Tau burden and the functional connectome in Alzheimer's disease and progressive supranuclear palsy

Prion-like, trans-neuronal spread of tau pathology in humans is controversial. By evaluating tau burden and functional connectivity in living patients, Cope et al. demonstrate relationships consistent with this in Alzheimer's disease but not progressive supranuclear palsy. Tau distribution in t...

Full description

Saved in:
Bibliographic Details
Published inBrain (London, England : 1878) Vol. 141; no. 2; pp. 550 - 567
Main Authors Cope, Thomas E, Rittman, Timothy, Borchert, Robin J, Jones, P Simon, Vatansever, Deniz, Allinson, Kieren, Passamonti, Luca, Vazquez Rodriguez, Patricia, Bevan-Jones, W Richard, O'Brien, John T, Rowe, James B
Format Journal Article
LanguageEnglish
Published England Oxford University Press 01.02.2018
Subjects
Online AccessGet full text
ISSN0006-8950
1460-2156
1460-2156
DOI10.1093/brain/awx347

Cover

Abstract Prion-like, trans-neuronal spread of tau pathology in humans is controversial. By evaluating tau burden and functional connectivity in living patients, Cope et al. demonstrate relationships consistent with this in Alzheimer's disease but not progressive supranuclear palsy. Tau distribution in the latter is better explained by metabolic demand and trophic support. Abstract Alzheimer's disease and progressive supranuclear palsy (PSP) represent neurodegenerative tauopathies with predominantly cortical versus subcortical disease burden. In Alzheimer's disease, neuropathology and atrophy preferentially affect 'hub' brain regions that are densely connected. It was unclear whether hubs are differentially affected by neurodegeneration because they are more likely to receive pathological proteins that propagate trans-neuronally, in a prion-like manner, or whether they are selectively vulnerable due to a lack of local trophic factors, higher metabolic demands, or differential gene expression. We assessed the relationship between tau burden and brain functional connectivity, by combining in vivo PET imaging using the ligand AV-1451, and graph theoretic measures of resting state functional MRI in 17 patients with Alzheimer's disease, 17 patients with PSP, and 12 controls. Strongly connected nodes displayed more tau pathology in Alzheimer's disease, independently of intrinsic connectivity network, validating the predictions of theories of trans-neuronal spread but not supporting a role for metabolic demands or deficient trophic support in tau accumulation. This was not a compensatory phenomenon, as the functional consequence of increasing tau burden in Alzheimer's disease was a progressive weakening of the connectivity of these same nodes, reducing weighted degree and local efficiency and resulting in weaker 'small-world' properties. Conversely, in PSP, unlike in Alzheimer's disease, those nodes that accrued pathological tau were those that displayed graph metric properties associated with increased metabolic demand and a lack of trophic support rather than strong functional connectivity. Together, these findings go some way towards explaining why Alzheimer's disease affects large scale connectivity networks throughout cortex while neuropathology in PSP is concentrated in a small number of subcortical structures. Further, we demonstrate that in PSP increasing tau burden in midbrain and deep nuclei was associated with strengthened cortico-cortical functional connectivity. Disrupted cortico-subcortical and cortico-brainstem interactions meant that information transfer took less direct paths, passing through a larger number of cortical nodes, reducing closeness centrality and eigenvector centrality in PSP, while increasing weighted degree, clustering, betweenness centrality and local efficiency. Our results have wide-ranging implications, from the validation of models of tau trafficking in humans to understanding the relationship between regional tau burden and brain functional reorganization.
AbstractList Prion-like, trans-neuronal spread of tau pathology in humans is controversial. By evaluating tau burden and functional connectivity in living patients, Cope et al. demonstrate relationships consistent with this in Alzheimer's disease but not progressive supranuclear palsy. Tau distribution in the latter is better explained by metabolic demand and trophic support. Abstract Alzheimer's disease and progressive supranuclear palsy (PSP) represent neurodegenerative tauopathies with predominantly cortical versus subcortical disease burden. In Alzheimer's disease, neuropathology and atrophy preferentially affect 'hub' brain regions that are densely connected. It was unclear whether hubs are differentially affected by neurodegeneration because they are more likely to receive pathological proteins that propagate trans-neuronally, in a prion-like manner, or whether they are selectively vulnerable due to a lack of local trophic factors, higher metabolic demands, or differential gene expression. We assessed the relationship between tau burden and brain functional connectivity, by combining in vivo PET imaging using the ligand AV-1451, and graph theoretic measures of resting state functional MRI in 17 patients with Alzheimer's disease, 17 patients with PSP, and 12 controls. Strongly connected nodes displayed more tau pathology in Alzheimer's disease, independently of intrinsic connectivity network, validating the predictions of theories of trans-neuronal spread but not supporting a role for metabolic demands or deficient trophic support in tau accumulation. This was not a compensatory phenomenon, as the functional consequence of increasing tau burden in Alzheimer's disease was a progressive weakening of the connectivity of these same nodes, reducing weighted degree and local efficiency and resulting in weaker 'small-world' properties. Conversely, in PSP, unlike in Alzheimer's disease, those nodes that accrued pathological tau were those that displayed graph metric properties associated with increased metabolic demand and a lack of trophic support rather than strong functional connectivity. Together, these findings go some way towards explaining why Alzheimer's disease affects large scale connectivity networks throughout cortex while neuropathology in PSP is concentrated in a small number of subcortical structures. Further, we demonstrate that in PSP increasing tau burden in midbrain and deep nuclei was associated with strengthened cortico-cortical functional connectivity. Disrupted cortico-subcortical and cortico-brainstem interactions meant that information transfer took less direct paths, passing through a larger number of cortical nodes, reducing closeness centrality and eigenvector centrality in PSP, while increasing weighted degree, clustering, betweenness centrality and local efficiency. Our results have wide-ranging implications, from the validation of models of tau trafficking in humans to understanding the relationship between regional tau burden and brain functional reorganization.
Prion-like, trans-neuronal spread of tau pathology in humans is controversial. By evaluating tau burden and functional connectivity in living patients, Cope et al. demonstrate relationships consistent with this in Alzheimer's disease but not progressive supranuclear palsy. Tau distribution in the latter is better explained by metabolic demand and trophic support. Alzheimer’s disease and progressive supranuclear palsy (PSP) represent neurodegenerative tauopathies with predominantly cortical versus subcortical disease burden. In Alzheimer’s disease, neuropathology and atrophy preferentially affect ‘hub’ brain regions that are densely connected. It was unclear whether hubs are differentially affected by neurodegeneration because they are more likely to receive pathological proteins that propagate trans-neuronally, in a prion-like manner, or whether they are selectively vulnerable due to a lack of local trophic factors, higher metabolic demands, or differential gene expression. We assessed the relationship between tau burden and brain functional connectivity, by combining in vivo PET imaging using the ligand AV-1451, and graph theoretic measures of resting state functional MRI in 17 patients with Alzheimer’s disease, 17 patients with PSP, and 12 controls. Strongly connected nodes displayed more tau pathology in Alzheimer’s disease, independently of intrinsic connectivity network, validating the predictions of theories of trans-neuronal spread but not supporting a role for metabolic demands or deficient trophic support in tau accumulation. This was not a compensatory phenomenon, as the functional consequence of increasing tau burden in Alzheimer’s disease was a progressive weakening of the connectivity of these same nodes, reducing weighted degree and local efficiency and resulting in weaker ‘small-world’ properties. Conversely, in PSP, unlike in Alzheimer’s disease, those nodes that accrued pathological tau were those that displayed graph metric properties associated with increased metabolic demand and a lack of trophic support rather than strong functional connectivity. Together, these findings go some way towards explaining why Alzheimer’s disease affects large scale connectivity networks throughout cortex while neuropathology in PSP is concentrated in a small number of subcortical structures. Further, we demonstrate that in PSP increasing tau burden in midbrain and deep nuclei was associated with strengthened cortico-cortical functional connectivity. Disrupted cortico-subcortical and cortico-brainstem interactions meant that information transfer took less direct paths, passing through a larger number of cortical nodes, reducing closeness centrality and eigenvector centrality in PSP, while increasing weighted degree, clustering, betweenness centrality and local efficiency. Our results have wide-ranging implications, from the validation of models of tau trafficking in humans to understanding the relationship between regional tau burden and brain functional reorganization.
Alzheimer's disease and progressive supranuclear palsy (PSP) represent neurodegenerative tauopathies with predominantly cortical versus subcortical disease burden. In Alzheimer's disease, neuropathology and atrophy preferentially affect 'hub' brain regions that are densely connected. It was unclear whether hubs are differentially affected by neurodegeneration because they are more likely to receive pathological proteins that propagate trans-neuronally, in a prion-like manner, or whether they are selectively vulnerable due to a lack of local trophic factors, higher metabolic demands, or differential gene expression. We assessed the relationship between tau burden and brain functional connectivity, by combining in vivo PET imaging using the ligand AV-1451, and graph theoretic measures of resting state functional MRI in 17 patients with Alzheimer's disease, 17 patients with PSP, and 12 controls. Strongly connected nodes displayed more tau pathology in Alzheimer's disease, independently of intrinsic connectivity network, validating the predictions of theories of trans-neuronal spread but not supporting a role for metabolic demands or deficient trophic support in tau accumulation. This was not a compensatory phenomenon, as the functional consequence of increasing tau burden in Alzheimer's disease was a progressive weakening of the connectivity of these same nodes, reducing weighted degree and local efficiency and resulting in weaker 'small-world' properties. Conversely, in PSP, unlike in Alzheimer's disease, those nodes that accrued pathological tau were those that displayed graph metric properties associated with increased metabolic demand and a lack of trophic support rather than strong functional connectivity. Together, these findings go some way towards explaining why Alzheimer's disease affects large scale connectivity networks throughout cortex while neuropathology in PSP is concentrated in a small number of subcortical structures. Further, we demonstrate that in PSP increasing tau burden in midbrain and deep nuclei was associated with strengthened cortico-cortical functional connectivity. Disrupted cortico-subcortical and cortico-brainstem interactions meant that information transfer took less direct paths, passing through a larger number of cortical nodes, reducing closeness centrality and eigenvector centrality in PSP, while increasing weighted degree, clustering, betweenness centrality and local efficiency. Our results have wide-ranging implications, from the validation of models of tau trafficking in humans to understanding the relationship between regional tau burden and brain functional reorganization.
Alzheimer's disease and progressive supranuclear palsy (PSP) represent neurodegenerative tauopathies with predominantly cortical versus subcortical disease burden. In Alzheimer's disease, neuropathology and atrophy preferentially affect 'hub' brain regions that are densely connected. It was unclear whether hubs are differentially affected by neurodegeneration because they are more likely to receive pathological proteins that propagate trans-neuronally, in a prion-like manner, or whether they are selectively vulnerable due to a lack of local trophic factors, higher metabolic demands, or differential gene expression. We assessed the relationship between tau burden and brain functional connectivity, by combining in vivo PET imaging using the ligand AV-1451, and graph theoretic measures of resting state functional MRI in 17 patients with Alzheimer's disease, 17 patients with PSP, and 12 controls. Strongly connected nodes displayed more tau pathology in Alzheimer's disease, independently of intrinsic connectivity network, validating the predictions of theories of trans-neuronal spread but not supporting a role for metabolic demands or deficient trophic support in tau accumulation. This was not a compensatory phenomenon, as the functional consequence of increasing tau burden in Alzheimer's disease was a progressive weakening of the connectivity of these same nodes, reducing weighted degree and local efficiency and resulting in weaker 'small-world' properties. Conversely, in PSP, unlike in Alzheimer's disease, those nodes that accrued pathological tau were those that displayed graph metric properties associated with increased metabolic demand and a lack of trophic support rather than strong functional connectivity. Together, these findings go some way towards explaining why Alzheimer's disease affects large scale connectivity networks throughout cortex while neuropathology in PSP is concentrated in a small number of subcortical structures. Further, we demonstrate that in PSP increasing tau burden in midbrain and deep nuclei was associated with strengthened cortico-cortical functional connectivity. Disrupted cortico-subcortical and cortico-brainstem interactions meant that information transfer took less direct paths, passing through a larger number of cortical nodes, reducing closeness centrality and eigenvector centrality in PSP, while increasing weighted degree, clustering, betweenness centrality and local efficiency. Our results have wide-ranging implications, from the validation of models of tau trafficking in humans to understanding the relationship between regional tau burden and brain functional reorganization.Alzheimer's disease and progressive supranuclear palsy (PSP) represent neurodegenerative tauopathies with predominantly cortical versus subcortical disease burden. In Alzheimer's disease, neuropathology and atrophy preferentially affect 'hub' brain regions that are densely connected. It was unclear whether hubs are differentially affected by neurodegeneration because they are more likely to receive pathological proteins that propagate trans-neuronally, in a prion-like manner, or whether they are selectively vulnerable due to a lack of local trophic factors, higher metabolic demands, or differential gene expression. We assessed the relationship between tau burden and brain functional connectivity, by combining in vivo PET imaging using the ligand AV-1451, and graph theoretic measures of resting state functional MRI in 17 patients with Alzheimer's disease, 17 patients with PSP, and 12 controls. Strongly connected nodes displayed more tau pathology in Alzheimer's disease, independently of intrinsic connectivity network, validating the predictions of theories of trans-neuronal spread but not supporting a role for metabolic demands or deficient trophic support in tau accumulation. This was not a compensatory phenomenon, as the functional consequence of increasing tau burden in Alzheimer's disease was a progressive weakening of the connectivity of these same nodes, reducing weighted degree and local efficiency and resulting in weaker 'small-world' properties. Conversely, in PSP, unlike in Alzheimer's disease, those nodes that accrued pathological tau were those that displayed graph metric properties associated with increased metabolic demand and a lack of trophic support rather than strong functional connectivity. Together, these findings go some way towards explaining why Alzheimer's disease affects large scale connectivity networks throughout cortex while neuropathology in PSP is concentrated in a small number of subcortical structures. Further, we demonstrate that in PSP increasing tau burden in midbrain and deep nuclei was associated with strengthened cortico-cortical functional connectivity. Disrupted cortico-subcortical and cortico-brainstem interactions meant that information transfer took less direct paths, passing through a larger number of cortical nodes, reducing closeness centrality and eigenvector centrality in PSP, while increasing weighted degree, clustering, betweenness centrality and local efficiency. Our results have wide-ranging implications, from the validation of models of tau trafficking in humans to understanding the relationship between regional tau burden and brain functional reorganization.
Author Cope, Thomas E
Bevan-Jones, W Richard
Rittman, Timothy
Allinson, Kieren
Passamonti, Luca
Rowe, James B
Vatansever, Deniz
Vazquez Rodriguez, Patricia
Jones, P Simon
O'Brien, John T
Borchert, Robin J
AuthorAffiliation 3 Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, UK
6 Medical Research Council Cognition and Brain Sciences Unit, Cambridge, UK
2 Department of Psychology, University of York, York, UK
4 Department of Psychiatry, University of Cambridge, Cambridge, UK
1 Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
5 Department of Pathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
AuthorAffiliation_xml – name: 4 Department of Psychiatry, University of Cambridge, Cambridge, UK
– name: 1 Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
– name: 2 Department of Psychology, University of York, York, UK
– name: 3 Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, UK
– name: 5 Department of Pathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
– name: 6 Medical Research Council Cognition and Brain Sciences Unit, Cambridge, UK
Author_xml – sequence: 1
  givenname: Thomas E
  surname: Cope
  fullname: Cope, Thomas E
  email: thomascope@gmail.com
  organization: Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
– sequence: 2
  givenname: Timothy
  surname: Rittman
  fullname: Rittman, Timothy
  organization: Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
– sequence: 3
  givenname: Robin J
  surname: Borchert
  fullname: Borchert, Robin J
  organization: Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
– sequence: 4
  givenname: P Simon
  surname: Jones
  fullname: Jones, P Simon
  organization: Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
– sequence: 5
  givenname: Deniz
  surname: Vatansever
  fullname: Vatansever, Deniz
  organization: Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
– sequence: 6
  givenname: Kieren
  surname: Allinson
  fullname: Allinson, Kieren
  organization: Department of Pathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
– sequence: 7
  givenname: Luca
  surname: Passamonti
  fullname: Passamonti, Luca
  organization: Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
– sequence: 8
  givenname: Patricia
  surname: Vazquez Rodriguez
  fullname: Vazquez Rodriguez, Patricia
  organization: Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
– sequence: 9
  givenname: W Richard
  surname: Bevan-Jones
  fullname: Bevan-Jones, W Richard
  organization: Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
– sequence: 10
  givenname: John T
  surname: O'Brien
  fullname: O'Brien, John T
  organization: Department of Psychiatry, University of Cambridge, Cambridge, UK
– sequence: 11
  givenname: James B
  surname: Rowe
  fullname: Rowe, James B
  organization: Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29293892$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1v1DAQxS1URLeFG2fkWzkQOrETb3xBqiq-pEpcytma2JOuUWIHOy6Uv560WypAAs1hDvN7b8Z-R-wgxECMPa_hdQ1anvYJfTjFb99ls33ENnWjoBJ1qw7YBgBU1ekWDtlRzl8A6kYK9YQdCi207LTYsP4SC-9LchQ4BseXHfGhBLv4GHDkNoZAdokTcR_42fhjR36idJK585kw051oTvEqUc7-mnguc8JQ7EiY-IxjvnnKHg9rp2f3_Zh9fvf28vxDdfHp_cfzs4vKNp1YKgSnQeAgyXUK2vUda-nW2oactta6QUlohQOhQIpBE0LdO60E9Fvlul4eszd737n0EzlLYUk4mjn5CdONiejNn5Pgd-YqXpu2k1vZ6tXg5b1Bil8L5cVMPlsaRwwUSza17hqhRCe2K_ri910PS3597Aq82gM2xZwTDQ9IDeY2N3OXm9nntuLiL9z6BW9DWC_1479EJ3tRLPP_7X8CDIyueA
CitedBy_id crossref_primary_10_1002_hbm_70083
crossref_primary_10_1016_j_mcn_2018_12_001
crossref_primary_10_3389_fncom_2022_885126
crossref_primary_10_1038_s41583_023_00731_8
crossref_primary_10_1038_s41582_021_00541_5
crossref_primary_10_1016_j_media_2023_102812
crossref_primary_10_1038_s41582_020_0333_7
crossref_primary_10_1007_s00702_023_02613_w
crossref_primary_10_1016_j_clinph_2019_05_027
crossref_primary_10_1002_alz_12209
crossref_primary_10_1093_procel_pwae026
crossref_primary_10_1177_25424823241307617
crossref_primary_10_1007_s12041_018_0962_4
crossref_primary_10_12677_JISP_2022_114019
crossref_primary_10_3389_fncel_2024_1338502
crossref_primary_10_1002_alz_12452
crossref_primary_10_1007_s12011_021_02938_1
crossref_primary_10_1371_journal_pone_0277257
crossref_primary_10_1016_j_neurobiolaging_2020_03_009
crossref_primary_10_1038_s41380_023_02215_8
crossref_primary_10_1093_cercor_bhaa319
crossref_primary_10_3389_fninf_2022_886365
crossref_primary_10_1136_jnnp_2019_322402
crossref_primary_10_26599_JNR_2019_9040003
crossref_primary_10_1002_mds_29887
crossref_primary_10_1016_j_media_2025_103463
crossref_primary_10_1053_j_sult_2021_07_007
crossref_primary_10_1016_j_nicl_2020_102419
crossref_primary_10_1016_j_conctc_2023_101165
crossref_primary_10_1016_j_nbd_2020_105120
crossref_primary_10_1007_s11357_025_01528_6
crossref_primary_10_1016_j_nicl_2019_101848
crossref_primary_10_1126_sciadv_abd1327
crossref_primary_10_1162_netn_a_00395
crossref_primary_10_1016_j_neurobiolaging_2018_10_004
crossref_primary_10_1093_braincomms_fcad305
crossref_primary_10_1007_s11910_024_01365_8
crossref_primary_10_1093_brain_awz122
crossref_primary_10_1097_WCO_0000000000000570
crossref_primary_10_1002_acn3_631
crossref_primary_10_1016_j_nbas_2022_100054
crossref_primary_10_1109_TMI_2024_3502545
crossref_primary_10_1093_braincomms_fcae198
crossref_primary_10_3233_JAD_231276
crossref_primary_10_3390_biom12111573
crossref_primary_10_3390_pharmaceutics13071002
crossref_primary_10_1097_WCO_0000000000000578
crossref_primary_10_3390_ijms23010165
crossref_primary_10_3390_cells12242776
crossref_primary_10_1002_ange_201913029
crossref_primary_10_1093_brain_awab130
crossref_primary_10_7554_eLife_49298
crossref_primary_10_1038_d41586_018_05723_8
crossref_primary_10_1007_s00259_024_06954_w
crossref_primary_10_1002_hbm_25454
crossref_primary_10_1002_hbm_26388
crossref_primary_10_1007_s00259_019_04394_5
crossref_primary_10_3390_biology12040564
crossref_primary_10_1523_JNEUROSCI_1622_21_2022
crossref_primary_10_3233_JAD_215596
crossref_primary_10_3389_fchem_2022_886382
crossref_primary_10_1093_brain_awz154
crossref_primary_10_1016_j_neurobiolaging_2022_02_013
crossref_primary_10_1002_hbm_25448
crossref_primary_10_1016_j_dadm_2019_01_011
crossref_primary_10_3233_JAD_231362
crossref_primary_10_1093_braincomms_fcz013
crossref_primary_10_3389_fneur_2019_01266
crossref_primary_10_1136_jnnp_2020_322924
crossref_primary_10_1002_alz_14296
crossref_primary_10_1002_hbm_24473
crossref_primary_10_1093_cercor_bhaa184
crossref_primary_10_1097_WCO_0000000000000957
crossref_primary_10_1002_anie_201913029
crossref_primary_10_3389_fnins_2022_909861
crossref_primary_10_1177_1756286419843447
crossref_primary_10_1016_j_biopsych_2021_02_973
crossref_primary_10_3233_JAD_201596
crossref_primary_10_1093_brain_awy180
crossref_primary_10_1159_000516164
crossref_primary_10_1007_s11910_018_0898_3
crossref_primary_10_1002_alz_14349
crossref_primary_10_1093_braincomms_fcae459
crossref_primary_10_1016_j_nicl_2024_103727
crossref_primary_10_1093_brain_awy176
crossref_primary_10_1177_1179069518772380
crossref_primary_10_1093_brain_awz026
crossref_primary_10_1002_ana_26465
crossref_primary_10_3233_JAD_230367
crossref_primary_10_3389_fneur_2018_00070
crossref_primary_10_1001_jamaneurol_2018_2505
crossref_primary_10_1093_braincomms_fcaa060
crossref_primary_10_1109_TPAMI_2021_3081744
crossref_primary_10_2967_jnumed_118_225508
crossref_primary_10_3389_fmolb_2022_1050768
crossref_primary_10_1007_s11682_021_00531_7
crossref_primary_10_1038_s41583_023_00779_6
crossref_primary_10_1007_s10577_018_9573_4
crossref_primary_10_1016_j_brainresbull_2023_110777
crossref_primary_10_3389_fnagi_2025_1506478
crossref_primary_10_1016_j_neuroscience_2019_11_018
crossref_primary_10_2967_jnumed_117_206300
crossref_primary_10_1007_s00259_022_05952_0
crossref_primary_10_1523_JNEUROSCI_0990_21_2021
crossref_primary_10_1016_j_nicl_2023_103443
crossref_primary_10_1016_j_neuroimage_2020_117301
crossref_primary_10_1093_brain_awaa019
crossref_primary_10_1126_scitranslmed_aba7394
crossref_primary_10_1016_j_toxicon_2023_107110
crossref_primary_10_1093_cercor_bhad505
crossref_primary_10_1089_brain_2020_0902
crossref_primary_10_1111_febs_16055
crossref_primary_10_1093_cercor_bhz024
crossref_primary_10_2174_1568026620666200110161105
crossref_primary_10_1126_sciadv_aau3333
crossref_primary_10_3390_brainsci12020146
crossref_primary_10_3390_biom10111487
crossref_primary_10_1016_S1474_4422_19_30161_9
crossref_primary_10_3233_JAD_201376
crossref_primary_10_1016_j_neulet_2019_04_022
crossref_primary_10_3389_fnagi_2019_00208
crossref_primary_10_1136_bmjopen_2021_055135
crossref_primary_10_7554_eLife_62114
crossref_primary_10_1093_brain_awab218
crossref_primary_10_1146_annurev_pathmechdis_051222_120750
crossref_primary_10_3233_JAD_210234
crossref_primary_10_1186_s13195_019_0563_3
crossref_primary_10_1002_mds_28188
crossref_primary_10_1016_j_bj_2018_03_001
crossref_primary_10_1016_j_drudis_2022_01_016
crossref_primary_10_1080_14737175_2023_2174016
crossref_primary_10_3389_fninf_2021_630172
crossref_primary_10_1007_s00259_020_05183_1
crossref_primary_10_1002_hbm_26342
crossref_primary_10_1016_j_neurobiolaging_2018_12_009
crossref_primary_10_7554_eLife_49132
crossref_primary_10_3389_fnagi_2021_666437
crossref_primary_10_1016_j_brainres_2022_147955
crossref_primary_10_1016_j_ebiom_2023_104835
crossref_primary_10_1007_s00415_020_10040_0
crossref_primary_10_1002_alz_12867
crossref_primary_10_1002_glia_23572
crossref_primary_10_1002_mp_16655
crossref_primary_10_1016_j_nicl_2019_101788
crossref_primary_10_1016_j_jad_2020_04_054
crossref_primary_10_1016_j_neurol_2022_03_001
crossref_primary_10_1038_s41467_019_14159_1
crossref_primary_10_3389_fnins_2020_566876
crossref_primary_10_1016_j_neurobiolaging_2021_01_016
crossref_primary_10_1038_s41435_020_00113_5
crossref_primary_10_1089_brain_2020_0889
crossref_primary_10_1038_s41467_020_15701_2
crossref_primary_10_1111_jnc_15598
crossref_primary_10_1093_brain_awad189
crossref_primary_10_1093_brain_awab282
crossref_primary_10_1111_febs_16270
crossref_primary_10_1162_netn_a_00339
crossref_primary_10_3390_healthcare13050452
crossref_primary_10_1001_jamaneurol_2023_4038
crossref_primary_10_1007_s00401_019_02087_9
crossref_primary_10_1016_j_nicl_2019_101795
crossref_primary_10_1016_j_nicl_2021_102850
crossref_primary_10_1038_s41398_022_02114_6
crossref_primary_10_3389_fnagi_2021_758053
crossref_primary_10_1038_s41583_019_0177_6
crossref_primary_10_3389_fimmu_2019_01139
crossref_primary_10_1080_07317115_2019_1694115
crossref_primary_10_1002_alz_14266
crossref_primary_10_1002_mds_29339
crossref_primary_10_1021_acs_jmedchem_4c02563
crossref_primary_10_1038_s41598_021_96971_8
crossref_primary_10_1093_brain_awz100
crossref_primary_10_1093_brain_awy252
crossref_primary_10_1016_j_parkreldis_2019_07_001
crossref_primary_10_1093_brain_awac004
crossref_primary_10_1002_hbm_26689
crossref_primary_10_1038_s41582_021_00529_1
crossref_primary_10_1126_sciadv_abh1448
crossref_primary_10_3390_brainsci12101355
crossref_primary_10_1002_ana_26543
Cites_doi 10.1093/brain/awh508
10.1093/brain/awf082
10.1016/j.neuroimage.2011.10.018
10.1126/science.1141736
10.1089/brain.2012.0073
10.3389/fnsys.2010.00147
10.1016/j.neuron.2013.07.035
10.1136/bmjopen-2016-013187
10.1002/ana.1159
10.1016/j.celrep.2014.12.034
10.1016/j.jalz.2012.11.008
10.1371/journal.pone.0013788
10.1212/WNL.0b013e3181b23564
10.1371/journal.pone.0031302
10.1016/j.neuron.2016.01.028
10.1016/j.neuroimage.2007.07.007
10.1093/cercor/bhj127
10.1126/science.1255555
10.1523/JNEUROSCI.2642-12.2013
10.1002/ana.24321
10.1126/science.1691865
10.1038/nrn3801
10.1093/brain/awu132
10.1007/s00401-014-1371-2
10.1016/j.neuroimage.2013.12.039
10.1007/BF02778005
10.1002/ana.410240308
10.1002/ana.410100602
10.1038/nrneurol.2013.221
10.1038/nrn2194
10.1093/brain/aww023
10.1212/WNL.47.1.1
10.1073/pnas.1301175110
10.3233/JAD-2010-1220
10.1371/journal.pcbi.1005104
10.1038/ncb1901
10.1073/pnas.0308627101
10.1093/brain/awx171
10.1007/s00401-015-1503-3
10.1073/pnas.0135058100
10.1093/brain/awx163
10.1016/j.neuron.2011.12.040
10.1016/j.cpet.2017.02.005
10.1074/jbc.M110.148460
10.1073/pnas.0914402107
10.1093/brain/aww027
10.1093/brain/aww163
10.1002/ana.20009
10.1093/brain/aww195
10.1007/BF00308809
10.1038/nrn2967
10.2307/202051
10.1093/brain/aws327
10.1002/ana.24546
10.1126/science.1132814
10.1016/j.neuroimage.2011.12.028
10.1523/JNEUROSCI.5062-08.2009
10.1007/s00415-011-6205-8
10.1016/j.jalz.2011.03.005
10.1084/jem.20160833
10.1093/brain/awm032
10.1038/nm.3457
10.1016/j.neuron.2012.03.004
10.1093/brain/awv338
10.1073/pnas.0905267106
10.1371/journal.pone.0012200
10.1093/brain/awm104
10.1038/nm.4011
10.1002/mds.26987
10.1074/jbc.M114.589309
10.1126/scitranslmed.aaf2362
10.1371/journal.pcbi.1002582
10.1007/s00401-014-1254-6
10.1162/jocn_a_00077
10.1038/nature23002
10.1016/0197-4580(95)00021-6
10.1056/NEJM198403083101021
10.3233/JAD-122059
10.1016/j.neuron.2011.06.031
10.1073/pnas.1301725110
10.1016/j.neurobiolaging.2016.09.001
10.1136/jnnp.37.2.121
10.1002/ana.23844
10.1016/j.nicl.2015.07.011
ContentType Journal Article
Copyright The Author(s) (2018). Published by Oxford University Press on behalf of the Guarantors of Brain. 2018
The Author(s) (2018). Published by Oxford University Press on behalf of the Guarantors of Brain.
Copyright_xml – notice: The Author(s) (2018). Published by Oxford University Press on behalf of the Guarantors of Brain. 2018
– notice: The Author(s) (2018). Published by Oxford University Press on behalf of the Guarantors of Brain.
DBID TOX
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1093/brain/awx347
DatabaseName Oxford Journals Open Access Collection
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1460-2156
EndPage 567
ExternalDocumentID PMC5837359
29293892
10_1093_brain_awx347
10.1093/brain/awx347
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Wellcome Trust
  sequence: 0
  grantid: JBR 103838
  funderid: 10.13039/100004440
– fundername: PSP Association
  sequence: 0
  funderid: 10.13039/100011707
– fundername: National Institutes of Health
  sequence: 0
  funderid: 10.13039/100000002
– fundername: National Institute for Health Research
  sequence: 0
  grantid: RG64473
  funderid: 10.13039/501100000272
– fundername: Medical Research Council
  sequence: 0
  grantid: MC-A060-5PQ30
  funderid: 10.13039/501100000265
– fundername: Medical Research Council
  grantid: G1100464
– fundername: Wellcome Trust
– fundername: Medical Research Council
  grantid: MC_U105597119
– fundername: Medical Research Council
  grantid: MR/M009041/1
– fundername: Wellcome Trust
  grantid: JBR 103838
– fundername: Medical Research Council
  grantid: MR/M024873/1
– fundername: Medical Research Council
  grantid: MC-A060-5PQ30
– fundername: Medical Research Council
  grantid: MC_UU_00005/12
– fundername: ; ; ;
– fundername: ; ; ;
  grantid: RG64473
– fundername: ; ; ;
  grantid: MC-A060-5PQ30
– fundername: ; ; ;
  grantid: JBR 103838
GroupedDBID ---
-E4
-~X
.2P
.I3
.XZ
.ZR
0R~
1TH
23N
2WC
4.4
482
48X
53G
5GY
5RE
5VS
5WA
5WD
6PF
70D
AABZA
AACZT
AAIMJ
AAJKP
AAJQQ
AAMDB
AAMVS
AAOGV
AAPNW
AAPQZ
AAPXW
AARHZ
AAUAY
AAUQX
AAVAP
AAVLN
AAWTL
ABEJV
ABEUO
ABIVO
ABIXL
ABJNI
ABKDP
ABLJU
ABMNT
ABNHQ
ABNKS
ABPTD
ABQLI
ABQNK
ABWST
ABXVV
ABZBJ
ACGFS
ACIWK
ACPRK
ACUFI
ACUTJ
ACUTO
ACYHN
ADBBV
ADEYI
ADEZT
ADGKP
ADGZP
ADHKW
ADHZD
ADIPN
ADJQC
ADOCK
ADQBN
ADRIX
ADRTK
ADVEK
ADYVW
ADZXQ
AEGPL
AEJOX
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFXAL
AFXEN
AGINJ
AGKEF
AGQXC
AGSYK
AGUTN
AHMBA
AHMMS
AHXPO
AIJHB
AJEEA
AKWXX
ALMA_UNASSIGNED_HOLDINGS
ALUQC
APIBT
APWMN
ARIXL
ATGXG
AXUDD
AYOIW
BAWUL
BAYMD
BCRHZ
BEYMZ
BHONS
BQDIO
BR6
BSWAC
BTRTY
BVRKM
C45
CDBKE
COF
CS3
CZ4
DAKXR
DIK
DILTD
DU5
D~K
E3Z
EBS
EE~
EJD
EMOBN
ENERS
F5P
F9B
FECEO
FHSFR
FLUFQ
FOEOM
FOTVD
FQBLK
GAUVT
GJXCC
GX1
H13
H5~
HAR
HW0
HZ~
IOX
J21
J5H
JXSIZ
KAQDR
KBUDW
KOP
KQ8
KSI
KSN
L7B
M-Z
M49
MHKGH
ML0
N9A
NGC
NLBLG
NOMLY
NOYVH
NU-
O9-
OAUYM
OAWHX
OBOKY
OCZFY
ODMLO
OHH
OJQWA
OJZSN
OK1
OPAEJ
OVD
OWPYF
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
R44
RD5
RIG
ROL
ROX
ROZ
RUSNO
RW1
RXO
TCURE
TEORI
TJX
TLC
TOX
TR2
VVN
W8F
WH7
WOQ
X7H
YAYTL
YKOAZ
YSK
YXANX
ZKX
~91
AAYXX
ABDFA
ABGNP
ABPQP
ABVGC
ABXZS
ADNBA
AEMQT
AFYAG
AGORE
AJBYB
AJNCP
ALXQX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c482t-a0d902af3ed860514646495cc4ed9cccdf63052d026032f9ea01bd9620b76d8b3
IEDL.DBID TOX
ISSN 0006-8950
1460-2156
IngestDate Tue Sep 23 05:48:04 EDT 2025
Sun Sep 28 12:15:20 EDT 2025
Mon Jul 21 06:05:32 EDT 2025
Tue Jul 01 00:46:09 EDT 2025
Thu Apr 24 23:10:21 EDT 2025
Fri Dec 06 10:16:16 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords tau
functional connectivity
graph theory
Alzheimer's disease
progressive supranuclear palsy
Alzheimer’s disease
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
http://creativecommons.org/licenses/by/4.0
The Author(s) (2018). Published by Oxford University Press on behalf of the Guarantors of Brain.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c482t-a0d902af3ed860514646495cc4ed9cccdf63052d026032f9ea01bd9620b76d8b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
John T. O’Brien and James B. Rowe contributed equally to this work.
OpenAccessLink https://dx.doi.org/10.1093/brain/awx347
PMID 29293892
PQID 1984262827
PQPubID 23479
PageCount 18
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5837359
proquest_miscellaneous_1984262827
pubmed_primary_29293892
crossref_primary_10_1093_brain_awx347
crossref_citationtrail_10_1093_brain_awx347
oup_primary_10_1093_brain_awx347
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-02-01
PublicationDateYYYYMMDD 2018-02-01
PublicationDate_xml – month: 02
  year: 2018
  text: 2018-02-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Brain (London, England : 1878)
PublicationTitleAlternate Brain
PublicationYear 2018
Publisher Oxford University Press
Publisher_xml – sequence: 0
  name: Oxford University Press
– name: Oxford University Press
References Ahmed ( key 20180328174732_awx347-B2) 2014; 127
Goedert ( key 20180328174732_awx347-B32) 2015; 349
Clavaguera ( key 20180328174732_awx347-B19) 2009; 11
Cordato ( key 20180328174732_awx347-B20) 2005; 128
Greicius ( key 20180328174732_awx347-B36) 2003; 100
Crossley ( key 20180328174732_awx347-B22) 2014; 137
Xia ( key 20180328174732_awx347-B89) 2017; 12
Ossenkoppele ( key 20180328174732_awx347-B62) 2015; 77
Braak ( key 20180328174732_awx347-B13) 2013; 9
Chien ( key 20180328174732_awx347-B17) 2013; 34
Taniguchi-Watanabe ( key 20180328174732_awx347-B84) 2016; 131
Zhou ( key 20180328174732_awx347-B91) 2012; 73
Cordato ( key 20180328174732_awx347-B21) 2002; 125
Stam ( key 20180328174732_awx347-B82) 2006; 17
Durrett ( key 20180328174732_awx347-B26) 2010; 107
Saxena ( key 20180328174732_awx347-B74) 2011; 71
Power ( key 20180328174732_awx347-B65) 2012; 59
Gardner ( key 20180328174732_awx347-B31) 2013; 73
Chennu ( key 20180328174732_awx347-B16) 2017; 140
Maestú ( key 20180328174732_awx347-B54) 2015; 9
Klunk ( key 20180328174732_awx347-B46) 2004; 55
Jones ( key 20180328174732_awx347-B44) 2015; 139
Kundu ( key 20180328174732_awx347-B48) 2012; 60
Power ( key 20180328174732_awx347-B66) 2013; 79
Baker ( key 20180328174732_awx347-B7) 1994; 8
Liu ( key 20180328174732_awx347-B52) 2012; 7
The Mathworks Inc ( key 20180328174732_awx347-B85) 2015
Clavaguera ( key 20180328174732_awx347-B18) 2013; 110
Ashburner ( key 20180328174732_awx347-B6) 2007; 38
Passamonti ( key 20180328174732_awx347-B64) 2017; 140
Foster ( key 20180328174732_awx347-B30) 1988; 24
Joyce ( key 20180328174732_awx347-B45) 2010; 5
Ossenkoppele ( key 20180328174732_awx347-B63) 2016; 139 (Pt 5)
Stam ( key 20180328174732_awx347-B83) 2014; 15
Roberson ( key 20180328174732_awx347-B72) 2007; 316
Alexander-Bloch ( key 20180328174732_awx347-B4) 2010; 4
Buckner ( key 20180328174732_awx347-B15) 2009; 29
Falcon ( key 20180328174732_awx347-B28) 2015; 290
Johnson ( key 20180328174732_awx347-B43) 2016; 79
de Haan ( key 20180328174732_awx347-B25) 2012; 8
Ellison ( key 20180328174732_awx347-B27) 2012
R Core Team ( key 20180328174732_awx347-B68) 2016
Nonaka ( key 20180328174732_awx347-B60) 2010; 285
Dai ( key 20180328174732_awx347-B24) 2014
Kundu ( key 20180328174732_awx347-B47) 2013; 110
Schofield ( key 20180328174732_awx347-B75) 2012; 259
Schwarz ( key 20180328174732_awx347-B78) 2016; 139
Höglinger ( key 20180328174732_awx347-B40) 2017; 32
Sisodia ( key 20180328174732_awx347-B79) 1990; 248
Bevan-Jones ( key 20180328174732_awx347-B9) 2017
Granovetter ( key 20180328174732_awx347-B35) 1983
Brier ( key 20180328174732_awx347-B14) 2016; 8
Raj ( key 20180328174732_awx347-B70) 2015; 10
Schöll ( key 20180328174732_awx347-B76) 2016; 89
Markesbery ( key 20180328174732_awx347-B56) 2010; 19
Okello ( key 20180328174732_awx347-B61) 2009; 73
Nisbet ( key 20180328174732_awx347-B59) 2015; 129
Xia ( key 20180328174732_awx347-B88) 2013; 9
Fitzpatrick ( key 20180328174732_awx347-B29) 2017; 547
Sanz-Arigita ( key 20180328174732_awx347-B73) 2010; 5
Guo ( key 20180328174732_awx347-B39) 2016; 213
Abdelnour ( key 20180328174732_awx347-B1) 2014; 90
Smith ( key 20180328174732_awx347-B80) 2016; 139
Litvan ( key 20180328174732_awx347-B51) 1996; 47
McKhann ( key 20180328174732_awx347-B57) 2011; 7
Appel ( key 20180328174732_awx347-B5) 1981; 10
Ypma ( key 20180328174732_awx347-B90) 2016; 12
Williams ( key 20180328174732_awx347-B87) 2007; 130
D'Antona ( key 20180328174732_awx347-B23) 1985; 108 (Pt 3)
Prusiner ( key 20180328174732_awx347-B67) 1984; 310
Raj ( key 20180328174732_awx347-B69) 2012; 73
Goedert ( key 20180328174732_awx347-B33) 2006; 314
Whitfield-Gabrieli ( key 20180328174732_awx347-B86) 2012; 2
Schöll ( key 20180328174732_awx347-B77) 2017; 140
Ittner ( key 20180328174732_awx347-B42) 2011; 12
Iba ( key 20180328174732_awx347-B41) 2013; 33
Mandelli ( key 20180328174732_awx347-B55) 2016; 139 (Pt 10)
Ballatore ( key 20180328174732_awx347-B8) 2007; 8
Smith ( key 20180328174732_awx347-B81) 2009; 106
Braak ( key 20180328174732_awx347-B12) 1995; 16
Liu ( key 20180328174732_awx347-B53) 2001; 50
Greicius ( key 20180328174732_awx347-B37) 2004; 101
Rittman ( key 20180328174732_awx347-B71) 2016; 48
Laird ( key 20180328174732_awx347-B49) 2011; 23
Bevan-Jones ( key 20180328174732_awx347-B10) 2017; 7
Braak ( key 20180328174732_awx347-B11) 1991; 82
Golbe ( key 20180328174732_awx347-B34) 2007; 130
Albert ( key 20180328174732_awx347-B3) 1974; 37
Guo ( key 20180328174732_awx347-B38) 2014; 20
Lehmann ( key 20180328174732_awx347-B50) 2013; 136
Myeku ( key 20180328174732_awx347-B58) 2016; 22
References_xml – volume: 128
  start-page: 1259
  year: 2005
  ident: key 20180328174732_awx347-B20
  article-title: Clinical deficits correlate with regional cerebral atrophy in progressive supranuclear palsy
  publication-title: Brain
  doi: 10.1093/brain/awh508
– volume: 125
  start-page: 789
  year: 2002
  ident: key 20180328174732_awx347-B21
  article-title: Frontal atrophy correlates with behavioural changes in progressive supranuclear palsy
  publication-title: Brain
  doi: 10.1093/brain/awf082
– volume-title: Neuropathology: a reference text of CNS pathology
  year: 2012
  ident: key 20180328174732_awx347-B27
– volume: 59
  start-page: 2142
  year: 2012
  ident: key 20180328174732_awx347-B65
  article-title: Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.10.018
– volume: 316
  start-page: 750
  year: 2007
  ident: key 20180328174732_awx347-B72
  article-title: Reducing endogenous tau ameliorates amyloid ß-induced deficits in an Alzheimer's disease mouse model
  publication-title: Science
  doi: 10.1126/science.1141736
– volume: 2
  start-page: 125
  year: 2012
  ident: key 20180328174732_awx347-B86
  article-title: Conn: a functional connectivity toolbox for correlated and anticorrelated brain networks
  publication-title: Brain Connect
  doi: 10.1089/brain.2012.0073
– volume: 4
  start-page: 147
  year: 2010
  ident: key 20180328174732_awx347-B4
  article-title: Disrupted modularity and local connectivity of brain functional networks in childhood-onset schizophrenia
  publication-title: Front Syst Neurosci
  doi: 10.3389/fnsys.2010.00147
– volume: 79
  start-page: 798
  year: 2013
  ident: key 20180328174732_awx347-B66
  article-title: Evidence for hubs in human functional brain networks
  publication-title: Neuron
  doi: 10.1016/j.neuron.2013.07.035
– volume: 7
  start-page: e013187
  year: 2017
  ident: key 20180328174732_awx347-B10
  article-title: Neuroimaging of Inflammation in Memory and Related Other Disorders (NIMROD) study protocol: a deep phenotyping cohort study of the role of brain inflammation in dementia, depression and other neurological illnesses
  publication-title: BMJ Open
  doi: 10.1136/bmjopen-2016-013187
– volume: 50
  start-page: 494
  year: 2001
  ident: key 20180328174732_awx347-B53
  article-title: Relationship of the extended tau haplotype to tau biochemistry and neuropathology in progressive supranuclear palsy
  publication-title: Ann Neurol
  doi: 10.1002/ana.1159
– volume: 10
  start-page: 359
  year: 2015
  ident: key 20180328174732_awx347-B70
  article-title: Network diffusion model of progression predicts longitudinal patterns of atrophy and metabolism in Alzheimer’s disease
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2014.12.034
– volume: 9
  start-page: 666
  year: 2013
  ident: key 20180328174732_awx347-B88
  article-title: [18 F] T807, a novel tau positron emission tomography imaging agent for Alzheimer's disease
  publication-title: Alzheimers Dement
  doi: 10.1016/j.jalz.2012.11.008
– volume: 5
  start-page: e13788
  year: 2010
  ident: key 20180328174732_awx347-B73
  article-title: Loss of ‘small-world’networks in Alzheimer's disease: graph analysis of FMRI resting-state functional connectivity
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0013788
– volume: 73
  start-page: 754
  year: 2009
  ident: key 20180328174732_awx347-B61
  article-title: Conversion of amyloid positive and negative MCI to AD over 3 years An 11C-PIB PET study
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e3181b23564
– volume: 7
  start-page: e31302
  year: 2012
  ident: key 20180328174732_awx347-B52
  article-title: Trans-synaptic spread of tau pathology in vivo
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0031302
– volume: 89
  start-page: 971
  year: 2016
  ident: key 20180328174732_awx347-B76
  article-title: PET imaging of tau deposition in the aging human brain
  publication-title: Neuron
  doi: 10.1016/j.neuron.2016.01.028
– volume: 38
  start-page: 95
  year: 2007
  ident: key 20180328174732_awx347-B6
  article-title: A fast diffeomorphic image registration algorithm
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2007.07.007
– volume: 17
  start-page: 92
  year: 2006
  ident: key 20180328174732_awx347-B82
  article-title: Small-world networks and functional connectivity in Alzheimer's disease
  publication-title: Cereb Cortex
  doi: 10.1093/cercor/bhj127
– year: 2014
  ident: key 20180328174732_awx347-B24
  article-title: Identifying and mapping connectivity patterns of brain network hubs in Alzheimer's disease
  publication-title: Cereb Cortex
– volume: 349
  start-page: 1255555
  year: 2015
  ident: key 20180328174732_awx347-B32
  article-title: Alzheimer’s and Parkinson’s diseases: the prion concept in relation to assembled Aβ, tau, and α-synuclein
  publication-title: Science
  doi: 10.1126/science.1255555
– volume: 33
  start-page: 1024
  year: 2013
  ident: key 20180328174732_awx347-B41
  article-title: Synthetic tau fibrils mediate transmission of neurofibrillary tangles in a transgenic mouse model of Alzheimer's-like tauopathy
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.2642-12.2013
– volume: 77
  start-page: 338
  year: 2015
  ident: key 20180328174732_awx347-B62
  article-title: Tau, amyloid, and hypometabolism in a patient with posterior cortical atrophy
  publication-title: Ann Neurol
  doi: 10.1002/ana.24321
– volume: 248
  start-page: 492
  year: 1990
  ident: key 20180328174732_awx347-B79
  article-title: Evidence that beta-amyloid protein in Alzheimer's disease is not derived by normal processing
  publication-title: Science
  doi: 10.1126/science.1691865
– volume: 15
  start-page: 683
  year: 2014
  ident: key 20180328174732_awx347-B83
  article-title: Modern network science of neurological disorders
  publication-title: Nat Rev Neurosci
  doi: 10.1038/nrn3801
– volume: 140
  start-page: 781
  year: 2017
  ident: key 20180328174732_awx347-B64
  article-title: 18F-AV-1451 positron emission tomography in Alzheimer's disease and progressive supranuclear palsy
  publication-title: Brain
– volume: 137
  start-page: 2382
  year: 2014
  ident: key 20180328174732_awx347-B22
  article-title: The hubs of the human connectome are generally implicated in the anatomy of brain disorders
  publication-title: Brain
  doi: 10.1093/brain/awu132
– volume: 129
  start-page: 207
  year: 2015
  ident: key 20180328174732_awx347-B59
  article-title: Tau aggregation and its interplay with amyloid-β
  publication-title: Acta Neuropathol
  doi: 10.1007/s00401-014-1371-2
– volume: 90
  start-page: 335
  year: 2014
  ident: key 20180328174732_awx347-B1
  article-title: Network diffusion accurately models the relationship between structural and functional brain connectivity networks
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2013.12.039
– volume: 8
  start-page: 25
  year: 1994
  ident: key 20180328174732_awx347-B7
  article-title: Induction of β (A4)-amyloid in primates by injection of Alzheimer’s disease brain homogenate
  publication-title: Mol Neurobiol
  doi: 10.1007/BF02778005
– volume: 24
  start-page: 399
  year: 1988
  ident: key 20180328174732_awx347-B30
  article-title: Cerebral hypometabolism in progressive supranuclear palsy studied with positron emission tomography
  publication-title: Ann Neurol
  doi: 10.1002/ana.410240308
– volume: 10
  start-page: 499
  year: 1981
  ident: key 20180328174732_awx347-B5
  article-title: A unifying hypothesis for the cause of amyotrophic lateral sclerosis, parkinsonism, and Alzheimer disease
  publication-title: Ann Neurol
  doi: 10.1002/ana.410100602
– volume: 9
  start-page: 708
  year: 2013
  ident: key 20180328174732_awx347-B13
  article-title: Amyotrophic lateral sclerosis—a model of corticofugal axonal spread
  publication-title: Nat Rev Neurol
  doi: 10.1038/nrneurol.2013.221
– volume: 8
  start-page: 663
  year: 2007
  ident: key 20180328174732_awx347-B8
  article-title: Tau-mediated neurodegeneration in Alzheimer's disease and related disorders
  publication-title: Nat Rev Neurosci
  doi: 10.1038/nrn2194
– volume: 139
  start-page: 1539
  year: 2016
  ident: key 20180328174732_awx347-B78
  article-title: Regional profiles of the candidate tau PET ligand 18F-AV-1451 recapitulate key features of Braak histopathological stages
  publication-title: Brain
  doi: 10.1093/brain/aww023
– volume: 47
  start-page: 1
  year: 1996
  ident: key 20180328174732_awx347-B51
  article-title: Clinical research criteria for the diagnosis of progressive supranuclear palsy (Steele-Richardson-Olszewski syndrome) Report of the NINDS-SPSP International Workshop*
  publication-title: Neurology
  doi: 10.1212/WNL.47.1.1
– volume: 110
  start-page: 9535
  year: 2013
  ident: key 20180328174732_awx347-B18
  article-title: Brain homogenates from human tauopathies induce tau inclusions in mouse brain
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1301175110
– volume: 19
  start-page: 221
  year: 2010
  ident: key 20180328174732_awx347-B56
  article-title: Neuropathologic alterations in mild cognitive impairment: a review
  publication-title: J Alzheimers Dis
  doi: 10.3233/JAD-2010-1220
– volume: 12
  start-page: e1005104
  year: 2016
  ident: key 20180328174732_awx347-B90
  article-title: Statistical analysis of tract-tracing experiments demonstrates a dense, complex cortical network in the mouse
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1005104
– volume: 11
  start-page: 909
  year: 2009
  ident: key 20180328174732_awx347-B19
  article-title: Transmission and spreading of tauopathy in transgenic mouse brain
  publication-title: Nat Cell Biol
  doi: 10.1038/ncb1901
– volume: 101
  start-page: 4637
  year: 2004
  ident: key 20180328174732_awx347-B37
  article-title: Default-mode network activity distinguishes Alzheimer's disease from healthy aging: evidence from functional MRI
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0308627101
– volume: 140
  start-page: 2286
  year: 2017
  ident: key 20180328174732_awx347-B77
  article-title: Distinct 18F-AV-1451 tau PET retention patterns in early-and late-onset Alzheimer’s disease
  publication-title: Brain
  doi: 10.1093/brain/awx171
– volume: 131
  start-page: 267
  year: 2016
  ident: key 20180328174732_awx347-B84
  article-title: Biochemical classification of tauopathies by immunoblot, protein sequence and mass spectrometric analyses of sarkosyl-insoluble and trypsin-resistant tau
  publication-title: Acta Neuropathol
  doi: 10.1007/s00401-015-1503-3
– volume: 100
  start-page: 253
  year: 2003
  ident: key 20180328174732_awx347-B36
  article-title: Functional connectivity in the resting brain: a network analysis of the default mode hypothesis
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0135058100
– volume: 140
  start-page: 2120
  year: 2017
  ident: key 20180328174732_awx347-B16
  article-title: Brain networks predict metabolism, diagnosis and prognosis at the bedside in disorders of consciousness
  publication-title: Brain
  doi: 10.1093/brain/awx163
– year: 2017
  ident: key 20180328174732_awx347-B9
  article-title: [18F]
  publication-title: J Neurol Neurosurg Psychiatry
– volume: 73
  start-page: 1204
  year: 2012
  ident: key 20180328174732_awx347-B69
  article-title: A network diffusion model of disease progression in dementia
  publication-title: Neuron
  doi: 10.1016/j.neuron.2011.12.040
– volume: 12
  start-page: 351
  year: 2017
  ident: key 20180328174732_awx347-B89
  article-title: Multimodal PET imaging of amyloid and Tau pathology in Alzheimer disease and non–Alzheimer disease dementias
  publication-title: PET Clin
  doi: 10.1016/j.cpet.2017.02.005
– volume: 285
  start-page: 34885
  year: 2010
  ident: key 20180328174732_awx347-B60
  article-title: Seeded aggregation and toxicity of α-synuclein and tau: cellular models of neurodegenerative diseases
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M110.148460
– volume: 107
  start-page: 4491
  year: 2010
  ident: key 20180328174732_awx347-B26
  article-title: Some features of the spread of epidemics and information on a random graph
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0914402107
– volume: 139 (Pt 5)
  start-page: 1551
  year: 2016
  ident: key 20180328174732_awx347-B63
  article-title: Tau PET patterns mirror clinical and neuroanatomical variability in Alzheimer’s disease
  publication-title: Brain
  doi: 10.1093/brain/aww027
– volume: 139
  start-page: 2372
  year: 2016
  ident: key 20180328174732_awx347-B80
  article-title: 18F-AV-1451 tau PET imaging correlates strongly with tau neuropathology in MAPT mutation carriers
  publication-title: Brain
  doi: 10.1093/brain/aww163
– volume: 55
  start-page: 306
  year: 2004
  ident: key 20180328174732_awx347-B46
  article-title: Imaging brain amyloid in Alzheimer's disease with Pittsburgh Compound-B
  publication-title: Ann Neurol
  doi: 10.1002/ana.20009
– volume: 139 (Pt 10)
  start-page: 2778
  year: 2016
  ident: key 20180328174732_awx347-B55
  article-title: Healthy brain connectivity predicts atrophy progression in non-fluent variant of primary progressive aphasia
  publication-title: Brain
  doi: 10.1093/brain/aww195
– volume-title: Matlab and statistics and machine learning toolbox. Release 2015b ed
  year: 2015
  ident: key 20180328174732_awx347-B85
– volume: 82
  start-page: 239
  year: 1991
  ident: key 20180328174732_awx347-B11
  article-title: Neuropathological stageing of Alzheimer-related changes
  publication-title: Acta Neuropathol
  doi: 10.1007/BF00308809
– volume: 12
  start-page: 65
  year: 2011
  ident: key 20180328174732_awx347-B42
  article-title: Amyloid-[beta] and tau–a toxic pas de deux in Alzheimer's disease
  publication-title: Nat Rev Neurosci
  doi: 10.1038/nrn2967
– start-page: 201
  year: 1983
  ident: key 20180328174732_awx347-B35
  article-title: The strength of weak ties: a network theory revisited
  publication-title: Soc Theory
  doi: 10.2307/202051
– volume: 136
  start-page: 844
  year: 2013
  ident: key 20180328174732_awx347-B50
  article-title: Diverging patterns of amyloid deposition and hypometabolism in clinical variants of probable Alzheimer’s disease
  publication-title: Brain
  doi: 10.1093/brain/aws327
– volume: 79
  start-page: 110
  year: 2016
  ident: key 20180328174732_awx347-B43
  article-title: Tau positron emission tomographic imaging in aging and early Alzheimer disease
  publication-title: Ann Neurol
  doi: 10.1002/ana.24546
– volume: 314
  start-page: 777
  year: 2006
  ident: key 20180328174732_awx347-B33
  article-title: A century of Alzheimer's disease
  publication-title: Science
  doi: 10.1126/science.1132814
– volume: 60
  start-page: 1759
  year: 2012
  ident: key 20180328174732_awx347-B48
  article-title: Differentiating BOLD and non-BOLD signals in fMRI time series using multi-echo EPI
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2011.12.028
– volume: 29
  start-page: 1860
  year: 2009
  ident: key 20180328174732_awx347-B15
  article-title: Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and relation to Alzheimer's disease
  publication-title: J Neurosci
  doi: 10.1523/JNEUROSCI.5062-08.2009
– volume: 259
  start-page: 482
  year: 2012
  ident: key 20180328174732_awx347-B75
  article-title: The relationship between clinical and pathological variables in Richardson’s syndrome
  publication-title: J Neurol
  doi: 10.1007/s00415-011-6205-8
– volume: 7
  start-page: 263
  year: 2011
  ident: key 20180328174732_awx347-B57
  article-title: The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer's disease
  publication-title: Alzheimers Dement
  doi: 10.1016/j.jalz.2011.03.005
– volume: 213
  start-page: 2635
  year: 2016
  ident: key 20180328174732_awx347-B39
  article-title: Unique pathological tau conformers from Alzheimer’s brains transmit tau pathology in nontransgenic mice
  publication-title: J Exp Med
  doi: 10.1084/jem.20160833
– volume: 130
  start-page: 1552
  year: 2007
  ident: key 20180328174732_awx347-B34
  article-title: A clinical rating scale for progressive supranuclear palsy
  publication-title: Brain
  doi: 10.1093/brain/awm032
– volume: 20
  start-page: 130
  year: 2014
  ident: key 20180328174732_awx347-B38
  article-title: Cell-to-cell transmission of pathogenic proteins in neurodegenerative diseases
  publication-title: Nat Med
  doi: 10.1038/nm.3457
– volume-title: R: a language and environment for statistical computing
  year: 2016
  ident: key 20180328174732_awx347-B68
– volume: 73
  start-page: 1216
  year: 2012
  ident: key 20180328174732_awx347-B91
  article-title: Predicting regional neurodegeneration from the healthy brain functional connectome
  publication-title: Neuron
  doi: 10.1016/j.neuron.2012.03.004
– volume: 139
  start-page: 547
  year: 2015
  ident: key 20180328174732_awx347-B44
  article-title: Cascading network failure across the Alzheimer’s disease spectrum
  publication-title: Brain
  doi: 10.1093/brain/awv338
– volume: 106
  start-page: 13040
  year: 2009
  ident: key 20180328174732_awx347-B81
  article-title: Correspondence of the brain's functional architecture during activation and rest
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0905267106
– volume: 5
  start-page: e12200
  year: 2010
  ident: key 20180328174732_awx347-B45
  article-title: A new measure of centrality for brain networks
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0012200
– volume: 130
  start-page: 1566
  year: 2007
  ident: key 20180328174732_awx347-B87
  article-title: Pathological tau burden and distribution distinguishes progressive supranuclear palsy-parkinsonism from Richardson's syndrome
  publication-title: Brain
  doi: 10.1093/brain/awm104
– volume: 22
  start-page: 46
  year: 2016
  ident: key 20180328174732_awx347-B58
  article-title: Tau-driven 26S proteasome impairment and cognitive dysfunction can be prevented early in disease by activating cAMP-PKA signaling
  publication-title: Nat Med
  doi: 10.1038/nm.4011
– volume: 32
  start-page: 853
  year: 2017
  ident: key 20180328174732_awx347-B40
  article-title: Clinical diagnosis of progressive supranuclear palsy: the Movement Disorder Society Criteria
  publication-title: Mov Disord
  doi: 10.1002/mds.26987
– volume: 290
  start-page: 1049
  year: 2015
  ident: key 20180328174732_awx347-B28
  article-title: Conformation determines the seeding potencies of native and recombinant Tau aggregates
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M114.589309
– volume: 8
  start-page: 338ra66
  year: 2016
  ident: key 20180328174732_awx347-B14
  article-title: Tau and Abeta imaging, CSF measures, and cognition in Alzheimer's disease
  publication-title: Sci Transl Med
  doi: 10.1126/scitranslmed.aaf2362
– volume: 8
  start-page: e1002582
  year: 2012
  ident: key 20180328174732_awx347-B25
  article-title: Activity dependent degeneration explains hub vulnerability in Alzheimer's disease
  publication-title: PLoS Comput Biol
  doi: 10.1371/journal.pcbi.1002582
– volume: 127
  start-page: 667
  year: 2014
  ident: key 20180328174732_awx347-B2
  article-title: A novel in vivo model of tau propagation with rapid and progressive neurofibrillary tangle pathology: the pattern of spread is determined by connectivity, not proximity
  publication-title: Acta Neuropathol
  doi: 10.1007/s00401-014-1254-6
– volume: 23
  start-page: 4022
  year: 2011
  ident: key 20180328174732_awx347-B49
  article-title: Behavioral interpretations of intrinsic connectivity networks
  publication-title: J Cogn Neurosci
  doi: 10.1162/jocn_a_00077
– volume: 547
  start-page: 185
  year: 2017
  ident: key 20180328174732_awx347-B29
  article-title: Cryo-EM structures of tau filaments from Alzheimer's disease
  publication-title: Nature
  doi: 10.1038/nature23002
– volume: 16
  start-page: 271
  year: 1995
  ident: key 20180328174732_awx347-B12
  article-title: Staging of Alzheimer's disease-related neurofibrillary changes
  publication-title: Neurobiol Aging
  doi: 10.1016/0197-4580(95)00021-6
– volume: 310
  start-page: 661
  year: 1984
  ident: key 20180328174732_awx347-B67
  article-title: Some speculations about prions, amyloid, and Alzheimer's disease
  publication-title: N Engl J Med
  doi: 10.1056/NEJM198403083101021
– volume: 34
  start-page: 457
  year: 2013
  ident: key 20180328174732_awx347-B17
  article-title: Early clinical PET imaging results with the novel PHF-tau radioligand [F-18]-T807
  publication-title: J Alzheimers Dis
  doi: 10.3233/JAD-122059
– volume: 71
  start-page: 35
  year: 2011
  ident: key 20180328174732_awx347-B74
  article-title: Selective neuronal vulnerability in neurodegenerative diseases: from stressor thresholds to degeneration
  publication-title: Neuron
  doi: 10.1016/j.neuron.2011.06.031
– volume: 108 (Pt 3)
  start-page: 785
  year: 1985
  ident: key 20180328174732_awx347-B23
  article-title: Subcortical dementia
  publication-title: Frontal cortex hypometabolism detected by positron tomography in patients with progressive supranuclear palsy. Brain
– volume: 110
  start-page: 16187
  year: 2013
  ident: key 20180328174732_awx347-B47
  article-title: Integrated strategy for improving functional connectivity mapping using multiecho fMRI
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1301725110
– volume: 48
  start-page: 153
  year: 2016
  ident: key 20180328174732_awx347-B71
  article-title: Regional expression of the MAPT gene is associated with loss of hubs in brain networks and cognitive impairment in Parkinson disease and progressive supranuclear palsy
  publication-title: Neurobiol Aging
  doi: 10.1016/j.neurobiolaging.2016.09.001
– volume: 37
  start-page: 121
  year: 1974
  ident: key 20180328174732_awx347-B3
  article-title: The ‘subcortical dementia’ of progressive supranuclear palsy
  publication-title: J Neurol Neurosurg Psychiatry
  doi: 10.1136/jnnp.37.2.121
– volume: 73
  start-page: 603
  year: 2013
  ident: key 20180328174732_awx347-B31
  article-title: Intrinsic connectivity network disruption in progressive supranuclear palsy
  publication-title: Ann Neurol
  doi: 10.1002/ana.23844
– volume: 9
  start-page: 103
  year: 2015
  ident: key 20180328174732_awx347-B54
  article-title: A multicenter study of the early detection of synaptic dysfunction in mild cognitive impairment using magnetoencephalography-derived functional connectivity
  publication-title: Neuroimage Clin
  doi: 10.1016/j.nicl.2015.07.011
SSID ssj0014326
Score 2.621075
Snippet Prion-like, trans-neuronal spread of tau pathology in humans is controversial. By evaluating tau burden and functional connectivity in living patients, Cope et...
Alzheimer's disease and progressive supranuclear palsy (PSP) represent neurodegenerative tauopathies with predominantly cortical versus subcortical disease...
Prion-like, trans-neuronal spread of tau pathology in humans is controversial. By evaluating tau burden and functional connectivity in living patients, Cope et...
SourceID pubmedcentral
proquest
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 550
SubjectTerms Aged
Aged, 80 and over
Alzheimer Disease - diagnostic imaging
Alzheimer Disease - metabolism
Alzheimer Disease - pathology
Aniline Compounds - pharmacokinetics
Brain Mapping
Carbolines - pharmacokinetics
Connectome - methods
Female
Humans
Image Processing, Computer-Assisted
Magnetic Resonance Imaging
Male
Middle Aged
Neural Pathways - diagnostic imaging
Original
Oxygen - blood
Positron-Emission Tomography
Rest
Supranuclear Palsy, Progressive - diagnostic imaging
Supranuclear Palsy, Progressive - metabolism
Supranuclear Palsy, Progressive - pathology
tau Proteins - metabolism
Thiazoles - pharmacokinetics
Title Tau burden and the functional connectome in Alzheimer's disease and progressive supranuclear palsy
URI https://www.ncbi.nlm.nih.gov/pubmed/29293892
https://www.proquest.com/docview/1984262827
https://pubmed.ncbi.nlm.nih.gov/PMC5837359
Volume 141
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1La8JAEF6Kh9JL6bv2IVto6aEE4-4m2T1KqdgW24uCt7BPFDSKj75-fXeTGIy0SI6ZDWFmNvNlZ-YbAG5x5HM_4g2PqVB6hAbco5Iaj2lkNJUNI1Ky6s5b2O6Rl37Qz0mS5n-k8BmuCzcroc4_vzBxXeM2_jp_7r73i2wBwelYNffp9SgL_LzAfXNxKfSU2tnWUOVmceRatGkdgP0cJsJmZtdDsKOTI7DbyRPhx0B0-RKKtAUB8kRBC-OgC1HZyR6UrnxFLiZjDYcJbI5-Bno41rP7OcwTMumitDbLlcF-aDhfTm3UcuTGfAan1ie_T0Cv9dR9bHv5uARPEooWHvcV8xE3WCsaOlrz0F4skJJoxaSUyoR2cyPlWMQwMkxzvyEUC5EvolBRgU9BJZkk-hxAZbhWwppXYU7cUZUwJuIEY0yU5DiqgoeVJmOZc4m7kRajOMtp4zjVe5zpvQruCulpxqHxjxy0RtkicrOyWGz3gUtu8ERPlvO4wagj16fIypxlFiyehCwGtMAMVUFUsm0h4Di2y3eS4SDl2g7sDzwO2MX2V7sEexZM0ayi-wpUFrOlvraAZSFqFqo_v9ZSn_0F4cLvxQ
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tau+burden+and+the+functional+connectome+in+Alzheimer%27s+disease+and+progressive+supranuclear+palsy&rft.jtitle=Brain+%28London%2C+England+%3A+1878%29&rft.au=Cope%2C+Thomas+E&rft.au=Rittman%2C+Timothy&rft.au=Borchert%2C+Robin+J&rft.au=Jones%2C+P+Simon&rft.date=2018-02-01&rft.issn=1460-2156&rft.eissn=1460-2156&rft.volume=141&rft.issue=2&rft.spage=550&rft_id=info:doi/10.1093%2Fbrain%2Fawx347&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-8950&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-8950&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-8950&client=summon