start-page: e31302 year: 2012 ident: key 20180328174732_awx347-B52 article-title: Trans-synaptic spread of tau pathology in vivo publication-title: PLoS One doi: 10.1371/journal.pone.0031302 – volume: 89 start-page: 971 year: 2016 ident: key 20180328174732_awx347-B76 article-title: PET imaging of tau deposition in the aging human brain publication-title: Neuron doi: 10.1016/j.neuron.2016.01.028 – volume: 38 start-page: 95 year: 2007 ident: key 20180328174732_awx347-B6 article-title: A fast diffeomorphic image registration algorithm publication-title: Neuroimage doi: 10.1016/j.neuroimage.2007.07.007 – volume: 17 start-page: 92 year: 2006 ident: key 20180328174732_awx347-B82 article-title: Small-world networks and functional connectivity in Alzheimer's disease publication-title: Cereb Cortex doi: 10.1093/cercor/bhj127 – year: 2014 ident: key 20180328174732_awx347-B24 article-title: Identifying and mapping connectivity patterns of brain network hubs in Alzheimer's disease publication-title: Cereb Cortex – volume: 349 start-page: 1255555 year: 2015 ident: key 20180328174732_awx347-B32 article-title: Alzheimer’s and Parkinson’s diseases: the prion concept in relation to assembled Aβ, tau, and α-synuclein publication-title: Science doi: 10.1126/science.1255555 – volume: 33 start-page: 1024 year: 2013 ident: key 20180328174732_awx347-B41 article-title: Synthetic tau fibrils mediate transmission of neurofibrillary tangles in a transgenic mouse model of Alzheimer's-like tauopathy publication-title: J Neurosci doi: 10.1523/JNEUROSCI.2642-12.2013 – volume: 77 start-page: 338 year: 2015 ident: key 20180328174732_awx347-B62 article-title: Tau, amyloid, and hypometabolism in a patient with posterior cortical atrophy publication-title: Ann Neurol doi: 10.1002/ana.24321 – volume: 248 start-page: 492 year: 1990 ident: key 20180328174732_awx347-B79 article-title: Evidence that beta-amyloid protein in Alzheimer's disease is not derived by normal processing publication-title: Science doi: 10.1126/science.1691865 – volume: 15 start-page: 683 year: 2014 ident: key 20180328174732_awx347-B83 article-title: Modern network science of neurological disorders publication-title: Nat Rev Neurosci doi: 10.1038/nrn3801 – volume: 140 start-page: 781 year: 2017 ident: key 20180328174732_awx347-B64 article-title: 18F-AV-1451 positron emission tomography in Alzheimer's disease and progressive supranuclear palsy publication-title: Brain – volume: 137 start-page: 2382 year: 2014 ident: key 20180328174732_awx347-B22 article-title: The hubs of the human connectome are generally implicated in the anatomy of brain disorders publication-title: Brain doi: 10.1093/brain/awu132 – volume: 129 start-page: 207 year: 2015 ident: key 20180328174732_awx347-B59 article-title: Tau aggregation and its interplay with amyloid-β publication-title: Acta Neuropathol doi: 10.1007/s00401-014-1371-2 – volume: 90 start-page: 335 year: 2014 ident: key 20180328174732_awx347-B1 article-title: Network diffusion accurately models the relationship between structural and functional brain connectivity networks publication-title: Neuroimage doi: 10.1016/j.neuroimage.2013.12.039 – volume: 8 start-page: 25 year: 1994 ident: key 20180328174732_awx347-B7 article-title: Induction of β (A4)-amyloid in primates by injection of Alzheimer’s disease brain homogenate publication-title: Mol Neurobiol doi: 10.1007/BF02778005 – volume: 24 start-page: 399 year: 1988 ident: key 20180328174732_awx347-B30 article-title: Cerebral hypometabolism in progressive supranuclear palsy studied with positron emission tomography publication-title: Ann Neurol doi: 10.1002/ana.410240308 – volume: 10 start-page: 499 year: 1981 ident: key 20180328174732_awx347-B5 article-title: A unifying hypothesis for the cause of amyotrophic lateral sclerosis, parkinsonism, and Alzheimer disease publication-title: Ann Neurol doi: 10.1002/ana.410100602 – volume: 9 start-page: 708 year: 2013 ident: key 20180328174732_awx347-B13 article-title: Amyotrophic lateral sclerosis—a model of corticofugal axonal spread publication-title: Nat Rev Neurol doi: 10.1038/nrneurol.2013.221 – volume: 8 start-page: 663 year: 2007 ident: key 