Actin-ring segment switching drives nonadhesive gap closure

Gap closure to eliminate physical discontinuities and restore tissue integrity is a fundamental process in normal development and repair of damaged tissues and organs. Here, we demonstrate a nonadhesive gap closure model in which collective cell migration, large-scale actin-network fusion, and purse...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 117; no. 52; pp. 33263 - 33271
Main Authors Wei, Qiong, Shi, Xuechen, Zhao, Tiankai, Cai, Pingqiang, Chen, Tianwu, Zhang, Yao, Huang, Changjin, Yang, Jian, Chen, Xiaodong, Zhang, Sulin
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 29.12.2020
Subjects
Online AccessGet full text
ISSN0027-8424
1091-6490
1091-6490
DOI10.1073/pnas.2010960117

Cover

Abstract Gap closure to eliminate physical discontinuities and restore tissue integrity is a fundamental process in normal development and repair of damaged tissues and organs. Here, we demonstrate a nonadhesive gap closure model in which collective cell migration, large-scale actin-network fusion, and purse-string contraction orchestrate to restore the gap. Proliferative pressure drives migrating cells to attach onto the gap front at which a pluricellular actin ring is already assembled. An actin-ring segment switching process then occurs by fusion of actin fibers from the newly attached cells into the actin cable and defusion from the previously lined cells, thereby narrowing the gap. Such actin-cable segment switching occurs favorably at high curvature edges of the gap, yielding size-dependent gap closure. Cellular force microscopies evidence that a persistent rise in the radial component of inward traction force signifies successful actin-cable segment switching. A kinetic model that integrates cell proliferation, actin fiber fusion, and purse-string contraction is formulated to quantitatively account for the gap-closure dynamics. Our data reveal a previously unexplored mechanism in which cells exploit multifaceted strategies in a highly cooperative manner to close nonadhesive gaps.
AbstractList Gap closure to eliminate physical discontinuities and restore tissue integrity is a fundamental process in normal development and repair of damaged tissues and organs. Here, we demonstrate a nonadhesive gap closure model in which collective cell migration, large-scale actin-network fusion, and purse-string contraction orchestrate to restore the gap. Proliferative pressure drives migrating cells to attach onto the gap front at which a pluricellular actin ring is already assembled. An actin-ring segment switching process then occurs by fusion of actin fibers from the newly attached cells into the actin cable and defusion from the previously lined cells, thereby narrowing the gap. Such actin-cable segment switching occurs favorably at high curvature edges of the gap, yielding size-dependent gap closure. Cellular force microscopies evidence that a persistent rise in the radial component of inward traction force signifies successful actin-cable segment switching. A kinetic model that integrates cell proliferation, actin fiber fusion, and purse-string contraction is formulated to quantitatively account for the gap-closure dynamics. Our data reveal a previously unexplored mechanism in which cells exploit multifaceted strategies in a highly cooperative manner to close nonadhesive gaps.
Gap closure to eliminate physical discontinuities and restore tissue integrity is a fundamental process in normal development and repair of damaged tissues and organs. Here, we report a previously unexplored gap-closure mechanism by which cell proliferation, collective cell migration, large-scale intercellular actin-network remodeling, and purse-string contraction act in a highly coordinated manner to restore the gap. In distinct contrast to the classical purse-string contraction mechanism, this mechanism involves intercellular switching of actin-cable segments at the gap front, which effectively empowers the actin cable for gap closure. Our study highlights the principles of wound healing driven by the close reciprocity between mechanics and cellular remodeling and might inspire mechanobiological intervention strategies for embryogenesis, tissue repair, antimetastasis, and plastic surgery. Gap closure to eliminate physical discontinuities and restore tissue integrity is a fundamental process in normal development and repair of damaged tissues and organs. Here, we demonstrate a nonadhesive gap closure model in which collective cell migration, large-scale actin-network fusion, and purse-string contraction orchestrate to restore the gap. Proliferative pressure drives migrating cells to attach onto the gap front at which a pluricellular actin ring is already assembled. An actin-ring segment switching process then occurs by fusion of actin fibers from the newly attached cells into the actin cable and defusion from the previously lined cells, thereby narrowing the gap. Such actin-cable segment switching occurs favorably at high curvature edges of the gap, yielding size-dependent gap closure. Cellular force microscopies evidence that a persistent rise in the radial component of inward traction force signifies successful actin-cable segment switching. A kinetic model that integrates cell proliferation, actin fiber fusion, and purse-string contraction is formulated to quantitatively account for the gap-closure dynamics. Our data reveal a previously unexplored mechanism in which cells exploit multifaceted strategies in a highly cooperative manner to close nonadhesive gaps.
Gap closure to eliminate physical discontinuities and restore tissue integrity is a fundamental process in normal development and repair of damaged tissues and organs. Here, we demonstrate a nonadhesive gap closure model in which collective cell migration, large-scale actin-network fusion, and purse-string contraction orchestrate to restore the gap. Proliferative pressure drives migrating cells to attach onto the gap front at which a pluricellular actin ring is already assembled. An actin-ring segment switching process then occurs by fusion of actin fibers from the newly attached cells into the actin cable and defusion from the previously lined cells, thereby narrowing the gap. Such actin-cable segment switching occurs favorably at high curvature edges of the gap, yielding size-dependent gap closure. Cellular force microscopies evidence that a persistent rise in the radial component of inward traction force signifies successful actin-cable segment switching. A kinetic model that integrates cell proliferation, actin fiber fusion, and purse-string contraction is formulated to quantitatively account for the gap-closure dynamics. Our data reveal a previously unexplored mechanism in which cells exploit multifaceted strategies in a highly cooperative manner to close nonadhesive gaps.Gap closure to eliminate physical discontinuities and restore tissue integrity is a fundamental process in normal development and repair of damaged tissues and organs. Here, we demonstrate a nonadhesive gap closure model in which collective cell migration, large-scale actin-network fusion, and purse-string contraction orchestrate to restore the gap. Proliferative pressure drives migrating cells to attach onto the gap front at which a pluricellular actin ring is already assembled. An actin-ring segment switching process then occurs by fusion of actin fibers from the newly attached cells into the actin cable and defusion from the previously lined cells, thereby narrowing the gap. Such actin-cable segment switching occurs favorably at high curvature edges of the gap, yielding size-dependent gap closure. Cellular force microscopies evidence that a persistent rise in the radial component of inward traction force signifies successful actin-cable segment switching. A kinetic model that integrates cell proliferation, actin fiber fusion, and purse-string contraction is formulated to quantitatively account for the gap-closure dynamics. Our data reveal a previously unexplored mechanism in which cells exploit multifaceted strategies in a highly cooperative manner to close nonadhesive gaps.
Author Chen, Xiaodong
Huang, Changjin
Cai, Pingqiang
Wei, Qiong
Yang, Jian
Zhao, Tiankai
Zhang, Sulin
Zhang, Yao
Shi, Xuechen
Chen, Tianwu
Author_xml – sequence: 1
  givenname: Qiong
  surname: Wei
  fullname: Wei, Qiong
– sequence: 2
  givenname: Xuechen
  surname: Shi
  fullname: Shi, Xuechen
– sequence: 3
  givenname: Tiankai
  surname: Zhao
  fullname: Zhao, Tiankai
– sequence: 4
  givenname: Pingqiang
  surname: Cai
  fullname: Cai, Pingqiang
– sequence: 5
  givenname: Tianwu
  surname: Chen
  fullname: Chen, Tianwu
– sequence: 6
  givenname: Yao
  surname: Zhang
  fullname: Zhang, Yao
– sequence: 7
  givenname: Changjin
  surname: Huang
  fullname: Huang, Changjin
– sequence: 8
  givenname: Jian
  surname: Yang
  fullname: Yang, Jian
– sequence: 9
  givenname: Xiaodong
  surname: Chen
  fullname: Chen, Xiaodong
– sequence: 10
  givenname: Sulin
  surname: Zhang
  fullname: Zhang, Sulin
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33318201$$D View this record in MEDLINE/PubMed
