Investigation of large-scale coherence in a turbulent boundary layer using two-point correlations

Stereoscopic particle image velocimetry (PIV) measurements are made in streamwise–spanwise and inclined cross-stream planes (inclined at $45^\circ$ and $135^\circ$ to the principal flow direction) of a turbulent boundary layer at moderate Reynolds number ($\hbox{\it Re}_\tau\,{\sim} 1100$). Two-poin...

Full description

Saved in:
Bibliographic Details
Published inJournal of fluid mechanics Vol. 524; pp. 57 - 80
Main Authors GANAPATHISUBRAMANI, B., HUTCHINS, N., HAMBLETON, W. T., LONGMIRE, E. K., MARUSIC, I.
Format Journal Article
LanguageEnglish
Published Cambridge, UK Cambridge University Press 10.02.2005
Subjects
Online AccessGet full text
ISSN0022-1120
1469-7645
DOI10.1017/S0022112004002277

Cover

Abstract Stereoscopic particle image velocimetry (PIV) measurements are made in streamwise–spanwise and inclined cross-stream planes (inclined at $45^\circ$ and $135^\circ$ to the principal flow direction) of a turbulent boundary layer at moderate Reynolds number ($\hbox{\it Re}_\tau\,{\sim} 1100$). Two-point spatial velocity correlations computed using the PIV data reveal results that are consistent with an earlier study in which packets of hairpin vortices were identified by a feature-detection algorithm in the log region, but not in the outer wake region. Both streamwise–streamwise ($R_{\hbox{\scriptsize\it uu}}$) and streamwise–wall-normal ($R_{uw}$) correlations are significant for streamwise displacements of more than 1500 wall units. Zero crossing data for the streamwise fluctuating component $u$ reveal that streamwise strips between zero crossings of 1500 wall units or longer occur more frequently for negative $u$ than positive $u$, suggesting that long streamwise correlations in $R_{\hbox{\scriptsize\it uu}}$ are dominated by slower streamwise structures. Additional analysis of $R_{ww}$ correlations suggests that the long streamwise slow-moving regions contain discrete zones of strong upwash over extended streamwise distances, as might occur within packets of angled hairpin vortices. At a wall-normal location outside of the log region ($z/\delta \,{=}\, 0.5$), the correlations are shorter in the streamwise direction and broader in the spanwise direction. Correlations in the inclined cross-stream plane data reveal good agreement with the streamwise–spanwise plane. $R_{\hbox{\scriptsize\it uu}}$ in the $45^\circ$ plane is more elongated along the in-plane wall-normal direction than in the $135^\circ$ plane, which is consistent with the presence of hairpin packets with a low-speed region lifting away from the wall.
AbstractList Stereoscopic particle image velocimetry (PIV) measurements are made in streamwise–spanwise and inclined cross-stream planes (inclined at $45^\circ$ and $135^\circ$ to the principal flow direction) of a turbulent boundary layer at moderate Reynolds number ( $\hbox{\it Re}_\tau\,{\sim} 1100$ ). Two-point spatial velocity correlations computed using the PIV data reveal results that are consistent with an earlier study in which packets of hairpin vortices were identified by a feature-detection algorithm in the log region, but not in the outer wake region. Both streamwise–streamwise ( $R_{\hbox{\scriptsize\it uu}}$ ) and streamwise–wall-normal ( $R_{uw}$ ) correlations are significant for streamwise displacements of more than 1500 wall units. Zero crossing data for the streamwise fluctuating component $u$ reveal that streamwise strips between zero crossings of 1500 wall units or longer occur more frequently for negative $u$ than positive $u$ , suggesting that long streamwise correlations in $R_{\hbox{\scriptsize\it uu}}$ are dominated by slower streamwise structures. Additional analysis of $R_{ww}$ correlations suggests that the long streamwise slow-moving regions contain discrete zones of strong upwash over extended streamwise distances, as might occur within packets of angled hairpin vortices. At a wall-normal location outside of the log region ( $z/\delta \,{=}\, 0.5$ ), the correlations are shorter in the streamwise direction and broader in the spanwise direction. Correlations in the inclined cross-stream plane data reveal good agreement with the streamwise–spanwise plane. $R_{\hbox{\scriptsize\it uu}}$ in the $45^\circ$ plane is more elongated along the in-plane wall-normal direction than in the $135^\circ$ plane, which is consistent with the presence of hairpin packets with a low-speed region lifting away from the wall.
Stereoscopic particle image velocimetry (PIV) measurements are made in streamwisespanwise and inclined cross-stream planes (inclined at 45 deg and 135 deg to the principal flow direction) of a turbulent boundary layer at moderate Reynolds number (Ret ~ -- 1100). Two-point spatial velocity correlations computed using the PIV data reveal results that are consistent with an earlier study in which packets of hairpin vortices were identified by a feature-detection algorithm in the log region, but not in the outer wake region. Both streamwise -- streamwise (Ru") and streamwise -- wall-normal (Ru.) correlations are significant for streamwise displacements of more than 1500 wall units. Zero crossing data for the streamwise fluctuating component u reveal that streamwise strips between zero crossings of 1500 wall units or longer occur more frequently for negative u than positive u, suggesting that long streamwise correlations in Rin, are dominated by slower streamwise structures. Additional analysis of Rww correlations suggests that the long streamwise slow-moving regions contain discrete zones of strong upwash over extended streamwise distances, as might occur within packets of angled hairpin vortices. At a wall-normal location outside of the log region (z/8 = 0.5), the correlations are shorter in the streamwise direction and broader in the spanwise direction. Correlations in the inclined cross-stream plane data reveal good agreement with the streamwise -- spanwise plane. Riii, in the 45 deg plane is more elongated along the in-plane wall-normal direction than in the 135 deg plane, which is consistent with the presence of hairpin packets with a low-speed region lifting away from the wall.
Stereoscopic particle image velocimetry (PIV) measurements are made in streamwise-spanwise and inclined cross-stream planes (inclined at $45^\circ$ and $135^\circ$ to the principal flow direction) of a turbulent boundary layer at moderate Reynolds number ($\hbox{\it Re}_\tau\,{\sim} 1100$). Two-point spatial velocity correlations computed using the PIV data reveal results that are consistent with an earlier study in which packets of hairpin vortices were identified by a feature-detection algorithm in the log region, but not in the outer wake region. Both streamwise-streamwise ($R_{\hbox{\scriptsize\it uu}}$) and streamwise-wall-normal ($R_{uw}$) correlations are significant for streamwise displacements of more than 1500 wall units. Zero crossing data for the streamwise fluctuating component $u$ reveal that streamwise strips between zero crossings of 1500 wall units or longer occur more frequently for negative $u$ than positive $u$, suggesting that long streamwise correlations in $R_{\hbox{\scriptsize\it uu}}$ are dominated by slower streamwise structures. Additional analysis of $R_{ww}$ correlations suggests that the long streamwise slow-moving regions contain discrete zones of strong upwash over extended streamwise distances, as might occur within packets of angled hairpin vortices. At a wall-normal location outside of the log region ($z/\delta \,{=}\, 0.5$), the correlations are shorter in the streamwise direction and broader in the spanwise direction. Correlations in the inclined cross-stream plane data reveal good agreement with the streamwise-spanwise plane. $R_{\hbox{\scriptsize\it uu}}$ in the $45^\circ$ plane is more elongated along the in-plane wall-normal direction than in the $135^\circ$ plane, which is consistent with the presence of hairpin packets with a low-speed region lifting away from the wall. [PUBLICATION ABSTRACT]
Author GANAPATHISUBRAMANI, B.
HAMBLETON, W. T.
HUTCHINS, N.
MARUSIC, I.
LONGMIRE, E. K.
Author_xml – sequence: 1
  givenname: B.
  surname: GANAPATHISUBRAMANI
  fullname: GANAPATHISUBRAMANI, B.
  email: marusic@aem.umn.edu
  organization: Department of Aerospace Engineering and Mechanics, University of Minnesota, 107 Akerman Hall, 110 Union Street SE, Minneapolis, MN 55455, USA marusic@aem.umn.edu
– sequence: 2
  givenname: N.
  surname: HUTCHINS
  fullname: HUTCHINS, N.
  email: marusic@aem.umn.edu
  organization: Department of Aerospace Engineering and Mechanics, University of Minnesota, 107 Akerman Hall, 110 Union Street SE, Minneapolis, MN 55455, USA marusic@aem.umn.edu
– sequence: 3
  givenname: W. T.
  surname: HAMBLETON
  fullname: HAMBLETON, W. T.
  email: marusic@aem.umn.edu
  organization: Department of Aerospace Engineering and Mechanics, University of Minnesota, 107 Akerman Hall, 110 Union Street SE, Minneapolis, MN 55455, USA marusic@aem.umn.edu
– sequence: 4
  givenname: E. K.
  surname: LONGMIRE
  fullname: LONGMIRE, E. K.
  email: marusic@aem.umn.edu
  organization: Department of Aerospace Engineering and Mechanics, University of Minnesota, 107 Akerman Hall, 110 Union Street SE, Minneapolis, MN 55455, USA marusic@aem.umn.edu
– sequence: 5
  givenname: I.
  surname: MARUSIC
  fullname: MARUSIC, I.
  email: marusic@aem.umn.edu
  organization: Department of Aerospace Engineering and Mechanics, University of Minnesota, 107 Akerman Hall, 110 Union Street SE, Minneapolis, MN 55455, USA marusic@aem.umn.edu
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16570272$$DView record in Pascal Francis
BookMark eNp9kV9vFCEUxYmpidvqB_CNmOjbtFzmDzOP2tS2cY01rs-EYS4rdRZWYNR-e5nupk1q2oQEwv2dczncQ3LgvENCXgM7Bgbi5BtjnANwxqr5JMQzsoCq6QrRVPUBWcyXxVx_QQ5jvGYMStaJBVGX7jfGZNcqWe-oN3RUYY1F1GpEqv0PDOg0UuuoomkK_TSiS7T3kxtUuMn0DQY6RevWNP3xxdbbXNY-BBxvLeNL8tyoMeKr_X5Evn88W51eFMsv55en75eFrlpIBfYw6B7qioMuSyEMdm1vBEJbDhoGUQ9saFWtwLC-NYINVVfl1TOOoMGI8oi82_lug_815UxyY6PGcVQO_RQl76ABaLoMvnkAXvspuPw2yYG1bVvVkKG3e0jNX2GCctpGuQ12k2NLaGrBuOCZEztOBx9jQCO1TbfBU1B2lMDkPB_533yyEh4o78yf0BQ7jY0J_94JVPgpG1GKWjbnX-XVavX504erpVxmvtz3UJs-2GGN91kf7_IPAXCyMw
CODEN JFLSA7
CitedBy_id crossref_primary_10_1016_j_physa_2012_11_009
crossref_primary_10_1007_s00348_009_0800_9
crossref_primary_10_1017_jfm_2024_508
crossref_primary_10_1017_jfm_2018_759
crossref_primary_10_1115_1_4045997
crossref_primary_10_1007_s10404_006_0105_8
crossref_primary_10_1007_s10546_006_9054_8
crossref_primary_10_1063_5_0245479
crossref_primary_10_1016_j_ijheatfluidflow_2019_02_003
crossref_primary_10_1017_jfm_2013_133
crossref_primary_10_1007_s10409_022_22022_x
crossref_primary_10_1016_j_ijheatfluidflow_2016_04_005
crossref_primary_10_1088_0957_0233_20_7_074004
crossref_primary_10_1007_s10494_016_9741_6
crossref_primary_10_1002_pamm_202000257
crossref_primary_10_1007_s00348_008_0470_z
crossref_primary_10_1017_S0022112010004647
crossref_primary_10_1017_S0022112010000960
crossref_primary_10_1017_jfm_2022_699
crossref_primary_10_1017_S0022112006003946
crossref_primary_10_1016_j_oceaneng_2022_110568
crossref_primary_10_1098_rsta_2006_1942
crossref_primary_10_1016_j_ijheatfluidflow_2020_108687
crossref_primary_10_1007_s00348_010_0928_7
crossref_primary_10_2514_1_43271
crossref_primary_10_1098_rsta_2006_1944
crossref_primary_10_1016_j_ijheatfluidflow_2023_109131
crossref_primary_10_1002_2015WR016989
crossref_primary_10_1016_j_euromechflu_2013_06_009
crossref_primary_10_1007_s10546_012_9735_4
crossref_primary_10_1007_s10546_012_9777_7
crossref_primary_10_1007_s10494_007_9101_7
crossref_primary_10_1063_5_0129927
crossref_primary_10_1007_s40430_018_1109_5
crossref_primary_10_1063_1_3453711
crossref_primary_10_1017_jfm_2024_85
crossref_primary_10_1017_S0022112007008518
crossref_primary_10_1017_S0022112008001675
crossref_primary_10_1007_s10652_013_9332_1
crossref_primary_10_1007_s11433_013_4995_7
crossref_primary_10_1016_j_jfluidstructs_2015_01_015
crossref_primary_10_1017_jfm_2013_89
crossref_primary_10_1017_jfm_2015_24
crossref_primary_10_1017_jfm_2023_700
crossref_primary_10_1007_s00348_016_2140_x
crossref_primary_10_1016_j_ijheatfluidflow_2020_108672
crossref_primary_10_1063_1_3276905
crossref_primary_10_1103_PhysRevFluids_8_044604
crossref_primary_10_1007_s10494_010_9316_x
crossref_primary_10_1017_jfm_2017_496
crossref_primary_10_1016_j_cnsns_2015_09_006
crossref_primary_10_1021_ie8012506
crossref_primary_10_15406_fmrij_2017_01_00007
crossref_primary_10_1103_PhysRevE_89_012905
crossref_primary_10_1017_jfm_2024_291
crossref_primary_10_1103_PhysRevFluids_7_114603
crossref_primary_10_1103_PhysRevFluids_2_064606
crossref_primary_10_1007_s00348_013_1654_8
crossref_primary_10_1017_jfm_2019_131
crossref_primary_10_1103_PhysRevLett_113_234501
crossref_primary_10_1017_jfm_2016_565
crossref_primary_10_1109_MCG_2006_88
crossref_primary_10_1017_jfm_2018_458
crossref_primary_10_2514_1_44684
crossref_primary_10_1007_s00348_008_0522_4
crossref_primary_10_1017_jfm_2024_1001
crossref_primary_10_1007_s10494_017_9852_8
crossref_primary_10_1063_5_0242697
crossref_primary_10_3390_pr8121687
crossref_primary_10_1017_jfm_2019_408
crossref_primary_10_1017_jfm_2013_301
crossref_primary_10_1017_S0022112008005090
crossref_primary_10_1017_jfm_2018_76
crossref_primary_10_1063_5_0172263
crossref_primary_10_1103_PhysRevFluids_7_054603
crossref_primary_10_1080_14685248_2011_627860
crossref_primary_10_1103_PhysRevE_98_033101
crossref_primary_10_1017_jfm_2014_185
crossref_primary_10_1017_jfm_2022_603
crossref_primary_10_1017_jfm_2023_886
crossref_primary_10_1017_jfm_2023_885
crossref_primary_10_1007_s00348_021_03374_6
crossref_primary_10_1017_jfm_2023_521
crossref_primary_10_1088_1674_1056_ac0da6
crossref_primary_10_1017_jfm_2018_962
crossref_primary_10_1063_5_0097729
crossref_primary_10_4236_jfcmv_2019_74012
crossref_primary_10_1088_1674_1056_23_10_104201
crossref_primary_10_1017_jfm_2021_1152
crossref_primary_10_1063_1_4820818
crossref_primary_10_1016_j_euromechflu_2023_05_010
crossref_primary_10_1017_jfm_2024_55
crossref_primary_10_1080_14685240902878045
crossref_primary_10_1103_PhysRevFluids_6_024610
crossref_primary_10_1063_5_0237926
crossref_primary_10_1088_0169_5983_48_2_021405
crossref_primary_10_1017_S0022112009993430
crossref_primary_10_1680_jwama_21_00043
crossref_primary_10_1007_s10546_019_00446_3
crossref_primary_10_1103_PhysRevE_87_063002
crossref_primary_10_1017_flo_2021_6
crossref_primary_10_1017_jfm_2023_1041
crossref_primary_10_1017_jfm_2025_28
crossref_primary_10_1007_s10546_017_0317_3
crossref_primary_10_1017_jfm_2020_884
crossref_primary_10_1017_S0022112008000803
crossref_primary_10_1017_jfm_2023_974
crossref_primary_10_1017_S002211201000621X
crossref_primary_10_1016_j_ijheatmasstransfer_2022_122952
crossref_primary_10_1017_jfm_2016_548
crossref_primary_10_1063_1_2196089
crossref_primary_10_1017_jfm_2018_711
crossref_primary_10_1007_s00348_006_0168_z
crossref_primary_10_1063_1_3489528
crossref_primary_10_1007_s00348_006_0125_x
crossref_primary_10_1080_14685248_2012_726995
crossref_primary_10_1115_1_4046873
crossref_primary_10_1017_jfm_2011_216
crossref_primary_10_1017_jfm_2024_45
crossref_primary_10_1103_PhysRevLett_99_114504
crossref_primary_10_1016_j_jweia_2011_10_010
crossref_primary_10_1017_jfm_2024_494
crossref_primary_10_1016_j_euromechflu_2021_01_004
crossref_primary_10_1063_1_3085813
crossref_primary_10_1063_1_4802048
crossref_primary_10_1017_jfm_2022_660
crossref_primary_10_7498_aps_64_014703
crossref_primary_10_1017_jfm_2019_104
crossref_primary_10_1017_jfm_2020_999
crossref_primary_10_1017_jfm_2020_993
crossref_primary_10_1103_PhysRevE_101_053103
crossref_primary_10_1007_s00348_021_03339_9
crossref_primary_10_1017_jfm_2012_531
crossref_primary_10_1063_5_0128087
crossref_primary_10_1017_jfm_2022_703
crossref_primary_10_1029_2019JD030733
crossref_primary_10_1017_jfm_2024_1226
crossref_primary_10_1007_s00348_015_1894_x
crossref_primary_10_1017_jfm_2017_170
crossref_primary_10_1007_s00348_010_1014_x
crossref_primary_10_1088_1674_1056_ac4bd0
crossref_primary_10_1017_jfm_2024_642
crossref_primary_10_1017_jfm_2011_101
crossref_primary_10_1007_s10404_009_0526_2
crossref_primary_10_1017_jfm_2013_113
crossref_primary_10_1088_1742_6596_318_1_012003
crossref_primary_10_1115_1_4002167
crossref_primary_10_1016_j_ijheatfluidflow_2011_09_003
crossref_primary_10_1007_s00477_012_0647_0
crossref_primary_10_1016_j_ijheatfluidflow_2019_108521
crossref_primary_10_1017_jfm_2018_899
crossref_primary_10_1016_j_ijheatfluidflow_2013_06_003
crossref_primary_10_1063_1_4864105
crossref_primary_10_1080_14685248_2010_496786
crossref_primary_10_1007_s00348_017_2431_x
crossref_primary_10_1016_j_expthermflusci_2022_110723
crossref_primary_10_1017_S0022112009006934
crossref_primary_10_1063_1_2717527
crossref_primary_10_1017_jfm_2020_384
crossref_primary_10_1103_PhysRevResearch_2_043212
crossref_primary_10_1016_j_ijheatfluidflow_2021_108879
crossref_primary_10_1017_S0022112010005082
crossref_primary_10_1017_jfm_2019_968
crossref_primary_10_1080_00221686_2012_729540
crossref_primary_10_1007_s10546_012_9790_x
crossref_primary_10_1103_PhysRevFluids_4_084601
crossref_primary_10_1175_JPO_D_17_0016_1
crossref_primary_10_3390_nano13050875
crossref_primary_10_1080_14685248_2019_1706741
crossref_primary_10_1103_PhysRevFluids_6_084804
crossref_primary_10_1016_j_euromechflu_2014_04_011
crossref_primary_10_1007_s10546_011_9612_6
crossref_primary_10_3795_KSME_B_2012_36_8_829
crossref_primary_10_1063_5_0064193
crossref_primary_10_1017_S0022112009007617
crossref_primary_10_1063_1_2990043
crossref_primary_10_1017_jfm_2014_147
crossref_primary_10_1063_1_4899259
ContentType Journal Article
Copyright 2005 Cambridge University Press
2005 INIST-CNRS
Copyright_xml – notice: 2005 Cambridge University Press
– notice: 2005 INIST-CNRS
DBID BSCLL
AAYXX
CITATION
IQODW
3V.
7TB
7U5
7UA
7XB
88I
8FD
8FE
8FG
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
GNUQQ
GUQSH
H8D
H96
HCIFZ
KR7
L.G
L6V
L7M
M2O
M2P
M7S
MBDVC
P5Z
P62
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
S0W
DOI 10.1017/S0022112004002277
DatabaseName Istex
CrossRef
Pascal-Francis
ProQuest Central (Corporate)
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Water Resources Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Research Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection (ProQuest)
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
ProQuest Central Student
ProQuest Research Library
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Research Library
Science Database
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
Proquest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DELNET Engineering & Technology Collection
DatabaseTitle CrossRef
Research Library Prep
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
Aerospace Database
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Research Library
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
DatabaseTitleList CrossRef
Aerospace Database

Research Library Prep
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Physics
EISSN 1469-7645
EndPage 80
ExternalDocumentID 1399133701
16570272
10_1017_S0022112004002277
ark_67375_6GQ_PTTMKBPL_L
Genre Feature
GroupedDBID -DZ
-E.
-~X
.DC
.FH
09C
09E
0E1
0R~
29K
3V.
4.4
5GY
5VS
6TJ
74X
74Y
7~V
88I
8FE
8FG
8FH
8G5
8R4
8R5
8WZ
A6W
AAAZR
AABES
AABWE
AACJH
AAEED
AAGFV
AAKTX
AAMNQ
AARAB
AASVR
AAUIS
AAUKB
ABBXD
ABGDZ
ABITZ
ABJCF
ABJNI
ABKKG
ABMWE
ABMYL
ABQTM
ABQWD
ABROB
ABTAH
ABTCQ
ABUWG
ABZCX
ABZUI
ACBEA
ACBMC
ACCHT
ACGFO
ACGFS
ACGOD
ACIMK
ACIWK
ACQFJ
ACREK
ACUIJ
ACUYZ
ACWGA
ACYZP
ACZBM
ACZUX
ACZWT
ADCGK
ADDNB
ADFEC
ADFRT
ADGEJ
ADKIL
ADOCW
ADVJH
AEBAK
AEHGV
AEMTW
AENEX
AENGE
AEYYC
AFFUJ
AFKQG
AFKRA
AFKSM
AFLOS
AFLVW
AFRAH
AFUTZ
AGABE
AGBYD
AGJUD
AGOOT
AHQXX
AHRGI
AIDUJ
AIGNW
AIHIV
AIOIP
AISIE
AJ7
AJCYY
AJPFC
AJQAS
ALMA_UNASSIGNED_HOLDINGS
ALVPG
ALWZO
AQJOH
ARABE
ARAPS
ATUCA
AUXHV
AZQEC
BBLKV
BENPR
BGHMG
BGLVJ
BHPHI
BKSAR
BLZWO
BPHCQ
BQFHP
C0O
CAG
CBIIA
CCPQU
CCQAD
CFAFE
CHEAL
CJCSC
COF
CS3
D-I
DOHLZ
DU5
DWQXO
E.L
EBS
EJD
F5P
GNUQQ
GUQSH
HCIFZ
HG-
HST
HZ~
H~9
I.6
IH6
IOEEP
IS6
I~P
J36
J38
J3A
JHPGK
JQKCU
KCGVB
KFECR
L6V
L98
LHUNA
LK5
LW7
M-V
M2O
M2P
M7R
M7S
NIKVX
O9-
OYBOY
P2P
P62
PCBAR
PQQKQ
PROAC
PTHSS
PYCCK
Q2X
RAMDC
RCA
RIG
RNS
ROL
RR0
S0W
S6-
S6U
SAAAG
SC5
T9M
TAE
TN5
UT1
VOH
WFFJZ
WH7
WQ3
WXU
WXY
WYP
ZE2
ZY4
ZYDXJ
~02
AATMM
ABVKB
ABXAU
ABXHF
ACDLN
ACRPL
ADMLS
ADNMO
AEMFK
AEUYN
AFZFC
AGQPQ
AKMAY
BSCLL
PHGZM
PHGZT
PQGLB
PUEGO
AAYXX
CITATION
-1F
-2P
-2V
-~6
-~N
6~7
9M5
AANRG
ABDMP
ABDPE
ABFSI
ABKAW
ABVFV
ABVZP
ACETC
ACKIV
ADOVH
AEBPU
AENCP
AGLWM
AI.
ALEEW
BESQT
BMAJL
CCUQV
CDIZJ
DC4
I.7
I.9
IQODW
KAFGG
NMFBF
VH1
ZJOSE
ZMEZD
~V1
7TB
7U5
7UA
7XB
8FD
8FK
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c481t-eb1dcb15421c3377fe98bf7e183dc1d75d0d8a5a1f0b8f70d494494b02e1c1f73
IEDL.DBID BENPR
ISSN 0022-1120
IngestDate Thu Oct 02 10:23:14 EDT 2025
Sat Aug 23 14:11:09 EDT 2025
Mon Jul 21 09:14:34 EDT 2025
Thu Apr 24 23:04:28 EDT 2025
Wed Oct 01 05:54:34 EDT 2025
Sun Aug 31 06:48:31 EDT 2025
Wed Mar 13 05:48:15 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Turbulent flow
Stereoscopy
Correlations
Coherence
Wind tunnel test
Particle image velocimetry
Large scale
Experimental study
Velocity measurement
Boundary layers
Turbulence structure
Language English
License https://www.cambridge.org/core/terms
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c481t-eb1dcb15421c3377fe98bf7e183dc1d75d0d8a5a1f0b8f70d494494b02e1c1f73
Notes PII:S0022112004002277
istex:E056DFBAE61E240868A8269528273F20B1B5CAEC
ark:/67375/6GQ-PTTMKBPL-L
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
PQID 210888451
PQPubID 34769
PageCount 24
ParticipantIDs proquest_miscellaneous_29161169
proquest_journals_210888451
pascalfrancis_primary_16570272
crossref_citationtrail_10_1017_S0022112004002277
crossref_primary_10_1017_S0022112004002277
istex_primary_ark_67375_6GQ_PTTMKBPL_L
cambridge_journals_10_1017_S0022112004002277
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2005-02-10
PublicationDateYYYYMMDD 2005-02-10
PublicationDate_xml – month: 02
  year: 2005
  text: 2005-02-10
  day: 10
PublicationDecade 2000
PublicationPlace Cambridge, UK
PublicationPlace_xml – name: Cambridge, UK
– name: Cambridge
PublicationTitle Journal of fluid mechanics
PublicationTitleAlternate J. Fluid Mech
PublicationYear 2005
Publisher Cambridge University Press
Publisher_xml – name: Cambridge University Press
SSID ssj0013097
Score 2.2945304
Snippet Stereoscopic particle image velocimetry (PIV) measurements are made in streamwise–spanwise and inclined cross-stream planes (inclined at $45^\circ$ and...
Stereoscopic particle image velocimetry (PIV) measurements are made in streamwise-spanwise and inclined cross-stream planes (inclined at $45^\circ$ and...
Stereoscopic particle image velocimetry (PIV) measurements are made in streamwisespanwise and inclined cross-stream planes (inclined at 45 deg and 135 deg to...
SourceID proquest
pascalfrancis
crossref
istex
cambridge
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 57
SubjectTerms Boundary layer and shear turbulence
Boundary layers
Exact sciences and technology
Fluid dynamics
Fluid mechanics
Fundamental areas of phenomenology (including applications)
Instrumentation for fluid dynamics
Physics
Turbulent flows, convection, and heat transfer
Title Investigation of large-scale coherence in a turbulent boundary layer using two-point correlations
URI https://www.cambridge.org/core/product/identifier/S0022112004002277/type/journal_article
https://api.istex.fr/ark:/67375/6GQ-PTTMKBPL-L/fulltext.pdf
https://www.proquest.com/docview/210888451
https://www.proquest.com/docview/29161169
Volume 524
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1469-7645
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0013097
  issn: 0022-1120
  databaseCode: ADMLS
  dateStart: 19560101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1469-7645
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0013097
  issn: 0022-1120
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1469-7645
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0013097
  issn: 0022-1120
  databaseCode: 8FG
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEB61iZDogUcAYQphD4gDwsLr19oHhChqWkFTBZRKvVn7hKqVHfIQ8O-ZcWwnVaVIOdmzibI7O_vZ--33AbxBVKGUzBI_SnXgxynZvGQ6wlzOEh0Yp11Eh5PH5-npRfz1Mrncg3F7FoZolW1NrAu1qTS9I_-Ajyb4sBYn_NPst0-mUbS52jpoyMZZwXysFcb2oR-SMFYP-kfH55Mfm22FIBetfDgCjW6bs9aQxot0jbI6DIXYFlu4tWj1qf__EolSLrAf3doA404trxeo0SN40CBL9nmdCo9hz5YDeNigTNbM4cUADrYkCAdwr6aA6sUTkFuSG1XJKsduiCXu069bpqtf64OB7KpkkuFCpVa0YDFV-zLN_2E0ondGPPqfbPmn8mfVFd7W5P7R8O2ewsXoePrl1G8MGHwdZ3zpYx03WiHICrmOIiGczTPlhMUyYDQ3IjGByWQiuQtU5kRg4jzGjwpCyzV3InoGvbIq7XNgoXS54ZlNcwRgiYllrlSEwSa12DYXHrzvertoptGiWFPQRHFncDwI2gEpdCNmTp4aN7uavOuazNZKHruC39aj3EXK-TVR4ERSpCffi8l0Ov52NDkrzjwY3kqDzVcTpygUoQeHbV5s_leXzB687u7ivKbNGlnaaoUhiNs5T_MXO9sfwv1aS5YcaoKX0FvOV_YVoqSlGsJ-NjoZNjPgP01jDHw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFH4qjRDlwBJAmEI7B-CAsPA-9qFCFFpS0kQBpVJvZtZSUdkhi0p_HP-NN_bYSVUpt0o52W-c5e2ZN98H8BqrCs5ZGrthIjw3SgzNSypCtOU0Fp7UQofmcPJgmPROom-n8ekG_GvOwpixyiYmVoFalsL8R_4BWxNs1qLY_zj54xrSKLO52jBoMMusIPcqhDF7rqOvri6xg5vtHX1Bdb8JgsOD8eeea0kGXBGl_tzFWCUFx0Ii8EUYUqpVlnJNFZq6FL6ksfRkymLma4-nmnoyyiJ8cS9QvvA1DfG5d6AThVGGvV9n_2A4-rHcxvAy2sCVY2HTbqtWmNV40VwzXhQElK6CO1xLkh2j779maJPNUG-6Jty4kTuqhHj4CB7YSpZ8qk3vMWyoogsPbVVLbMyYdeH-CuRhF-5WI6di9gTYCsRHWZBSkwszle6ad1dElL_qg4jkvCCMYGLkC5MgCa94oKZXKI3dAjFz-2dkflm6k_IcbwvDNmLn-57Cya3o4hlsFmWhngMJmM6kn6okw4IvlhHLOA9RWCYK12bUgfftr51bt53l9cgbzW8oxwGvUUguLHi64fC4WLfkXbtkUiOHrBN-W2m5lWTT32bkjsZ58vV7PhqPB_390XF-7MDONTNYPtrMMAU0cGC7sYvl92qdx4Hd9i7GEbM5xApVLlAE-wTfT7IXa9fvwr3eeICf42jY34atCsfWsON4L2FzPl2oV1ihzfmO9QMCP2_b9f4DMzdJCg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Investigation+of+large-scale+coherence+in+a+turbulent+boundary+layer+using+two-point+correlations&rft.jtitle=Journal+of+fluid+mechanics&rft.au=Ganapathisubramani%2C+B&rft.au=Hutchins%2C+N&rft.au=Hambleton%2C+W+T&rft.au=Longmire%2C+E+K&rft.date=2005-02-10&rft.issn=0022-1120&rft.eissn=1469-7645&rft.volume=524&rft.spage=57&rft.epage=80&rft_id=info:doi/10.1017%2FS0022112004002277&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1120&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1120&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1120&client=summon