3C 279 IN OUTBURST IN 2015 JUNE: A BROADBAND SED STUDY BASED ON THE INTEGRAL DETECTION
ABSTRACT Blazars radiate from radio through gamma-ray frequencies and thereby make ideal targets for multifrequency studies. Such studies allow the properties of the emitting jet to be constrained. 3C 279 is among the most notable blazars and therefore subject to extensive multifrequency campaigns....
Saved in:
Published in | The Astrophysical journal Vol. 832; no. 1; pp. 17 - 22 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Philadelphia
The American Astronomical Society
20.11.2016
IOP Publishing |
Subjects | |
Online Access | Get full text |
ISSN | 0004-637X 1538-4357 |
DOI | 10.3847/0004-637X/832/1/17 |
Cover
Abstract | ABSTRACT Blazars radiate from radio through gamma-ray frequencies and thereby make ideal targets for multifrequency studies. Such studies allow the properties of the emitting jet to be constrained. 3C 279 is among the most notable blazars and therefore subject to extensive multifrequency campaigns. We report the results of a campaign ranging from near-IR to gamma-ray energies that targeted an outburst of 3C 279 in 2015 June. The campaign pivots around the detection in only 50 ks by INTEGRAL, whose IBIS/ISGRI data pin down the high-energy component of the spectral energy distribution (SED) between Swift-XRT data and Fermi-LAT data. The overall SED from near-IR to gamma rays can be well represented by either a leptonic or a lepto-hadronic radiation transfer model. Even though the data are equally well represented by the two models, their inferred parameters challenge the physical conditions in the jet. In fact, the leptonic model requires parameters with a magnetic field far below equipartition with the relativistic particle energy density. In contrast, equipartition may be achieved with the lepto-hadronic model, although this implies an extreme total jet power close to the Eddington luminosity. |
---|---|
AbstractList | ABSTRACT Blazars radiate from radio through gamma-ray frequencies and thereby make ideal targets for multifrequency studies. Such studies allow the properties of the emitting jet to be constrained. 3C 279 is among the most notable blazars and therefore subject to extensive multifrequency campaigns. We report the results of a campaign ranging from near-IR to gamma-ray energies that targeted an outburst of 3C 279 in 2015 June. The campaign pivots around the detection in only 50 ks by INTEGRAL, whose IBIS/ISGRI data pin down the high-energy component of the spectral energy distribution (SED) between Swift-XRT data and Fermi-LAT data. The overall SED from near-IR to gamma rays can be well represented by either a leptonic or a lepto-hadronic radiation transfer model. Even though the data are equally well represented by the two models, their inferred parameters challenge the physical conditions in the jet. In fact, the leptonic model requires parameters with a magnetic field far below equipartition with the relativistic particle energy density. In contrast, equipartition may be achieved with the lepto-hadronic model, although this implies an extreme total jet power close to the Eddington luminosity. Blazars radiate from radio through gamma-ray frequencies and thereby make ideal targets for multifrequency studies. Such studies allow the properties of the emitting jet to be constrained. 3C 279 is among the most notable blazars and therefore subject to extensive multifrequency campaigns. We report the results of a campaign ranging from near-IR to gamma-ray energies that targeted an outburst of 3C 279 in 2015 June. The campaign pivots around the detection in only 50 ks by INTEGRAL , whose IBIS/ISGRI data pin down the high-energy component of the spectral energy distribution (SED) between Swift -XRT data and Fermi -LAT data. The overall SED from near-IR to gamma rays can be well represented by either a leptonic or a lepto-hadronic radiation transfer model. Even though the data are equally well represented by the two models, their inferred parameters challenge the physical conditions in the jet. In fact, the leptonic model requires parameters with a magnetic field far below equipartition with the relativistic particle energy density. In contrast, equipartition may be achieved with the lepto-hadronic model, although this implies an extreme total jet power close to the Eddington luminosity. Blazars radiate from radio through gamma-ray frequencies and thereby make ideal targets for multifrequency studies. Such studies allow the properties of the emitting jet to be constrained. 3C 279 is among the most notable blazars and therefore subject to extensive multifrequency campaigns. We report the results of a campaign ranging from near-IR to gamma-ray energies that targeted an outburst of 3C 279 in 2015 June. The campaign pivots around the detection in only 50 ks by INTEGRAL, whose IBIS/ISGRI data pin down the high-energy component of the spectral energy distribution (SED) between Swift-XRT data and Fermi-LAT data. The overall SED from near-IR to gamma rays can be well represented by either a leptonic or a lepto-hadronic radiation transfer model. Even though the data are equally well represented by the two models, their inferred parameters challenge the physical conditions in the jet. In fact, the leptonic model requires parameters with a magnetic field far below equipartition with the relativistic particle energy density. In contrast, equipartition may be achieved with the lepto-hadronic model, although this implies an extreme total jet power close to the Eddington luminosity. Blazars radiate from radio through gamma-ray frequencies and thereby make ideal targets for multifrequency studies. Such studies allow the properties of the emitting jet to be constrained. 3C 279 is among the most notable blazars and therefore subject to extensive multifrequency campaigns. We report the results of a campaign ranging from near-IR to gamma-ray energies that targeted an outburst of 3C 279 in 2015 June. The campaign pivots around the detection in only 50 ks by INTEGRAL , whose IBIS/ISGRI data pin down the high-energy component of the spectral energy distribution (SED) between Swift -XRT data and Fermi -LAT data. The overall SED from near-IR to gamma rays can be well represented by either a leptonic or a lepto-hadronic radiation transfer model. Even though the data are equally well represented by the two models, their inferred parameters challenge the physical conditions in the jet. In fact, the leptonic model requires parameters with a magnetic field far below equipartition with the relativistic particle energy density. In contrast, equipartition may be achieved with the lepto-hadronic model, although this implies an extreme total jet power close to the Eddington luminosity. |
Author | Böttcher, Markus Bottacini, Eugenio Pian, Elena Collmar, Werner |
Author_xml | – sequence: 1 givenname: Eugenio surname: Bottacini fullname: Bottacini, Eugenio email: eugenio.bottacini@stanford.edu organization: Dipartimento di Fisica e Astronomia "G. Galilei", Università di Padova, I-35131 Padova, Italy – sequence: 2 givenname: Markus surname: Böttcher fullname: Böttcher, Markus organization: North-West University Centre for Space Research, Potchefstroom 2531, South Africa – sequence: 3 givenname: Elena orcidid: 0000-0001-8646-4858 surname: Pian fullname: Pian, Elena organization: INFN, Sezione di Pisa , Largo Pontecorvo 3, I-56127 Pisa, Italy – sequence: 4 givenname: Werner surname: Collmar fullname: Collmar, Werner organization: Max-Planck-Institut für extraterrestrische Physik , Giessenbach, D-85748 Garching, Germany |
BackLink | https://www.osti.gov/biblio/22661027$$D View this record in Osti.gov |
BookMark | eNp9kEtLw0AUhQdRsD7-gKsB3aa580om7pIm2kpJoCaiqyGvwRRNYpIu_PcmVCqIuLjce-E7h8M5Q8d1U5cIXRGYM8ltEwC4YTH72ZSMmsQk9hGaEcGkwZmwj9HsAJyis77fTi91nBl6YgtMbQevQhwlsZdsHuPppkAEfkjC4Ba72NtEru-5oY8fg3HixH_BnjvdUYjjZTAK4uB-466xH8TBIl5F4QU60elbX15-73OU3AXxYmmso_vVwl0bOZdkMHRmFUBKqTloDawsBGNcZzmRQto2zYClgoDFWQYcuC6goBlzRJamwLklJDtH13vfph8q1efVUOaveVPXZT4oSi2LALV_qLZrPnZlP6hts-vqMZiibLQBAQ4dKbqn8q7p-67Uqu2q97T7VATU1LKaWlNTiWpsWRFFJmv5SzRmSIeqqYcurd7-l97spVXT_gRK2-0BUW2hR2z-B_aP7xeMw5LG |
CitedBy_id | crossref_primary_10_1051_0004_6361_201935704 crossref_primary_10_1088_1475_7516_2022_07_036 crossref_primary_10_3847_1538_4365_ac365d crossref_primary_10_1093_mnrasl_slab118 crossref_primary_10_1093_mnras_stad2131 crossref_primary_10_1016_j_newar_2020_101545 crossref_primary_10_3847_1538_4357_ad9603 crossref_primary_10_1016_j_astropartphys_2022_102687 crossref_primary_10_1093_mnras_stab975 crossref_primary_10_1093_mnras_sty1497 crossref_primary_10_1093_mnras_staa1893 crossref_primary_10_1093_mnras_staa2013 crossref_primary_10_3847_1538_4357_abb3c1 crossref_primary_10_1093_mnras_stab2688 crossref_primary_10_3389_fspas_2018_00031 crossref_primary_10_1051_0004_6361_202142140 crossref_primary_10_1051_0004_6361_202037850 crossref_primary_10_1093_mnrasl_slw252 crossref_primary_10_3847_1538_4357_abbb91 |
Cites_doi | 10.1007/s11214-005-5095-4 10.1111/j.1365-2966.2007.12563.x 10.1088/0004-637X/768/1/54 10.1088/0004-637X/697/2/1071 10.1086/320970 10.1088/0004-637X/745/1/63 10.1016/j.nima.2008.01.023 10.1086/192291 10.1051/0004-6361:20031367 10.1086/508056 10.3847/2041-8205/824/2/L20 10.3847/0004-637X/821/2/102 10.1086/342649 10.1093/mnras/stw078 10.1088/0004-637X/802/2/133 10.1086/521382 10.1051/0004-6361/201014823 10.1051/0004-6361:20041864 10.1088/0004-637X/760/1/69 10.3847/0004-637X/817/1/61 10.1051/0004-6361:20041404 10.1088/0004-637X/727/1/21 10.1086/307548 10.1126/science.1157087 10.1086/186263 10.1086/344155 10.1051/0004-6361/201527725 10.1088/0004-637X/756/1/13 10.1088/2041-8205/719/2/L162 10.1088/2041-8205/808/2/L48 10.1086/167900 10.1088/0004-637X/703/1/1168 10.1088/0004-637X/807/1/79 10.1051/0004-6361:200810937 10.1093/mnrasl/slv039 10.1051/0004-6361:20031172 10.1088/0067-0049/201/2/34 10.1051/0004-6361:20031224 10.1093/mnras/stv1380 10.1088/0004-637X/782/2/82 10.1086/520635 10.1038/nature08841 10.1086/305772 10.1086/423165 10.1086/163592 10.1117/12.504857 |
ContentType | Journal Article |
Copyright | 2016. The American Astronomical Society. All rights reserved. Copyright IOP Publishing Nov 20, 2016 |
Copyright_xml | – notice: 2016. The American Astronomical Society. All rights reserved. – notice: Copyright IOP Publishing Nov 20, 2016 |
DBID | AAYXX CITATION 7TG 8FD H8D KL. L7M OTOTI |
DOI | 10.3847/0004-637X/832/1/17 |
DatabaseName | CrossRef Meteorological & Geoastrophysical Abstracts Technology Research Database Aerospace Database Meteorological & Geoastrophysical Abstracts - Academic Advanced Technologies Database with Aerospace OSTI.GOV |
DatabaseTitle | CrossRef Aerospace Database Meteorological & Geoastrophysical Abstracts Technology Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | CrossRef Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics Physics |
DocumentTitleAlternate | 3C 279 IN OUTBURST IN 2015 JUNE: A BROADBAND SED STUDY BASED ON THE INTEGRAL DETECTION |
EISSN | 1538-4357 |
ExternalDocumentID | 22661027 10_3847_0004_637X_832_1_17 apjaa3ff0 |
GroupedDBID | -DZ -~X 123 1JI 23N 2FS 2WC 4.4 6J9 85S AAFWJ AAGCD AAJIO AALHV ABHWH ACBEA ACGFS ACHIP ACNCT ADACN ADIYS AEFHF AENEX AFPKN AKPSB ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN CJUJL CRLBU CS3 EBS EJD F5P FRP GROUPED_DOAJ IJHAN IOP KOT M~E N5L O3W O43 OK1 PJBAE RIN RNS ROL SJN SY9 T37 TN5 TR2 WH7 XSW AAYXX CITATION 7TG 8FD AEINN H8D KL. L7M ABPTK OTOTI |
ID | FETCH-LOGICAL-c481t-fb6d01e8f40ff03ed5334fbc1858772b03a510643b0404fd0d2b395baa0446583 |
IEDL.DBID | O3W |
ISSN | 0004-637X |
IngestDate | Fri May 19 00:35:34 EDT 2023 Wed Aug 13 04:41:53 EDT 2025 Tue Jul 01 04:08:41 EDT 2025 Thu Apr 24 22:52:28 EDT 2025 Wed Aug 21 03:33:01 EDT 2024 Thu Jan 07 13:49:51 EST 2021 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c481t-fb6d01e8f40ff03ed5334fbc1858772b03a510643b0404fd0d2b395baa0446583 |
Notes | AAS00600 High-Energy Phenomena and Fundamental Physics ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-8646-4858 |
OpenAccessLink | https://iopscience.iop.org/article/10.3847/0004-637X/832/1/17/pdf |
PQID | 2365805092 |
PQPubID | 4562441 |
PageCount | 6 |
ParticipantIDs | crossref_primary_10_3847_0004_637X_832_1_17 iop_journals_10_3847_0004_637X_832_1_17 osti_scitechconnect_22661027 crossref_citationtrail_10_3847_0004_637X_832_1_17 proquest_journals_2365805092 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-11-20 |
PublicationDateYYYYMMDD | 2016-11-20 |
PublicationDate_xml | – month: 11 year: 2016 text: 2016-11-20 day: 20 |
PublicationDecade | 2010 |
PublicationPlace | Philadelphia |
PublicationPlace_xml | – name: Philadelphia – name: United States |
PublicationTitle | The Astrophysical journal |
PublicationTitleAbbrev | APJ |
PublicationTitleAlternate | Astrophys. J |
PublicationYear | 2016 |
Publisher | The American Astronomical Society IOP Publishing |
Publisher_xml | – name: The American Astronomical Society – name: IOP Publishing |
References | Collmar (apjaa3ff0bib18) 2010; 522 Bottacini (apjaa3ff0bib9) 2012; 201 Zheng (apjaa3ff0bib55) 2016; 457 Tavani (apjaa3ff0bib52) 2008; 588 Summerlin (apjaa3ff0bib51) 2012; 745 Ghisellini (apjaa3ff0bib23) 2005; 432 Schlegel (apjaa3ff0bib48) 1998; 500 Albert (apjaa3ff0bib5) 2008; 320 Lucarelli (apjaa3ff0bib32) 2015; 7631 Dermer (apjaa3ff0bib21) 2014; 782 Cardelli (apjaa3ff0bib17) 1989; 345 Lebrun (apjaa3ff0bib31) 2003; 411 Pittori (apjaa3ff0bib43) 2015a; 7639 Joshi (apjaa3ff0bib27) 2011; 727 Kiehlmann (apjaa3ff0bib29) 2016; 590 Pittori (apjaa3ff0bib44) 2015b; 7668 Böttcher (apjaa3ff0bib16) 2013; 768 Roming (apjaa3ff0bib47) 2005; 120 Ackermann (apjaa3ff0bib2) 2016; 824 Cutini (apjaa3ff0bib20) 2015; 7633 Bottacini (apjaa3ff0bib10) 2010; 719 Marscher (apjaa3ff0bib33) 1985; 298 Zdziarski (apjaa3ff0bib54) 2015; 450 Diltz (apjaa3ff0bib22) 2015; 802 Albert (apjaa3ff0bib4) 2007; 669 Kalberla (apjaa3ff0bib28) 2005; 440 Mirzoyan (apjaa3ff0bib36) 2015; 7080 Ubertini (apjaa3ff0bib53) 2003; 411 Abdo (apjaa3ff0bib1) 2010; 463 Bottacini (apjaa3ff0bib11) 2015; 7648 Courvoisier (apjaa3ff0bib19) 2003; 411 Nalewajko (apjaa3ff0bib38) 2012; 760 Böttcher (apjaa3ff0bib14) 1997; 324 Stawarz (apjaa3ff0bib50) 2002; 578 Hartman (apjaa3ff0bib25) 2001; 553 Bonning (apjaa3ff0bib8) 2012; 756 Moretti (apjaa3ff0bib37) 2004; 5165 Larionov (apjaa3ff0bib30) 2008; 492 Arnaud (apjaa3ff0bib6) 1996; 101 Böttcher (apjaa3ff0bib12) 2002; 581 Hartman (apjaa3ff0bib24) 1992; 385 Sokolov (apjaa3ff0bib49) 2004; 613 Paliya (apjaa3ff0bib39) 2015; 808 Böttcher (apjaa3ff0bib15) 2009; 703 Mead (apjaa3ff0bib35) 1990; 83 Poole (apjaa3ff0bib45) 2008; 383 Petropoulou (apjaa3ff0bib41) 2015; 452 Böttcher (apjaa3ff0bib13) 2016; 821 Pian (apjaa3ff0bib42) 1999; 521 Marziani (apjaa3ff0bib34) 1996; 104 Atwood (apjaa3ff0bib7) 2009; 697 Paliya (apjaa3ff0bib40) 2016; 817 Aharonian (apjaa3ff0bib3) 2007; 664 Rieger (apjaa3ff0bib46) 2006; 652 Hayashida (apjaa3ff0bib26) 2015; 807 |
References_xml | – volume: 120 start-page: 95 year: 2005 ident: apjaa3ff0bib47 publication-title: SSRv doi: 10.1007/s11214-005-5095-4 – volume: 383 start-page: 627 year: 2008 ident: apjaa3ff0bib45 publication-title: MNRAS doi: 10.1111/j.1365-2966.2007.12563.x – volume: 101 start-page: 17 year: 1996 ident: apjaa3ff0bib6 publication-title: adass – volume: 768 start-page: 54 year: 2013 ident: apjaa3ff0bib16 publication-title: ApJ doi: 10.1088/0004-637X/768/1/54 – volume: 697 start-page: 1071 year: 2009 ident: apjaa3ff0bib7 publication-title: ApJ doi: 10.1088/0004-637X/697/2/1071 – volume: 553 start-page: 683 year: 2001 ident: apjaa3ff0bib25 publication-title: ApJ doi: 10.1086/320970 – volume: 745 start-page: 63 year: 2012 ident: apjaa3ff0bib51 publication-title: ApJ doi: 10.1088/0004-637X/745/1/63 – volume: 588 start-page: 52 year: 2008 ident: apjaa3ff0bib52 publication-title: NIMPA doi: 10.1016/j.nima.2008.01.023 – volume: 104 start-page: 37 year: 1996 ident: apjaa3ff0bib34 publication-title: ApJS doi: 10.1086/192291 – volume: 411 start-page: L141 year: 2003 ident: apjaa3ff0bib31 publication-title: A&A doi: 10.1051/0004-6361:20031367 – volume: 652 start-page: 1044 year: 2006 ident: apjaa3ff0bib46 publication-title: ApJ doi: 10.1086/508056 – volume: 824 start-page: L20 year: 2016 ident: apjaa3ff0bib2 publication-title: ApJL doi: 10.3847/2041-8205/824/2/L20 – volume: 821 start-page: 102 year: 2016 ident: apjaa3ff0bib13 publication-title: ApJ doi: 10.3847/0004-637X/821/2/102 – volume: 578 start-page: 763 year: 2002 ident: apjaa3ff0bib50 publication-title: ApJ doi: 10.1086/342649 – volume: 457 start-page: 3535 year: 2016 ident: apjaa3ff0bib55 publication-title: MNRAS doi: 10.1093/mnras/stw078 – volume: 802 start-page: 133 year: 2015 ident: apjaa3ff0bib22 publication-title: ApJ doi: 10.1088/0004-637X/802/2/133 – volume: 7631 year: 2015 ident: apjaa3ff0bib32 publication-title: ATel – volume: 669 start-page: 862 year: 2007 ident: apjaa3ff0bib4 publication-title: ApJ doi: 10.1086/521382 – volume: 522 start-page: A66 year: 2010 ident: apjaa3ff0bib18 publication-title: A&A doi: 10.1051/0004-6361/201014823 – volume: 440 start-page: 775 year: 2005 ident: apjaa3ff0bib28 publication-title: A&A doi: 10.1051/0004-6361:20041864 – volume: 760 start-page: 69 year: 2012 ident: apjaa3ff0bib38 publication-title: ApJ doi: 10.1088/0004-637X/760/1/69 – volume: 817 start-page: 61 year: 2016 ident: apjaa3ff0bib40 publication-title: ApJ doi: 10.3847/0004-637X/817/1/61 – volume: 432 start-page: 401 year: 2005 ident: apjaa3ff0bib23 publication-title: A&A doi: 10.1051/0004-6361:20041404 – volume: 727 start-page: 21 year: 2011 ident: apjaa3ff0bib27 publication-title: ApJ doi: 10.1088/0004-637X/727/1/21 – volume: 521 start-page: 112 year: 1999 ident: apjaa3ff0bib42 publication-title: ApJ doi: 10.1086/307548 – volume: 320 start-page: 1752 year: 2008 ident: apjaa3ff0bib5 publication-title: Sci doi: 10.1126/science.1157087 – volume: 385 start-page: L1 year: 1992 ident: apjaa3ff0bib24 publication-title: ApJL doi: 10.1086/186263 – volume: 581 start-page: 127 year: 2002 ident: apjaa3ff0bib12 publication-title: ApJ doi: 10.1086/344155 – volume: 590 start-page: A10 year: 2016 ident: apjaa3ff0bib29 publication-title: A&A doi: 10.1051/0004-6361/201527725 – volume: 756 start-page: 13 year: 2012 ident: apjaa3ff0bib8 publication-title: ApJ doi: 10.1088/0004-637X/756/1/13 – volume: 719 start-page: L162 year: 2010 ident: apjaa3ff0bib10 publication-title: ApJL doi: 10.1088/2041-8205/719/2/L162 – volume: 808 start-page: L48 year: 2015 ident: apjaa3ff0bib39 publication-title: ApJL doi: 10.1088/2041-8205/808/2/L48 – volume: 345 start-page: 245 year: 1989 ident: apjaa3ff0bib17 publication-title: ApJ doi: 10.1086/167900 – volume: 703 start-page: 1168 year: 2009 ident: apjaa3ff0bib15 publication-title: ApJ doi: 10.1088/0004-637X/703/1/1168 – volume: 7080 year: 2015 ident: apjaa3ff0bib36 publication-title: ATel – volume: 7648 year: 2015 ident: apjaa3ff0bib11 publication-title: ATel – volume: 83 start-page: 183 year: 1990 ident: apjaa3ff0bib35 publication-title: A&AS – volume: 324 start-page: 395 year: 1997 ident: apjaa3ff0bib14 publication-title: A&A – volume: 807 start-page: 79 year: 2015 ident: apjaa3ff0bib26 publication-title: ApJ doi: 10.1088/0004-637X/807/1/79 – volume: 7639 year: 2015a ident: apjaa3ff0bib43 publication-title: ATel – volume: 492 start-page: 389 year: 2008 ident: apjaa3ff0bib30 publication-title: A&A doi: 10.1051/0004-6361:200810937 – volume: 450 start-page: L21 year: 2015 ident: apjaa3ff0bib54 publication-title: MNRAS doi: 10.1093/mnrasl/slv039 – volume: 411 start-page: L53 year: 2003 ident: apjaa3ff0bib19 publication-title: A&A doi: 10.1051/0004-6361:20031172 – volume: 201 start-page: 34 year: 2012 ident: apjaa3ff0bib9 publication-title: ApJS doi: 10.1088/0067-0049/201/2/34 – volume: 411 start-page: L131 year: 2003 ident: apjaa3ff0bib53 publication-title: A&A doi: 10.1051/0004-6361:20031224 – volume: 452 start-page: 1303 year: 2015 ident: apjaa3ff0bib41 publication-title: MNRAS doi: 10.1093/mnras/stv1380 – volume: 782 start-page: 82 year: 2014 ident: apjaa3ff0bib21 publication-title: ApJ doi: 10.1088/0004-637X/782/2/82 – volume: 664 start-page: L71 year: 2007 ident: apjaa3ff0bib3 publication-title: ApJL doi: 10.1086/520635 – volume: 7633 year: 2015 ident: apjaa3ff0bib20 publication-title: ATel – volume: 463 start-page: 919 year: 2010 ident: apjaa3ff0bib1 publication-title: Natur doi: 10.1038/nature08841 – volume: 500 start-page: 525 year: 1998 ident: apjaa3ff0bib48 publication-title: ApJ doi: 10.1086/305772 – volume: 7668 year: 2015b ident: apjaa3ff0bib44 publication-title: ATel – volume: 613 start-page: 725 year: 2004 ident: apjaa3ff0bib49 publication-title: ApJ doi: 10.1086/423165 – volume: 298 start-page: 114 year: 1985 ident: apjaa3ff0bib33 publication-title: ApJ doi: 10.1086/163592 – volume: 5165 start-page: 232 year: 2004 ident: apjaa3ff0bib37 publication-title: Proc. SPIE doi: 10.1117/12.504857 |
SSID | ssj0004299 |
Score | 2.3929942 |
Snippet | ABSTRACT Blazars radiate from radio through gamma-ray frequencies and thereby make ideal targets for multifrequency studies. Such studies allow the properties... Blazars radiate from radio through gamma-ray frequencies and thereby make ideal targets for multifrequency studies. Such studies allow the properties of the... |
SourceID | osti proquest crossref iop |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 17 |
SubjectTerms | ACCRETION DISKS accretion, accretion disks Astrophysics ASTROPHYSICS, COSMOLOGY AND ASTRONOMY BLACK HOLES Blazars Broadband ENERGY DENSITY ENERGY SPECTRA Flux density galaxies: individual (3C 279) galaxies: jets GAMMA RADIATION Gamma rays HADRONS Integrals Leptons LUMINOSITY MAGNETIC FIELDS Mathematical models NEAR INFRARED RADIATION Parameters Particle energy QUASARS Radiation radiation mechanisms: non-thermal Relativistic particles RELATIVISTIC RANGE Spectral energy distribution X-RAY GALAXIES X-rays: galaxies |
Title | 3C 279 IN OUTBURST IN 2015 JUNE: A BROADBAND SED STUDY BASED ON THE INTEGRAL DETECTION |
URI | https://iopscience.iop.org/article/10.3847/0004-637X/832/1/17 https://www.proquest.com/docview/2365805092 https://www.osti.gov/biblio/22661027 |
Volume | 832 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED_RISReEAzQCtvkBwQPKNSJnS_e0jWjmyCZugTKkxXH9gOCtqLlgf-euyTbNCEmHiKdFMexzvfxO9t3BnglbOjipLVe2GjjyTDhXups4EmHEmIQHzhN6x2fimhey_NluBzO5nS5MOvNYPrfIdkXCu5ZSPot0JZS7oH0IhEvJyiNE3_ixyO4LxCZU-xVii83aZFBOqDfvn2fM_OPPm75pRH-G230GrXsLxvdOZ7Tx_BoQIws68f3BO7Z1T4cZFtaw17_-M1es47ulyi2-_DgoqeewmdxwoI4ZWcFK-tqWi8uK6LRGYfsvC7y9yxj00WZzaZZMWOXOT6ID7-yaUZ0WbBqnjOqmfthkX1ks7zKuxMnz6A-zauTuTfco-C1MvF3ntOR4b5NnOTOcWENpd863aKrThBcay4a1EyEJho1WjrDTaBFGuqmod3eMBHPYW-1XtkDYLFoeWR8k6Lnk1zEjYmtaDVd34FxnUvH4F9xUbVDkXG66-K7wmCDOE-b3VIR5xVyXvnKj8fw9vqbTV9i487Wb3By1KBp2ztbHt1q2Wy-Xb9TG-PGcEgTrFDeqF5uSweL2p0KCLJgsI6vryb-po9AID-oZE7w4r_H8RIe4sRGlMAY8EPY2_38ZY8Qyez0MYzOyovjTmr_AKG-3Yw |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB7RIhAXBAXUhRZ8QHBAYZ3YeXHLdrNsS8lW24SWkxXH9gHB7opdDvx7ZpJsqwpRcYg0kh-x5uH5_JgxwGthQxcnjfXCWhtPhgn3UmcDTzrUEIP4wGna7_hcRNNKnlyG29uEbSzMctVP_e-R7BIFdywk-xY4l1LsgfQiEV8OURuH_tCPhyvjduBuKBAdo0rPxMV1aGSQ9gi4a9PFzfyjnxu-aQf_j_P0Ei3tr3m6dT6TR_CwR40s68b4GO7YxR7sZ2vax17--M3esJbutinWe3DvrKOewBdxxII4ZccFm1XlqJqfl0SjQw7ZSVXkH1jGRvNZNh5lxZid5_ghRvzKRhnRs4KV05xR3tyP8-yUjfMyb2-dPIVqkpdHU69_S8FrZOJvPKcjw32bOMmd48IaCsF1ukF3nSDA1lzUaJ0ITzRatXSGm0CLNNR1TSe-YSKewe5iubD7wGLR8Mj4JkXvJ7mIaxNb0Wh6wgPXdi4dgL_lomr6ROP03sV3hQsO4jwdeEtFnFfIeeUrPx7Au6s2qy7Nxq2136JwVG9t61trHt6oWa--XZUp1JoBHJCAFeoc5cxt6HJRs1EBwRZcsGPxVvDXfQQC-UFpc4Ln_z2OV3D_bDxRp8fFpxfwAGUcUTxjwA9gd_Pzlz1EYLPRL1vV_QOI--CB |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3C+279+IN+OUTBURST+IN+2015+JUNE%3A+A+BROADBAND+SED+STUDY+BASED+ON+THE+INTEGRAL+DETECTION&rft.jtitle=The+Astrophysical+journal&rft.au=Bottacini%2C+Eugenio&rft.au=B%C3%B6ttcher%2C+Markus&rft.au=Pian%2C+Elena&rft.au=Collmar%2C+Werner&rft.date=2016-11-20&rft.issn=0004-637X&rft.eissn=1538-4357&rft.volume=832&rft.issue=1&rft_id=info:doi/10.3847%2F0004-637X%2F832%2F1%2F17&rft.externalDocID=22661027 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-637X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-637X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-637X&client=summon |