Transcriptional repression of GTL1 under water‐deficit stress promotes anthocyanin biosynthesis to enhance drought tolerance

The transcription factor GT2‐LIKE 1 (GTL1) has been implicated in orchestrating a transcriptional network of diverse physiological, biochemical, and developmental processes. In response to water‐limiting conditions, GTL1 is a negative regulator of stomatal development, but its potential rolein other...

Full description

Saved in:
Bibliographic Details
Published inPlant direct Vol. 8; no. 5; pp. e594 - n/a
Main Authors Mano, Noel Anthony, Shaikh, Mearaj A., Widhalm, Joshua R., Yoo, Chan Yul, Mickelbart, Michael V.
Format Journal Article
LanguageEnglish
Published England John Wiley & Sons, Inc 01.05.2024
Wiley
Subjects
Online AccessGet full text
ISSN2475-4455
2475-4455
DOI10.1002/pld3.594

Cover

Abstract The transcription factor GT2‐LIKE 1 (GTL1) has been implicated in orchestrating a transcriptional network of diverse physiological, biochemical, and developmental processes. In response to water‐limiting conditions, GTL1 is a negative regulator of stomatal development, but its potential rolein other water‐deficit responses is unknown. We hypothesized that GTL1 regulates transcriptome changes associated with drought tolerance over leaf developmental stages. To test the hypothesis, gene expression was profiled by RNA‐seq analysis in emerging and expanding leaves of wild‐type and a drought‐tolerant gtl1‐4 knockout mutant under well‐watered and water‐deficit conditions. Our comparative analysis of genotype‐treatment combinations within leaf developmental age identified 459 and 1073 differentially expressed genes in emerging and expanding leaves, respectively, as water‐deficit responsive GTL1‐regulated genes. Transcriptional profiling identified a potential role of GTL1 in two important pathways previously linked to drought tolerance: flavonoid and polyamine biosynthesis. In expanding leaves, negative regulation of GTL1 under water‐deficit conditions promotes biosynthesis of flavonoids and anthocyanins that may contribute to drought tolerance. Quantification of polyamines did not support a role for GTL1 in these drought‐responsive pathways, but this is likely due to the complex nature of polyamine synthesis and turnover. Our global transcriptome analysis suggests that transcriptional repression of GTL1 by water deficit allows plants to activate diverse pathways that collectively contribute to drought tolerance.
AbstractList The transcription factor GT2-LIKE 1 (GTL1) has been implicated in orchestrating a transcriptional network of diverse physiological, biochemical, and developmental processes. In response to water-limiting conditions, GTL1 is a negative regulator of stomatal development, but its potential rolein other water-deficit responses is unknown. We hypothesized that GTL1 regulates transcriptome changes associated with drought tolerance over leaf developmental stages. To test the hypothesis, gene expression was profiled by RNA-seq analysis in emerging and expanding leaves of wild-type and a drought-tolerant gtl1-4 knockout mutant under well-watered and water-deficit conditions. Our comparative analysis of genotype-treatment combinations within leaf developmental age identified 459 and 1073 differentially expressed genes in emerging and expanding leaves, respectively, as water-deficit responsive GTL1-regulated genes. Transcriptional profiling identified a potential role of GTL1 in two important pathways previously linked to drought tolerance: flavonoid and polyamine biosynthesis. In expanding leaves, negative regulation of GTL1 under water-deficit conditions promotes biosynthesis of flavonoids and anthocyanins that may contribute to drought tolerance. Quantification of polyamines did not support a role for GTL1 in these drought-responsive pathways, but this is likely due to the complex nature of polyamine synthesis and turnover. Our global transcriptome analysis suggests that transcriptional repression of GTL1 by water deficit allows plants to activate diverse pathways that collectively contribute to drought tolerance.The transcription factor GT2-LIKE 1 (GTL1) has been implicated in orchestrating a transcriptional network of diverse physiological, biochemical, and developmental processes. In response to water-limiting conditions, GTL1 is a negative regulator of stomatal development, but its potential rolein other water-deficit responses is unknown. We hypothesized that GTL1 regulates transcriptome changes associated with drought tolerance over leaf developmental stages. To test the hypothesis, gene expression was profiled by RNA-seq analysis in emerging and expanding leaves of wild-type and a drought-tolerant gtl1-4 knockout mutant under well-watered and water-deficit conditions. Our comparative analysis of genotype-treatment combinations within leaf developmental age identified 459 and 1073 differentially expressed genes in emerging and expanding leaves, respectively, as water-deficit responsive GTL1-regulated genes. Transcriptional profiling identified a potential role of GTL1 in two important pathways previously linked to drought tolerance: flavonoid and polyamine biosynthesis. In expanding leaves, negative regulation of GTL1 under water-deficit conditions promotes biosynthesis of flavonoids and anthocyanins that may contribute to drought tolerance. Quantification of polyamines did not support a role for GTL1 in these drought-responsive pathways, but this is likely due to the complex nature of polyamine synthesis and turnover. Our global transcriptome analysis suggests that transcriptional repression of GTL1 by water deficit allows plants to activate diverse pathways that collectively contribute to drought tolerance.
The transcription factor GT2‐LIKE 1 (GTL1) has been implicated in orchestrating a transcriptional network of diverse physiological, biochemical, and developmental processes. In response to water‐limiting conditions, GTL1 is a negative regulator of stomatal development, but its potential rolein other water‐deficit responses is unknown. We hypothesized that GTL1 regulates transcriptome changes associated with drought tolerance over leaf developmental stages. To test the hypothesis, gene expression was profiled by RNA‐seq analysis in emerging and expanding leaves of wild‐type and a drought‐tolerant gtl1‐4 knockout mutant under well‐watered and water‐deficit conditions. Our comparative analysis of genotype‐treatment combinations within leaf developmental age identified 459 and 1073 differentially expressed genes in emerging and expanding leaves, respectively, as water‐deficit responsive GTL1‐regulated genes. Transcriptional profiling identified a potential role of GTL1 in two important pathways previously linked to drought tolerance: flavonoid and polyamine biosynthesis. In expanding leaves, negative regulation of GTL1 under water‐deficit conditions promotes biosynthesis of flavonoids and anthocyanins that may contribute to drought tolerance. Quantification of polyamines did not support a role for GTL1 in these drought‐responsive pathways, but this is likely due to the complex nature of polyamine synthesis and turnover. Our global transcriptome analysis suggests that transcriptional repression of GTL1 by water deficit allows plants to activate diverse pathways that collectively contribute to drought tolerance.
Abstract The transcription factor GT2‐LIKE 1 (GTL1) has been implicated in orchestrating a transcriptional network of diverse physiological, biochemical, and developmental processes. In response to water‐limiting conditions, GTL1 is a negative regulator of stomatal development, but its potential rolein other water‐deficit responses is unknown. We hypothesized that GTL1 regulates transcriptome changes associated with drought tolerance over leaf developmental stages. To test the hypothesis, gene expression was profiled by RNA‐seq analysis in emerging and expanding leaves of wild‐type and a drought‐tolerant gtl1‐4 knockout mutant under well‐watered and water‐deficit conditions. Our comparative analysis of genotype‐treatment combinations within leaf developmental age identified 459 and 1073 differentially expressed genes in emerging and expanding leaves, respectively, as water‐deficit responsive GTL1‐regulated genes. Transcriptional profiling identified a potential role of GTL1 in two important pathways previously linked to drought tolerance: flavonoid and polyamine biosynthesis. In expanding leaves, negative regulation of GTL1 under water‐deficit conditions promotes biosynthesis of flavonoids and anthocyanins that may contribute to drought tolerance. Quantification of polyamines did not support a role for GTL1 in these drought‐responsive pathways, but this is likely due to the complex nature of polyamine synthesis and turnover. Our global transcriptome analysis suggests that transcriptional repression of GTL1 by water deficit allows plants to activate diverse pathways that collectively contribute to drought tolerance.
The transcription factor GT2-LIKE 1 (GTL1) has been implicated in orchestrating a transcriptional network of diverse physiological, biochemical, and developmental processes. In response to water-limiting conditions, GTL1 is a negative regulator of stomatal development, but its potential rolein other water-deficit responses is unknown. We hypothesized that GTL1 regulates transcriptome changes associated with drought tolerance over leaf developmental stages. To test the hypothesis, gene expression was profiled by RNA-seq analysis in emerging and expanding leaves of wild-type and a drought-tolerant knockout mutant under well-watered and water-deficit conditions. Our comparative analysis of genotype-treatment combinations within leaf developmental age identified 459 and 1073 differentially expressed genes in emerging and expanding leaves, respectively, as water-deficit responsive GTL1-regulated genes. Transcriptional profiling identified a potential role of GTL1 in two important pathways previously linked to drought tolerance: flavonoid and polyamine biosynthesis. In expanding leaves, negative regulation of under water-deficit conditions promotes biosynthesis of flavonoids and anthocyanins that may contribute to drought tolerance. Quantification of polyamines did not support a role for GTL1 in these drought-responsive pathways, but this is likely due to the complex nature of polyamine synthesis and turnover. Our global transcriptome analysis suggests that transcriptional repression of GTL1 by water deficit allows plants to activate diverse pathways that collectively contribute to drought tolerance.
The transcription factor GT2‐LIKE 1 (GTL1) has been implicated in orchestrating a transcriptional network of diverse physiological, biochemical, and developmental processes. In response to water‐limiting conditions, GTL1 is a negative regulator of stomatal development, but its potential rolein other water‐deficit responses is unknown. We hypothesized that GTL1 regulates transcriptome changes associated with drought tolerance over leaf developmental stages. To test the hypothesis, gene expression was profiled by RNA‐seq analysis in emerging and expanding leaves of wild‐type and a drought‐tolerant gtl1‐4 knockout mutant under well‐watered and water‐deficit conditions. Our comparative analysis of genotype‐treatment combinations within leaf developmental age identified 459 and 1073 differentially expressed genes in emerging and expanding leaves, respectively, as water‐deficit responsive GTL1‐regulated genes. Transcriptional profiling identified a potential role of GTL1 in two important pathways previously linked to drought tolerance: flavonoid and polyamine biosynthesis. In expanding leaves, negative regulation of GTL1 under water‐deficit conditions promotes biosynthesis of flavonoids and anthocyanins that may contribute to drought tolerance. Quantification of polyamines did not support a role for GTL1 in these drought‐responsive pathways, but this is likely due to the complex nature of polyamine synthesis and turnover. Our global transcriptome analysis suggests that transcriptional repression of GTL1 by water deficit allows plants to activate diverse pathways that collectively contribute to drought tolerance.
Author Mano, Noel Anthony
Shaikh, Mearaj A.
Yoo, Chan Yul
Mickelbart, Michael V.
Widhalm, Joshua R.
Author_xml – sequence: 1
  givenname: Noel Anthony
  orcidid: 0000-0001-6872-349X
  surname: Mano
  fullname: Mano, Noel Anthony
  organization: Heidelberg University
– sequence: 2
  givenname: Mearaj A.
  orcidid: 0000-0001-8351-029X
  surname: Shaikh
  fullname: Shaikh, Mearaj A.
  organization: Purdue University
– sequence: 3
  givenname: Joshua R.
  orcidid: 0000-0002-2703-4740
  surname: Widhalm
  fullname: Widhalm, Joshua R.
  organization: Purdue University
– sequence: 4
  givenname: Chan Yul
  orcidid: 0000-0001-6159-7443
  surname: Yoo
  fullname: Yoo, Chan Yul
  organization: The University of Utah
– sequence: 5
  givenname: Michael V.
  orcidid: 0000-0001-5939-3126
  surname: Mickelbart
  fullname: Mickelbart, Michael V.
  email: mickelbart@purdue.edu
  organization: Purdue University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38799417$$D View this record in MEDLINE/PubMed
BookMark eNqFktFqFDEUhoNUbK0Fn0AC3nizNZlJJplLqVoLC3qx9yGTnHSzzCZjkqHsjfgIPqNPYsatVQTxKjk_X_7DyfmfopMQAyD0nJJLSkjzehpte8l79gidNUzwFWOcn_xxP0UXOe9IRanoiORP0GkrRd8zKs7Ql03SIZvkp-Jj0CNOMCXIuRY4Ony9WVM8BwsJ3-kC6fvXbxacN77gXBYOTynuY4GMdSjbaA46-IAHH_Oh1pB9xiViCFsdDGCb4ny7LVUaIS3KM_TY6THDxf15jjbv322uPqzWH69vrt6sV4bJhq245P1AqaWd001rG6YJk8Q6Dtb1cgDXWikayphg3EgnGOt7EEPfGaDN4NpzdHO0tVHv1JT8XqeDitqrn0JMt0qn4s0IitU_JUI2WoNjTaOHobOGgRlk7eFaU71eHb3q5J9nyEXtfTYwjjpAnLNqKW85p4LR_6OkI4LT-qCiL_9Cd3FOdSGLYdeSvuNSVurFPTUPe7APk_za5--OJsWcE7gHhBK1pEUtaVE1LRVdHdE7P8Lhn5z6tH7bLvwPVfbBlw
Cites_doi 10.1371/journal.pone.0028070
10.1105/tpc.112.101022
10.1093/nar/28.1.27
10.1042/bj3530403
10.1016/j.envexpbot.2021.104449
10.1007/BF00029852
10.1093/plphys/kiab115
10.1093/emboj/cdf316
10.1016/j.devcel.2011.10.018
10.1073/pnas.0711203105
10.1105/tpc.109.065557
10.1111/tpj.13377
10.1038/nprot.2008.211
10.1104/pp.113.215798
10.1242/dev.159707
10.1104/pp.104.053884
10.1093/pcp/pcx073
10.1111/j.1365-313X.2005.02429.x
10.1093/pcp/pcu159
10.1007/BF00277130
10.1007/s00299-010-0881-1
10.1371/journal.pgen.1007708
10.1007/s004250100572
10.1242/dev.122.3.997
10.1016/j.gene.2017.12.048
10.3389/fpls.2020.610118
10.1105/tpc.108.059444
10.1016/j.ijbiomac.2023.124060
10.1104/pp.17.00318
10.1111/nph.12620
10.3389/fpls.2019.00228
10.1007/s00438-016-1203-2
10.3389/fpls.2020.00948
10.1104/pp.012377
10.1111/ppl.13268
10.1105/tpc.109.068387
10.1104/pp.17.00269
10.1016/S1360-1385(99)01418-1
10.3390/plants8100387
10.1016/j.gene.2019.144024
10.1105/tpc.10.8.1391
10.1371/journal.pone.0032925
10.1023/A:1010639015959
10.1093/nar/gkac194
10.1038/msb.2012.39
10.1111/tpj.12637
10.1104/pp.109.148965
10.1007/BF00392549
10.1126/scisignal.2000448
10.1105/tpc.108.059345
10.1093/jxb/eraa582
10.1105/tpc.109.068320
10.1046/j.1365-313x.2000.00899.x
10.1073/pnas.2015400117
10.1093/jxb/erv330
10.1016/j.bbrc.2003.11.119
10.1021/jf026179
10.1038/s41598-019-47529-2
10.1111/tpj.12388
10.1104/pp.16.01096
10.1016/j.febslet.2012.05.013
10.1111/j.1365-313X.2009.03886.x
10.1038/386451a0
10.1016/j.envexpbot.2017.12.011
10.1038/srep30264
10.1016/j.cell.2007.08.037
10.1104/pp.111.182683
10.1016/j.patter.2021.100235
10.1105/tpc.12.11.2075
10.1007/s11103-019-00822-0
10.1105/tpc.110.078691
10.1086/382794
10.1016/j.plaphy.2010.02.002
10.3390/molecules26144157
10.3390/plants8110456
10.1093/jxb/eraa493
10.1111/j.1399-3054.2006.00780.x
10.1007/s10265-014-0635-1
10.1093/bioinformatics/btv193
10.1073/pnas.1510140112
10.1104/pp.110.161752
10.1046/j.1365-313X.1998.00027.x
10.1016/j.aca.2016.10.001
10.3390/ijms20122869
10.1104/pp.103.036970
10.3389/fpls.2021.708876
10.1093/mp/ssr110
10.1105/tpc.104.026690
10.1038/emboj.2012.294
10.1242/dev.122.5.1589
10.1093/nar/gkp1037
10.1105/tpc.109.071779
10.1073/pnas.220426197
10.1006/dbio.1999.9443
10.1104/pp.108.116632
10.1186/s12870-019-2210-3
10.1038/srep27042
10.1186/s12870-017-1062-y
10.1007/s10529-005-0683-7
10.1016/j.devcel.2011.11.011
10.1105/tpc.17.00364
10.4161/psb.6.2.14317
10.1093/nar/29.9.e45
10.1105/tpc.105.032987
10.1093/pcp/pch198
10.1074/jbc.RA120.013948
10.1186/s13059-017-1209-z
10.1016/j.pbi.2017.04.009
10.1046/j.1365-313X.2001.01100.x
10.1111/nph.17760
ContentType Journal Article
Copyright 2024 The Author(s). published by American Society of Plant Biologists and the Society for Experimental Biology and John Wiley & Sons Ltd.
2024 The Author(s). Plant Direct published by American Society of Plant Biologists and the Society for Experimental Biology and John Wiley & Sons Ltd.
2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 The Author(s). published by American Society of Plant Biologists and the Society for Experimental Biology and John Wiley & Sons Ltd.
– notice: 2024 The Author(s). Plant Direct published by American Society of Plant Biologists and the Society for Experimental Biology and John Wiley & Sons Ltd.
– notice: 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
NPM
8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
7S9
L.6
DOA
DOI 10.1002/pld3.594
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Database
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DOAJ Open Access Full Text
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Biological Science Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
Publicly Available Content Database

AGRICOLA

PubMed
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 2475-4455
EndPage n/a
ExternalDocumentID oai_doaj_org_article_41000782aaef422abb6dc4ecb83d8f3c
38799417
10_1002_pld3_594
PLD3594
Genre researchArticle
Journal Article
GrantInformation_xml – fundername: USDA National Institute of Food and Agriculture
  funderid: 1013618; 177845
GroupedDBID 0R~
1OC
24P
8FE
8FH
AAHHS
ACCFJ
ACCMX
ACGFS
ACXQS
ADBBV
ADKYN
ADZMN
AEEZP
AEQDE
AFKRA
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AOIJS
AVUZU
BBNVY
BCNDV
BENPR
BHPHI
CCPQU
EBS
ECGQY
EJD
GROUPED_DOAJ
HCIFZ
HYE
IAO
IGS
ITC
LK8
M7P
M~E
O9-
OK1
PIMPY
PROAC
RPM
WIN
AAYXX
CITATION
PHGZM
PHGZT
NPM
AAMMB
ABUWG
AEFGJ
AGXDD
AIDQK
AIDYY
AZQEC
DWQXO
GNUQQ
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
PUEGO
7S9
L.6
ID FETCH-LOGICAL-c4824-5859b11d16fa23d24a0480df5edf98bef3d872144745c8f74499e7b96ce12bf3
IEDL.DBID 24P
ISSN 2475-4455
IngestDate Wed Aug 27 01:25:39 EDT 2025
Fri Sep 05 17:28:40 EDT 2025
Fri Sep 05 09:46:32 EDT 2025
Wed Aug 13 04:51:36 EDT 2025
Thu Apr 03 06:59:58 EDT 2025
Tue Jul 01 01:17:44 EDT 2025
Wed Jan 22 17:20:29 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords polyamine
transcription factor
RNA‐seq
leaf development
Language English
License Attribution
2024 The Author(s). Plant Direct published by American Society of Plant Biologists and the Society for Experimental Biology and John Wiley & Sons Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4824-5859b11d16fa23d24a0480df5edf98bef3d872144745c8f74499e7b96ce12bf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6159-7443
0000-0002-2703-4740
0000-0001-6872-349X
0000-0001-8351-029X
0000-0001-5939-3126
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpld3.594
PMID 38799417
PQID 3163096588
PQPubID 4370295
PageCount 18
ParticipantIDs doaj_primary_oai_doaj_org_article_41000782aaef422abb6dc4ecb83d8f3c
proquest_miscellaneous_3153551741
proquest_miscellaneous_3060751153
proquest_journals_3163096588
pubmed_primary_38799417
crossref_primary_10_1002_pld3_594
wiley_primary_10_1002_pld3_594_PLD3594
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate May 2024
2024-05-00
2024-May
20240501
2024-05-01
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: May 2024
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Plant direct
PublicationTitleAlternate Plant Direct
PublicationYear 2024
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 2004; 165
2016; 945
2019; 99
2019; 10
2017; 89
2019; 19
2008; 105
2020; 11
2021; 72
2003; 51
2001; 46
2010; 22
2014; 127
2019; 20
2020; 295
2000; 12
2010; 29
2019; 716
1997; 386
2000; 97
2008; 20
2012; 24
1998; 10
2012; 22
1999; 215
1998; 13
2019; 8
2019; 9
2010; 38
2012; 586
2004; 45
1996; 122
2001; 27
2001; 29
2011; 6
2012; 31
2016; 6
2010; 48
2004; 313
2017; 58
2015; 112
2015; 66
1982; 155
2016; 291
2005; 17
1993; 236
2018; 14
2016; 172
2011; 157
2021; 26
2018; 646
2015; 31
2005; 138
1994; 24
2013; 162
2008; 147
2005; 27
2004; 134
2017; 38
2007; 131
2010; 154
2010; 152
2011; 21
2021; 232
2006; 128
2014; 202
2009; 59
2001; 213
2014; 55
2009; 21
2021; 2
2000; 28
2022; 50
2000; 24
2018; 145
2005; 43
2021; 186
1999; 4
2017; 29
2017; 174
2003; 131
2001; 353
2018; 154
2014; 80
2021; 12
2021; 11
2017; 17
2002; 21
2023; 237
2020; 117
2021; 172
2017; 18
2009; 4
2009; 2
2012; 7
2012; 5
2014; 77
2012; 8
e_1_2_9_75_1
e_1_2_9_98_1
e_1_2_9_52_1
e_1_2_9_79_1
e_1_2_9_94_1
e_1_2_9_10_1
e_1_2_9_56_1
e_1_2_9_33_1
e_1_2_9_90_1
e_1_2_9_71_1
e_1_2_9_103_1
e_1_2_9_107_1
e_1_2_9_14_1
e_1_2_9_37_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_87_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_83_1
e_1_2_9_6_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_111_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_99_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_95_1
e_1_2_9_76_1
e_1_2_9_91_1
e_1_2_9_102_1
e_1_2_9_106_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_88_1
e_1_2_9_61_1
e_1_2_9_46_1
e_1_2_9_84_1
e_1_2_9_23_1
e_1_2_9_65_1
e_1_2_9_80_1
e_1_2_9_5_1
e_1_2_9_9_1
e_1_2_9_27_1
e_1_2_9_69_1
e_1_2_9_110_1
e_1_2_9_31_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_35_1
e_1_2_9_77_1
e_1_2_9_96_1
e_1_2_9_12_1
e_1_2_9_54_1
e_1_2_9_92_1
e_1_2_9_109_1
e_1_2_9_101_1
e_1_2_9_105_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_58_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_89_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_85_1
e_1_2_9_8_1
e_1_2_9_81_1
e_1_2_9_4_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_78_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_97_1
e_1_2_9_93_1
e_1_2_9_108_1
e_1_2_9_70_1
e_1_2_9_100_1
e_1_2_9_104_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_21_1
e_1_2_9_67_1
e_1_2_9_44_1
e_1_2_9_86_1
e_1_2_9_7_1
e_1_2_9_82_1
e_1_2_9_3_1
e_1_2_9_25_1
e_1_2_9_48_1
e_1_2_9_29_1
References_xml – volume: 99
  start-page: 363
  year: 2019
  end-page: 377
  article-title: Loss of ( ), a 3′‐phosphoadenosine‐5′‐phosphate phosphatase, suppresses insensitive response of ( ) mutant to abiotic stress
  publication-title: Plant Molecular Biology
– volume: 186
  start-page: 1171
  year: 2021
  end-page: 1185
  article-title: Distinct cellular strategies determine sensitivity to mild drought of Arabidopsis natural accessions
  publication-title: Plant Physiology
– volume: 51
  start-page: 2992
  year: 2003
  end-page: 2999
  article-title: Levels of active oxygen species are controlled by ascorbic acid and anthocyanin in
  publication-title: Journal of Agricultural and Food Chemistry
– volume: 7
  year: 2012
  article-title: Poplar GTL1 is a Ca /calmodulin‐binding transcription factor that functions in plant water use efficiency and drought tolerance
  publication-title: PLoS ONE
– volume: 112
  start-page: 10545
  year: 2015
  end-page: 10550
  article-title: At14a‐Like1 participates in membrane‐associated mechanisms promoting growth during drought in
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 6
  start-page: 243
  year: 2011
  end-page: 250
  article-title: Polyamine metabolic canalization in response to drought stress in and the resurrection plant
  publication-title: Plant Signaling and Behavior
– volume: 59
  start-page: 499
  year: 2009
  end-page: 508
  article-title: Coordination of cell proliferation and cell expansion mediated by ribosome‐related processes in the leaves of
  publication-title: The Plant Journal
– volume: 24
  start-page: 613
  year: 2000
  end-page: 623
  article-title: Expression of the plant cyclin‐dependent kinase inhibitor ICK1 affects cell division, plant growth and morphology
  publication-title: The Plant Journal
– volume: 12
  start-page: 2075
  year: 2000
  end-page: 2086
  article-title: Oriented asymmetric divisions that generate the stomatal spacing pattern in Arabidopsis are disrupted by the mutation
  publication-title: The Plant Cell
– volume: 165
  start-page: 231
  year: 2004
  end-page: 242
  article-title: Vein pattern development n adult leaves of
  publication-title: International Journal of Plant Science
– volume: 386
  start-page: 451
  year: 1997
  end-page: 452
  article-title: A plant cyclin‐dependent kinase inhibitor gene
  publication-title: Nature
– volume: 157
  start-page: 742
  year: 2011
  end-page: 756
  article-title: Arabidopsis Cys2/His2 zinc‐finger proteins AZF1 and AZF2 negatively regulate abscisic acid‐repressive and auxin‐inducible genes under abiotic stress conditions
  publication-title: Plant Physiology
– volume: 29
  start-page: 955
  year: 2010
  end-page: 965
  article-title: Characterization of five polyamine oxidase isoforms in
  publication-title: Plant Cell Reports
– volume: 22
  start-page: 64
  year: 2012
  end-page: 78
  article-title: Exit from proliferation during leaf development in : A not‐so‐gradual process
  publication-title: Developmental Cell
– volume: 10
  start-page: 1391
  year: 1998
  end-page: 1406
  article-title: Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought‐ and low‐temperature‐responsive gene expression, respectively, in Arabidopsis
  publication-title: The Plant Cell
– volume: 22
  start-page: 888
  year: 2010
  end-page: 903
  article-title: The ‐inositol 1‐phosphate synthase1 gene is required for ‐inositol synthesis and suppression of cell death
  publication-title: The Plant Cell
– volume: 31
  start-page: 2614
  year: 2015
  end-page: 2622
  article-title: EBSeq‐HMM: A Bayesian approach for identifying gene‐expression changes in ordered RNA‐seq experiments
  publication-title: Bioinformatics
– volume: 29
  year: 2001
  article-title: A new mathematical model for relative quantification in real‐time RT‐PCR
  publication-title: Nucleic Acids Research
– volume: 172
  start-page: 847
  year: 2021
  end-page: 868
  article-title: Transcription factors as key molecular target to strengthen the drought stress tolerance in plants
  publication-title: Physiologia Plantarum
– volume: 22
  start-page: 4128
  year: 2010
  end-page: 4141
  article-title: The GTL1 transcription factor regulates water use efficiency and drought tolerance by modulating stomatal density via transrepression of
  publication-title: The Plant Cell
– volume: 134
  start-page: 1697
  year: 2004
  end-page: 1707
  article-title: Tissue‐specific localization of an abscisic acid biosynthetic enzyme, AAO3, in Arabidopsis
  publication-title: Plant Physiology
– volume: 10
  year: 2019
  article-title: AP2/ERF transcription factor regulatory networks in hormone and abiotic stress responses in
  publication-title: Frontiers in Plant Science
– volume: 24
  start-page: 2839
  year: 2012
  end-page: 2856
  article-title: Nuclear ribosome biogenesis mediated by the DIM1A rRNA dimethylase is required for organized root growth and epidermal patterning in
  publication-title: The Plant Cell
– volume: 6
  year: 2016
  article-title: A novel gene improves both drought avoidance and drought tolerance in rice
  publication-title: Scientific Reports
– volume: 17
  year: 2017
  article-title: Relationships between drought, heat and air humidity responses revealed by transcriptome‐metabolome co‐analysis
  publication-title: BMC Plant Biology
– volume: 145
  year: 2018
  article-title: GTL1 and DF1 regulate root hair growth through transcriptional repression of in
  publication-title: Development
– volume: 20
  start-page: 2529
  year: 2008
  end-page: 2540
  article-title: NAI2 is an endoplasmic reticulum body component that enables ER body formation in
  publication-title: The Plant Cell
– volume: 152
  start-page: 226
  year: 2010
  end-page: 244
  article-title: Developmental stage specificity and the role of mitochondrial metabolism in the response of Arabidopsis leaves to prolonged mild osmotic stress
  publication-title: Plant Physiology
– volume: 77
  start-page: 367
  year: 2014
  end-page: 379
  article-title: Enhancement of oxidative and drought tolerance in by overaccumulation of antioxidant flavonoids
  publication-title: The Plant Journal
– volume: 14
  year: 2018
  article-title: The trihelix transcription factor GT2‐like 1 (GTL1) promotes salicylic acid metabolism, and regulates bacterial‐triggered immunity
  publication-title: PLoS Genetics
– volume: 154
  start-page: 33
  year: 2018
  end-page: 43
  article-title: Over‐expression of the gene enhances resistance of leaves to high light
  publication-title: Environmental and Experimental Botany
– volume: 80
  start-page: 410
  year: 2014
  end-page: 423
  article-title: GFS9/TT9 contributes to intracellular membrane trafficking and flavonoid accumulation in
  publication-title: The Plant Journal
– volume: 21
  start-page: 1116
  year: 2011
  end-page: 1128
  article-title: MATH/BTB CRL3 receptors target the homeodomain‐leucine zipper ATHB6 to modulate abscisic acid signaling
  publication-title: Developmental Cell
– volume: 131
  start-page: 557
  year: 2007
  end-page: 571
  article-title: Functional specificity among ribosomal proteins regulates gene expression
  publication-title: Cell
– volume: 6
  year: 2016
  article-title: The wheat GT factor negatively regulates drought tolerance and plant development
  publication-title: Scientific Reports
– volume: 128
  start-page: 448
  year: 2006
  end-page: 455
  article-title: Abscisic acid modulates polyamine metabolism under water stress in
  publication-title: Physiologia Plantarum
– volume: 213
  start-page: 953
  year: 2001
  end-page: 966
  article-title: The protective functions of carotenoid and flavonoid pigments against excess visible radiation at chilling temperature investigated in and mutants
  publication-title: Planta
– volume: 22
  start-page: 143
  year: 2010
  end-page: 158
  article-title: Auxin‐mediated ribosomal biogenesis regulates vacuolar trafficking in
  publication-title: The Plant Cell
– volume: 9
  year: 2019
  article-title: A Ca /CaM‐regulated transcriptional switch modulates stomatal development in response to water deficit
  publication-title: Scientific Reports
– volume: 48
  start-page: 547
  year: 2010
  end-page: 552
  article-title: Putrescine accumulation confers drought tolerance in transgenic plants over‐expressing the homologous gene
  publication-title: Plant Physiology and Biochemistry
– volume: 11
  year: 2021
  article-title: Structural and biochemical insights into two BAHD acyltransferases ( SHT and SDT) involved in phenolamide biosynthesis
  publication-title: Frontiers in Plant Science
– volume: 55
  start-page: 2037
  year: 2014
  end-page: 2046
  article-title: Arabidopsis reduces growth under osmotic stress by decreasing SPEECHLESS protein
  publication-title: Plant & Cell Physiology
– volume: 2
  year: 2021
  article-title: Multi‐omics analysis of early leaf development in
  publication-title: Patterns
– volume: 232
  start-page: 2418
  year: 2021
  end-page: 2439
  article-title: Arabidopsis MADS‐box factor AGL16 is a negative regulator of plant response to salt stress by downregulating salt‐responsive genes
  publication-title: New Phytologist
– volume: 89
  start-page: 204
  year: 2017
  end-page: 220
  article-title: PYK10 myrosinase reveals a functional coordination between endoplasmic reticulum bodies and glucosinolates in
  publication-title: The Plant Journal
– volume: 122
  start-page: 997
  year: 1996
  end-page: 1005
  article-title: The control of trichome spacing and number in
  publication-title: Development
– volume: 27
  start-page: 297
  year: 2005
  end-page: 303
  article-title: Enhanced radical scavenging activity of genetically modified seeds
  publication-title: Biotechnology Letters
– volume: 945
  start-page: 31
  year: 2016
  end-page: 38
  article-title: A new multiresponse optimization approach in combination with a D‐optimal experimental design for the determination of biogenic amines in fish by HPLC‐FLD
  publication-title: Analytica Chimica Acta
– volume: 72
  start-page: 2334
  year: 2021
  end-page: 2355
  article-title: Phenolamides in plants: An update on their function, regulation, and origin of their biosynthetic enzymes
  publication-title: Journal of Experimental Botany
– volume: 24
  start-page: 701
  year: 1994
  end-page: 713
  article-title: The 5′‐region of has ‐acting elements that confer cold‐, drought‐ and ABA‐regulated gene expression
  publication-title: Plant Molecular Biology
– volume: 21
  start-page: 2307
  year: 2009
  end-page: 2322
  article-title: The trihelix transcription factor GTL1 regulates ploidy‐dependent cell growth in the trichome
  publication-title: The Plant Cell
– volume: 21
  start-page: 3591
  year: 2009
  end-page: 3609
  article-title: N‐MYC DOWNREGULATED‐LIKE1, a positive regulator of auxin transport in a G protein‐mediated pathway
  publication-title: The Plant Cell
– volume: 46
  start-page: 447
  year: 2001
  end-page: 457
  article-title: One of two tandem genes homologous to monosaccharide transporters is senescence‐associated
  publication-title: Plant Molecular Biology
– volume: 38
  start-page: 353
  year: 2010
  end-page: 359
  article-title: A profusion of upstream open reading frame mechanisms in polyamine‐responsive translational regulation
  publication-title: Nucleic Acids Research
– volume: 586
  start-page: 1742
  year: 2012
  end-page: 1747
  article-title: A plant microRNA regulates the adaptation of roots to drought stress
  publication-title: FEBS Letters
– volume: 174
  start-page: 1913
  year: 2017
  end-page: 1930
  article-title: Stress‐related gene expression reflects morphophysiological responses to water deficit
  publication-title: Plant Physiology
– volume: 353
  start-page: 403
  year: 2001
  end-page: 409
  article-title: Characterization of monocot and dicot plant S‐adenosyl‐l‐methionine decarboxylase gene families including identification in the mRNA of a highly conserved pair of upstream overlapping open reading frames
  publication-title: Biochemical Journal
– volume: 12
  year: 2021
  article-title: Responsiveness of early response to dehydration six‐like transporter genes to water deficit in leaves
  publication-title: Frontiers in Plant Science
– volume: 6
  year: 2011
  article-title: Transcriptional regulation of ribosome components are determined by stress according to cellular compartments in
  publication-title: PLoS ONE
– volume: 172
  start-page: 1532
  year: 2016
  end-page: 1547
  article-title: A NAC transcription factor represses putrescine biosynthesis and affects drought tolerance
  publication-title: Plant Physiology
– volume: 202
  start-page: 132
  year: 2014
  end-page: 144
  article-title: Complexity and robustness of the flavonoid transcriptional regulatory network revealed by comprehensive analyses of MYB‐bHLH‐WDR complexes and their targets in Arabidopsis seed
  publication-title: New Phytologist
– volume: 4
  start-page: 44
  year: 2009
  end-page: 57
  article-title: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources
  publication-title: Nature Protocols
– volume: 236
  start-page: 331
  year: 1993
  end-page: 340
  article-title: Characterization of the expression of a desiccation‐responsive gene of and analysis of its promoter in transgenic plants
  publication-title: Molecular and General Genetics
– volume: 8
  year: 2019
  article-title: The changing distribution of anthocyanin in leaves as an adaption to low‐temperature environments
  publication-title: Plants
– volume: 20
  start-page: 2238
  year: 2008
  end-page: 2251
  article-title: The NFYA5 transcription factor is regulated transcriptionally and posttranscriptionally to promote drought resistance
  publication-title: The Plant Cell
– volume: 8
  year: 2012
  article-title: Systems‐based analysis of Arabidopsis leaf growth reveals adaptation to water deficit
  publication-title: Molecular Systems Biology
– volume: 291
  start-page: 1545
  year: 2016
  end-page: 1559
  article-title: regulates flavonoids accumulation and abiotic stress tolerance in transgenic
  publication-title: Molecular Genetics and Genomics
– volume: 138
  start-page: 734
  issue: 2
  year: 2005
  end-page: 743
  article-title: Genome‐wide analysis of gene expression profiles associated with cell cycle transitions in growing organs of Arabidopsis
  publication-title: Plant Physiology
– volume: 295
  start-page: 8064
  year: 2020
  end-page: 8077
  article-title: Raffinose synthase enhances drought tolerance through raffinose synthesis or galactinol hydrolysis in maize and plants
  publication-title: Journal of Biological Chemistry
– volume: 313
  start-page: 369
  year: 2004
  end-page: 375
  article-title: stress‐inducible gene for arginine decarboxylase is required for accumulation of putrescine in salt tolerance
  publication-title: Biochemical and Biophysical Research Communications
– volume: 4
  start-page: 210
  year: 1999
  end-page: 214
  article-title: Regulatory mechanism of plant gene transcription by GT‐elements and GT‐factors
  publication-title: Trends in Plant Science
– volume: 127
  start-page: 481
  year: 2014
  end-page: 489
  article-title: Leaf developmental stage modulates metabolite accumulation and photosynthesis contributing to acclimation of to water deficit
  publication-title: Journal of Plant Research
– volume: 186
  year: 2021
  article-title: Meta‐analysis reveals key features of the improved drought tolerance of plants overexpressing NAC transcription factors
  publication-title: Environmental and Experimental Botany
– volume: 45
  start-page: 1694
  year: 2004
  end-page: 1703
  article-title: Comparative studies on the aldehyde oxidase ( ) gene family revealed a major role of in ABA biosynthesis in seeds
  publication-title: Plant and Cell Physiology
– volume: 215
  start-page: 407
  year: 1999
  end-page: 419
  article-title: Cell cycling and cell enlargement in developing leaves of
  publication-title: Developmental Biology
– volume: 18
  year: 2017
  article-title: Epistatic and allelic interactions control expression of ribosomal RNA gene clusters in
  publication-title: Genome Biology
– volume: 58
  start-page: 1364
  year: 2017
  end-page: 1377
  article-title: ROS induces anthocyanin production via late biosynthetic genes and anthocyanin deficiency confers the hypersensitivity to ROS‐generating stresses in
  publication-title: Plant and Cell Physiology
– volume: 131
  start-page: 707
  year: 2003
  end-page: 715
  article-title: Arabidopsis is a negative regulator of several pathways regulating flavonoid biosynthesis genes
  publication-title: Plant Physiology
– volume: 26
  year: 2021
  article-title: Leaf age‐dependent photosystem II photochemistry and oxidative stress responses to drought stress in are modulated by flavonoid accumulation
  publication-title: Molecules
– volume: 117
  start-page: 32223
  year: 2020
  end-page: 32225
  article-title: Glucose‐TOR signaling regulates PIN2 stability to orchestrate auxin gradient and cell expansion in root
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 155
  start-page: 176
  year: 1982
  end-page: 182
  article-title: Chalcone synthesis and hydroxylation of flavonoids in 3′‐position with enzyme preparations from flowers of L. (carnation)
  publication-title: Planta
– volume: 162
  start-page: 1030
  year: 2013
  end-page: 1041
  article-title: CYCLIN H;1 regulates drought stress responses and blue light‐induced stomatal opening by inhibiting reactive oxygen species accumulation in Arabidopsis
  publication-title: Plant Physiology
– volume: 20
  year: 2019
  article-title: Metabolomics studies on cytoplasmic male sterility during flower bud development in soybean
  publication-title: International Journal of Molecular Sciences
– volume: 147
  start-page: 1984
  year: 2008
  end-page: 1993
  article-title: Drought induction of Arabidopsis 9‐cis‐epoxycarotenoid dioxygenase occurs in vascular parenchyma cells
  publication-title: Plant Physiology
– volume: 97
  start-page: 12908
  year: 2000
  end-page: 12913
  article-title: The aldehyde oxidase 3 ( ) gene product catalyzes the final step in abscisic acid biosynthesis in leaves
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 27
  start-page: 551
  year: 2001
  end-page: 560
  article-title: polyamine biosynthesis: Absence of ornithine decarboxylase and the mechanism of arginine decarboxylase activity
  publication-title: The Plant Journal
– volume: 31
  start-page: 4488
  year: 2012
  end-page: 4501
  article-title: Transcriptional repression of the APC/C activator CCS52A1 promotes active termination of cell growth
  publication-title: EMBO Journal
– volume: 38
  start-page: 142
  year: 2017
  end-page: 147
  article-title: How does a plant orchestrate defense in time and space? Using glucosinolates in Arabidopsis as case study
  publication-title: Current Opinion in Plant Biology
– volume: 5
  start-page: 387
  year: 2012
  end-page: 400
  article-title: TT19 functions as a carrier to transport anthocyanin from the cytosol to tonoplasts
  publication-title: Molecular Plant
– volume: 28
  start-page: 27
  issue: 1
  year: 2000
  end-page: 30
  article-title: KEGG: Kyoto Encyclopedia of Genes and Genomes
  publication-title: Nucleic Acids Research
– volume: 8
  year: 2019
  article-title: Fruit architecture in polyamine‐rich tomato germplasm is determined via a medley of cell cycle, cell expansion, and fruit shape genes
  publication-title: Plants
– volume: 11
  year: 2020
  article-title: Systematic review of plant ribosome heterogeneity and specialization
  publication-title: Frontiers in Plant Science
– volume: 21
  start-page: 3029
  year: 2002
  end-page: 3038
  article-title: Homeodomain protein ATHB6 is a target of the protein phosphatase ABI1 and regulates hormone responses in
  publication-title: The EMBO Journal
– volume: 66
  start-page: 5113
  year: 2015
  end-page: 5122
  article-title: The co‐chaperone p23 controls root development through the modulation of auxin distribution in the root meristem
  publication-title: Journal of Experimental Botany
– volume: 50
  start-page: W216
  year: 2022
  end-page: W221
  article-title: DAVID: A web server for functional enrichment analysis and functional annotation of gene lists (2021 update)
  publication-title: Nucleic Acids Research
– volume: 237
  year: 2023
  article-title: Yellowhorn Xso‐miR5149‐ enhances water‐use efficiency and drought tolerance by regulating leaf morphology and stomatal density
  publication-title: International Journal of Biological Macromolecules
– volume: 105
  start-page: 1380
  year: 2008
  end-page: 1385
  article-title: Mapping methyl jasmonate‐mediated transcriptional reprogramming of metabolism and cell cycle progression in cultured cells
  publication-title: Proceedings of the National Academy of Sciences of the United States of America
– volume: 43
  start-page: 68
  year: 2005
  end-page: 78
  article-title: The transcription factor AtGRF5 and the transcription coactivator AN3 regulate cell proliferation in leaf primordia of
  publication-title: The Plant Journal
– volume: 29
  start-page: 1425
  year: 2017
  end-page: 1439
  article-title: Arabidopsis WRKY46, WRKY54, and WRKY70 transcription factors are involved in brassinosteroid‐regulated plant growth and drought responses
  publication-title: The Plant Cell
– volume: 646
  start-page: 64
  year: 2018
  end-page: 73
  article-title: Identification of the AQP members involved in abiotic stress responses from
  publication-title: Gene
– volume: 17
  start-page: 616
  year: 2005
  end-page: 627
  article-title: Characterization of an Arabidopsis enzyme family that conjugates amino acids to indole‐3‐acetic acid
  publication-title: The Plant Cell
– volume: 19
  year: 2019
  article-title: Nitric oxide‐ induced differentially regulates plant defense and drought tolerance in
  publication-title: BMC Plant Biology
– volume: 13
  start-page: 231
  year: 1998
  end-page: 239
  article-title: Arginine decarboxylase (polyamine synthesis) mutants of exhibit altered root growth
  publication-title: The Plant Journal
– volume: 72
  start-page: 1370
  year: 2021
  end-page: 1383
  article-title: Pu‐miR172d regulates stomatal density and water‐use efficiency via targeting in poplar
  publication-title: Journal of Experimental Botany
– volume: 174
  start-page: 1216
  year: 2017
  end-page: 1225
  article-title: Heat shock protein HSP101 affects the release of ribosomal protein mRNAs for recovery after heat shock
  publication-title: Plant Physiology
– volume: 154
  start-page: 1254
  year: 2010
  end-page: 1271
  article-title: Molecular and physiological analysis of drought stress in Arabidopsis reveals early responses leading to acclimation in plant growth
  publication-title: Plant Physiology
– volume: 122
  start-page: 1589
  year: 1996
  end-page: 1600
  article-title: Two independent and polarized processes of cell elongation regulate leaf blade expansion in (L.) Heynh
  publication-title: Development
– volume: 716
  year: 2019
  article-title: Sequencing of anthocyanin synthesis‐related enzyme genes and screening of reference genes in leaves of four dominant subtropical forest tree species
  publication-title: Gene
– volume: 17
  start-page: 2369
  year: 2005
  end-page: 2383
  article-title: RAC GTPases in tobacco and Arabidopsis mediate auxin‐induced formation of proteolytically active nuclear protein bodies that contain AUX/IAA proteins
  publication-title: The Plant Cell
– volume: 2
  year: 2009
  article-title: The plant NADPH oxidase RBOHD mediates rapid systemic signaling in response to diverse stimuli
  publication-title: Science Signaling
– ident: e_1_2_9_73_1
  doi: 10.1371/journal.pone.0028070
– ident: e_1_2_9_92_1
  doi: 10.1105/tpc.112.101022
– ident: e_1_2_9_111_1
  doi: 10.1093/nar/28.1.27
– ident: e_1_2_9_22_1
  doi: 10.1042/bj3530403
– ident: e_1_2_9_21_1
  doi: 10.1016/j.envexpbot.2021.104449
– ident: e_1_2_9_8_1
  doi: 10.1007/BF00029852
– ident: e_1_2_9_14_1
  doi: 10.1093/plphys/kiab115
– ident: e_1_2_9_30_1
  doi: 10.1093/emboj/cdf316
– ident: e_1_2_9_43_1
  doi: 10.1016/j.devcel.2011.10.018
– ident: e_1_2_9_59_1
  doi: 10.1073/pnas.0711203105
– ident: e_1_2_9_54_1
  doi: 10.1105/tpc.109.065557
– ident: e_1_2_9_57_1
  doi: 10.1111/tpj.13377
– ident: e_1_2_9_32_1
  doi: 10.1038/nprot.2008.211
– ident: e_1_2_9_109_1
  doi: 10.1104/pp.113.215798
– ident: e_1_2_9_69_1
  doi: 10.1242/dev.159707
– ident: e_1_2_9_110_1
  doi: 10.1104/pp.104.053884
– ident: e_1_2_9_96_1
  doi: 10.1093/pcp/pcx073
– ident: e_1_2_9_31_1
  doi: 10.1111/j.1365-313X.2005.02429.x
– ident: e_1_2_9_41_1
  doi: 10.1093/pcp/pcu159
– ident: e_1_2_9_98_1
  doi: 10.1007/BF00277130
– ident: e_1_2_9_79_1
  doi: 10.1007/s00299-010-0881-1
– ident: e_1_2_9_84_1
  doi: 10.1371/journal.pgen.1007708
– ident: e_1_2_9_28_1
  doi: 10.1007/s004250100572
– ident: e_1_2_9_42_1
  doi: 10.1242/dev.122.3.997
– ident: e_1_2_9_20_1
  doi: 10.1016/j.gene.2017.12.048
– ident: e_1_2_9_86_1
  doi: 10.3389/fpls.2020.610118
– ident: e_1_2_9_47_1
  doi: 10.1105/tpc.108.059444
– ident: e_1_2_9_45_1
  doi: 10.1016/j.ijbiomac.2023.124060
– ident: e_1_2_9_65_1
  doi: 10.1104/pp.17.00318
– ident: e_1_2_9_95_1
  doi: 10.1111/nph.12620
– ident: e_1_2_9_94_1
  doi: 10.3389/fpls.2019.00228
– ident: e_1_2_9_87_1
  doi: 10.1007/s00438-016-1203-2
– ident: e_1_2_9_51_1
  doi: 10.3389/fpls.2020.00948
– ident: e_1_2_9_85_1
  doi: 10.1104/pp.012377
– ident: e_1_2_9_50_1
  doi: 10.1111/ppl.13268
– ident: e_1_2_9_9_1
  doi: 10.1105/tpc.109.068387
– ident: e_1_2_9_52_1
  doi: 10.1104/pp.17.00269
– ident: e_1_2_9_107_1
  doi: 10.1016/S1360-1385(99)01418-1
– ident: e_1_2_9_6_1
  doi: 10.3390/plants8100387
– ident: e_1_2_9_101_1
  doi: 10.1016/j.gene.2019.144024
– ident: e_1_2_9_48_1
  doi: 10.1105/tpc.10.8.1391
– ident: e_1_2_9_91_1
  doi: 10.1371/journal.pone.0032925
– ident: e_1_2_9_61_1
  doi: 10.1023/A:1010639015959
– ident: e_1_2_9_68_1
  doi: 10.1093/nar/gkac194
– ident: e_1_2_9_7_1
  doi: 10.1038/msb.2012.39
– ident: e_1_2_9_33_1
  doi: 10.1111/tpj.12637
– ident: e_1_2_9_71_1
  doi: 10.1104/pp.109.148965
– ident: e_1_2_9_76_1
  doi: 10.1007/BF00392549
– ident: e_1_2_9_53_1
  doi: 10.1126/scisignal.2000448
– ident: e_1_2_9_97_1
  doi: 10.1105/tpc.108.059345
– ident: e_1_2_9_64_1
  doi: 10.1093/jxb/eraa582
– ident: e_1_2_9_63_1
  doi: 10.1105/tpc.109.068320
– ident: e_1_2_9_89_1
  doi: 10.1046/j.1365-313x.2000.00899.x
– ident: e_1_2_9_102_1
  doi: 10.1073/pnas.2015400117
– ident: e_1_2_9_15_1
  doi: 10.1093/jxb/erv330
– ident: e_1_2_9_83_1
  doi: 10.1016/j.bbrc.2003.11.119
– ident: e_1_2_9_55_1
  doi: 10.1021/jf026179
– ident: e_1_2_9_99_1
  doi: 10.1038/s41598-019-47529-2
– ident: e_1_2_9_56_1
  doi: 10.1111/tpj.12388
– ident: e_1_2_9_93_1
  doi: 10.1104/pp.16.01096
– ident: e_1_2_9_12_1
  doi: 10.1016/j.febslet.2012.05.013
– ident: e_1_2_9_23_1
  doi: 10.1111/j.1365-313X.2009.03886.x
– ident: e_1_2_9_88_1
  doi: 10.1038/386451a0
– ident: e_1_2_9_104_1
  doi: 10.1016/j.envexpbot.2017.12.011
– ident: e_1_2_9_108_1
  doi: 10.1038/srep30264
– ident: e_1_2_9_39_1
  doi: 10.1016/j.cell.2007.08.037
– ident: e_1_2_9_37_1
  doi: 10.1104/pp.111.182683
– ident: e_1_2_9_58_1
  doi: 10.1016/j.patter.2021.100235
– ident: e_1_2_9_24_1
  doi: 10.1105/tpc.12.11.2075
– ident: e_1_2_9_70_1
  doi: 10.1007/s11103-019-00822-0
– ident: e_1_2_9_100_1
  doi: 10.1105/tpc.110.078691
– ident: e_1_2_9_35_1
  doi: 10.1086/382794
– ident: e_1_2_9_4_1
  doi: 10.1016/j.plaphy.2010.02.002
– ident: e_1_2_9_74_1
  doi: 10.3390/molecules26144157
– ident: e_1_2_9_103_1
  doi: 10.3390/plants8110456
– ident: e_1_2_9_49_1
  doi: 10.1093/jxb/eraa493
– ident: e_1_2_9_3_1
  doi: 10.1111/j.1399-3054.2006.00780.x
– ident: e_1_2_9_75_1
  doi: 10.1007/s10265-014-0635-1
– ident: e_1_2_9_44_1
  doi: 10.1093/bioinformatics/btv193
– ident: e_1_2_9_40_1
  doi: 10.1073/pnas.1510140112
– ident: e_1_2_9_27_1
  doi: 10.1104/pp.110.161752
– ident: e_1_2_9_90_1
  doi: 10.1046/j.1365-313X.1998.00027.x
– ident: e_1_2_9_29_1
  doi: 10.1016/j.aca.2016.10.001
– ident: e_1_2_9_16_1
  doi: 10.3390/ijms20122869
– ident: e_1_2_9_38_1
  doi: 10.1104/pp.103.036970
– ident: e_1_2_9_72_1
  doi: 10.3389/fpls.2021.708876
– ident: e_1_2_9_78_1
  doi: 10.1093/mp/ssr110
– ident: e_1_2_9_77_1
  doi: 10.1105/tpc.104.026690
– ident: e_1_2_9_10_1
  doi: 10.1038/emboj.2012.294
– ident: e_1_2_9_82_1
  doi: 10.1242/dev.122.5.1589
– ident: e_1_2_9_34_1
  doi: 10.1093/nar/gkp1037
– ident: e_1_2_9_17_1
  doi: 10.1105/tpc.109.071779
– ident: e_1_2_9_67_1
  doi: 10.1073/pnas.220426197
– ident: e_1_2_9_18_1
  doi: 10.1006/dbio.1999.9443
– ident: e_1_2_9_19_1
  doi: 10.1104/pp.108.116632
– ident: e_1_2_9_36_1
  doi: 10.1186/s12870-019-2210-3
– ident: e_1_2_9_106_1
  doi: 10.1038/srep27042
– ident: e_1_2_9_25_1
  doi: 10.1186/s12870-017-1062-y
– ident: e_1_2_9_81_1
  doi: 10.1007/s10529-005-0683-7
– ident: e_1_2_9_5_1
  doi: 10.1016/j.devcel.2011.11.011
– ident: e_1_2_9_13_1
  doi: 10.1105/tpc.17.00364
– ident: e_1_2_9_2_1
  doi: 10.4161/psb.6.2.14317
– ident: e_1_2_9_60_1
  doi: 10.1093/nar/29.9.e45
– ident: e_1_2_9_80_1
  doi: 10.1105/tpc.105.032987
– ident: e_1_2_9_66_1
  doi: 10.1093/pcp/pch198
– ident: e_1_2_9_46_1
  doi: 10.1074/jbc.RA120.013948
– ident: e_1_2_9_62_1
  doi: 10.1186/s13059-017-1209-z
– ident: e_1_2_9_11_1
  doi: 10.1016/j.pbi.2017.04.009
– ident: e_1_2_9_26_1
  doi: 10.1046/j.1365-313X.2001.01100.x
– ident: e_1_2_9_105_1
  doi: 10.1111/nph.17760
SSID ssj0002176085
Score 2.2583988
Snippet The transcription factor GT2‐LIKE 1 (GTL1) has been implicated in orchestrating a transcriptional network of diverse physiological, biochemical, and...
The transcription factor GT2-LIKE 1 (GTL1) has been implicated in orchestrating a transcriptional network of diverse physiological, biochemical, and...
Abstract The transcription factor GT2‐LIKE 1 (GTL1) has been implicated in orchestrating a transcriptional network of diverse physiological, biochemical, and...
SourceID doaj
proquest
pubmed
crossref
wiley
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage e594
SubjectTerms Anthocyanins
Biosynthesis
Cell cycle
Cell division
Comparative analysis
Developmental stages
Down-regulation
Drought
Drought resistance
drought tolerance
Flavonoids
Gene expression
gene expression regulation
Gene silencing
Genetic engineering
Genotypes
Kinases
leaf development
Leaves
mutants
Plant growth
polyamine
Polyamines
Reactive oxygen species
RNA‐seq
sequence analysis
Stomata
transcription (genetics)
transcription factor
transcription factors
transcriptome
Transcriptomes
transcriptomics
Water
water stress
SummonAdditionalLinks – databaseName: DOAJ Open Access Full Text
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlp15KS19u06BA6c2NLcm2dEzSJqGE0sMWchN6jOhCsJe1Q8ml9Cf0N-aXZCStlwT6uPRk7NFBmhnNfMKjbwh521QYGRGGl1B1UAplfWkQdpdgMJ94dCIPqdric3v2VXy6aC7utPqKNWGZHjgr7kDUOY0ZA0EwZqxtvRPgrOReBu5i9K1UdecwFWMwAu0WwcTMNluxg9Wl5-8bJe7ln0TT_ztseR-qplxz8pg82oBEepgn94Q8gP4p-ZHSyrzJUbyei1h7OgR6ujivabwRtqbfET-ub37-8hDpISaa74PQVaq8g5GaSBjgrk2_7KldDuM1vsO4HOk0UOi_RT-gPrXvmfDTJcTeG_CMLE4-Lo7Pyk33hNIJyUSJ5wBl69rXbTCMeyZMvD7uQwM-KGkhoP66SJjWicbJ0Ak8-0BnVeugZjbw52SnH3p4SSg0QTkjZRMExlVbGWe6ChgCp9io3LUF2Z9VqleZI0NnNmSmo9o1qr0gR1HXW3lktU4f0NZ6Y2v9L1sXZHe2lN5stVGjp_FEYSNxHlsxbpL458P0MFzhmKpFaITgl_9lDEqbyNtdF-RF9oLtbLnslBJ1V5B3yS3-uEz95fwDx-er_7Hc1-QhQwiVyyt3yc60voI3CIEmu5e8_RZDpwfH
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1fa9UwFA_z7sUXUfxXnRJBfKtrk7RNH0Scbg4ZlyFX2FvInxN3YbTXtkP2In4EP6OfxJO0vTLQPZUmoaTJOSe_JOf8DiEviwwtI8LwFLIKUlEbl2qE3SloXE8cCpGD6G2xLI-_iE9nxdkOWc6xMMGtcraJ0VC71oYz8n38II9MJfLt5lsaskaF29U5hYaeUiu4N5Fi7BbZRZNcZAuye3C4PP28PXVBAF4iyJhZaDO2v7lw_HVRi2vrUqTv_xfmvA5h4xp0dJfcmcAjfTfO9j2yA8198iMuN7PyY3U3O7c2tPX04-okpyFSrKPfEVd2v3_-chBoIwY6xonQTfTIg57qQCRgr3SzbqhZt_0VvkO_7unQUmjOg3xQF9P6DFh0ASEnBzwgq6PD1fvjdMqqkFohmUhxf1CbPHd56TXjjgkdwsqdL8D5Whrw3MkqEKlVorDSVwL3RFCZurSQM-P5Q7Jo2gYeEwqFr62WsvAC7a3JtNVVBgwBVUhgbsuEvJiHVG1G7gw1siQzFYZd4bAn5CCM9bY-sF3Hgrb7qiblUSIfoYzW4AVj2pjSWQHWSOyr5zYhe_NMqUkFe_VXYLAf22pUnnAjohtoL7FNViJkQlDMb2iDtUXg884T8miUgm1vuazqWuRVQl5Fsfjvb6rTkw8cn09u7ulTcpshaBodKvfIYugu4RmCnsE8nyT5D-kuBNI
  priority: 102
  providerName: ProQuest
Title Transcriptional repression of GTL1 under water‐deficit stress promotes anthocyanin biosynthesis to enhance drought tolerance
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpld3.594
https://www.ncbi.nlm.nih.gov/pubmed/38799417
https://www.proquest.com/docview/3163096588
https://www.proquest.com/docview/3060751153
https://www.proquest.com/docview/3153551741
https://doaj.org/article/41000782aaef422abb6dc4ecb83d8f3c
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bi9UwEA66--KLKN6q6yGC-Fa3zaVpH13ddZFlOcgR9q3kMtEDS3tou8i-iD_B3-gvcZJeZEHFp9IkLWkyk_mSznxDyEuZ4cqIMDyFTEEqKuNSjbA7BY32xKEQOYjeFufF6Sfx4UJeTF6VIRZm5IdYDtyCZsT1Oii4Nv3hb9LQ3aXjr2UlbpN9fDkP0s3EejlfQahdZDEjJxNKpkJIOXPPZuxwfviGNYqk_X9CmjeBa7Q8J_fI3Qky0jfjHN8nt6B5QL5FIzOrPFZ3s0trQ1tP32_Ochriwzr6FdFk9_P7DweBLGKgY3QI3UU_POipDvQB9lo324aabdtf4z30254OLYXmS5AK6mIynwGLLiFk4oCHZHNyvHl7mk65FFIrSiZS3BVUJs9dXnjNuGNCh2By5yU4X5UGPHelCvRpSkhbeiVwJwTKVIWFnBnPH5G9pm3gCaEgfWV1WUovcJU1mbZaZcAQRoW05bZIyIt5SOvdyJhRj9zIrA7DXuOwJ-QojPVSHziuY0Hbfa4nlalFPgIYrcELxrQxhbMCrCmxr57bhBzMM1VPitfXKHc8EtqU2I-lGlUm_AfRDbRX2CYrECghFOb_aIO1MrB45wl5PErB0lteqqoSuUrIqygWf_3Men32juP16f82fEbuMARNo0PlAdkbuit4jqBnMKso3Suyf3R8vv64ikcHvwA1FgIp
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELbK9gAXBOIvUMBIwC00cZy_Q4UobdnSZVWhRerN8s-4rFQlyyZVtRfEI_BCvAxPwthJFlWC3nqKEluWMx6PP9sz3xDyMo3QMiIMDyHKIeSlMqFE2B2CxPXEoBIZ8N4W02z8hX88SU82yK8hFsa5VQ420RtqU2t3Rr6NDSaeqaR4u_gWuqxR7nZ1SKEh-9QKZsdTjPWBHUewusAtXLNzuIfj_Yqxg_3Z-3HYZxkINS8YDxEvlyqOTZxZyRLDuHRh1samYGxZKLCJKXJHLJbzVBc257hHgFyVmYaYKZtgszfIJnfnJyOyubs_Pf68PuRBvJ8hphlIbyO2vTgzyZu05JeWQZ8t4F8Q9zJi9kvewR1yu8eq9F2nXHfJBlT3yHe_ug22BouXgy9tRWtLP8wmMXWBaUt6gTB2-fvHTwOOpaKlXVgKXXgHQGiodLwFeiWreUXVvG5W-A7NvKFtTaH66tSRGp9FqMVPZ-BSgMB9MrsO8T4go6qu4BGhkNpSy6JILUfzriKpZR4BQ_zm8qXrLCAvBpGKRUfVITpSZiac2AWKPSC7Ttbrckeu7T_Uy1PRz1XB4w45SQmWMyaVyozmoFWBfbWJDsjWMFKin_GN-Kuf2I91Mc5VdwEjK6jPsU6UIUJDDJ5cUQdLU0cfHgfkYacF694mRV6WPM4D8tqrxX9_UxxP9hJ8Pr66p8_JzfHs00RMDqdHT8gthnit8-XcIqN2eQ5PEW-16lmv1ZSIa55HfwC510Bx
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9RAFB5qC-KLVLxFq46gvsVNJpPbQxHrdm3tsiyyQt-GuZzRhZKsmy1lX4o_wb_l3_CXeGaSrBS0b30KyYQwOTmXbybnfIeQV2mEnhFheAhRDiEvlQklwu4QJMYTg0pkwGdbTLKjL_zTaXq6RX71tTAurbL3id5Rm1q7PfIBPjDxTCXFwHZpEdPh6N3ie-g6SLk_rX07Ddm1WTD7nm6sK_I4gfUFLuea_eMhfvvXjI0OZx-Owq7jQKh5wXiI2LlUcWzizEqWGMalK7k2NgVjy0KBTUyRO5KxnKe6sDnH9QLkqsw0xEzZBB97i-zkGPRxHbhzcDiZft5s-CD2zxDf9AS4ERsszkzyNi35lZDoOwf8C-5eRc8-_I12yd0Ot9L3raLdI1tQ3SeXPtL1fgeHl31ebUVrSz_OxjF1RWpLeoGQdvn7x08DjrFiRdsSFbrwyYDQUOk4DPRaVvOKqnndrPEcmnlDVzWF6ptTTWp8R6EVXjoD1w4EHpDZTYj3Idmu6goeEwqpLbUsitRydPUqklrmETDEcq53us4C8rIXqVi0tB2iJWhmwoldoNgDcuBkvRl3RNv-Qr38Kjq7FTxuUZSUYDljUqnMaA5aFThXm-iA7PVfSnTW34i_uorz2Ayj3bqfMbKC-hzviTJEa4jHk2vuwdHUUYnHAXnUasFmtkmRlyWP84C88Wrx39cU0_EwweOT62f6gtxGexLj48nJU3KHIXRr0zr3yPZqeQ7PEHqt1PNOqSkRN2xGfwCU8ES1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transcriptional+repression+of+GTL1+under+water%E2%80%90deficit+stress+promotes+anthocyanin+biosynthesis+to+enhance+drought+tolerance&rft.jtitle=Plant+direct&rft.au=Mano%2C+Noel+Anthony&rft.au=Shaikh%2C+Mearaj+A.&rft.au=Widhalm%2C+Joshua+R.&rft.au=Yoo%2C+Chan+Yul&rft.date=2024-05-01&rft.issn=2475-4455&rft.eissn=2475-4455&rft.volume=8&rft.issue=5&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fpld3.594&rft.externalDBID=10.1002%252Fpld3.594&rft.externalDocID=PLD3594
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2475-4455&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2475-4455&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2475-4455&client=summon