20180328174732_awx347-B8 article-title: Tau-mediated neurodegeneration in Alzheimer's disease and related disorders publication-title: Nat Rev Neurosci doi: 10.1038/nrn2194 – volume: 139 start-page: 1539 year: 2016 ident: key 20180328174732_awx347-B78 article-title: Regional profiles of the candidate tau PET ligand 18F-AV-1451 recapitulate key features of Braak histopathological stages publication-title: Brain doi: 10.1093/brain/aww023 – volume: 47 start-page: 1 year: 1996 ident: key 20180328174732_awx347-B51 article-title: Clinical research criteria for the diagnosis of progressive supranuclear palsy (Steele-Richardson-Olszewski syndrome) Report of the NINDS-SPSP International Workshop* publication-title: Neurology doi: 10.1212/WNL.47.1.1 – volume: 110 start-page: 9535 year: 2013 ident: key 20180328174732_awx347-B18 article-title: Brain homogenates from human tauopathies induce tau inclusions in mouse brain publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1301175110 – volume: 19 start-page: 221 year: 2010 ident: key 20180328174732_awx347-B56 article-title: Neuropathologic alterations in mild cognitive impairment: a review publication-title: J Alzheimers Dis doi: 10.3233/JAD-2010-1220 – volume: 12 start-page: e1005104 year: 2016 ident: key 20180328174732_awx347-B90 article-title: Statistical analysis of tract-tracing experiments demonstrates a dense, complex cortical network in the mouse publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1005104 – volume: 11 start-page: 909 year: 2009 ident: key 20180328174732_awx347-B19 article-title: Transmission and spreading of tauopathy in transgenic mouse brain publication-title: Nat Cell Biol doi: 10.1038/ncb1901 – volume: 101 start-page: 4637 year: 2004 ident: key 20180328174732_awx347-B37 article-title: Default-mode network activity distinguishes Alzheimer's disease from healthy aging: evidence from functional MRI publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0308627101 – volume: 140 start-page: 2286 year: 2017 ident: key 20180328174732_awx347-B77 article-title: Distinct 18F-AV-1451 tau PET retention patterns in early-and late-onset Alzheimer’s disease publication-title: Brain doi: 10.1093/brain/awx171 – volume: 131 start-page: 267 year: 2016 ident: key 20180328174732_awx347-B84 article-title: Biochemical classification of tauopathies by immunoblot, protein sequence and mass spectrometric analyses of sarkosyl-insoluble and trypsin-resistant tau publication-title: Acta Neuropathol doi: 10.1007/s00401-015-1503-3 – volume: 100 start-page: 253 year: 2003 ident: key 20180328174732_awx347-B36 article-title: Functional connectivity in the resting brain: a network analysis of the default mode hypothesis publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0135058100 – volume: 140 start-page: 2120 year: 2017 ident: key 20180328174732_awx347-B16 article-title: Brain networks predict metabolism, diagnosis and prognosis at the bedside in disorders of consciousness publication-title: Brain doi: 10.1093/brain/awx163 – year: 2017 ident: key 20180328174732_awx347-B9 article-title: [18F] publication-title: J Neurol Neurosurg Psychiatry – volume: 73 start-page: 1204 year: 2012 ident: key 20180328174732_awx347-B69 article-title: A network diffusion model of disease progression in dementia publication-title: Neuron doi: 10.1016/j.neuron.2011.12.040 – volume: 12 start-page: 351 year: 2017 ident: key 20180328174732_awx347-B89 article-title: Multimodal PET imaging of amyloid and Tau pathology in Alzheimer disease and non–Alzheimer disease dementias publication-title: PET Clin doi: 10.1016/j.cpet.2017.02.005 – volume: 285 start-page: 34885 year: 2010 ident: key 20180328174732_awx347-B60 article-title: Seeded aggregation and toxicity of α-synuclein and tau: cellular models of neurodegenerative diseases publication-title: J Biol Chem doi: 10.1074/jbc.M110.148460 – volume: 107 start-page: 4491 year: 2010 ident: key 20180328174732_awx347-B26 article-title: Some features of the spread of epidemics and information on a random graph publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0914402107 – volume: 139 (Pt 5) start-page: 1551 year: 2016 ident: key 20180328174732_awx347-B63 article-title: Tau PET patterns mirror clinical and neuroanatomical variability in Alzheimer’s disease publication-title: Brain doi: 10.1093/brain/aww027 – volume: 139 start-page: 2372 year: 2016 ident: key 20180328174732_awx347-B80 article-title: 18F-AV-1451 tau PET imaging correlates strongly with tau neuropathology in MAPT mutation carriers publication-title: Brain doi: 10.1093/brain/aww163 – volume: 55 start-page: 306 year: 2004 ident: key 20180328174732_awx347-B46 article-title: Imaging brain amyloid in Alzheimer's disease with Pittsburgh Compound-B publication-title: Ann Neurol doi: 10.1002/ana.20009 – volume: 139 (Pt 10) start-page: 2778 year: 2016 ident: key 20180328174732_awx347-B55 article-title: Healthy brain connectivity predicts atrophy progression in non-fluent variant of primary progressive aphasia publication-title: Brain doi: 10.1093/brain/aww195 – volume-title: Matlab and statistics and machine learning toolbox. Release 2015b ed year: 2015 ident: key 20180328174732_awx347-B85 – volume: 82 start-page: 239 year: 1991 ident: key 20180328174732_awx347-B11 article-title: Neuropathological stageing of Alzheimer-related changes publication-title: Acta Neuropathol doi: 10.1007/BF00308809 – volume: 12 start-page: 65 year: 2011 ident: key 20180328174732_awx347-B42 article-title: Amyloid-[beta] and tau–a toxic pas de deux in Alzheimer's disease publication-title: Nat Rev Neurosci doi: 10.1038/nrn2967 – start-page: 201 year: 1983 ident: key 20180328174732_awx347-B35 article-title: The strength of weak ties: a network theory revisited publication-title: Soc Theory doi: 10.2307/202051 – volume: 136 start-page: 844 year: 2013 ident: key 20180328174732_awx347-B50 article-title: Diverging patterns of amyloid deposition and hypometabolism in clinical variants of probable Alzheimer’s disease publication-title: Brain doi: 10.1093/brain/aws327 – volume: 79 start-page: 110 year: 2016 ident: key 20180328174732_awx347-B43 article-title: Tau positron emission tomographic imaging in aging and early Alzheimer disease publication-title: Ann Neurol doi: 10.1002/ana.24546 – volume: 314 start-page: 777 year: 2006 ident: key 20180328174732_awx347-B33 article-title: A century of Alzheimer's disease publication-title: Science doi: 10.1126/science.1132814 – volume: 60 start-page: 1759 year: 2012 ident: key 20180328174732_awx347-B48 article-title: Differentiating BOLD and non-BOLD signals in fMRI time series using multi-echo EPI publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.12.028 – volume: 29 start-page: 1860 year: 2009 ident: key 20180328174732_awx347-B15 article-title: Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and relation to Alzheimer's disease publication-title: J Neurosci doi: 10.1523/JNEUROSCI.5062-08.2009 – volume: 259 start-page: 482 year: 2012 ident: key 20180328174732_awx347-B75 article-title: The relationship between clinical and pathological variables in Richardson’s syndrome publication-title: J Neurol doi: 10.1007/s00415-011-6205-8 – volume: 7 start-page: 263 year: 2011 ident: key 20180328174732_awx347-B57 article-title: The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer's disease publication-title: Alzheimers Dement doi: 10.1016/j.jalz.2011.03.005 – volume: 213 start-page: 2635 year: 2016 ident: key 20180328174732_awx347-B39 article-title: Unique pathological tau conformers from Alzheimer’s brains transmit tau pathology in nontransgenic mice publication-title: J Exp Med doi: 10.1084/jem.20160833 – volume: 130 start-page: 1552 year: 2007 ident: key 20180328174732_awx347-B34 article-title: A clinical rating scale for progressive supranuclear palsy publication-title: Brain doi: 10.1093/brain/awm032 – volume: 20 start-page: 130 year: 2014 ident: key 20180328174732_awx347-B38 article-title: Cell-to-cell transmission of pathogenic proteins in neurodegenerative diseases publication-title: Nat Med doi: 10.1038/nm.3457 – volume-title: R: a language and environment for statistical computing year: 2016 ident: key 20180328174732_awx347-B68 – volume: 73 start-page: 1216 year: 2012 ident: key 20180328174732_awx347-B91 article-title: Predicting regional neurodegeneration from the healthy brain functional connectome publication-title: Neuron doi: 10.1016/j.neuron.2012.03.004 – volume: 139 start-page: 547 year: 2015 ident: key 20180328174732_awx347-B44 article-title: Cascading network failure across the Alzheimer’s disease spectrum publication-title: Brain doi: 10.1093/brain/awv338 – volume: 106 start-page: 13040 year: 2009 ident: key 20180328174732_awx347-B81 article-title: Correspondence of the brain's functional architecture during activation and rest publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0905267106 – volume: 5 start-page: e12200 year: 2010 ident: key 20180328174732_awx347-B45 article-title: A new measure of centrality for brain networks publication-title: PLoS One doi: 10.1371/journal.pone.0012200 – volume: 130 start-page: 1566 year: 2007 ident: key 20180328174732_awx347-B87 article-title: Pathological tau burden and distribution distinguishes progressive supranuclear palsy-parkinsonism from Richardson's syndrome publication-title: Brain doi: 10.1093/brain/awm104 – volume: 22 start-page: 46 year: 2016 ident: key 20180328174732_awx347-B58 article-title: Tau-driven 26S proteasome impairment and cognitive dysfunction can be prevented early in disease by activating cAMP-PKA signaling publication-title: Nat Med doi: 10.1038/nm.4011 – volume: 32 start-page: 853 year: 2017 ident: key 20180328174732_awx347-B40 article-title: Clinical diagnosis of progressive supranuclear palsy: the Movement Disorder Society Criteria publication-title: Mov Disord doi: 10.1002/mds.26987 – volume: 290 start-page: 1049 year: 2015 ident: key 20180328174732_awx347-B28 article-title: Conformation determines the seeding potencies of native and recombinant Tau aggregates publication-title: J Biol Chem doi: 10.1074/jbc.M114.589309 – volume: 8 start-page: 338ra66 year: 2016 ident: key 20180328174732_awx347-B14 article-title: Tau and Abeta imaging, CSF measures, and cognition in Alzheimer's disease publication-title: Sci Transl Med doi: 10.1126/scitranslmed.aaf2362 – volume: 8 start-page: e1002582 year: 2012 ident: key 20180328174732_awx347-B25 article-title: Activity dependent degeneration explains hub vulnerability in Alzheimer's disease publication-title: PLoS Comput Biol doi: 10.1371/journal.pcbi.1002582 – volume: 127 start-page: 667 year: 2014 ident: key 20180328174732_awx347-B2 article-title: A novel in vivo model of tau propagation with rapid and progressive neurofibrillary tangle pathology: the pattern of spread is determined by connectivity, not proximity publication-title: Acta Neuropathol doi: 10.1007/s00401-014-1254-6 – volume: 23 start-page: 4022 year: 2011 ident: key 20180328174732_awx347-B49 article-title: Behavioral interpretations of intrinsic connectivity networks publication-title: J Cogn Neurosci doi: 10.1162/jocn_a_00077 – volume: 547 start-page: 185 year: 2017 ident: key 20180328174732_awx347-B29 article-title: Cryo-EM structures of tau filaments from Alzheimer's disease publication-title: Nature doi: 10.1038/nature23002 – volume: 16 start-page: 271 year: 1995 ident: key 20180328174732_awx347-B12 article-title: Staging of Alzheimer's disease-related neurofibrillary changes publication-title: Neurobiol Aging doi: 10.1016/0197-4580(95)00021-6 – volume: 310 start-page: 661 year: 1984 ident: key 20180328174732_awx347-B67 article-title: Some speculations about prions, amyloid, and Alzheimer's disease publication-title: N Engl J Med doi: 10.1056/NEJM198403083101021 – volume: 34 start-page: 457 year: 2013 ident: key 20180328174732_awx347-B17 article-title: Early clinical PET imaging results with the novel PHF-tau radioligand [F-18]-T807 publication-title: J Alzheimers Dis doi: 10.3233/JAD-122059 – volume: 71 start-page: 35 year: 2011 ident: key 20180328174732_awx347-B74 article-title: Selective neuronal vulnerability in neurodegenerative diseases: from stressor thresholds to degeneration publication-title: Neuron doi: 10.1016/j.neuron.2011.06.031 – volume: 108 (Pt 3) start-page: 785 year: 1985 ident: key 20180328174732_awx347-B23 article-title: Subcortical dementia publication-title: Frontal cortex hypometabolism detected by positron tomography in patients with progressive supranuclear palsy. Brain – volume: 110 start-page: 16187 year: 2013 ident: key 20180328174732_awx347-B47 article-title: Integrated strategy for improving functional connectivity mapping using multiecho fMRI publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1301725110 – volume: 48 start-page: 153 year: 2016 ident: key 20180328174732_awx347-B71 article-title: Regional expression of the MAPT gene is associated with loss of hubs in brain networks and cognitive impairment in Parkinson disease and progressive supranuclear palsy publication-title: Neurobiol Aging doi: 10.1016/j.neurobiolaging.2016.09.001 – volume: 37 start-page: 121 year: 1974 ident: key 20180328174732_awx347-B3 article-title: The ‘subcortical dementia’ of progressive supranuclear palsy publication-title: J Neurol Neurosurg Psychiatry doi: 10.1136/jnnp.37.2.121 – volume: 73 start-page: 603 year: 2013 ident: key 20180328174732_awx347-B31 article-title: Intrinsic connectivity network disruption in progressive supranuclear palsy publication-title: Ann Neurol doi: 10.1002/ana.23844 – volume: 9 start-page: 103 year: 2015 ident: key 20180328174732_awx347-B54 article-title: A multicenter study of the early detection of synaptic dysfunction in mild cognitive impairment using magnetoencephalography-derived functional connectivity publication-title: Neuroimage Clin doi: 10.1016/j.nicl.2015.07.011 |
SSID | ssj0014326 |
Score | 2.621075 |
Snippet | Prion-like, trans-neuronal spread of tau pathology in humans is controversial. By evaluating tau burden and functional connectivity in living patients, Cope et... Alzheimer's disease and progressive supranuclear palsy (PSP) represent neurodegenerative tauopathies with predominantly cortical versus subcortical disease... Prion-like, trans-neuronal spread of tau pathology in humans is controversial. By evaluating tau burden and functional connectivity in living patients, Cope et... |
SourceID | pubmedcentral proquest pubmed crossref oup |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 550 |
SubjectTerms | Aged Aged, 80 and over Alzheimer Disease - diagnostic imaging Alzheimer Disease - metabolism Alzheimer Disease - pathology Aniline Compounds - pharmacokinetics Brain Mapping Carbolines - pharmacokinetics Connectome - methods Female Humans Image Processing, Computer-Assisted Magnetic Resonance Imaging Male Middle Aged Neural Pathways - diagnostic imaging Original Oxygen - blood Positron-Emission Tomography Rest Supranuclear Palsy, Progressive - diagnostic imaging Supranuclear Palsy, Progressive - metabolism Supranuclear Palsy, Progressive - pathology tau Proteins - metabolism Thiazoles - pharmacokinetics |
Title | Tau burden and the functional connectome in Alzheimer's disease and progressive supranuclear palsy |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29293892 https://www.proquest.com/docview/1984262827 https://pubmed.ncbi.nlm.nih.gov/PMC5837359 |
Volume | 141 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1La8JAEF6Kh9JL6bv2IVto6aEE4-4m2T1KqdgW24uCt7BPFDSKj75-fXeTGIy0SI6ZDWFmNvNlZ-YbAG5x5HM_4g2PqVB6hAbco5Iaj2lkNJUNI1Ky6s5b2O6Rl37Qz0mS5n-k8BmuCzcroc4_vzBxXeM2_jp_7r73i2wBwelYNffp9SgL_LzAfXNxKfSU2tnWUOVmceRatGkdgP0cJsJmZtdDsKOTI7DbyRPhx0B0-RKKtAUB8kRBC-OgC1HZyR6UrnxFLiZjDYcJbI5-Bno41rP7OcwTMumitDbLlcF-aDhfTm3UcuTGfAan1ie_T0Cv9dR9bHv5uARPEooWHvcV8xE3WCsaOlrz0F4skJJoxaSUyoR2cyPlWMQwMkxzvyEUC5EvolBRgU9BJZkk-hxAZbhWwppXYU7cUZUwJuIEY0yU5DiqgoeVJmOZc4m7kRajOMtp4zjVe5zpvQruCulpxqHxjxy0RtkicrOyWGz3gUtu8ERPlvO4wagj16fIypxlFiyehCwGtMAMVUFUsm0h4Di2y3eS4SDl2g7sDzwO2MX2V7sEexZM0ayi-wpUFrOlvraAZSFqFqo_v9ZSn_0F4cLvxQ |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tau+burden+and+the+functional+connectome+in+Alzheimer%27s+disease+and+progressive+supranuclear+palsy&rft.jtitle=Brain+%28London%2C+England+%3A+1878%29&rft.au=Cope%2C+Thomas+E&rft.au=Rittman%2C+Timothy&rft.au=Borchert%2C+Robin+J&rft.au=Jones%2C+P+Simon&rft.date=2018-02-01&rft.issn=1460-2156&rft.eissn=1460-2156&rft.volume=141&rft.issue=2&rft.spage=550&rft_id=info:doi/10.1093%2Fbrain%2Fawx347&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-8950&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-8950&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-8950&client=summon |