Actin-ring segment switching drives nonadhesive gap closure
Gap closure to eliminate physical discontinuities and restore tissue integrity is a fundamental process in normal development and repair of damaged tissues and organs. Here, we demonstrate a nonadhesive gap closure model in which collective cell migration, large-scale actin-network fusion, and purse...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 117; no. 52; pp. 33263 - 33271 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
29.12.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 0027-8424 1091-6490 1091-6490 |
DOI | 10.1073/pnas.2010960117 |
Cover
Abstract | Gap closure to eliminate physical discontinuities and restore tissue integrity is a fundamental process in normal development and repair of damaged tissues and organs. Here, we demonstrate a nonadhesive gap closure model in which collective cell migration, large-scale actin-network fusion, and purse-string contraction orchestrate to restore the gap. Proliferative pressure drives migrating cells to attach onto the gap front at which a pluricellular actin ring is already assembled. An actin-ring segment switching process then occurs by fusion of actin fibers from the newly attached cells into the actin cable and defusion from the previously lined cells, thereby narrowing the gap. Such actin-cable segment switching occurs favorably at high curvature edges of the gap, yielding size-dependent gap closure. Cellular force microscopies evidence that a persistent rise in the radial component of inward traction force signifies successful actin-cable segment switching. A kinetic model that integrates cell proliferation, actin fiber fusion, and purse-string contraction is formulated to quantitatively account for the gap-closure dynamics. Our data reveal a previously unexplored mechanism in which cells exploit multifaceted strategies in a highly cooperative manner to close nonadhesive gaps. |
---|---|
AbstractList | Gap closure to eliminate physical discontinuities and restore tissue integrity is a fundamental process in normal development and repair of damaged tissues and organs. Here, we demonstrate a nonadhesive gap closure model in which collective cell migration, large-scale actin-network fusion, and purse-string contraction orchestrate to restore the gap. Proliferative pressure drives migrating cells to attach onto the gap front at which a pluricellular actin ring is already assembled. An actin-ring segment switching process then occurs by fusion of actin fibers from the newly attached cells into the actin cable and defusion from the previously lined cells, thereby narrowing the gap. Such actin-cable segment switching occurs favorably at high curvature edges of the gap, yielding size-dependent gap closure. Cellular force microscopies evidence that a persistent rise in the radial component of inward traction force signifies successful actin-cable segment switching. A kinetic model that integrates cell proliferation, actin fiber fusion, and purse-string contraction is formulated to quantitatively account for the gap-closure dynamics. Our data reveal a previously unexplored mechanism in which cells exploit multifaceted strategies in a highly cooperative manner to close nonadhesive gaps. Gap closure to eliminate physical discontinuities and restore tissue integrity is a fundamental process in normal development and repair of damaged tissues and organs. Here, we report a previously unexplored gap-closure mechanism by which cell proliferation, collective cell migration, large-scale intercellular actin-network remodeling, and purse-string contraction act in a highly coordinated manner to restore the gap. In distinct contrast to the classical purse-string contraction mechanism, this mechanism involves intercellular switching of actin-cable segments at the gap front, which effectively empowers the actin cable for gap closure. Our study highlights the principles of wound healing driven by the close reciprocity between mechanics and cellular remodeling and might inspire mechanobiological intervention strategies for embryogenesis, tissue repair, antimetastasis, and plastic surgery. Gap closure to eliminate physical discontinuities and restore tissue integrity is a fundamental process in normal development and repair of damaged tissues and organs. Here, we demonstrate a nonadhesive gap closure model in which collective cell migration, large-scale actin-network fusion, and purse-string contraction orchestrate to restore the gap. Proliferative pressure drives migrating cells to attach onto the gap front at which a pluricellular actin ring is already assembled. An actin-ring segment switching process then occurs by fusion of actin fibers from the newly attached cells into the actin cable and defusion from the previously lined cells, thereby narrowing the gap. Such actin-cable segment switching occurs favorably at high curvature edges of the gap, yielding size-dependent gap closure. Cellular force microscopies evidence that a persistent rise in the radial component of inward traction force signifies successful actin-cable segment switching. A kinetic model that integrates cell proliferation, actin fiber fusion, and purse-string contraction is formulated to quantitatively account for the gap-closure dynamics. Our data reveal a previously unexplored mechanism in which cells exploit multifaceted strategies in a highly cooperative manner to close nonadhesive gaps. Gap closure to eliminate physical discontinuities and restore tissue integrity is a fundamental process in normal development and repair of damaged tissues and organs. Here, we demonstrate a nonadhesive gap closure model in which collective cell migration, large-scale actin-network fusion, and purse-string contraction orchestrate to restore the gap. Proliferative pressure drives migrating cells to attach onto the gap front at which a pluricellular actin ring is already assembled. An actin-ring segment switching process then occurs by fusion of actin fibers from the newly attached cells into the actin cable and defusion from the previously lined cells, thereby narrowing the gap. Such actin-cable segment switching occurs favorably at high curvature edges of the gap, yielding size-dependent gap closure. Cellular force microscopies evidence that a persistent rise in the radial component of inward traction force signifies successful actin-cable segment switching. A kinetic model that integrates cell proliferation, actin fiber fusion, and purse-string contraction is formulated to quantitatively account for the gap-closure dynamics. Our data reveal a previously unexplored mechanism in which cells exploit multifaceted strategies in a highly cooperative manner to close nonadhesive gaps.Gap closure to eliminate physical discontinuities and restore tissue integrity is a fundamental process in normal development and repair of damaged tissues and organs. Here, we demonstrate a nonadhesive gap closure model in which collective cell migration, large-scale actin-network fusion, and purse-string contraction orchestrate to restore the gap. Proliferative pressure drives migrating cells to attach onto the gap front at which a pluricellular actin ring is already assembled. An actin-ring segment switching process then occurs by fusion of actin fibers from the newly attached cells into the actin cable and defusion from the previously lined cells, thereby narrowing the gap. Such actin-cable segment switching occurs favorably at high curvature edges of the gap, yielding size-dependent gap closure. Cellular force microscopies evidence that a persistent rise in the radial component of inward traction force signifies successful actin-cable segment switching. A kinetic model that integrates cell proliferation, actin fiber fusion, and purse-string contraction is formulated to quantitatively account for the gap-closure dynamics. Our data reveal a previously unexplored mechanism in which cells exploit multifaceted strategies in a highly cooperative manner to close nonadhesive gaps. |
Author | Chen, Xiaodong Huang, Changjin Cai, Pingqiang Wei, Qiong Yang, Jian Zhao, Tiankai Zhang, Sulin Zhang, Yao Shi, Xuechen Chen, Tianwu |
Author_xml | – sequence: 1 givenname: Qiong surname: Wei fullname: Wei, Qiong – sequence: 2 givenname: Xuechen surname: Shi fullname: Shi, Xuechen – sequence: 3 givenname: Tiankai surname: Zhao fullname: Zhao, Tiankai – sequence: 4 givenname: Pingqiang surname: Cai fullname: Cai, Pingqiang – sequence: 5 givenname: Tianwu surname: Chen fullname: Chen, Tianwu – sequence: 6 givenname: Yao surname: Zhang fullname: Zhang, Yao – sequence: 7 givenname: Changjin surname: Huang fullname: Huang, Changjin – sequence: 8 givenname: Jian surname: Yang fullname: Yang, Jian – sequence: 9 givenname: Xiaodong surname: Chen fullname: Chen, Xiaodong – sequence: 10 givenname: Sulin surname: Zhang fullname: Zhang, Sulin |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33318201$$D View this record in MEDLINE/PubMed |
BookMark | eNp9UctLwzAYDzLRTT17Unr0Uv3yaNMiCGP4goEXPYc0_bZFumYmneJ_b8p0Pg7mktfvxfcbkUHrWiTkmMI5BckvVq0O5wwolDlQKnfIMB5pmosSBmQIwGRaCCb2ySiEZwAoswL2yD7nnBaRNiSXY9PZNvW2nScB50tsuyS82c4s-pfa21cMSTTV9QJDvCRzvUpM48La4yHZnekm4NHnfkCebq4fJ3fp9OH2fjKepkYUtEtRsqyshanz6CqqmtKCcqiEqIBmBZOVrEBAxbEoua5QA9AihmYSDc5KKvkBudrortbVEmsTM3rdqJW3S-3fldNW_f5p7ULN3auSccURRIGzTwHvXtYYOrW0wWDT6BbdOigmeliZSxahpz-9tiZfE4uAiw3AeBeCx9kWQkH1nai-E_XdSWRkfxjGdrqzrg9rm394Jxvec-ic39owCZBnGeMfRJqaMA |
CitedBy_id | crossref_primary_10_1002_mabi_202300042 crossref_primary_10_1103_PhysRevX_12_021053 crossref_primary_10_1007_s10237_023_01723_4 crossref_primary_10_1016_j_bpj_2022_02_028 crossref_primary_10_32604_biocell_2023_043796 crossref_primary_10_1103_PhysRevE_110_054411 crossref_primary_10_1073_pnas_2300380120 crossref_primary_10_1073_pnas_2119903119 crossref_primary_10_1016_j_bpj_2023_02_026 crossref_primary_10_1002_adhm_202203377 crossref_primary_10_1093_pnasnexus_pgad237 crossref_primary_10_1073_pnas_2221040120 |
Cites_doi | 10.1083/jcb.149.2.471 10.1242/jcs.111.22.3323 10.1038/ncomms4747 10.1126/science.276.5309.75 10.1002/hep.22193 10.1073/pnas.1501278112 10.1016/S0960-9822(00)00579-0 10.1038/nmat3025 10.1016/S0960-9822(99)80261-9 10.1038/35074643 10.1083/jcb.144.6.1235 10.1038/s41567-018-0383-6 10.1089/wound.2014.0533 10.1371/journal.pone.0055172 10.1083/jcb.143.6.1713 10.1039/c0lc00641f 10.1152/ajpcell.00270.2001 10.1016/S0960-9822(00)00796-X 10.1038/nphys1269 10.1038/360179a0 10.1073/pnas.1117814109 10.1053/j.gastro.2005.01.004 10.1038/nmat3814 10.1126/science.1116995 10.1083/jcb.200609116 10.1038/ncomms7111 10.1038/ncb875 10.1083/jcb.121.3.565 10.1083/jcb.135.4.1097 10.1038/nphys3040 10.1529/biophysj.107.113670 10.1073/pnas.1106377109 10.1091/mbc.e10-06-0523 10.1038/ncomms11036 10.1091/mbc.e05-11-1070 10.1016/0301-0082(90)90037-H |
ContentType | Journal Article |
Copyright | 2020 |
Copyright_xml | – notice: 2020 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1073/pnas.2010960117 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 33271 |
ExternalDocumentID | PMC7777027 33318201 10_1073_pnas_2010960117 27006552 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NIAMS NIH HHS grantid: R01 AR072731 – fundername: NHLBI NIH HHS grantid: R21 HL122902 – fundername: HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI) grantid: NIH-NHLBIR21 HL122902 – fundername: HHS | NIH | National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS) grantid: AR072731 – fundername: NSF | ENG | Division of Civil, Mechanical and Manufacturing Innovation (CMMI) grantid: NSF: CMMI-0754463/0644599 |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABXSQ ABZEH ACGOD ACHIC ACIWK ACNCT ACPRK ADQXQ AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS AQVQM BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM AAYXX CITATION CGR CUY CVF ECM EIF NPM RHF VQA YIF YIN 7X8 5PM |
ID | FETCH-LOGICAL-c481t-e7259d4cd63314bd118130b44b015827b7b040b3e893abea001884227ecef9173 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 13:51:49 EDT 2025 Thu Sep 04 18:58:36 EDT 2025 Wed Feb 19 02:28:56 EST 2025 Tue Jul 01 03:40:38 EDT 2025 Thu Apr 24 22:57:06 EDT 2025 Thu May 29 09:12:50 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 52 |
Keywords | traction force microscopy gap closure actin ring cell patterning |
Language | English |
License | Published under the PNAS license. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c481t-e7259d4cd63314bd118130b44b015827b7b040b3e893abea001884227ecef9173 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Edited by Philip LeDuc, Carnegie Mellon University, Pittsburgh, PA, and accepted by Editorial Board Member John A. Rogers November 6, 2020 (received for review June 7, 2020) Author contributions: Q.W., X.S., C.H., and S.Z. designed research; Q.W., X.S., T.Z., P.C., T.C., and Y.Z. performed research; Q.W., X.S., T.Z., P.C., J.Y., X.C., and S.Z. contributed new reagents/analytic tools; Q.W., X.S., T.Z., P.C., and S.Z. analyzed data; and Q.W., X.S., and S.Z. wrote the paper. 1Q.W. and X.S. contributed equally to this work. |
ORCID | 0000-0003-0695-828X 0000-0001-9314-5820 0000-0002-1941-1200 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/7777027 |
PMID | 33318201 |
PQID | 2470279672 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_7777027 proquest_miscellaneous_2470279672 pubmed_primary_33318201 crossref_primary_10_1073_pnas_2010960117 crossref_citationtrail_10_1073_pnas_2010960117 jstor_primary_27006552 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-12-29 |
PublicationDateYYYYMMDD | 2020-12-29 |
PublicationDate_xml | – month: 12 year: 2020 text: 2020-12-29 day: 29 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2020 |
Publisher | National Academy of Sciences |
Publisher_xml | – name: National Academy of Sciences |
References | e_1_3_4_3_2 e_1_3_4_2_2 e_1_3_4_1_2 e_1_3_4_9_2 e_1_3_4_8_2 e_1_3_4_7_2 e_1_3_4_6_2 e_1_3_4_5_2 e_1_3_4_4_2 e_1_3_4_22_2 e_1_3_4_23_2 e_1_3_4_20_2 e_1_3_4_21_2 e_1_3_4_26_2 e_1_3_4_27_2 e_1_3_4_24_2 e_1_3_4_25_2 e_1_3_4_28_2 e_1_3_4_29_2 e_1_3_4_30_2 e_1_3_4_11_2 e_1_3_4_34_2 e_1_3_4_12_2 e_1_3_4_33_2 e_1_3_4_32_2 e_1_3_4_10_2 e_1_3_4_31_2 e_1_3_4_15_2 e_1_3_4_16_2 e_1_3_4_13_2 e_1_3_4_36_2 e_1_3_4_14_2 e_1_3_4_35_2 e_1_3_4_19_2 e_1_3_4_17_2 e_1_3_4_18_2 |
References_xml | – ident: e_1_3_4_3_2 doi: 10.1083/jcb.149.2.471 – ident: e_1_3_4_12_2 doi: 10.1242/jcs.111.22.3323 – ident: e_1_3_4_20_2 doi: 10.1038/ncomms4747 – ident: e_1_3_4_1_2 doi: 10.1126/science.276.5309.75 – ident: e_1_3_4_27_2 doi: 10.1002/hep.22193 – ident: e_1_3_4_19_2 doi: 10.1073/pnas.1501278112 – ident: e_1_3_4_9_2 doi: 10.1016/S0960-9822(00)00579-0 – ident: e_1_3_4_34_2 doi: 10.1038/nmat3025 – ident: e_1_3_4_5_2 doi: 10.1016/S0960-9822(99)80261-9 – ident: e_1_3_4_7_2 doi: 10.1038/35074643 – ident: e_1_3_4_8_2 doi: 10.1083/jcb.144.6.1235 – ident: e_1_3_4_17_2 doi: 10.1038/s41567-018-0383-6 – ident: e_1_3_4_24_2 doi: 10.1089/wound.2014.0533 – ident: e_1_3_4_35_2 doi: 10.1371/journal.pone.0055172 – ident: e_1_3_4_11_2 doi: 10.1083/jcb.143.6.1713 – ident: e_1_3_4_21_2 doi: 10.1039/c0lc00641f – ident: e_1_3_4_33_2 doi: 10.1152/ajpcell.00270.2001 – ident: e_1_3_4_2_2 doi: 10.1016/S0960-9822(00)00796-X – ident: e_1_3_4_36_2 doi: 10.1038/nphys1269 – ident: e_1_3_4_13_2 doi: 10.1038/360179a0 – ident: e_1_3_4_22_2 doi: 10.1073/pnas.1117814109 – ident: e_1_3_4_14_2 doi: 10.1053/j.gastro.2005.01.004 – ident: e_1_3_4_18_2 doi: 10.1038/nmat3814 – ident: e_1_3_4_26_2 doi: 10.1126/science.1116995 – ident: e_1_3_4_15_2 doi: 10.1083/jcb.200609116 – ident: e_1_3_4_16_2 doi: 10.1038/ncomms7111 – ident: e_1_3_4_4_2 doi: 10.1038/ncb875 – ident: e_1_3_4_30_2 doi: 10.1083/jcb.121.3.565 – ident: e_1_3_4_29_2 doi: 10.1083/jcb.135.4.1097 – ident: e_1_3_4_6_2 doi: 10.1038/nphys3040 – ident: e_1_3_4_32_2 doi: 10.1529/biophysj.107.113670 – ident: e_1_3_4_31_2 doi: 10.1073/pnas.1106377109 – ident: e_1_3_4_23_2 doi: 10.1091/mbc.e10-06-0523 – ident: e_1_3_4_28_2 doi: 10.1038/ncomms11036 – ident: e_1_3_4_25_2 doi: 10.1091/mbc.e05-11-1070 – ident: e_1_3_4_10_2 doi: 10.1016/0301-0082(90)90037-H |
SSID | ssj0009580 |
Score | 2.4367847 |
Snippet | Gap closure to eliminate physical discontinuities and restore tissue integrity is a fundamental process in normal development and repair of damaged tissues and... |
SourceID | pubmedcentral proquest pubmed crossref jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 33263 |
SubjectTerms | Actins - metabolism Animals Biological Sciences Biomechanical Phenomena Cell Adhesion Cell Proliferation Cell Shape Dogs Imaging, Three-Dimensional Kinetics Madin Darby Canine Kidney Cells Microscopy, Atomic Force Models, Biological Time Factors Wound Healing |
Title | Actin-ring segment switching drives nonadhesive gap closure |
URI | https://www.jstor.org/stable/27006552 https://www.ncbi.nlm.nih.gov/pubmed/33318201 https://www.proquest.com/docview/2470279672 https://pubmed.ncbi.nlm.nih.gov/PMC7777027 |
Volume | 117 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1091-6490 dateEnd: 20250330 omitProxy: true ssIdentifier: ssj0009580 issn: 0027-8424 databaseCode: HH5 dateStart: 19150101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1091-6490 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009580 issn: 0027-8424 databaseCode: KQ8 dateStart: 19150101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1091-6490 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009580 issn: 0027-8424 databaseCode: KQ8 dateStart: 19150115 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1091-6490 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009580 issn: 0027-8424 databaseCode: DIK dateStart: 19150101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1091-6490 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009580 issn: 0027-8424 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVAQN databaseName: PubMed Central (Free e-resource, activated by CARLI) customDbUrl: eissn: 1091-6490 dateEnd: 20250330 omitProxy: true ssIdentifier: ssj0009580 issn: 0027-8424 databaseCode: RPM dateStart: 19150101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1di9NAFB10BdkXcdXV-kUEH1ZK1mZmkknwqYiyCJYKu1h8CTOTSVtc07pJEfz13vlMu3RB7UMoycyEzjm9uXdy5l6EXhdJTUWdkJjJCgIUpkRc5GAM6zpXScY4rk0xmM-T7OyCfpqls16na3aXdOJU_t67r-R_UIVzgKveJfsPyIZB4QR8B3zhCAjD8a8wHoOxamKjoGvV3LzWb38tOyuPrK5MRlkI73m1UEalPufrobxctS6LiHdKp-Eh1nrJwMSvEY77HSfODLTDeDid9PWLvyojCPgC7edhvcaUCh7ONgo4Eej3bcFXlh-8-c6X_esP03gK9_8JV-bbCxHYiDrcaoWyxhN8jzijtvxnsK52a6ajkc1W64wlAdeR7DXjYHd07eGGt0Z8B1GWG2YL1PUPgyohROegT_rnWVAZ-ku30R3Msgz7tZyQkjkf-WRPjLy9drdDdNf333FZrGp1XzxyXVa75aec30f3XIARjS1bjtAt1TxARx676MTlGX_zEL3r6RM5-kSBPpGlT7RFnwjoEzn6PEIXHz-cvz-LXS2NWNI86WLFIM6tqKwy-FFUVHq_MRkJSgX4gzlmggkw54Io8F-5UFwXa8wpxkxJVUNIT47RAdxRPUERYXnBU5nKQhBa1RI82ETAMBSrkarTeoBO_XSV0iWa1_VOLksjeGCk1FNd9lM9QCehw9rmWLm56bGZ_9BO6yayNMUD9MoDUoKB1G-9eKNWG-hM2QizImPQ5rEFKPT2CA8Q24EuNNDJ13evNMuFScLO4APjPr1xzGfosP-XPEcH3dVGvQAHthMvDQ__AIGamfk |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Actin-ring+segment+switching+drives+nonadhesive+gap+closure&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Wei%2C+Qiong&rft.au=Shi%2C+Xuechen&rft.au=Zhao%2C+Tiankai&rft.au=Cai%2C+Pingqiang&rft.date=2020-12-29&rft.eissn=1091-6490&rft.volume=117&rft.issue=52&rft.spage=33263&rft_id=info:doi/10.1073%2Fpnas.2010960117&rft_id=info%3Apmid%2F33318201&rft.externalDocID=33318201 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |