Transcriptional repression of GTL1 under water‐deficit stress promotes anthocyanin biosynthesis to enhance drought tolerance
The transcription factor GT2‐LIKE 1 (GTL1) has been implicated in orchestrating a transcriptional network of diverse physiological, biochemical, and developmental processes. In response to water‐limiting conditions, GTL1 is a negative regulator of stomatal development, but its potential rolein other...
Saved in:
Published in | Plant direct Vol. 8; no. 5; pp. e594 - n/a |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
England
John Wiley & Sons, Inc
01.05.2024
Wiley |
Subjects | |
Online Access | Get full text |
ISSN | 2475-4455 2475-4455 |
DOI | 10.1002/pld3.594 |
Cover
Abstract | The transcription factor GT2‐LIKE 1 (GTL1) has been implicated in orchestrating a transcriptional network of diverse physiological, biochemical, and developmental processes. In response to water‐limiting conditions, GTL1 is a negative regulator of stomatal development, but its potential rolein other water‐deficit responses is unknown. We hypothesized that GTL1 regulates transcriptome changes associated with drought tolerance over leaf developmental stages. To test the hypothesis, gene expression was profiled by RNA‐seq analysis in emerging and expanding leaves of wild‐type and a drought‐tolerant gtl1‐4 knockout mutant under well‐watered and water‐deficit conditions. Our comparative analysis of genotype‐treatment combinations within leaf developmental age identified 459 and 1073 differentially expressed genes in emerging and expanding leaves, respectively, as water‐deficit responsive GTL1‐regulated genes. Transcriptional profiling identified a potential role of GTL1 in two important pathways previously linked to drought tolerance: flavonoid and polyamine biosynthesis. In expanding leaves, negative regulation of GTL1 under water‐deficit conditions promotes biosynthesis of flavonoids and anthocyanins that may contribute to drought tolerance. Quantification of polyamines did not support a role for GTL1 in these drought‐responsive pathways, but this is likely due to the complex nature of polyamine synthesis and turnover. Our global transcriptome analysis suggests that transcriptional repression of GTL1 by water deficit allows plants to activate diverse pathways that collectively contribute to drought tolerance. |
---|---|
AbstractList | The transcription factor GT2-LIKE 1 (GTL1) has been implicated in orchestrating a transcriptional network of diverse physiological, biochemical, and developmental processes. In response to water-limiting conditions, GTL1 is a negative regulator of stomatal development, but its potential rolein other water-deficit responses is unknown. We hypothesized that GTL1 regulates transcriptome changes associated with drought tolerance over leaf developmental stages. To test the hypothesis, gene expression was profiled by RNA-seq analysis in emerging and expanding leaves of wild-type and a drought-tolerant gtl1-4 knockout mutant under well-watered and water-deficit conditions. Our comparative analysis of genotype-treatment combinations within leaf developmental age identified 459 and 1073 differentially expressed genes in emerging and expanding leaves, respectively, as water-deficit responsive GTL1-regulated genes. Transcriptional profiling identified a potential role of GTL1 in two important pathways previously linked to drought tolerance: flavonoid and polyamine biosynthesis. In expanding leaves, negative regulation of GTL1 under water-deficit conditions promotes biosynthesis of flavonoids and anthocyanins that may contribute to drought tolerance. Quantification of polyamines did not support a role for GTL1 in these drought-responsive pathways, but this is likely due to the complex nature of polyamine synthesis and turnover. Our global transcriptome analysis suggests that transcriptional repression of GTL1 by water deficit allows plants to activate diverse pathways that collectively contribute to drought tolerance.The transcription factor GT2-LIKE 1 (GTL1) has been implicated in orchestrating a transcriptional network of diverse physiological, biochemical, and developmental processes. In response to water-limiting conditions, GTL1 is a negative regulator of stomatal development, but its potential rolein other water-deficit responses is unknown. We hypothesized that GTL1 regulates transcriptome changes associated with drought tolerance over leaf developmental stages. To test the hypothesis, gene expression was profiled by RNA-seq analysis in emerging and expanding leaves of wild-type and a drought-tolerant gtl1-4 knockout mutant under well-watered and water-deficit conditions. Our comparative analysis of genotype-treatment combinations within leaf developmental age identified 459 and 1073 differentially expressed genes in emerging and expanding leaves, respectively, as water-deficit responsive GTL1-regulated genes. Transcriptional profiling identified a potential role of GTL1 in two important pathways previously linked to drought tolerance: flavonoid and polyamine biosynthesis. In expanding leaves, negative regulation of GTL1 under water-deficit conditions promotes biosynthesis of flavonoids and anthocyanins that may contribute to drought tolerance. Quantification of polyamines did not support a role for GTL1 in these drought-responsive pathways, but this is likely due to the complex nature of polyamine synthesis and turnover. Our global transcriptome analysis suggests that transcriptional repression of GTL1 by water deficit allows plants to activate diverse pathways that collectively contribute to drought tolerance. The transcription factor GT2‐LIKE 1 (GTL1) has been implicated in orchestrating a transcriptional network of diverse physiological, biochemical, and developmental processes. In response to water‐limiting conditions, GTL1 is a negative regulator of stomatal development, but its potential rolein other water‐deficit responses is unknown. We hypothesized that GTL1 regulates transcriptome changes associated with drought tolerance over leaf developmental stages. To test the hypothesis, gene expression was profiled by RNA‐seq analysis in emerging and expanding leaves of wild‐type and a drought‐tolerant gtl1‐4 knockout mutant under well‐watered and water‐deficit conditions. Our comparative analysis of genotype‐treatment combinations within leaf developmental age identified 459 and 1073 differentially expressed genes in emerging and expanding leaves, respectively, as water‐deficit responsive GTL1‐regulated genes. Transcriptional profiling identified a potential role of GTL1 in two important pathways previously linked to drought tolerance: flavonoid and polyamine biosynthesis. In expanding leaves, negative regulation of GTL1 under water‐deficit conditions promotes biosynthesis of flavonoids and anthocyanins that may contribute to drought tolerance. Quantification of polyamines did not support a role for GTL1 in these drought‐responsive pathways, but this is likely due to the complex nature of polyamine synthesis and turnover. Our global transcriptome analysis suggests that transcriptional repression of GTL1 by water deficit allows plants to activate diverse pathways that collectively contribute to drought tolerance. Abstract The transcription factor GT2‐LIKE 1 (GTL1) has been implicated in orchestrating a transcriptional network of diverse physiological, biochemical, and developmental processes. In response to water‐limiting conditions, GTL1 is a negative regulator of stomatal development, but its potential rolein other water‐deficit responses is unknown. We hypothesized that GTL1 regulates transcriptome changes associated with drought tolerance over leaf developmental stages. To test the hypothesis, gene expression was profiled by RNA‐seq analysis in emerging and expanding leaves of wild‐type and a drought‐tolerant gtl1‐4 knockout mutant under well‐watered and water‐deficit conditions. Our comparative analysis of genotype‐treatment combinations within leaf developmental age identified 459 and 1073 differentially expressed genes in emerging and expanding leaves, respectively, as water‐deficit responsive GTL1‐regulated genes. Transcriptional profiling identified a potential role of GTL1 in two important pathways previously linked to drought tolerance: flavonoid and polyamine biosynthesis. In expanding leaves, negative regulation of GTL1 under water‐deficit conditions promotes biosynthesis of flavonoids and anthocyanins that may contribute to drought tolerance. Quantification of polyamines did not support a role for GTL1 in these drought‐responsive pathways, but this is likely due to the complex nature of polyamine synthesis and turnover. Our global transcriptome analysis suggests that transcriptional repression of GTL1 by water deficit allows plants to activate diverse pathways that collectively contribute to drought tolerance. The transcription factor GT2-LIKE 1 (GTL1) has been implicated in orchestrating a transcriptional network of diverse physiological, biochemical, and developmental processes. In response to water-limiting conditions, GTL1 is a negative regulator of stomatal development, but its potential rolein other water-deficit responses is unknown. We hypothesized that GTL1 regulates transcriptome changes associated with drought tolerance over leaf developmental stages. To test the hypothesis, gene expression was profiled by RNA-seq analysis in emerging and expanding leaves of wild-type and a drought-tolerant knockout mutant under well-watered and water-deficit conditions. Our comparative analysis of genotype-treatment combinations within leaf developmental age identified 459 and 1073 differentially expressed genes in emerging and expanding leaves, respectively, as water-deficit responsive GTL1-regulated genes. Transcriptional profiling identified a potential role of GTL1 in two important pathways previously linked to drought tolerance: flavonoid and polyamine biosynthesis. In expanding leaves, negative regulation of under water-deficit conditions promotes biosynthesis of flavonoids and anthocyanins that may contribute to drought tolerance. Quantification of polyamines did not support a role for GTL1 in these drought-responsive pathways, but this is likely due to the complex nature of polyamine synthesis and turnover. Our global transcriptome analysis suggests that transcriptional repression of GTL1 by water deficit allows plants to activate diverse pathways that collectively contribute to drought tolerance. The transcription factor GT2‐LIKE 1 (GTL1) has been implicated in orchestrating a transcriptional network of diverse physiological, biochemical, and developmental processes. In response to water‐limiting conditions, GTL1 is a negative regulator of stomatal development, but its potential rolein other water‐deficit responses is unknown. We hypothesized that GTL1 regulates transcriptome changes associated with drought tolerance over leaf developmental stages. To test the hypothesis, gene expression was profiled by RNA‐seq analysis in emerging and expanding leaves of wild‐type and a drought‐tolerant gtl1‐4 knockout mutant under well‐watered and water‐deficit conditions. Our comparative analysis of genotype‐treatment combinations within leaf developmental age identified 459 and 1073 differentially expressed genes in emerging and expanding leaves, respectively, as water‐deficit responsive GTL1‐regulated genes. Transcriptional profiling identified a potential role of GTL1 in two important pathways previously linked to drought tolerance: flavonoid and polyamine biosynthesis. In expanding leaves, negative regulation of GTL1 under water‐deficit conditions promotes biosynthesis of flavonoids and anthocyanins that may contribute to drought tolerance. Quantification of polyamines did not support a role for GTL1 in these drought‐responsive pathways, but this is likely due to the complex nature of polyamine synthesis and turnover. Our global transcriptome analysis suggests that transcriptional repression of GTL1 by water deficit allows plants to activate diverse pathways that collectively contribute to drought tolerance. |
Author | Mano, Noel Anthony Shaikh, Mearaj A. Yoo, Chan Yul Mickelbart, Michael V. Widhalm, Joshua R. |
Author_xml | – sequence: 1 givenname: Noel Anthony orcidid: 0000-0001-6872-349X surname: Mano fullname: Mano, Noel Anthony organization: Heidelberg University – sequence: 2 givenname: Mearaj A. orcidid: 0000-0001-8351-029X surname: Shaikh fullname: Shaikh, Mearaj A. organization: Purdue University – sequence: 3 givenname: Joshua R. orcidid: 0000-0002-2703-4740 surname: Widhalm fullname: Widhalm, Joshua R. organization: Purdue University – sequence: 4 givenname: Chan Yul orcidid: 0000-0001-6159-7443 surname: Yoo fullname: Yoo, Chan Yul organization: The University of Utah – sequence: 5 givenname: Michael V. orcidid: 0000-0001-5939-3126 surname: Mickelbart fullname: Mickelbart, Michael V. email: mickelbart@purdue.edu organization: Purdue University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38799417$$D View this record in MEDLINE/PubMed |
BookMark | eNqFktFqFDEUhoNUbK0Fn0AC3nizNZlJJplLqVoLC3qx9yGTnHSzzCZjkqHsjfgIPqNPYsatVQTxKjk_X_7DyfmfopMQAyD0nJJLSkjzehpte8l79gidNUzwFWOcn_xxP0UXOe9IRanoiORP0GkrRd8zKs7Ql03SIZvkp-Jj0CNOMCXIuRY4Ony9WVM8BwsJ3-kC6fvXbxacN77gXBYOTynuY4GMdSjbaA46-IAHH_Oh1pB9xiViCFsdDGCb4ny7LVUaIS3KM_TY6THDxf15jjbv322uPqzWH69vrt6sV4bJhq245P1AqaWd001rG6YJk8Q6Dtb1cgDXWikayphg3EgnGOt7EEPfGaDN4NpzdHO0tVHv1JT8XqeDitqrn0JMt0qn4s0IitU_JUI2WoNjTaOHobOGgRlk7eFaU71eHb3q5J9nyEXtfTYwjjpAnLNqKW85p4LR_6OkI4LT-qCiL_9Cd3FOdSGLYdeSvuNSVurFPTUPe7APk_za5--OJsWcE7gHhBK1pEUtaVE1LRVdHdE7P8Lhn5z6tH7bLvwPVfbBlw |
Cites_doi | 10.1371/journal.pone.0028070 10.1105/tpc.112.101022 10.1093/nar/28.1.27 10.1042/bj3530403 10.1016/j.envexpbot.2021.104449 10.1007/BF00029852 10.1093/plphys/kiab115 10.1093/emboj/cdf316 10.1016/j.devcel.2011.10.018 10.1073/pnas.0711203105 10.1105/tpc.109.065557 10.1111/tpj.13377 10.1038/nprot.2008.211 10.1104/pp.113.215798 10.1242/dev.159707 10.1104/pp.104.053884 10.1093/pcp/pcx073 10.1111/j.1365-313X.2005.02429.x 10.1093/pcp/pcu159 10.1007/BF00277130 10.1007/s00299-010-0881-1 10.1371/journal.pgen.1007708 10.1007/s004250100572 10.1242/dev.122.3.997 10.1016/j.gene.2017.12.048 10.3389/fpls.2020.610118 10.1105/tpc.108.059444 10.1016/j.ijbiomac.2023.124060 10.1104/pp.17.00318 10.1111/nph.12620 10.3389/fpls.2019.00228 10.1007/s00438-016-1203-2 10.3389/fpls.2020.00948 10.1104/pp.012377 10.1111/ppl.13268 10.1105/tpc.109.068387 10.1104/pp.17.00269 10.1016/S1360-1385(99)01418-1 10.3390/plants8100387 10.1016/j.gene.2019.144024 10.1105/tpc.10.8.1391 10.1371/journal.pone.0032925 10.1023/A:1010639015959 10.1093/nar/gkac194 10.1038/msb.2012.39 10.1111/tpj.12637 10.1104/pp.109.148965 10.1007/BF00392549 10.1126/scisignal.2000448 10.1105/tpc.108.059345 10.1093/jxb/eraa582 10.1105/tpc.109.068320 10.1046/j.1365-313x.2000.00899.x 10.1073/pnas.2015400117 10.1093/jxb/erv330 10.1016/j.bbrc.2003.11.119 10.1021/jf026179 10.1038/s41598-019-47529-2 10.1111/tpj.12388 10.1104/pp.16.01096 10.1016/j.febslet.2012.05.013 10.1111/j.1365-313X.2009.03886.x 10.1038/386451a0 10.1016/j.envexpbot.2017.12.011 10.1038/srep30264 10.1016/j.cell.2007.08.037 10.1104/pp.111.182683 10.1016/j.patter.2021.100235 10.1105/tpc.12.11.2075 10.1007/s11103-019-00822-0 10.1105/tpc.110.078691 10.1086/382794 10.1016/j.plaphy.2010.02.002 10.3390/molecules26144157 10.3390/plants8110456 10.1093/jxb/eraa493 10.1111/j.1399-3054.2006.00780.x 10.1007/s10265-014-0635-1 10.1093/bioinformatics/btv193 10.1073/pnas.1510140112 10.1104/pp.110.161752 10.1046/j.1365-313X.1998.00027.x 10.1016/j.aca.2016.10.001 10.3390/ijms20122869 10.1104/pp.103.036970 10.3389/fpls.2021.708876 10.1093/mp/ssr110 10.1105/tpc.104.026690 10.1038/emboj.2012.294 10.1242/dev.122.5.1589 10.1093/nar/gkp1037 10.1105/tpc.109.071779 10.1073/pnas.220426197 10.1006/dbio.1999.9443 10.1104/pp.108.116632 10.1186/s12870-019-2210-3 10.1038/srep27042 10.1186/s12870-017-1062-y 10.1007/s10529-005-0683-7 10.1016/j.devcel.2011.11.011 10.1105/tpc.17.00364 10.4161/psb.6.2.14317 10.1093/nar/29.9.e45 10.1105/tpc.105.032987 10.1093/pcp/pch198 10.1074/jbc.RA120.013948 10.1186/s13059-017-1209-z 10.1016/j.pbi.2017.04.009 10.1046/j.1365-313X.2001.01100.x 10.1111/nph.17760 |
ContentType | Journal Article |
Copyright | 2024 The Author(s). published by American Society of Plant Biologists and the Society for Experimental Biology and John Wiley & Sons Ltd. 2024 The Author(s). Plant Direct published by American Society of Plant Biologists and the Society for Experimental Biology and John Wiley & Sons Ltd. 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2024 The Author(s). published by American Society of Plant Biologists and the Society for Experimental Biology and John Wiley & Sons Ltd. – notice: 2024 The Author(s). Plant Direct published by American Society of Plant Biologists and the Society for Experimental Biology and John Wiley & Sons Ltd. – notice: 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | 24P AAYXX CITATION NPM 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 7S9 L.6 DOA |
DOI | 10.1002/pld3.594 |
DatabaseName | Wiley Online Library Open Access CrossRef PubMed ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Database ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection Biological Sciences Biological Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic AGRICOLA AGRICOLA - Academic DOAJ Open Access Full Text |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Biological Science Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Biological Science Database ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database AGRICOLA PubMed CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2475-4455 |
EndPage | n/a |
ExternalDocumentID | oai_doaj_org_article_41000782aaef422abb6dc4ecb83d8f3c 38799417 10_1002_pld3_594 PLD3594 |
Genre | researchArticle Journal Article |
GrantInformation_xml | – fundername: USDA National Institute of Food and Agriculture funderid: 1013618; 177845 |
GroupedDBID | 0R~ 1OC 24P 8FE 8FH AAHHS ACCFJ ACCMX ACGFS ACXQS ADBBV ADKYN ADZMN AEEZP AEQDE AFKRA AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN AOIJS AVUZU BBNVY BCNDV BENPR BHPHI CCPQU EBS ECGQY EJD GROUPED_DOAJ HCIFZ HYE IAO IGS ITC LK8 M7P M~E O9- OK1 PIMPY PROAC RPM WIN AAYXX CITATION PHGZM PHGZT NPM AAMMB ABUWG AEFGJ AGXDD AIDQK AIDYY AZQEC DWQXO GNUQQ PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 PUEGO 7S9 L.6 |
ID | FETCH-LOGICAL-c4824-5859b11d16fa23d24a0480df5edf98bef3d872144745c8f74499e7b96ce12bf3 |
IEDL.DBID | 24P |
ISSN | 2475-4455 |
IngestDate | Wed Aug 27 01:25:39 EDT 2025 Fri Sep 05 17:28:40 EDT 2025 Fri Sep 05 09:46:32 EDT 2025 Wed Aug 13 04:51:36 EDT 2025 Thu Apr 03 06:59:58 EDT 2025 Tue Jul 01 01:17:44 EDT 2025 Wed Jan 22 17:20:29 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | polyamine transcription factor RNA‐seq leaf development |
Language | English |
License | Attribution 2024 The Author(s). Plant Direct published by American Society of Plant Biologists and the Society for Experimental Biology and John Wiley & Sons Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4824-5859b11d16fa23d24a0480df5edf98bef3d872144745c8f74499e7b96ce12bf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-6159-7443 0000-0002-2703-4740 0000-0001-6872-349X 0000-0001-8351-029X 0000-0001-5939-3126 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpld3.594 |
PMID | 38799417 |
PQID | 3163096588 |
PQPubID | 4370295 |
PageCount | 18 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_41000782aaef422abb6dc4ecb83d8f3c proquest_miscellaneous_3153551741 proquest_miscellaneous_3060751153 proquest_journals_3163096588 pubmed_primary_38799417 crossref_primary_10_1002_pld3_594 wiley_primary_10_1002_pld3_594_PLD3594 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | May 2024 2024-05-00 2024-May 20240501 2024-05-01 |
PublicationDateYYYYMMDD | 2024-05-01 |
PublicationDate_xml | – month: 05 year: 2024 text: May 2024 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Oxford |
PublicationTitle | Plant direct |
PublicationTitleAlternate | Plant Direct |
PublicationYear | 2024 |
Publisher | John Wiley & Sons, Inc Wiley |
Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley |
References | 2004; 165 2016; 945 2019; 99 2019; 10 2017; 89 2019; 19 2008; 105 2020; 11 2021; 72 2003; 51 2001; 46 2010; 22 2014; 127 2019; 20 2020; 295 2000; 12 2010; 29 2019; 716 1997; 386 2000; 97 2008; 20 2012; 24 1998; 10 2012; 22 1999; 215 1998; 13 2019; 8 2019; 9 2010; 38 2012; 586 2004; 45 1996; 122 2001; 27 2001; 29 2011; 6 2012; 31 2016; 6 2010; 48 2004; 313 2017; 58 2015; 112 2015; 66 1982; 155 2016; 291 2005; 17 1993; 236 2018; 14 2016; 172 2011; 157 2021; 26 2018; 646 2015; 31 2005; 138 1994; 24 2013; 162 2008; 147 2005; 27 2004; 134 2017; 38 2007; 131 2010; 154 2010; 152 2011; 21 2021; 232 2006; 128 2014; 202 2009; 59 2001; 213 2014; 55 2009; 21 2021; 2 2000; 28 2022; 50 2000; 24 2018; 145 2005; 43 2021; 186 1999; 4 2017; 29 2017; 174 2003; 131 2001; 353 2018; 154 2014; 80 2021; 12 2021; 11 2017; 17 2002; 21 2023; 237 2020; 117 2021; 172 2017; 18 2009; 4 2009; 2 2012; 7 2012; 5 2014; 77 2012; 8 e_1_2_9_75_1 e_1_2_9_98_1 e_1_2_9_52_1 e_1_2_9_79_1 e_1_2_9_94_1 e_1_2_9_10_1 e_1_2_9_56_1 e_1_2_9_33_1 e_1_2_9_90_1 e_1_2_9_71_1 e_1_2_9_103_1 e_1_2_9_107_1 e_1_2_9_14_1 e_1_2_9_37_1 e_1_2_9_18_1 e_1_2_9_41_1 e_1_2_9_64_1 e_1_2_9_87_1 e_1_2_9_22_1 e_1_2_9_45_1 e_1_2_9_68_1 e_1_2_9_83_1 e_1_2_9_6_1 e_1_2_9_60_1 e_1_2_9_2_1 e_1_2_9_111_1 e_1_2_9_26_1 e_1_2_9_49_1 e_1_2_9_30_1 e_1_2_9_53_1 e_1_2_9_99_1 e_1_2_9_72_1 e_1_2_9_11_1 e_1_2_9_34_1 e_1_2_9_57_1 e_1_2_9_95_1 e_1_2_9_76_1 e_1_2_9_91_1 e_1_2_9_102_1 e_1_2_9_106_1 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_19_1 e_1_2_9_42_1 e_1_2_9_88_1 e_1_2_9_61_1 e_1_2_9_46_1 e_1_2_9_84_1 e_1_2_9_23_1 e_1_2_9_65_1 e_1_2_9_80_1 e_1_2_9_5_1 e_1_2_9_9_1 e_1_2_9_27_1 e_1_2_9_69_1 e_1_2_9_110_1 e_1_2_9_31_1 e_1_2_9_50_1 e_1_2_9_73_1 e_1_2_9_35_1 e_1_2_9_77_1 e_1_2_9_96_1 e_1_2_9_12_1 e_1_2_9_54_1 e_1_2_9_92_1 e_1_2_9_109_1 e_1_2_9_101_1 e_1_2_9_105_1 e_1_2_9_39_1 e_1_2_9_16_1 e_1_2_9_58_1 e_1_2_9_20_1 e_1_2_9_62_1 e_1_2_9_89_1 e_1_2_9_24_1 e_1_2_9_43_1 e_1_2_9_66_1 e_1_2_9_85_1 e_1_2_9_8_1 e_1_2_9_81_1 e_1_2_9_4_1 e_1_2_9_28_1 e_1_2_9_47_1 e_1_2_9_74_1 e_1_2_9_51_1 e_1_2_9_78_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_55_1 e_1_2_9_97_1 e_1_2_9_93_1 e_1_2_9_108_1 e_1_2_9_70_1 e_1_2_9_100_1 e_1_2_9_104_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_59_1 e_1_2_9_63_1 e_1_2_9_40_1 e_1_2_9_21_1 e_1_2_9_67_1 e_1_2_9_44_1 e_1_2_9_86_1 e_1_2_9_7_1 e_1_2_9_82_1 e_1_2_9_3_1 e_1_2_9_25_1 e_1_2_9_48_1 e_1_2_9_29_1 |
References_xml | – volume: 99 start-page: 363 year: 2019 end-page: 377 article-title: Loss of ( ), a 3′‐phosphoadenosine‐5′‐phosphate phosphatase, suppresses insensitive response of ( ) mutant to abiotic stress publication-title: Plant Molecular Biology – volume: 186 start-page: 1171 year: 2021 end-page: 1185 article-title: Distinct cellular strategies determine sensitivity to mild drought of Arabidopsis natural accessions publication-title: Plant Physiology – volume: 51 start-page: 2992 year: 2003 end-page: 2999 article-title: Levels of active oxygen species are controlled by ascorbic acid and anthocyanin in publication-title: Journal of Agricultural and Food Chemistry – volume: 7 year: 2012 article-title: Poplar GTL1 is a Ca /calmodulin‐binding transcription factor that functions in plant water use efficiency and drought tolerance publication-title: PLoS ONE – volume: 112 start-page: 10545 year: 2015 end-page: 10550 article-title: At14a‐Like1 participates in membrane‐associated mechanisms promoting growth during drought in publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 6 start-page: 243 year: 2011 end-page: 250 article-title: Polyamine metabolic canalization in response to drought stress in and the resurrection plant publication-title: Plant Signaling and Behavior – volume: 59 start-page: 499 year: 2009 end-page: 508 article-title: Coordination of cell proliferation and cell expansion mediated by ribosome‐related processes in the leaves of publication-title: The Plant Journal – volume: 24 start-page: 613 year: 2000 end-page: 623 article-title: Expression of the plant cyclin‐dependent kinase inhibitor ICK1 affects cell division, plant growth and morphology publication-title: The Plant Journal – volume: 12 start-page: 2075 year: 2000 end-page: 2086 article-title: Oriented asymmetric divisions that generate the stomatal spacing pattern in Arabidopsis are disrupted by the mutation publication-title: The Plant Cell – volume: 165 start-page: 231 year: 2004 end-page: 242 article-title: Vein pattern development n adult leaves of publication-title: International Journal of Plant Science – volume: 386 start-page: 451 year: 1997 end-page: 452 article-title: A plant cyclin‐dependent kinase inhibitor gene publication-title: Nature – volume: 157 start-page: 742 year: 2011 end-page: 756 article-title: Arabidopsis Cys2/His2 zinc‐finger proteins AZF1 and AZF2 negatively regulate abscisic acid‐repressive and auxin‐inducible genes under abiotic stress conditions publication-title: Plant Physiology – volume: 29 start-page: 955 year: 2010 end-page: 965 article-title: Characterization of five polyamine oxidase isoforms in publication-title: Plant Cell Reports – volume: 22 start-page: 64 year: 2012 end-page: 78 article-title: Exit from proliferation during leaf development in : A not‐so‐gradual process publication-title: Developmental Cell – volume: 10 start-page: 1391 year: 1998 end-page: 1406 article-title: Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought‐ and low‐temperature‐responsive gene expression, respectively, in Arabidopsis publication-title: The Plant Cell – volume: 22 start-page: 888 year: 2010 end-page: 903 article-title: The ‐inositol 1‐phosphate synthase1 gene is required for ‐inositol synthesis and suppression of cell death publication-title: The Plant Cell – volume: 31 start-page: 2614 year: 2015 end-page: 2622 article-title: EBSeq‐HMM: A Bayesian approach for identifying gene‐expression changes in ordered RNA‐seq experiments publication-title: Bioinformatics – volume: 29 year: 2001 article-title: A new mathematical model for relative quantification in real‐time RT‐PCR publication-title: Nucleic Acids Research – volume: 172 start-page: 847 year: 2021 end-page: 868 article-title: Transcription factors as key molecular target to strengthen the drought stress tolerance in plants publication-title: Physiologia Plantarum – volume: 22 start-page: 4128 year: 2010 end-page: 4141 article-title: The GTL1 transcription factor regulates water use efficiency and drought tolerance by modulating stomatal density via transrepression of publication-title: The Plant Cell – volume: 134 start-page: 1697 year: 2004 end-page: 1707 article-title: Tissue‐specific localization of an abscisic acid biosynthetic enzyme, AAO3, in Arabidopsis publication-title: Plant Physiology – volume: 10 year: 2019 article-title: AP2/ERF transcription factor regulatory networks in hormone and abiotic stress responses in publication-title: Frontiers in Plant Science – volume: 24 start-page: 2839 year: 2012 end-page: 2856 article-title: Nuclear ribosome biogenesis mediated by the DIM1A rRNA dimethylase is required for organized root growth and epidermal patterning in publication-title: The Plant Cell – volume: 6 year: 2016 article-title: A novel gene improves both drought avoidance and drought tolerance in rice publication-title: Scientific Reports – volume: 17 year: 2017 article-title: Relationships between drought, heat and air humidity responses revealed by transcriptome‐metabolome co‐analysis publication-title: BMC Plant Biology – volume: 145 year: 2018 article-title: GTL1 and DF1 regulate root hair growth through transcriptional repression of in publication-title: Development – volume: 20 start-page: 2529 year: 2008 end-page: 2540 article-title: NAI2 is an endoplasmic reticulum body component that enables ER body formation in publication-title: The Plant Cell – volume: 152 start-page: 226 year: 2010 end-page: 244 article-title: Developmental stage specificity and the role of mitochondrial metabolism in the response of Arabidopsis leaves to prolonged mild osmotic stress publication-title: Plant Physiology – volume: 77 start-page: 367 year: 2014 end-page: 379 article-title: Enhancement of oxidative and drought tolerance in by overaccumulation of antioxidant flavonoids publication-title: The Plant Journal – volume: 14 year: 2018 article-title: The trihelix transcription factor GT2‐like 1 (GTL1) promotes salicylic acid metabolism, and regulates bacterial‐triggered immunity publication-title: PLoS Genetics – volume: 154 start-page: 33 year: 2018 end-page: 43 article-title: Over‐expression of the gene enhances resistance of leaves to high light publication-title: Environmental and Experimental Botany – volume: 80 start-page: 410 year: 2014 end-page: 423 article-title: GFS9/TT9 contributes to intracellular membrane trafficking and flavonoid accumulation in publication-title: The Plant Journal – volume: 21 start-page: 1116 year: 2011 end-page: 1128 article-title: MATH/BTB CRL3 receptors target the homeodomain‐leucine zipper ATHB6 to modulate abscisic acid signaling publication-title: Developmental Cell – volume: 131 start-page: 557 year: 2007 end-page: 571 article-title: Functional specificity among ribosomal proteins regulates gene expression publication-title: Cell – volume: 6 year: 2016 article-title: The wheat GT factor negatively regulates drought tolerance and plant development publication-title: Scientific Reports – volume: 128 start-page: 448 year: 2006 end-page: 455 article-title: Abscisic acid modulates polyamine metabolism under water stress in publication-title: Physiologia Plantarum – volume: 213 start-page: 953 year: 2001 end-page: 966 article-title: The protective functions of carotenoid and flavonoid pigments against excess visible radiation at chilling temperature investigated in and mutants publication-title: Planta – volume: 22 start-page: 143 year: 2010 end-page: 158 article-title: Auxin‐mediated ribosomal biogenesis regulates vacuolar trafficking in publication-title: The Plant Cell – volume: 9 year: 2019 article-title: A Ca /CaM‐regulated transcriptional switch modulates stomatal development in response to water deficit publication-title: Scientific Reports – volume: 48 start-page: 547 year: 2010 end-page: 552 article-title: Putrescine accumulation confers drought tolerance in transgenic plants over‐expressing the homologous gene publication-title: Plant Physiology and Biochemistry – volume: 11 year: 2021 article-title: Structural and biochemical insights into two BAHD acyltransferases ( SHT and SDT) involved in phenolamide biosynthesis publication-title: Frontiers in Plant Science – volume: 55 start-page: 2037 year: 2014 end-page: 2046 article-title: Arabidopsis reduces growth under osmotic stress by decreasing SPEECHLESS protein publication-title: Plant & Cell Physiology – volume: 2 year: 2021 article-title: Multi‐omics analysis of early leaf development in publication-title: Patterns – volume: 232 start-page: 2418 year: 2021 end-page: 2439 article-title: Arabidopsis MADS‐box factor AGL16 is a negative regulator of plant response to salt stress by downregulating salt‐responsive genes publication-title: New Phytologist – volume: 89 start-page: 204 year: 2017 end-page: 220 article-title: PYK10 myrosinase reveals a functional coordination between endoplasmic reticulum bodies and glucosinolates in publication-title: The Plant Journal – volume: 122 start-page: 997 year: 1996 end-page: 1005 article-title: The control of trichome spacing and number in publication-title: Development – volume: 27 start-page: 297 year: 2005 end-page: 303 article-title: Enhanced radical scavenging activity of genetically modified seeds publication-title: Biotechnology Letters – volume: 945 start-page: 31 year: 2016 end-page: 38 article-title: A new multiresponse optimization approach in combination with a D‐optimal experimental design for the determination of biogenic amines in fish by HPLC‐FLD publication-title: Analytica Chimica Acta – volume: 72 start-page: 2334 year: 2021 end-page: 2355 article-title: Phenolamides in plants: An update on their function, regulation, and origin of their biosynthetic enzymes publication-title: Journal of Experimental Botany – volume: 24 start-page: 701 year: 1994 end-page: 713 article-title: The 5′‐region of has ‐acting elements that confer cold‐, drought‐ and ABA‐regulated gene expression publication-title: Plant Molecular Biology – volume: 21 start-page: 2307 year: 2009 end-page: 2322 article-title: The trihelix transcription factor GTL1 regulates ploidy‐dependent cell growth in the trichome publication-title: The Plant Cell – volume: 21 start-page: 3591 year: 2009 end-page: 3609 article-title: N‐MYC DOWNREGULATED‐LIKE1, a positive regulator of auxin transport in a G protein‐mediated pathway publication-title: The Plant Cell – volume: 46 start-page: 447 year: 2001 end-page: 457 article-title: One of two tandem genes homologous to monosaccharide transporters is senescence‐associated publication-title: Plant Molecular Biology – volume: 38 start-page: 353 year: 2010 end-page: 359 article-title: A profusion of upstream open reading frame mechanisms in polyamine‐responsive translational regulation publication-title: Nucleic Acids Research – volume: 586 start-page: 1742 year: 2012 end-page: 1747 article-title: A plant microRNA regulates the adaptation of roots to drought stress publication-title: FEBS Letters – volume: 174 start-page: 1913 year: 2017 end-page: 1930 article-title: Stress‐related gene expression reflects morphophysiological responses to water deficit publication-title: Plant Physiology – volume: 353 start-page: 403 year: 2001 end-page: 409 article-title: Characterization of monocot and dicot plant S‐adenosyl‐l‐methionine decarboxylase gene families including identification in the mRNA of a highly conserved pair of upstream overlapping open reading frames publication-title: Biochemical Journal – volume: 12 year: 2021 article-title: Responsiveness of early response to dehydration six‐like transporter genes to water deficit in leaves publication-title: Frontiers in Plant Science – volume: 6 year: 2011 article-title: Transcriptional regulation of ribosome components are determined by stress according to cellular compartments in publication-title: PLoS ONE – volume: 172 start-page: 1532 year: 2016 end-page: 1547 article-title: A NAC transcription factor represses putrescine biosynthesis and affects drought tolerance publication-title: Plant Physiology – volume: 202 start-page: 132 year: 2014 end-page: 144 article-title: Complexity and robustness of the flavonoid transcriptional regulatory network revealed by comprehensive analyses of MYB‐bHLH‐WDR complexes and their targets in Arabidopsis seed publication-title: New Phytologist – volume: 4 start-page: 44 year: 2009 end-page: 57 article-title: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources publication-title: Nature Protocols – volume: 236 start-page: 331 year: 1993 end-page: 340 article-title: Characterization of the expression of a desiccation‐responsive gene of and analysis of its promoter in transgenic plants publication-title: Molecular and General Genetics – volume: 8 year: 2019 article-title: The changing distribution of anthocyanin in leaves as an adaption to low‐temperature environments publication-title: Plants – volume: 20 start-page: 2238 year: 2008 end-page: 2251 article-title: The NFYA5 transcription factor is regulated transcriptionally and posttranscriptionally to promote drought resistance publication-title: The Plant Cell – volume: 8 year: 2012 article-title: Systems‐based analysis of Arabidopsis leaf growth reveals adaptation to water deficit publication-title: Molecular Systems Biology – volume: 291 start-page: 1545 year: 2016 end-page: 1559 article-title: regulates flavonoids accumulation and abiotic stress tolerance in transgenic publication-title: Molecular Genetics and Genomics – volume: 138 start-page: 734 issue: 2 year: 2005 end-page: 743 article-title: Genome‐wide analysis of gene expression profiles associated with cell cycle transitions in growing organs of Arabidopsis publication-title: Plant Physiology – volume: 295 start-page: 8064 year: 2020 end-page: 8077 article-title: Raffinose synthase enhances drought tolerance through raffinose synthesis or galactinol hydrolysis in maize and plants publication-title: Journal of Biological Chemistry – volume: 313 start-page: 369 year: 2004 end-page: 375 article-title: stress‐inducible gene for arginine decarboxylase is required for accumulation of putrescine in salt tolerance publication-title: Biochemical and Biophysical Research Communications – volume: 4 start-page: 210 year: 1999 end-page: 214 article-title: Regulatory mechanism of plant gene transcription by GT‐elements and GT‐factors publication-title: Trends in Plant Science – volume: 127 start-page: 481 year: 2014 end-page: 489 article-title: Leaf developmental stage modulates metabolite accumulation and photosynthesis contributing to acclimation of to water deficit publication-title: Journal of Plant Research – volume: 186 year: 2021 article-title: Meta‐analysis reveals key features of the improved drought tolerance of plants overexpressing NAC transcription factors publication-title: Environmental and Experimental Botany – volume: 45 start-page: 1694 year: 2004 end-page: 1703 article-title: Comparative studies on the aldehyde oxidase ( ) gene family revealed a major role of in ABA biosynthesis in seeds publication-title: Plant and Cell Physiology – volume: 215 start-page: 407 year: 1999 end-page: 419 article-title: Cell cycling and cell enlargement in developing leaves of publication-title: Developmental Biology – volume: 18 year: 2017 article-title: Epistatic and allelic interactions control expression of ribosomal RNA gene clusters in publication-title: Genome Biology – volume: 58 start-page: 1364 year: 2017 end-page: 1377 article-title: ROS induces anthocyanin production via late biosynthetic genes and anthocyanin deficiency confers the hypersensitivity to ROS‐generating stresses in publication-title: Plant and Cell Physiology – volume: 131 start-page: 707 year: 2003 end-page: 715 article-title: Arabidopsis is a negative regulator of several pathways regulating flavonoid biosynthesis genes publication-title: Plant Physiology – volume: 26 year: 2021 article-title: Leaf age‐dependent photosystem II photochemistry and oxidative stress responses to drought stress in are modulated by flavonoid accumulation publication-title: Molecules – volume: 117 start-page: 32223 year: 2020 end-page: 32225 article-title: Glucose‐TOR signaling regulates PIN2 stability to orchestrate auxin gradient and cell expansion in root publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 155 start-page: 176 year: 1982 end-page: 182 article-title: Chalcone synthesis and hydroxylation of flavonoids in 3′‐position with enzyme preparations from flowers of L. (carnation) publication-title: Planta – volume: 162 start-page: 1030 year: 2013 end-page: 1041 article-title: CYCLIN H;1 regulates drought stress responses and blue light‐induced stomatal opening by inhibiting reactive oxygen species accumulation in Arabidopsis publication-title: Plant Physiology – volume: 20 year: 2019 article-title: Metabolomics studies on cytoplasmic male sterility during flower bud development in soybean publication-title: International Journal of Molecular Sciences – volume: 147 start-page: 1984 year: 2008 end-page: 1993 article-title: Drought induction of Arabidopsis 9‐cis‐epoxycarotenoid dioxygenase occurs in vascular parenchyma cells publication-title: Plant Physiology – volume: 97 start-page: 12908 year: 2000 end-page: 12913 article-title: The aldehyde oxidase 3 ( ) gene product catalyzes the final step in abscisic acid biosynthesis in leaves publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 27 start-page: 551 year: 2001 end-page: 560 article-title: polyamine biosynthesis: Absence of ornithine decarboxylase and the mechanism of arginine decarboxylase activity publication-title: The Plant Journal – volume: 31 start-page: 4488 year: 2012 end-page: 4501 article-title: Transcriptional repression of the APC/C activator CCS52A1 promotes active termination of cell growth publication-title: EMBO Journal – volume: 38 start-page: 142 year: 2017 end-page: 147 article-title: How does a plant orchestrate defense in time and space? Using glucosinolates in Arabidopsis as case study publication-title: Current Opinion in Plant Biology – volume: 5 start-page: 387 year: 2012 end-page: 400 article-title: TT19 functions as a carrier to transport anthocyanin from the cytosol to tonoplasts publication-title: Molecular Plant – volume: 28 start-page: 27 issue: 1 year: 2000 end-page: 30 article-title: KEGG: Kyoto Encyclopedia of Genes and Genomes publication-title: Nucleic Acids Research – volume: 8 year: 2019 article-title: Fruit architecture in polyamine‐rich tomato germplasm is determined via a medley of cell cycle, cell expansion, and fruit shape genes publication-title: Plants – volume: 11 year: 2020 article-title: Systematic review of plant ribosome heterogeneity and specialization publication-title: Frontiers in Plant Science – volume: 21 start-page: 3029 year: 2002 end-page: 3038 article-title: Homeodomain protein ATHB6 is a target of the protein phosphatase ABI1 and regulates hormone responses in publication-title: The EMBO Journal – volume: 66 start-page: 5113 year: 2015 end-page: 5122 article-title: The co‐chaperone p23 controls root development through the modulation of auxin distribution in the root meristem publication-title: Journal of Experimental Botany – volume: 50 start-page: W216 year: 2022 end-page: W221 article-title: DAVID: A web server for functional enrichment analysis and functional annotation of gene lists (2021 update) publication-title: Nucleic Acids Research – volume: 237 year: 2023 article-title: Yellowhorn Xso‐miR5149‐ enhances water‐use efficiency and drought tolerance by regulating leaf morphology and stomatal density publication-title: International Journal of Biological Macromolecules – volume: 105 start-page: 1380 year: 2008 end-page: 1385 article-title: Mapping methyl jasmonate‐mediated transcriptional reprogramming of metabolism and cell cycle progression in cultured cells publication-title: Proceedings of the National Academy of Sciences of the United States of America – volume: 43 start-page: 68 year: 2005 end-page: 78 article-title: The transcription factor AtGRF5 and the transcription coactivator AN3 regulate cell proliferation in leaf primordia of publication-title: The Plant Journal – volume: 29 start-page: 1425 year: 2017 end-page: 1439 article-title: Arabidopsis WRKY46, WRKY54, and WRKY70 transcription factors are involved in brassinosteroid‐regulated plant growth and drought responses publication-title: The Plant Cell – volume: 646 start-page: 64 year: 2018 end-page: 73 article-title: Identification of the AQP members involved in abiotic stress responses from publication-title: Gene – volume: 17 start-page: 616 year: 2005 end-page: 627 article-title: Characterization of an Arabidopsis enzyme family that conjugates amino acids to indole‐3‐acetic acid publication-title: The Plant Cell – volume: 19 year: 2019 article-title: Nitric oxide‐ induced differentially regulates plant defense and drought tolerance in publication-title: BMC Plant Biology – volume: 13 start-page: 231 year: 1998 end-page: 239 article-title: Arginine decarboxylase (polyamine synthesis) mutants of exhibit altered root growth publication-title: The Plant Journal – volume: 72 start-page: 1370 year: 2021 end-page: 1383 article-title: Pu‐miR172d regulates stomatal density and water‐use efficiency via targeting in poplar publication-title: Journal of Experimental Botany – volume: 174 start-page: 1216 year: 2017 end-page: 1225 article-title: Heat shock protein HSP101 affects the release of ribosomal protein mRNAs for recovery after heat shock publication-title: Plant Physiology – volume: 154 start-page: 1254 year: 2010 end-page: 1271 article-title: Molecular and physiological analysis of drought stress in Arabidopsis reveals early responses leading to acclimation in plant growth publication-title: Plant Physiology – volume: 122 start-page: 1589 year: 1996 end-page: 1600 article-title: Two independent and polarized processes of cell elongation regulate leaf blade expansion in (L.) Heynh publication-title: Development – volume: 716 year: 2019 article-title: Sequencing of anthocyanin synthesis‐related enzyme genes and screening of reference genes in leaves of four dominant subtropical forest tree species publication-title: Gene – volume: 17 start-page: 2369 year: 2005 end-page: 2383 article-title: RAC GTPases in tobacco and Arabidopsis mediate auxin‐induced formation of proteolytically active nuclear protein bodies that contain AUX/IAA proteins publication-title: The Plant Cell – volume: 2 year: 2009 article-title: The plant NADPH oxidase RBOHD mediates rapid systemic signaling in response to diverse stimuli publication-title: Science Signaling – ident: e_1_2_9_73_1 doi: 10.1371/journal.pone.0028070 – ident: e_1_2_9_92_1 doi: 10.1105/tpc.112.101022 – ident: e_1_2_9_111_1 doi: 10.1093/nar/28.1.27 – ident: e_1_2_9_22_1 doi: 10.1042/bj3530403 – ident: e_1_2_9_21_1 doi: 10.1016/j.envexpbot.2021.104449 – ident: e_1_2_9_8_1 doi: 10.1007/BF00029852 – ident: e_1_2_9_14_1 doi: 10.1093/plphys/kiab115 – ident: e_1_2_9_30_1 doi: 10.1093/emboj/cdf316 – ident: e_1_2_9_43_1 doi: 10.1016/j.devcel.2011.10.018 – ident: e_1_2_9_59_1 doi: 10.1073/pnas.0711203105 – ident: e_1_2_9_54_1 doi: 10.1105/tpc.109.065557 – ident: e_1_2_9_57_1 doi: 10.1111/tpj.13377 – ident: e_1_2_9_32_1 doi: 10.1038/nprot.2008.211 – ident: e_1_2_9_109_1 doi: 10.1104/pp.113.215798 – ident: e_1_2_9_69_1 doi: 10.1242/dev.159707 – ident: e_1_2_9_110_1 doi: 10.1104/pp.104.053884 – ident: e_1_2_9_96_1 doi: 10.1093/pcp/pcx073 – ident: e_1_2_9_31_1 doi: 10.1111/j.1365-313X.2005.02429.x – ident: e_1_2_9_41_1 doi: 10.1093/pcp/pcu159 – ident: e_1_2_9_98_1 doi: 10.1007/BF00277130 – ident: e_1_2_9_79_1 doi: 10.1007/s00299-010-0881-1 – ident: e_1_2_9_84_1 doi: 10.1371/journal.pgen.1007708 – ident: e_1_2_9_28_1 doi: 10.1007/s004250100572 – ident: e_1_2_9_42_1 doi: 10.1242/dev.122.3.997 – ident: e_1_2_9_20_1 doi: 10.1016/j.gene.2017.12.048 – ident: e_1_2_9_86_1 doi: 10.3389/fpls.2020.610118 – ident: e_1_2_9_47_1 doi: 10.1105/tpc.108.059444 – ident: e_1_2_9_45_1 doi: 10.1016/j.ijbiomac.2023.124060 – ident: e_1_2_9_65_1 doi: 10.1104/pp.17.00318 – ident: e_1_2_9_95_1 doi: 10.1111/nph.12620 – ident: e_1_2_9_94_1 doi: 10.3389/fpls.2019.00228 – ident: e_1_2_9_87_1 doi: 10.1007/s00438-016-1203-2 – ident: e_1_2_9_51_1 doi: 10.3389/fpls.2020.00948 – ident: e_1_2_9_85_1 doi: 10.1104/pp.012377 – ident: e_1_2_9_50_1 doi: 10.1111/ppl.13268 – ident: e_1_2_9_9_1 doi: 10.1105/tpc.109.068387 – ident: e_1_2_9_52_1 doi: 10.1104/pp.17.00269 – ident: e_1_2_9_107_1 doi: 10.1016/S1360-1385(99)01418-1 – ident: e_1_2_9_6_1 doi: 10.3390/plants8100387 – ident: e_1_2_9_101_1 doi: 10.1016/j.gene.2019.144024 – ident: e_1_2_9_48_1 doi: 10.1105/tpc.10.8.1391 – ident: e_1_2_9_91_1 doi: 10.1371/journal.pone.0032925 – ident: e_1_2_9_61_1 doi: 10.1023/A:1010639015959 – ident: e_1_2_9_68_1 doi: 10.1093/nar/gkac194 – ident: e_1_2_9_7_1 doi: 10.1038/msb.2012.39 – ident: e_1_2_9_33_1 doi: 10.1111/tpj.12637 – ident: e_1_2_9_71_1 doi: 10.1104/pp.109.148965 – ident: e_1_2_9_76_1 doi: 10.1007/BF00392549 – ident: e_1_2_9_53_1 doi: 10.1126/scisignal.2000448 – ident: e_1_2_9_97_1 doi: 10.1105/tpc.108.059345 – ident: e_1_2_9_64_1 doi: 10.1093/jxb/eraa582 – ident: e_1_2_9_63_1 doi: 10.1105/tpc.109.068320 – ident: e_1_2_9_89_1 doi: 10.1046/j.1365-313x.2000.00899.x – ident: e_1_2_9_102_1 doi: 10.1073/pnas.2015400117 – ident: e_1_2_9_15_1 doi: 10.1093/jxb/erv330 – ident: e_1_2_9_83_1 doi: 10.1016/j.bbrc.2003.11.119 – ident: e_1_2_9_55_1 doi: 10.1021/jf026179 – ident: e_1_2_9_99_1 doi: 10.1038/s41598-019-47529-2 – ident: e_1_2_9_56_1 doi: 10.1111/tpj.12388 – ident: e_1_2_9_93_1 doi: 10.1104/pp.16.01096 – ident: e_1_2_9_12_1 doi: 10.1016/j.febslet.2012.05.013 – ident: e_1_2_9_23_1 doi: 10.1111/j.1365-313X.2009.03886.x – ident: e_1_2_9_88_1 doi: 10.1038/386451a0 – ident: e_1_2_9_104_1 doi: 10.1016/j.envexpbot.2017.12.011 – ident: e_1_2_9_108_1 doi: 10.1038/srep30264 – ident: e_1_2_9_39_1 doi: 10.1016/j.cell.2007.08.037 – ident: e_1_2_9_37_1 doi: 10.1104/pp.111.182683 – ident: e_1_2_9_58_1 doi: 10.1016/j.patter.2021.100235 – ident: e_1_2_9_24_1 doi: 10.1105/tpc.12.11.2075 – ident: e_1_2_9_70_1 doi: 10.1007/s11103-019-00822-0 – ident: e_1_2_9_100_1 doi: 10.1105/tpc.110.078691 – ident: e_1_2_9_35_1 doi: 10.1086/382794 – ident: e_1_2_9_4_1 doi: 10.1016/j.plaphy.2010.02.002 – ident: e_1_2_9_74_1 doi: 10.3390/molecules26144157 – ident: e_1_2_9_103_1 doi: 10.3390/plants8110456 – ident: e_1_2_9_49_1 doi: 10.1093/jxb/eraa493 – ident: e_1_2_9_3_1 doi: 10.1111/j.1399-3054.2006.00780.x – ident: e_1_2_9_75_1 doi: 10.1007/s10265-014-0635-1 – ident: e_1_2_9_44_1 doi: 10.1093/bioinformatics/btv193 – ident: e_1_2_9_40_1 doi: 10.1073/pnas.1510140112 – ident: e_1_2_9_27_1 doi: 10.1104/pp.110.161752 – ident: e_1_2_9_90_1 doi: 10.1046/j.1365-313X.1998.00027.x – ident: e_1_2_9_29_1 doi: 10.1016/j.aca.2016.10.001 – ident: e_1_2_9_16_1 doi: 10.3390/ijms20122869 – ident: e_1_2_9_38_1 doi: 10.1104/pp.103.036970 – ident: e_1_2_9_72_1 doi: 10.3389/fpls.2021.708876 – ident: e_1_2_9_78_1 doi: 10.1093/mp/ssr110 – ident: e_1_2_9_77_1 doi: 10.1105/tpc.104.026690 – ident: e_1_2_9_10_1 doi: 10.1038/emboj.2012.294 – ident: e_1_2_9_82_1 doi: 10.1242/dev.122.5.1589 – ident: e_1_2_9_34_1 doi: 10.1093/nar/gkp1037 – ident: e_1_2_9_17_1 doi: 10.1105/tpc.109.071779 – ident: e_1_2_9_67_1 doi: 10.1073/pnas.220426197 – ident: e_1_2_9_18_1 doi: 10.1006/dbio.1999.9443 – ident: e_1_2_9_19_1 doi: 10.1104/pp.108.116632 – ident: e_1_2_9_36_1 doi: 10.1186/s12870-019-2210-3 – ident: e_1_2_9_106_1 doi: 10.1038/srep27042 – ident: e_1_2_9_25_1 doi: 10.1186/s12870-017-1062-y – ident: e_1_2_9_81_1 doi: 10.1007/s10529-005-0683-7 – ident: e_1_2_9_5_1 doi: 10.1016/j.devcel.2011.11.011 – ident: e_1_2_9_13_1 doi: 10.1105/tpc.17.00364 – ident: e_1_2_9_2_1 doi: 10.4161/psb.6.2.14317 – ident: e_1_2_9_60_1 doi: 10.1093/nar/29.9.e45 – ident: e_1_2_9_80_1 doi: 10.1105/tpc.105.032987 – ident: e_1_2_9_66_1 doi: 10.1093/pcp/pch198 – ident: e_1_2_9_46_1 doi: 10.1074/jbc.RA120.013948 – ident: e_1_2_9_62_1 doi: 10.1186/s13059-017-1209-z – ident: e_1_2_9_11_1 doi: 10.1016/j.pbi.2017.04.009 – ident: e_1_2_9_26_1 doi: 10.1046/j.1365-313X.2001.01100.x – ident: e_1_2_9_105_1 doi: 10.1111/nph.17760 |
SSID | ssj0002176085 |
Score | 2.2583988 |
Snippet | The transcription factor GT2‐LIKE 1 (GTL1) has been implicated in orchestrating a transcriptional network of diverse physiological, biochemical, and... The transcription factor GT2-LIKE 1 (GTL1) has been implicated in orchestrating a transcriptional network of diverse physiological, biochemical, and... Abstract The transcription factor GT2‐LIKE 1 (GTL1) has been implicated in orchestrating a transcriptional network of diverse physiological, biochemical, and... |
SourceID | doaj proquest pubmed crossref wiley |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | e594 |
SubjectTerms | Anthocyanins Biosynthesis Cell cycle Cell division Comparative analysis Developmental stages Down-regulation Drought Drought resistance drought tolerance Flavonoids Gene expression gene expression regulation Gene silencing Genetic engineering Genotypes Kinases leaf development Leaves mutants Plant growth polyamine Polyamines Reactive oxygen species RNA‐seq sequence analysis Stomata transcription (genetics) transcription factor transcription factors transcriptome Transcriptomes transcriptomics Water water stress |
SummonAdditionalLinks | – databaseName: DOAJ Open Access Full Text dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlp15KS19u06BA6c2NLcm2dEzSJqGE0sMWchN6jOhCsJe1Q8ml9Cf0N-aXZCStlwT6uPRk7NFBmhnNfMKjbwh521QYGRGGl1B1UAplfWkQdpdgMJ94dCIPqdric3v2VXy6aC7utPqKNWGZHjgr7kDUOY0ZA0EwZqxtvRPgrOReBu5i9K1UdecwFWMwAu0WwcTMNluxg9Wl5-8bJe7ln0TT_ztseR-qplxz8pg82oBEepgn94Q8gP4p-ZHSyrzJUbyei1h7OgR6ujivabwRtqbfET-ub37-8hDpISaa74PQVaq8g5GaSBjgrk2_7KldDuM1vsO4HOk0UOi_RT-gPrXvmfDTJcTeG_CMLE4-Lo7Pyk33hNIJyUSJ5wBl69rXbTCMeyZMvD7uQwM-KGkhoP66SJjWicbJ0Ak8-0BnVeugZjbw52SnH3p4SSg0QTkjZRMExlVbGWe6ChgCp9io3LUF2Z9VqleZI0NnNmSmo9o1qr0gR1HXW3lktU4f0NZ6Y2v9L1sXZHe2lN5stVGjp_FEYSNxHlsxbpL458P0MFzhmKpFaITgl_9lDEqbyNtdF-RF9oLtbLnslBJ1V5B3yS3-uEz95fwDx-er_7Hc1-QhQwiVyyt3yc60voI3CIEmu5e8_RZDpwfH priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1fa9UwFA_z7sUXUfxXnRJBfKtrk7RNH0Scbg4ZlyFX2FvInxN3YbTXtkP2In4EP6OfxJO0vTLQPZUmoaTJOSe_JOf8DiEviwwtI8LwFLIKUlEbl2qE3SloXE8cCpGD6G2xLI-_iE9nxdkOWc6xMMGtcraJ0VC71oYz8n38II9MJfLt5lsaskaF29U5hYaeUiu4N5Fi7BbZRZNcZAuye3C4PP28PXVBAF4iyJhZaDO2v7lw_HVRi2vrUqTv_xfmvA5h4xp0dJfcmcAjfTfO9j2yA8198iMuN7PyY3U3O7c2tPX04-okpyFSrKPfEVd2v3_-chBoIwY6xonQTfTIg57qQCRgr3SzbqhZt_0VvkO_7unQUmjOg3xQF9P6DFh0ASEnBzwgq6PD1fvjdMqqkFohmUhxf1CbPHd56TXjjgkdwsqdL8D5Whrw3MkqEKlVorDSVwL3RFCZurSQM-P5Q7Jo2gYeEwqFr62WsvAC7a3JtNVVBgwBVUhgbsuEvJiHVG1G7gw1siQzFYZd4bAn5CCM9bY-sF3Hgrb7qiblUSIfoYzW4AVj2pjSWQHWSOyr5zYhe_NMqUkFe_VXYLAf22pUnnAjohtoL7FNViJkQlDMb2iDtUXg884T8miUgm1vuazqWuRVQl5Fsfjvb6rTkw8cn09u7ulTcpshaBodKvfIYugu4RmCnsE8nyT5D-kuBNI priority: 102 providerName: ProQuest |
Title | Transcriptional repression of GTL1 under water‐deficit stress promotes anthocyanin biosynthesis to enhance drought tolerance |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpld3.594 https://www.ncbi.nlm.nih.gov/pubmed/38799417 https://www.proquest.com/docview/3163096588 https://www.proquest.com/docview/3060751153 https://www.proquest.com/docview/3153551741 https://doaj.org/article/41000782aaef422abb6dc4ecb83d8f3c |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bi9UwEA66--KLKN6q6yGC-Fa3zaVpH13ddZFlOcgR9q3kMtEDS3tou8i-iD_B3-gvcZJeZEHFp9IkLWkyk_mSznxDyEuZ4cqIMDyFTEEqKuNSjbA7BY32xKEQOYjeFufF6Sfx4UJeTF6VIRZm5IdYDtyCZsT1Oii4Nv3hb9LQ3aXjr2UlbpN9fDkP0s3EejlfQahdZDEjJxNKpkJIOXPPZuxwfviGNYqk_X9CmjeBa7Q8J_fI3Qky0jfjHN8nt6B5QL5FIzOrPFZ3s0trQ1tP32_Ochriwzr6FdFk9_P7DweBLGKgY3QI3UU_POipDvQB9lo324aabdtf4z30254OLYXmS5AK6mIynwGLLiFk4oCHZHNyvHl7mk65FFIrSiZS3BVUJs9dXnjNuGNCh2By5yU4X5UGPHelCvRpSkhbeiVwJwTKVIWFnBnPH5G9pm3gCaEgfWV1WUovcJU1mbZaZcAQRoW05bZIyIt5SOvdyJhRj9zIrA7DXuOwJ-QojPVSHziuY0Hbfa4nlalFPgIYrcELxrQxhbMCrCmxr57bhBzMM1VPitfXKHc8EtqU2I-lGlUm_AfRDbRX2CYrECghFOb_aIO1MrB45wl5PErB0lteqqoSuUrIqygWf_3Men32juP16f82fEbuMARNo0PlAdkbuit4jqBnMKso3Suyf3R8vv64ikcHvwA1FgIp |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELbK9gAXBOIvUMBIwC00cZy_Q4UobdnSZVWhRerN8s-4rFQlyyZVtRfEI_BCvAxPwthJFlWC3nqKEluWMx6PP9sz3xDyMo3QMiIMDyHKIeSlMqFE2B2CxPXEoBIZ8N4W02z8hX88SU82yK8hFsa5VQ420RtqU2t3Rr6NDSaeqaR4u_gWuqxR7nZ1SKEh-9QKZsdTjPWBHUewusAtXLNzuIfj_Yqxg_3Z-3HYZxkINS8YDxEvlyqOTZxZyRLDuHRh1samYGxZKLCJKXJHLJbzVBc257hHgFyVmYaYKZtgszfIJnfnJyOyubs_Pf68PuRBvJ8hphlIbyO2vTgzyZu05JeWQZ8t4F8Q9zJi9kvewR1yu8eq9F2nXHfJBlT3yHe_ug22BouXgy9tRWtLP8wmMXWBaUt6gTB2-fvHTwOOpaKlXVgKXXgHQGiodLwFeiWreUXVvG5W-A7NvKFtTaH66tSRGp9FqMVPZ-BSgMB9MrsO8T4go6qu4BGhkNpSy6JILUfzriKpZR4BQ_zm8qXrLCAvBpGKRUfVITpSZiac2AWKPSC7Ttbrckeu7T_Uy1PRz1XB4w45SQmWMyaVyozmoFWBfbWJDsjWMFKin_GN-Kuf2I91Mc5VdwEjK6jPsU6UIUJDDJ5cUQdLU0cfHgfkYacF694mRV6WPM4D8tqrxX9_UxxP9hJ8Pr66p8_JzfHs00RMDqdHT8gthnit8-XcIqN2eQ5PEW-16lmv1ZSIa55HfwC510Bx |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9RAFB5qC-KLVLxFq46gvsVNJpPbQxHrdm3tsiyyQt-GuZzRhZKsmy1lX4o_wb_l3_CXeGaSrBS0b30KyYQwOTmXbybnfIeQV2mEnhFheAhRDiEvlQklwu4QJMYTg0pkwGdbTLKjL_zTaXq6RX71tTAurbL3id5Rm1q7PfIBPjDxTCXFwHZpEdPh6N3ie-g6SLk_rX07Ddm1WTD7nm6sK_I4gfUFLuea_eMhfvvXjI0OZx-Owq7jQKh5wXiI2LlUcWzizEqWGMalK7k2NgVjy0KBTUyRO5KxnKe6sDnH9QLkqsw0xEzZBB97i-zkGPRxHbhzcDiZft5s-CD2zxDf9AS4ERsszkzyNi35lZDoOwf8C-5eRc8-_I12yd0Ot9L3raLdI1tQ3SeXPtL1fgeHl31ebUVrSz_OxjF1RWpLeoGQdvn7x08DjrFiRdsSFbrwyYDQUOk4DPRaVvOKqnndrPEcmnlDVzWF6ptTTWp8R6EVXjoD1w4EHpDZTYj3Idmu6goeEwqpLbUsitRydPUqklrmETDEcq53us4C8rIXqVi0tB2iJWhmwoldoNgDcuBkvRl3RNv-Qr38Kjq7FTxuUZSUYDljUqnMaA5aFThXm-iA7PVfSnTW34i_uorz2Ayj3bqfMbKC-hzviTJEa4jHk2vuwdHUUYnHAXnUasFmtkmRlyWP84C88Wrx39cU0_EwweOT62f6gtxGexLj48nJU3KHIXRr0zr3yPZqeQ7PEHqt1PNOqSkRN2xGfwCU8ES1 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transcriptional+repression+of+GTL1+under+water%E2%80%90deficit+stress+promotes+anthocyanin+biosynthesis+to+enhance+drought+tolerance&rft.jtitle=Plant+direct&rft.au=Mano%2C+Noel+Anthony&rft.au=Shaikh%2C+Mearaj+A.&rft.au=Widhalm%2C+Joshua+R.&rft.au=Yoo%2C+Chan+Yul&rft.date=2024-05-01&rft.issn=2475-4455&rft.eissn=2475-4455&rft.volume=8&rft.issue=5&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fpld3.594&rft.externalDBID=10.1002%252Fpld3.594&rft.externalDocID=PLD3594 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2475-4455&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2475-4455&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2475-4455&client=summon |