BookMark eNp9UctLwzAYDzLRTT17Unr0Uv3yaNMiCGP4goEXPYc0_bZFumYmneJ_b8p0Pg7mktfvxfcbkUHrWiTkmMI5BckvVq0O5wwolDlQKnfIMB5pmosSBmQIwGRaCCb2ySiEZwAoswL2yD7nnBaRNiSXY9PZNvW2nScB50tsuyS82c4s-pfa21cMSTTV9QJDvCRzvUpM48La4yHZnekm4NHnfkCebq4fJ3fp9OH2fjKepkYUtEtRsqyshanz6CqqmtKCcqiEqIBmBZOVrEBAxbEoua5QA9AihmYSDc5KKvkBudrortbVEmsTM3rdqJW3S-3fldNW_f5p7ULN3auSccURRIGzTwHvXtYYOrW0wWDT6BbdOigmeliZSxahpz-9tiZfE4uAiw3AeBeCx9kWQkH1nai-E_XdSWRkfxjGdrqzrg9rm394Jxvec-ic39owCZBnGeMfRJqaMA
CitedBy_id crossref_primary_10_1002_mabi_202300042
crossref_primary_10_1103_PhysRevX_12_021053
crossref_primary_10_1007_s10237_023_01723_4
crossref_primary_10_1016_j_bpj_2022_02_028
crossref_primary_10_32604_biocell_2023_043796
crossref_primary_10_1103_PhysRevE_110_054411
crossref_primary_10_1073_pnas_2300380120
crossref_primary_10_1073_pnas_2119903119
crossref_primary_10_1016_j_bpj_2023_02_026
crossref_primary_10_1002_adhm_202203377
crossref_primary_10_1093_pnasnexus_pgad237
crossref_primary_10_1073_pnas_2221040120
Cites_doi 10.1083/jcb.149.2.471
10.1242/jcs.111.22.3323
10.1038/ncomms4747
10.1126/science.276.5309.75
10.1002/hep.22193
10.1073/pnas.1501278112
10.1016/S0960-9822(00)00579-0
10.1038/nmat3025
10.1016/S0960-9822(99)80261-9
10.1038/35074643
10.1083/jcb.144.6.1235
10.1038/s41567-018-0383-6
10.1089/wound.2014.0533
10.1371/journal.pone.0055172
10.1083/jcb.143.6.1713
10.1039/c0lc00641f
10.1152/ajpcell.00270.2001
10.1016/S0960-9822(00)00796-X
10.1038/nphys1269
10.1038/360179a0
10.1073/pnas.1117814109
10.1053/j.gastro.2005.01.004
10.1038/nmat3814
10.1126/science.1116995
10.1083/jcb.200609116
10.1038/ncomms7111
10.1038/ncb875
10.1083/jcb.121.3.565
10.1083/jcb.135.4.1097
10.1038/nphys3040
10.1529/biophysj.107.113670
10.1073/pnas.1106377109
10.1091/mbc.e10-06-0523
10.1038/ncomms11036
10.1091/mbc.e05-11-1070
10.1016/0301-0082(90)90037-H
ContentType Journal Article
Copyright 2020
Copyright_xml – notice: 2020
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1073/pnas.2010960117
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
CrossRef


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 33271
ExternalDocumentID PMC7777027
33318201
10_1073_pnas_2010960117
27006552
Genre Research Support, U.S. Gov't, Non-P.H.S
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIAMS NIH HHS
  grantid: R01 AR072731
– fundername: NHLBI NIH HHS
  grantid: R21 HL122902
– fundername: HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
  grantid: NIH-NHLBIR21 HL122902
– fundername: HHS | NIH | National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS)
  grantid: AR072731
– fundername: NSF | ENG | Division of Civil, Mechanical and Manufacturing Innovation (CMMI)
  grantid: NSF: CMMI-0754463/0644599
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
RHF
VQA
YIF
YIN
7X8
5PM
ID FETCH-LOGICAL-c481t-e7259d4cd63314bd118130b44b015827b7b040b3e893abea001884227ecef9173
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 13:51:49 EDT 2025
Thu Sep 04 18:58:36 EDT 2025
Wed Feb 19 02:28:56 EST 2025
Tue Jul 01 03:40:38 EDT 2025
Thu Apr 24 22:57:06 EDT 2025
Thu May 29 09:12:50 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 52
Keywords traction force microscopy
gap closure
actin ring
cell patterning
Language English
License Published under the PNAS license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c481t-e7259d4cd63314bd118130b44b015827b7b040b3e893abea001884227ecef9173
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Edited by Philip LeDuc, Carnegie Mellon University, Pittsburgh, PA, and accepted by Editorial Board Member John A. Rogers November 6, 2020 (received for review June 7, 2020)
Author contributions: Q.W., X.S., C.H., and S.Z. designed research; Q.W., X.S., T.Z., P.C., T.C., and Y.Z. performed research; Q.W., X.S., T.Z., P.C., J.Y., X.C., and S.Z. contributed new reagents/analytic tools; Q.W., X.S., T.Z., P.C., and S.Z. analyzed data; and Q.W., X.S., and S.Z. wrote the paper.
1Q.W. and X.S. contributed equally to this work.
ORCID 0000-0003-0695-828X
0000-0001-9314-5820
0000-0002-1941-1200
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/7777027
PMID 33318201
PQID 2470279672
PQPubID 23479
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7777027
proquest_miscellaneous_2470279672
pubmed_primary_33318201
crossref_primary_10_1073_pnas_2010960117
crossref_citationtrail_10_1073_pnas_2010960117
jstor_primary_27006552
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-12-29
PublicationDateYYYYMMDD 2020-12-29
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-29
  day: 29
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2020
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References e_1_3_4_3_2
e_1_3_4_2_2
e_1_3_4_1_2
e_1_3_4_9_2
e_1_3_4_8_2
e_1_3_4_7_2
e_1_3_4_6_2
e_1_3_4_5_2
e_1_3_4_4_2
e_1_3_4_22_2
e_1_3_4_23_2
e_1_3_4_20_2
e_1_3_4_21_2
e_1_3_4_26_2
e_1_3_4_27_2
e_1_3_4_24_2
e_1_3_4_25_2
e_1_3_4_28_2
e_1_3_4_29_2
e_1_3_4_30_2
e_1_3_4_11_2
e_1_3_4_34_2
e_1_3_4_12_2
e_1_3_4_33_2
e_1_3_4_32_2
e_1_3_4_10_2
e_1_3_4_31_2
e_1_3_4_15_2
e_1_3_4_16_2
e_1_3_4_13_2
e_1_3_4_36_2
e_1_3_4_14_2
e_1_3_4_35_2
e_1_3_4_19_2
e_1_3_4_17_2
e_1_3_4_18_2
References_xml – ident: e_1_3_4_3_2
  doi: 10.1083/jcb.149.2.471
– ident: e_1_3_4_12_2
  doi: 10.1242/jcs.111.22.3323
– ident: e_1_3_4_20_2
  doi: 10.1038/ncomms4747
– ident: e_1_3_4_1_2
  doi: 10.1126/science.276.5309.75
– ident: e_1_3_4_27_2
  doi: 10.1002/hep.22193
– ident: e_1_3_4_19_2
  doi: 10.1073/pnas.1501278112
– ident: e_1_3_4_9_2
  doi: 10.1016/S0960-9822(00)00579-0
– ident: e_1_3_4_34_2
  doi: 10.1038/nmat3025
– ident: e_1_3_4_5_2
  doi: 10.1016/S0960-9822(99)80261-9
– ident: e_1_3_4_7_2
  doi: 10.1038/35074643
– ident: e_1_3_4_8_2
  doi: 10.1083/jcb.144.6.1235
– ident: e_1_3_4_17_2
  doi: 10.1038/s41567-018-0383-6
– ident: e_1_3_4_24_2
  doi: 10.1089/wound.2014.0533
– ident: e_1_3_4_35_2
  doi: 10.1371/journal.pone.0055172
– ident: e_1_3_4_11_2
  doi: 10.1083/jcb.143.6.1713
– ident: e_1_3_4_21_2
  doi: 10.1039/c0lc00641f
– ident: e_1_3_4_33_2
  doi: 10.1152/ajpcell.00270.2001
– ident: e_1_3_4_2_2
  doi: 10.1016/S0960-9822(00)00796-X
– ident: e_1_3_4_36_2
  doi: 10.1038/nphys1269
– ident: e_1_3_4_13_2
  doi: 10.1038/360179a0
– ident: e_1_3_4_22_2
  doi: 10.1073/pnas.1117814109
– ident: e_1_3_4_14_2
  doi: 10.1053/j.gastro.2005.01.004
– ident: e_1_3_4_18_2
  doi: 10.1038/nmat3814
– ident: e_1_3_4_26_2
  doi: 10.1126/science.1116995
– ident: e_1_3_4_15_2
  doi: 10.1083/jcb.200609116
– ident: e_1_3_4_16_2
  doi: 10.1038/ncomms7111
– ident: e_1_3_4_4_2
  doi: 10.1038/ncb875
– ident: e_1_3_4_30_2
  doi: 10.1083/jcb.121.3.565
– ident: e_1_3_4_29_2
  doi: 10.1083/jcb.135.4.1097
– ident: e_1_3_4_6_2
  doi: 10.1038/nphys3040
– ident: e_1_3_4_32_2
  doi: 10.1529/biophysj.107.113670
– ident: e_1_3_4_31_2
  doi: 10.1073/pnas.1106377109
– ident: e_1_3_4_23_2
  doi: 10.1091/mbc.e10-06-0523
– ident: e_1_3_4_28_2
  doi: 10.1038/ncomms11036
– ident: e_1_3_4_25_2
  doi: 10.1091/mbc.e05-11-1070
– ident: e_1_3_4_10_2
  doi: 10.1016/0301-0082(90)90037-H
SSID ssj0009580
Score 2.4367847
Snippet Gap closure to eliminate physical discontinuities and restore tissue integrity is a fundamental process in normal development and repair of damaged tissues and...
SourceID pubmedcentral
proquest
pubmed
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 33263
SubjectTerms Actins - metabolism
Animals
Biological Sciences
Biomechanical Phenomena
Cell Adhesion
Cell Proliferation
Cell Shape
Dogs
Imaging, Three-Dimensional
Kinetics
Madin Darby Canine Kidney Cells
Microscopy, Atomic Force
Models, Biological
Time Factors
Wound Healing
Title Actin-ring segment switching drives nonadhesive gap closure
URI https://www.jstor.org/stable/27006552
https://www.ncbi.nlm.nih.gov/pubmed/33318201
https://www.proquest.com/docview/2470279672
https://pubmed.ncbi.nlm.nih.gov/PMC7777027
Volume 117
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1091-6490
  dateEnd: 20250330
  omitProxy: true
  ssIdentifier: ssj0009580
  issn: 0027-8424
  databaseCode: HH5
  dateStart: 19150101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1091-6490
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009580
  issn: 0027-8424
  databaseCode: KQ8
  dateStart: 19150101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1091-6490
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009580
  issn: 0027-8424
  databaseCode: KQ8
  dateStart: 19150115
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1091-6490
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009580
  issn: 0027-8424
  databaseCode: DIK
  dateStart: 19150101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1091-6490
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009580
  issn: 0027-8424
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central (Free e-resource, activated by CARLI)
  customDbUrl:
  eissn: 1091-6490
  dateEnd: 20250330
  omitProxy: true
  ssIdentifier: ssj0009580
  issn: 0027-8424
  databaseCode: RPM
  dateStart: 19150101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1di9NAFB10BdkXcdXV-kUEH1ZK1mZmkknwqYiyCJYKu1h8CTOTSVtc07pJEfz13vlMu3RB7UMoycyEzjm9uXdy5l6EXhdJTUWdkJjJCgIUpkRc5GAM6zpXScY4rk0xmM-T7OyCfpqls16na3aXdOJU_t67r-R_UIVzgKveJfsPyIZB4QR8B3zhCAjD8a8wHoOxamKjoGvV3LzWb38tOyuPrK5MRlkI73m1UEalPufrobxctS6LiHdKp-Eh1nrJwMSvEY77HSfODLTDeDid9PWLvyojCPgC7edhvcaUCh7ONgo4Eej3bcFXlh-8-c6X_esP03gK9_8JV-bbCxHYiDrcaoWyxhN8jzijtvxnsK52a6ajkc1W64wlAdeR7DXjYHd07eGGt0Z8B1GWG2YL1PUPgyohROegT_rnWVAZ-ku30R3Msgz7tZyQkjkf-WRPjLy9drdDdNf333FZrGp1XzxyXVa75aec30f3XIARjS1bjtAt1TxARx676MTlGX_zEL3r6RM5-kSBPpGlT7RFnwjoEzn6PEIXHz-cvz-LXS2NWNI86WLFIM6tqKwy-FFUVHq_MRkJSgX4gzlmggkw54Io8F-5UFwXa8wpxkxJVUNIT47RAdxRPUERYXnBU5nKQhBa1RI82ETAMBSrkarTeoBO_XSV0iWa1_VOLksjeGCk1FNd9lM9QCehw9rmWLm56bGZ_9BO6yayNMUD9MoDUoKB1G-9eKNWG-hM2QizImPQ5rEFKPT2CA8Q24EuNNDJ13evNMuFScLO4APjPr1xzGfosP-XPEcH3dVGvQAHthMvDQ__AIGamfk
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Actin-ring+segment+switching+drives+nonadhesive+gap+closure&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Wei%2C+Qiong&rft.au=Shi%2C+Xuechen&rft.au=Zhao%2C+Tiankai&rft.au=Cai%2C+Pingqiang&rft.date=2020-12-29&rft.eissn=1091-6490&rft.volume=117&rft.issue=52&rft.spage=33263&rft_id=info:doi/10.1073%2Fpnas.2010960117&rft_id=info%3Apmid%2F33318201&rft.externalDocID=33318201
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon