Controlled Inkjetting of a Conductive Pattern of Silver Nanoparticles Based on the Coffee-Ring Effect
Conductive patterns with line widths of 5–10 µm are successfully fabricated by utilizing the coffee‐ring effect in inkjet printing, resulting in transmittance values of up to 91.2% in the visible to near‐infrared region. This non‐lithographic approach broadens the range of fabrication procedures tha...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 25; no. 46; pp. 6714 - 6718 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Blackwell Publishing Ltd
10.12.2013
|
Subjects | |
Online Access | Get full text |
ISSN | 0935-9648 1521-4095 1521-4095 |
DOI | 10.1002/adma.201303278 |
Cover
Abstract | Conductive patterns with line widths of 5–10 µm are successfully fabricated by utilizing the coffee‐ring effect in inkjet printing, resulting in transmittance values of up to 91.2% in the visible to near‐infrared region. This non‐lithographic approach broadens the range of fabrication procedures that can be used to create various nanoparticle‐based microstructures and electronic devices. |
---|---|
AbstractList | Conductive patterns with line widths of 5-10 mu m are successfully fabricated by utilizing the coffee-ring effect in inkjet printing, resulting in transmittance values of up to 91.2% in the visible to near-infrared region. This non-lithographic approach broadens the range of fabrication procedures that can be used to create various nanoparticle-based microstructures and electronic devices. Conductive patterns with line widths of 5-10 µm are successfully fabricated by utilizing the coffee-ring effect in inkjet printing, resulting in transmittance values of up to 91.2% in the visible to near-infrared region. This non-lithographic approach broadens the range of fabrication procedures that can be used to create various nanoparticle-based microstructures and electronic devices. Conductive patterns with line widths of 5-10 µm are successfully fabricated by utilizing the coffee-ring effect in inkjet printing, resulting in transmittance values of up to 91.2% in the visible to near-infrared region. This non-lithographic approach broadens the range of fabrication procedures that can be used to create various nanoparticle-based microstructures and electronic devices.Conductive patterns with line widths of 5-10 µm are successfully fabricated by utilizing the coffee-ring effect in inkjet printing, resulting in transmittance values of up to 91.2% in the visible to near-infrared region. This non-lithographic approach broadens the range of fabrication procedures that can be used to create various nanoparticle-based microstructures and electronic devices. |
Author | Zhang, Zhiliang Xin, Zhiqing Song, Yanlin Deng, Mengmeng Wen, Yongqiang Zhang, Xingye |
Author_xml | – sequence: 1 givenname: Zhiliang surname: Zhang fullname: Zhang, Zhiliang organization: Beijing National Laboratory for Molecular Sciences, Key Laboratory of Green Printing, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, P. R. China – sequence: 2 givenname: Xingye surname: Zhang fullname: Zhang, Xingye organization: Beijing National Laboratory for Molecular Sciences, Key Laboratory of Green Printing, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, P. R. China – sequence: 3 givenname: Zhiqing surname: Xin fullname: Xin, Zhiqing organization: Beijing National Laboratory for Molecular Sciences, Key Laboratory of Green Printing, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, P. R. China – sequence: 4 givenname: Mengmeng surname: Deng fullname: Deng, Mengmeng organization: Beijing National Laboratory for Molecular Sciences, Key Laboratory of Green Printing, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, P. R. China – sequence: 5 givenname: Yongqiang surname: Wen fullname: Wen, Yongqiang organization: Beijing National Laboratory for Molecular Sciences, Key Laboratory of Green Printing, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, P. R. China – sequence: 6 givenname: Yanlin surname: Song fullname: Song, Yanlin email: ylsong@iccas.ac.cn organization: Beijing National Laboratory for Molecular Sciences, Key Laboratory of Green Printing, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, P. R. China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24123367$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkUtv1DAURi1URKeFLUuUJZsM16_YXg4zpVSaFsRzaTnODbjNJFPbU-i_J9G0FUJCsLJln_NJ935H5KAfeiTkOYU5BWCvXLNxcwaUA2dKPyIzKhktBRh5QGZguCxNJfQhOUrpEgBMBdUTcsgEZZxXakZwOfQ5Dl2HTXHWX11izqH_Vgxt4Yrxq9n5HG6weO9yxthP7x9Dd4OxuHD9sHUxB99hKl67NAYMfZG_4-i1LWL5YQo6Ga8-PyWPW9clfHZ3HpPPb04-Ld-W63enZ8vFuvRCM11qaYC2ziuQQnNNmRHac0pl7WlNa-W0d6rRjcEKFLrGgwLdcC8Mq9Gomh-Tl_vcbRyud5iy3YTksetcj8MuWSqUlJyBgP9Aq4qPtDEj-uIO3dUbbOw2ho2Lt_Z-iyMg9oCPQ0oRW-tDdjlMq3WhsxTsVJadyrIPZY3a_A_tPvmvgtkLP0KHt_-g7WJ1vvjdLfduSBl_PrguXtlxAiXt14tTu1p-OV_JtbBr_guiWbTf |
CitedBy_id | crossref_primary_10_1021_acsami_6b04235 crossref_primary_10_2139_ssrn_4210527 crossref_primary_10_1021_acs_chemrev_3c00548 crossref_primary_10_1021_acs_jpclett_0c01244 crossref_primary_10_1088_1361_6528_ad53d3 crossref_primary_10_1007_s00604_020_04500_7 crossref_primary_10_1016_j_foodchem_2024_142568 crossref_primary_10_1021_acsami_9b22183 crossref_primary_10_1002_smll_201703140 crossref_primary_10_1021_acsami_7b04316 crossref_primary_10_1016_j_jcis_2021_08_089 crossref_primary_10_1002_ange_202200166 crossref_primary_10_1016_j_ijheatmasstransfer_2023_124920 crossref_primary_10_1007_s40242_021_1223_2 crossref_primary_10_1016_j_apsusc_2023_158982 crossref_primary_10_1016_j_synthmet_2016_03_014 crossref_primary_10_1002_admt_201800426 crossref_primary_10_1039_C7CS00192D crossref_primary_10_1002_admt_201800546 crossref_primary_10_1364_OL_41_001941 crossref_primary_10_1016_j_surfin_2020_100537 crossref_primary_10_1080_15980316_2019_1680451 crossref_primary_10_1016_j_jmapro_2024_04_079 crossref_primary_10_3390_polym12122847 crossref_primary_10_1039_C7TC04804A crossref_primary_10_1002_adma_201503288 crossref_primary_10_3390_nano9111515 crossref_primary_10_1016_j_cej_2025_161172 crossref_primary_10_1002_adma_201500225 crossref_primary_10_1038_s41598_017_11475_8 crossref_primary_10_1016_j_colsurfa_2014_12_032 crossref_primary_10_1021_acs_jpclett_7b01814 crossref_primary_10_1021_acs_analchem_7b03790 crossref_primary_10_3390_ma13163587 crossref_primary_10_1016_j_mtcomm_2022_103263 crossref_primary_10_1039_C5NR06248A crossref_primary_10_1364_OL_42_003936 crossref_primary_10_1039_C6RA02032A crossref_primary_10_1016_j_jcis_2020_03_094 crossref_primary_10_1016_j_powtec_2023_119346 crossref_primary_10_1039_D1NR03784F crossref_primary_10_1080_25740881_2022_2113893 crossref_primary_10_1021_acsami_1c18933 crossref_primary_10_1002_ppsc_202100196 crossref_primary_10_1007_s11664_018_6418_z crossref_primary_10_1016_j_cej_2024_154910 crossref_primary_10_1021_acsomega_1c01488 crossref_primary_10_1149_2_0081504jss crossref_primary_10_1016_j_xcrp_2024_101789 crossref_primary_10_1002_pssa_201800007 crossref_primary_10_1039_D4TA03027C crossref_primary_10_1021_acs_jpcc_7b00148 crossref_primary_10_1021_jacs_6b04833 crossref_primary_10_1039_C6TC05227D crossref_primary_10_1039_C8SM01984C crossref_primary_10_1039_C5RA00132C crossref_primary_10_3390_w14101653 crossref_primary_10_1039_C4TC01908C crossref_primary_10_1002_smll_201503339 crossref_primary_10_1002_adma_201305249 crossref_primary_10_1039_C7TA05094A crossref_primary_10_1038_s41598_019_55040_x crossref_primary_10_1016_j_apsusc_2019_143826 crossref_primary_10_1021_accountsmr_1c00005 crossref_primary_10_1039_C5RA21988D crossref_primary_10_1103_RevModPhys_95_025004 crossref_primary_10_1002_smll_201802953 crossref_primary_10_1016_j_solmat_2017_04_048 crossref_primary_10_1021_acsomega_3c03539 crossref_primary_10_1002_smll_202205324 crossref_primary_10_1021_acs_nanolett_5b04319 crossref_primary_10_1016_j_jcis_2022_08_151 crossref_primary_10_1016_j_fct_2016_06_020 crossref_primary_10_1002_adfm_202416447 crossref_primary_10_1039_D1TC04523G crossref_primary_10_1002_adom_201900127 crossref_primary_10_1016_j_colsurfa_2023_132508 crossref_primary_10_1039_D4NJ04750H crossref_primary_10_3390_nano10030458 crossref_primary_10_1109_JEDS_2018_2852288 crossref_primary_10_1021_am504304g crossref_primary_10_1002_adom_201700751 crossref_primary_10_1515_zpch_2023_0363 crossref_primary_10_3390_pr9010099 crossref_primary_10_1039_C4TA04156A crossref_primary_10_1039_C4NR04656K crossref_primary_10_1002_adfm_201606045 crossref_primary_10_1016_j_cis_2017_12_008 crossref_primary_10_1002_adma_201400697 crossref_primary_10_56767_jfpe_2022_1_1_45 crossref_primary_10_1021_acs_nanolett_8b00269 crossref_primary_10_1016_j_cis_2024_103286 crossref_primary_10_1021_acs_langmuir_7b00807 crossref_primary_10_1021_acsnano_4c15724 crossref_primary_10_1088_2058_8585_acd860 crossref_primary_10_1021_acs_langmuir_8b02659 crossref_primary_10_1016_j_jallcom_2015_07_195 crossref_primary_10_1021_acsami_6b02333 crossref_primary_10_1002_adma_201605223 crossref_primary_10_1021_acs_langmuir_8b00230 crossref_primary_10_1002_smll_201403005 crossref_primary_10_1002_adma_201505617 crossref_primary_10_1039_D0MH01950J crossref_primary_10_1016_j_colsurfa_2023_132284 crossref_primary_10_1002_admi_201900003 crossref_primary_10_1016_j_cap_2021_08_005 crossref_primary_10_1002_sdtp_12582 crossref_primary_10_1021_acsanm_9b00795 crossref_primary_10_1038_s41598_020_63695_0 crossref_primary_10_1002_adfm_201500908 crossref_primary_10_1002_ange_201406903 crossref_primary_10_1021_acs_langmuir_6b03304 crossref_primary_10_1021_acsami_5b07006 crossref_primary_10_1039_C7TC00038C crossref_primary_10_1021_acs_langmuir_8b03609 crossref_primary_10_1016_j_chempr_2018_08_005 crossref_primary_10_1002_adma_201503682 crossref_primary_10_1021_acsami_6b07204 crossref_primary_10_1002_admt_202101277 crossref_primary_10_1021_acs_langmuir_5b03449 crossref_primary_10_1002_aelm_202400143 crossref_primary_10_1002_chem_201801302 crossref_primary_10_1063_5_0150361 crossref_primary_10_1002_adem_201901351 crossref_primary_10_1088_1361_6528_aa5f2b crossref_primary_10_1021_acs_langmuir_2c03108 crossref_primary_10_1002_adom_201600466 crossref_primary_10_1039_C8TC01208C crossref_primary_10_1039_C7LC01127J crossref_primary_10_1021_acsami_5b12516 crossref_primary_10_1007_s11431_014_5683_1 crossref_primary_10_1002_smll_201702324 crossref_primary_10_1021_acsami_7b05381 crossref_primary_10_1016_j_foodchem_2022_134794 crossref_primary_10_1021_am504106s crossref_primary_10_1088_0256_307X_37_2_028103 crossref_primary_10_3390_coatings12121893 crossref_primary_10_1007_s10853_021_06248_8 crossref_primary_10_1016_j_bej_2021_108176 crossref_primary_10_1016_j_cis_2020_102271 crossref_primary_10_1039_C5NR09239F crossref_primary_10_1039_C5TC04317D crossref_primary_10_1039_C8TB01979G crossref_primary_10_3390_nano12152600 crossref_primary_10_1039_C4RA15269G crossref_primary_10_1021_acs_chemrev_3c00502 crossref_primary_10_1002_smll_201403288 crossref_primary_10_1021_acsami_3c11417 crossref_primary_10_1039_C4RA06467D crossref_primary_10_1080_00018732_2016_1226804 crossref_primary_10_1021_acsnano_6b06531 crossref_primary_10_1021_acs_jpcc_6b12793 crossref_primary_10_1021_jp507451b crossref_primary_10_3390_polym11030468 crossref_primary_10_1039_C5RA09431C crossref_primary_10_1016_j_matdes_2021_110164 crossref_primary_10_1039_D1TC04101K crossref_primary_10_1021_acs_nanolett_5b04377 crossref_primary_10_1016_j_jcis_2016_07_079 crossref_primary_10_1002_adma_201603895 crossref_primary_10_1142_S1088424622500377 crossref_primary_10_1063_5_0031669 crossref_primary_10_1039_C9TA02209K crossref_primary_10_1039_C4NR00102H crossref_primary_10_1142_S0218625X22500457 crossref_primary_10_1021_acs_jpclett_1c02470 crossref_primary_10_1016_j_jcis_2016_10_016 crossref_primary_10_1063_5_0086141 crossref_primary_10_3390_ma10010051 crossref_primary_10_1021_acs_langmuir_6b03595 crossref_primary_10_3390_nano12193533 crossref_primary_10_1007_s11356_024_34360_0 crossref_primary_10_1002_aelm_202001121 crossref_primary_10_1021_acsami_0c18518 crossref_primary_10_1149_2_0061504jss crossref_primary_10_1002_anie_201406903 crossref_primary_10_1016_j_nanoen_2018_04_017 crossref_primary_10_1039_C6RA27475G crossref_primary_10_1002_anie_202200166 crossref_primary_10_1002_pssb_201600388 crossref_primary_10_1039_D1QM00513H crossref_primary_10_1021_acs_langmuir_7b03908 crossref_primary_10_1016_j_orgel_2019_01_028 crossref_primary_10_1039_C4TA05675B crossref_primary_10_1016_j_cej_2020_127644 crossref_primary_10_1088_2058_8585_acf773 crossref_primary_10_1016_j_carbon_2023_118485 crossref_primary_10_1002_sstr_202000028 crossref_primary_10_3390_ma11040481 crossref_primary_10_1038_srep06656 crossref_primary_10_1038_srep24628 crossref_primary_10_1002_adma_201707526 crossref_primary_10_1021_acsami_7b13355 crossref_primary_10_1021_acsami_2c20116 crossref_primary_10_1038_srep41757 crossref_primary_10_1049_iet_cim_2018_0015 crossref_primary_10_3390_polym10010060 crossref_primary_10_1002_smm2_1104 crossref_primary_10_1038_s41467_022_30660_6 crossref_primary_10_1039_C8CS01003J crossref_primary_10_1002_adma_201305416 crossref_primary_10_1039_C8RA03280G |
Cites_doi | 10.1021/la960833w 10.1126/science.1072086 10.1021/la101249k 10.1002/adma.201103032 10.1021/nn901239z 10.1002/adma.201103620 10.1021/ac0601866 10.1021/la7006205 10.1002/sia.3281 10.1021/la053450j 10.1038/nnano.2007.262 10.1021/la011470p 10.1021/la011484v 10.1039/c1nr10048c 10.1038/39827 10.1063/1.2424671 10.1039/JM9960600573 10.1103/PhysRevLett.88.164501 10.1063/1.367025 10.1021/nl0711211 10.1021/cm035256t 10.1103/PhysRevE.82.015305 10.1021/ac102963x 10.1002/anie.200604889 10.1021/jp912190v 10.1039/c1cc12377g 10.1002/adma.200702326 10.1039/c0nr00804d 10.1021/ja104735a 10.1038/nature10344 10.1021/cm0101632 10.1021/nn2044609 10.1021/ja057669w 10.1016/0040-6090(83)90256-0 10.1039/c1sm05183k |
ContentType | Journal Article |
Copyright | 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
Copyright_xml | – notice: 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim – notice: 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
DBID | BSCLL AAYXX CITATION NPM 7X8 7SR 7U5 8BQ 8FD JG9 L7M |
DOI | 10.1002/adma.201303278 |
DatabaseName | Istex CrossRef PubMed MEDLINE - Academic Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | 6718 |
ExternalDocumentID | 24123367 10_1002_adma_201303278 ADMA201303278 ark_67375_WNG_DCVMD5L4_L |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 21303091; 51173190; 21203209; 21121001 – fundername: Chinese Academy of Sciences – fundername: 973 Program funderid: 2013CB933004; 2011CB932303; 2011CB808400 |
GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8WZ 930 A03 A6W AAESR AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ABLJU ABPVW ACAHQ ACBWZ ACCZN ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AETEA AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AIDQK AIDYY AIQQE AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P FEDTE FOJGT G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6K MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NDZJH NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO RJQFR RNS ROL RX1 RYL SAMSI SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WTY WXSBR WYISQ XG1 XPP XV2 YR2 ZY4 ZZTAW ~02 ~IA ~WT AAHHS AAYOK AAYXX ACCFJ ADZOD AEEZP AEQDE AIWBW AJBDE CITATION NPM 7X8 7SR 7U5 8BQ 8FD JG9 L7M |
ID | FETCH-LOGICAL-c4828-85901fac705483812948c3115bc1b1b7a8ca7d8d9e607eadc0708d3c492be97b3 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 10:56:23 EDT 2025 Fri Jul 11 05:55:08 EDT 2025 Thu Apr 03 07:06:31 EDT 2025 Tue Jul 01 00:44:08 EDT 2025 Thu Apr 24 22:58:12 EDT 2025 Sun Sep 21 06:15:53 EDT 2025 Sun Sep 21 06:16:40 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 46 |
Keywords | wettability inkjet printing silver nanoparticles coffee-ring effect surface patterning |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4828-85901fac705483812948c3115bc1b1b7a8ca7d8d9e607eadc0708d3c492be97b3 |
Notes | 973 Program - No. 2013CB933004; No. 2011CB932303; No. 2011CB808400 ArticleID:ADMA201303278 Chinese Academy of Sciences National Natural Science Foundation of China - No. 21303091; No. 51173190; No. 21203209; No. 21121001 istex:2DE5EF1F7F080BC46306C4FBBEBF9AA44F8E3742 ark:/67375/WNG-DCVMD5L4-L ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
PMID | 24123367 |
PQID | 1466375599 |
PQPubID | 23479 |
PageCount | 5 |
ParticipantIDs | proquest_miscellaneous_1475532040 proquest_miscellaneous_1466375599 pubmed_primary_24123367 crossref_citationtrail_10_1002_adma_201303278 crossref_primary_10_1002_adma_201303278 wiley_primary_10_1002_adma_201303278_ADMA201303278 istex_primary_ark_67375_WNG_DCVMD5L4_L |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 10, 2013 |
PublicationDateYYYYMMDD | 2013-12-10 |
PublicationDate_xml | – month: 12 year: 2013 text: December 10, 2013 day: 10 |
PublicationDecade | 2010 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv. Mater |
PublicationYear | 2013 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | S. J. Kim, K. H. Kang, J.-G. Lee, I. S. Kang, B. J. Yoon, Anal. Chem.2006, 78, 5192. J. Park, J. Moon, Langmuir2006, 22, 3506. Z. Tang, N. A. Kotov, M. Giersig, Science2002, 297, 237. R. Bel Hadj Tahar, T. Ban, Y. Ohya, Y. Takahashi, J. Appl. Phys.1998, 83, 2631. L. Zhang, H. Liu, Y. Zhao, X. Sun, Y. Wen, Y. Guo, X. Gao, C. Di, G. Yu, Y. Liu, Adv. Mater.2012, 24, 436. H. B. Eral, D. M. Augustine, M. H. G. Duits, F. Mugele, Soft Matter2011, 7, 4954. K. L. Chopra, S. Major, D. K. Pandya, Thin Solid Films1983, 102, 1. D. Kim, S. Jeong, B. K. Park, J. Moon, Appl. Phys. Lett.2006, 89, 264101. D. Feng, G. Liu, W. Zheng, J. Liu, T. Chen, D. Li, Chem. Commun.2011, 47, 8557. F. Torrisi, T. Hasan, W. Wu, Z. Sun, A. Lombardo, T. S. Kulmala, G.-W. Hsieh, S. Jung, F. Bonaccorso, P. J. Paul, D. Chu, A. C. Ferrari, ACS Nano2012, 6, 2992. J. Conway, H. Korns, M. R. Fisch, Langmuir1997, 13, 426. R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, T. A. Witten, Nature1997, 389, 827. X. Shen, C. Ho, T. Wong, J. Phys. Chem. B2010, 114, 5269. P. Y. Silvert, J. Mater. Chem.1996, 6, 573. I. Park, S. H. Ko, H. Pan, C. P. Grigoropoulos, A. P. Pisano, J. M. J. Fréchet, E. S. Lee, J. H. Jeong, Adv. Mater.2008, 20, 489. J. M. Romo-Herrera, R. A. Alvarez-Puebla, L. M. Liz-Marzan, Nanoscale2011, 3, 1304. T.-S. Wong, T.-H. Chen, X. Shen, C.-M. Ho, Anal. Chem.2011, 83, 1871. F. Parisse, C. Allain, J. Phys. II1996, 6, 1111. T. Kraus, L. Malaquin, H. Schmid, W. Riess, N. D. Spencer, H. Wolf, Nat. Nanotechnol.2007, 2, 570. C. M. Andres, N. A. Kotov, J. Am. Chem. Soc.2010, 132, 14496. H.-Y. Ko, J. Park, H. Shin, J. Moon, Chem. Mater.2004, 16, 4212. Y. Kim, B. Yoo, J. E. Anthony, S. K. Park, Adv. Mater.2012, 24, 497. T. T. Nellimoottil, P. N. Rao, S. S. Ghosh, A. Chattopadhyay, Langmuir2007, 23, 8655. B. M. Weon, J. H. Je, Phys. Rev. E2010, 82, 015305. B. Y. Ahn, D. J. Lorang, J. A. Lewis, Nanoscale2011, 3, 2700. P. Calvert, Chem. Mater.2001, 13, 3299. X. Fang, M. Pimentel, J. Sokolov, M. Rafailovich, Langmuir2010, 26, 7682. H. Ko, J. Park, H. Shin, J. Moon, Chem. Mater.2004, 16, 4212. D. J. Lee, J. H. Oh, Surf. Interface Anal.2010, 42, 1261. R. Sharma, C. Y. Lee, J. H. Choi, K. Chen, M. S. Strano, Nano Lett.2007, 7, 2693. P. J. Yunker, T. Still, M. A. Lohr, A. G. Yodh, Nature2011, 476, 308. V. X. Nguyen, K. J. Stebe, Phys. Rev. Lett.2002, 88, 164501. Y. Deng, X. Y. Zhu, T. Kienlen, A. Guo, J. Am. Chem. Soc.2006, 128, 2768. L. Shmuylovich, A. Q. Shen, H. A. Stone, Langmuir2002, 18, 3441. X. Shen, C.-M. Ho, T.-S. Wong, J. Phys. Chem. B2010, 114, 5269. B. P. Khanal, E. R. Zubarev, Angew. Chem. Int. Ed.2007, 46, 2195. H. Y. Erbil, G. McHale, M. I. Newton, Langmuir2002, 18, 2636. M. Layani, M. Gruchko, O. Milo, I. Balberg, D. Azulay, S. Magdassi, ACS Nano2009, 3, 3537. 2011; 476 2002; 18 2006; 78 2002; 297 2011; 83 1998; 83 2011; 3 2011; 7 2010; 82 1997; 389 2010; 42 1983; 102 2010; 26 2006; 89 2004; 16 2006; 22 2010; 114 1997; 13 2002; 88 2010; 132 2007; 7 2007; 2 2008; 20 2011; 47 2012; 6 2009; 3 2012; 24 2001; 13 2007; 23 2006; 128 2007; 46 1996; 6 e_1_2_4_21_1 e_1_2_4_20_1 e_1_2_4_23_1 e_1_2_4_22_1 e_1_2_4_25_1 e_1_2_4_24_1 e_1_2_4_27_1 e_1_2_4_26_1 e_1_2_4_29_1 e_1_2_4_28_1 e_1_2_4_1_1 e_1_2_4_3_1 e_1_2_4_2_1 e_1_2_4_5_1 e_1_2_4_4_1 e_1_2_4_7_1 e_1_2_4_6_1 e_1_2_4_9_1 e_1_2_4_8_1 Parisse F. (e_1_2_4_31_1) 1996; 6 e_1_2_4_30_1 e_1_2_4_32_1 e_1_2_4_10_1 e_1_2_4_11_1 e_1_2_4_34_1 e_1_2_4_12_1 e_1_2_4_33_1 e_1_2_4_13_1 e_1_2_4_36_1 e_1_2_4_14_1 e_1_2_4_35_1 e_1_2_4_15_1 e_1_2_4_16_1 e_1_2_4_38_1 e_1_2_4_37_1 e_1_2_4_18_1 e_1_2_4_17_1 e_1_2_4_19_1 |
References_xml | – reference: D. Feng, G. Liu, W. Zheng, J. Liu, T. Chen, D. Li, Chem. Commun.2011, 47, 8557. – reference: T. T. Nellimoottil, P. N. Rao, S. S. Ghosh, A. Chattopadhyay, Langmuir2007, 23, 8655. – reference: H.-Y. Ko, J. Park, H. Shin, J. Moon, Chem. Mater.2004, 16, 4212. – reference: B. P. Khanal, E. R. Zubarev, Angew. Chem. Int. Ed.2007, 46, 2195. – reference: P. Y. Silvert, J. Mater. Chem.1996, 6, 573. – reference: K. L. Chopra, S. Major, D. K. Pandya, Thin Solid Films1983, 102, 1. – reference: Y. Kim, B. Yoo, J. E. Anthony, S. K. Park, Adv. Mater.2012, 24, 497. – reference: L. Zhang, H. Liu, Y. Zhao, X. Sun, Y. Wen, Y. Guo, X. Gao, C. Di, G. Yu, Y. Liu, Adv. Mater.2012, 24, 436. – reference: X. Shen, C. Ho, T. Wong, J. Phys. Chem. B2010, 114, 5269. – reference: T. Kraus, L. Malaquin, H. Schmid, W. Riess, N. D. Spencer, H. Wolf, Nat. Nanotechnol.2007, 2, 570. – reference: D. Kim, S. Jeong, B. K. Park, J. Moon, Appl. Phys. Lett.2006, 89, 264101. – reference: I. Park, S. H. Ko, H. Pan, C. P. Grigoropoulos, A. P. Pisano, J. M. J. Fréchet, E. S. Lee, J. H. Jeong, Adv. Mater.2008, 20, 489. – reference: Y. Deng, X. Y. Zhu, T. Kienlen, A. Guo, J. Am. Chem. Soc.2006, 128, 2768. – reference: J. Park, J. Moon, Langmuir2006, 22, 3506. – reference: X. Fang, M. Pimentel, J. Sokolov, M. Rafailovich, Langmuir2010, 26, 7682. – reference: J. Conway, H. Korns, M. R. Fisch, Langmuir1997, 13, 426. – reference: B. Y. Ahn, D. J. Lorang, J. A. Lewis, Nanoscale2011, 3, 2700. – reference: S. J. Kim, K. H. Kang, J.-G. Lee, I. S. Kang, B. J. Yoon, Anal. Chem.2006, 78, 5192. – reference: J. M. Romo-Herrera, R. A. Alvarez-Puebla, L. M. Liz-Marzan, Nanoscale2011, 3, 1304. – reference: D. J. Lee, J. H. Oh, Surf. Interface Anal.2010, 42, 1261. – reference: H. Y. Erbil, G. McHale, M. I. Newton, Langmuir2002, 18, 2636. – reference: R. Sharma, C. Y. Lee, J. H. Choi, K. Chen, M. S. Strano, Nano Lett.2007, 7, 2693. – reference: Z. Tang, N. A. Kotov, M. Giersig, Science2002, 297, 237. – reference: L. Shmuylovich, A. Q. Shen, H. A. Stone, Langmuir2002, 18, 3441. – reference: V. X. Nguyen, K. J. Stebe, Phys. Rev. Lett.2002, 88, 164501. – reference: F. Parisse, C. Allain, J. Phys. II1996, 6, 1111. – reference: C. M. Andres, N. A. Kotov, J. Am. Chem. Soc.2010, 132, 14496. – reference: P. J. Yunker, T. Still, M. A. Lohr, A. G. Yodh, Nature2011, 476, 308. – reference: X. Shen, C.-M. Ho, T.-S. Wong, J. Phys. Chem. B2010, 114, 5269. – reference: R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, T. A. Witten, Nature1997, 389, 827. – reference: P. Calvert, Chem. Mater.2001, 13, 3299. – reference: H. Ko, J. Park, H. Shin, J. Moon, Chem. Mater.2004, 16, 4212. – reference: M. Layani, M. Gruchko, O. Milo, I. Balberg, D. Azulay, S. Magdassi, ACS Nano2009, 3, 3537. – reference: R. Bel Hadj Tahar, T. Ban, Y. Ohya, Y. Takahashi, J. Appl. Phys.1998, 83, 2631. – reference: H. B. Eral, D. M. Augustine, M. H. G. Duits, F. Mugele, Soft Matter2011, 7, 4954. – reference: T.-S. Wong, T.-H. Chen, X. Shen, C.-M. Ho, Anal. Chem.2011, 83, 1871. – reference: B. M. Weon, J. H. Je, Phys. Rev. E2010, 82, 015305. – reference: F. Torrisi, T. Hasan, W. Wu, Z. Sun, A. Lombardo, T. S. Kulmala, G.-W. Hsieh, S. Jung, F. Bonaccorso, P. J. Paul, D. Chu, A. C. Ferrari, ACS Nano2012, 6, 2992. – volume: 114 start-page: 5269 year: 2010 publication-title: J. Phys. Chem. B – volume: 6 start-page: 1111 year: 1996 publication-title: J. Phys. II – volume: 16 start-page: 4212 year: 2004 publication-title: Chem. Mater. – volume: 26 start-page: 7682 year: 2010 publication-title: Langmuir – volume: 3 start-page: 3537 year: 2009 publication-title: ACS Nano – volume: 6 start-page: 573 year: 1996 publication-title: J. Mater. Chem. – volume: 47 start-page: 8557 year: 2011 publication-title: Chem. Commun. – volume: 389 start-page: 827 year: 1997 publication-title: Nature – volume: 3 start-page: 2700 year: 2011 publication-title: Nanoscale – volume: 24 start-page: 497 year: 2012 publication-title: Adv. Mater. – volume: 22 start-page: 3506 year: 2006 publication-title: Langmuir – volume: 82 start-page: 015305 year: 2010 publication-title: Phys. Rev. E – volume: 6 start-page: 2992 year: 2012 publication-title: ACS Nano – volume: 102 start-page: 1 year: 1983 publication-title: Thin Solid Films – volume: 24 start-page: 436 year: 2012 publication-title: Adv. Mater. – volume: 3 start-page: 1304 year: 2011 publication-title: Nanoscale – volume: 23 start-page: 8655 year: 2007 publication-title: Langmuir – volume: 20 start-page: 489 year: 2008 publication-title: Adv. Mater. – volume: 42 start-page: 1261 year: 2010 publication-title: Surf. Interface Anal. – volume: 89 start-page: 264101 year: 2006 publication-title: Appl. Phys. Lett. – volume: 83 start-page: 1871 year: 2011 publication-title: Anal. Chem. – volume: 83 start-page: 2631 year: 1998 publication-title: J. Appl. Phys. – volume: 7 start-page: 2693 year: 2007 publication-title: Nano Lett. – volume: 78 start-page: 5192 year: 2006 publication-title: Anal. Chem. – volume: 476 start-page: 308 year: 2011 publication-title: Nature – volume: 297 start-page: 237 year: 2002 publication-title: Science – volume: 46 start-page: 2195 year: 2007 publication-title: Angew. Chem. Int. Ed. – volume: 7 start-page: 4954 year: 2011 publication-title: Soft Matter – volume: 18 start-page: 3441 year: 2002 publication-title: Langmuir – volume: 88 start-page: 164501 year: 2002 publication-title: Phys. Rev. Lett. – volume: 18 start-page: 2636 year: 2002 publication-title: Langmuir – volume: 13 start-page: 426 year: 1997 publication-title: Langmuir – volume: 128 start-page: 2768 year: 2006 publication-title: J. Am. Chem. Soc. – volume: 2 start-page: 570 year: 2007 publication-title: Nat. Nanotechnol. – volume: 132 start-page: 14496 year: 2010 publication-title: J. Am. Chem. Soc. – volume: 13 start-page: 3299 year: 2001 publication-title: Chem. Mater. – ident: e_1_2_4_30_1 doi: 10.1021/la960833w – ident: e_1_2_4_5_1 doi: 10.1126/science.1072086 – ident: e_1_2_4_34_1 doi: 10.1021/la101249k – ident: e_1_2_4_10_1 doi: 10.1002/adma.201103032 – ident: e_1_2_4_24_1 doi: 10.1021/nn901239z – ident: e_1_2_4_11_1 doi: 10.1002/adma.201103620 – ident: e_1_2_4_16_1 doi: 10.1021/ac0601866 – ident: e_1_2_4_23_1 doi: 10.1021/la7006205 – ident: e_1_2_4_29_1 doi: 10.1002/sia.3281 – ident: e_1_2_4_9_1 doi: 10.1021/la053450j – ident: e_1_2_4_2_1 doi: 10.1038/nnano.2007.262 – ident: e_1_2_4_33_1 doi: 10.1021/la011470p – ident: e_1_2_4_32_1 doi: 10.1021/la011484v – ident: e_1_2_4_37_1 doi: 10.1039/c1nr10048c – ident: e_1_2_4_13_1 doi: 10.1038/39827 – ident: e_1_2_4_14_1 doi: 10.1063/1.2424671 – ident: e_1_2_4_27_1 doi: 10.1039/JM9960600573 – ident: e_1_2_4_26_1 doi: 10.1103/PhysRevLett.88.164501 – ident: e_1_2_4_38_1 doi: 10.1063/1.367025 – ident: e_1_2_4_6_1 doi: 10.1021/nl0711211 – ident: e_1_2_4_35_1 doi: 10.1021/cm035256t – ident: e_1_2_4_7_1 doi: 10.1021/cm035256t – ident: e_1_2_4_19_1 doi: 10.1103/PhysRevE.82.015305 – ident: e_1_2_4_22_1 doi: 10.1021/ac102963x – ident: e_1_2_4_21_1 doi: 10.1002/anie.200604889 – ident: e_1_2_4_15_1 doi: 10.1021/jp912190v – ident: e_1_2_4_3_1 doi: 10.1039/c1cc12377g – ident: e_1_2_4_20_1 doi: 10.1021/jp912190v – ident: e_1_2_4_1_1 doi: 10.1002/adma.200702326 – ident: e_1_2_4_4_1 doi: 10.1039/c0nr00804d – ident: e_1_2_4_8_1 doi: 10.1021/ja104735a – ident: e_1_2_4_17_1 doi: 10.1038/nature10344 – volume: 6 start-page: 1111 year: 1996 ident: e_1_2_4_31_1 publication-title: J. Phys. II – ident: e_1_2_4_25_1 doi: 10.1021/cm0101632 – ident: e_1_2_4_12_1 doi: 10.1021/nn2044609 – ident: e_1_2_4_28_1 doi: 10.1021/ja057669w – ident: e_1_2_4_36_1 doi: 10.1016/0040-6090(83)90256-0 – ident: e_1_2_4_18_1 doi: 10.1039/c1sm05183k |
SSID | ssj0009606 |
Score | 2.5422785 |
Snippet | Conductive patterns with line widths of 5–10 µm are successfully fabricated by utilizing the coffee‐ring effect in inkjet printing, resulting in transmittance... Conductive patterns with line widths of 5-10 µm are successfully fabricated by utilizing the coffee-ring effect in inkjet printing, resulting in transmittance... Conductive patterns with line widths of 5-10 mu m are successfully fabricated by utilizing the coffee-ring effect in inkjet printing, resulting in... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 6714 |
SubjectTerms | coffee-ring effect Inkjet printing silver nanoparticles surface patterning wettability |
Title | Controlled Inkjetting of a Conductive Pattern of Silver Nanoparticles Based on the Coffee-Ring Effect |
URI | https://api.istex.fr/ark:/67375/WNG-DCVMD5L4-L/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.201303278 https://www.ncbi.nlm.nih.gov/pubmed/24123367 https://www.proquest.com/docview/1466375599 https://www.proquest.com/docview/1475532040 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1bb9MwFMcttL3AA4zrwmAyEoKnbLn4-ljaXUDthDYGe7Nsx0HQKUVbKyGe-Aj7jPsknOO02Yq4SPCWpseNYx8f_90c_0LIcxVEqJwUqWI1hwVKbVPQzVnKc5dnPrdBR8726EDsH7M3J_zk2i7-lg_R_eGGIyPGaxzg1p1vX0FDbRW5QRiDC4m7ffNSIDx_cHjFj0J5HmF7JU-1YGpBbcyK7eXiS7PSKjbw119JzmUFG6eg3TvELirfZp6Mt2ZTt-W__cR1_J-7WyO35_qU9lqHuktuhOYeuXWNWniffOy36e2noaKvm_HnEFOn6aSmlsJXCJCFEErfRnJng-ePPmH-NYVIDkv0eSYefQXzZ0UnDQUJCuXqOoTL7xeH-FMtUvkBOd7dedffT-fva0g9g4VbqnAfa229BBmoQAkUmimPNB_noeedtMpbWalKB5FJ8GAP4UZVpWe6cEFLVz4kK82kCeuE1qXiqGWZ4JZ5CBpWa-6cFU5ZkBh5QtJFfxk_h5njOzVOTYthLgw2oOkaMCEvO_svLcbjt5YvYvd3ZvZsjMlvkpsPB3tm0H8_GvAhM8OEPFv4h4Ehic9ZbBMms3NcTQmw51r_yQYMygJCaEIetc7VXRFEVVGWQiakiC7ylxqb3mDU6z49_pdCG-QmHmOaTp49ISvTs1l4CmJr6jbJKlgOjzbjwPoBc0UgPQ |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BewAO5dk2PI2E4JQ2Lyf2cdmlbGF3hUoL3CzbcVC7VRaVXQlx4ifwG_klzDiblEU8JDjGGSeOPTP-xh5_AXgkXO5KU-ShyCqOAUqlQ8TNUchjE0c21k56nu3xJB8eZS_e8TabkM7CNPwQ3YIbWYb312TgtCC9e84aqktPHEROOCnERVj3m3SEiw7OGaQIoHu6vZSHMs9Ey9sYJbur9VfmpXXq4k-_Ap2rGNZPQntXwbTNb3JPpjuLudmxn39idvyv77sGG0uIynqNTl2HC66-AVd-IC68Ce_7TYb7qSvZfj09cT57ms0qphneIg5Z9KLslSfvrKn89TGlYDN05hilL5Px2FOcQks2qxmiUKxXVc59-_L1gB7VsCrfgqO9Z4f9Ybj8ZUNoM4zdQkFHWSttC0SCAsFAIjNhidDHWBx8U2hhdVGKUro8KlCJLXocUaY2k4lxsjDpJqzVs9ptA6tSwQnOZjnXmUW_oaXkxujcCI0oIw4gbAdM2SWfOf1W41Q1TMyJog5UXQcG8KST_9AwefxW8rEf_05Mn00p_63g6u3kuRr034wHfJSpUQAPWwVRaJW01aJrN1t8pIAqR3ku5Z9kUCBN0IsGsNVoV_dGxFVJmuZFAInXkb-0WPUG4153dftfKj2AS8PD8UiN9icv78BlKqesnTi6C2vzs4W7h9hrbu576_oOZbsixw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLZgkxB7GHcWxsVICJ6y5WI79mNpKRu01TQY25tlO84EndJptBLiaT-B38gv4RynzVbERYLHOMeJY5_Ld5LjL4Q8k1740hYilqzikKBUJgbcnMQ8tWniUuNV4NkejsTOAXtzxI8u7eJv-CHaF25oGcFfo4GfltX2BWmoKQNvEPrgrJBXySoTECsRFu1fEEghPg9sezmPlWByQduYZNvL_ZfC0irO8JdfYc5lCBtiUP8GMYvRN6Un463Z1G65rz8RO_7P490k63OASjuNRt0iV3x9m6xdoi28Q467TX37iS_pbj3-5EPtNJ1U1FA4hQyy4EPpXqDurLH93UcswKbgyiFHn5fi0ZcQQEs6qSlgUOhXVd5_P_-2j5dqOJXvkoP-q_fdnXj-w4bYMcjcYokbWSvjCsCBEqBApph0SOdjHSy9LYx0pihlqbxIClBhB_5GlrljKrNeFTa_R1bqSe03CK1yyRHMMsENc-A1jFLcWiOsNIAx0ojEi_XSbs5mjj_VONEND3OmcQJ1O4ERedHKnzY8Hr-VfB6WvxUzZ2Osfiu4Phy91r3uh2GPD5geROTpQj802CR-aDG1n8w-YzolQJ4r9ScZEMgz8KERud8oV3tHQFVZnosiIllQkb-MWHd6w0579OBfOj0h1_Z6fT3YHb3dJNexGUt20uQhWZmezfwjAF5T-zjY1g_WiyF2 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Controlled+Inkjetting+of+a+Conductive+Pattern+of+Silver+Nanoparticles+Based+on+the+Coffee-Ring+Effect&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Zhang%2C+Zhiliang&rft.au=Zhang%2C+Xingye&rft.au=Xin%2C+Zhiqing&rft.au=Deng%2C+Mengmeng&rft.date=2013-12-10&rft.issn=0935-9648&rft.eissn=1521-4095&rft.volume=25&rft.issue=46&rft.spage=6714&rft.epage=6718&rft_id=info:doi/10.1002%2Fadma.201303278&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |