Co-hydrothermal carbonization of lignocellulosic biomass and waste polyvinyl chloride for high-quality solid fuel production: Hydrochar properties and its combustion and pyrolysis behaviors

[Display omitted] •The waste PVC and pinewood sawdust were employed to produce hydrochar.•Effects of hydrothermal reaction temperature and mixing ratio were investigated.•The effects of Co-HTC on the combustion and pyrolysis behavior were evaluated.•The synergistic effect and dichlorination mechanis...

Full description

Saved in:
Bibliographic Details
Published inBioresource technology Vol. 294; p. 122113
Main Authors Zhang, Xiaojuan, Zhang, Lei, Li, Aimin
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.12.2019
Subjects
Online AccessGet full text
ISSN0960-8524
1873-2976
1873-2976
DOI10.1016/j.biortech.2019.122113

Cover

Abstract [Display omitted] •The waste PVC and pinewood sawdust were employed to produce hydrochar.•Effects of hydrothermal reaction temperature and mixing ratio were investigated.•The effects of Co-HTC on the combustion and pyrolysis behavior were evaluated.•The synergistic effect and dichlorination mechanism involved were discussed. The rigid polyvinyl chloride (PVC) and pinewood sawdust (PS) were selected for co-hydrothermal carbonization (Co-HTC) process. The effects of hydrothermal reaction temperatures and the mixing ratios of raw materials were fully investigated. The results showed that hydrothermal reaction temperature increased could significantly promote the dechlorination efficiency at the mixing ratio of 1:1, which was 92.98% at 280 °C. The experimental HHV were higher than theoretical value and increased by 4.04%, 8.21% and 2.81% at the mixing ratios of 3:1, 1:1 and 1:3. The combustion behavior and the thermodynamic parameters of hydrochar were determined, and the activation energy tended to decrease. The Py-GC/MS analysis showed the changes of the distribution for the pyrolysis product. Aliphatic and aliphatic cyclic hydrocarbons were the main products of hydrochar pyrolysis, and the yield could be promoted by Co-HTC process. According to the FTIR spectrum, elimination and substitution were the primary mechanisms of dechlorination.
AbstractList The rigid polyvinyl chloride (PVC) and pinewood sawdust (PS) were selected for co-hydrothermal carbonization (Co-HTC) process. The effects of hydrothermal reaction temperatures and the mixing ratios of raw materials were fully investigated. The results showed that hydrothermal reaction temperature increased could significantly promote the dechlorination efficiency at the mixing ratio of 1:1, which was 92.98% at 280 °C. The experimental HHV were higher than theoretical value and increased by 4.04%, 8.21% and 2.81% at the mixing ratios of 3:1, 1:1 and 1:3. The combustion behavior and the thermodynamic parameters of hydrochar were determined, and the activation energy tended to decrease. The Py-GC/MS analysis showed the changes of the distribution for the pyrolysis product. Aliphatic and aliphatic cyclic hydrocarbons were the main products of hydrochar pyrolysis, and the yield could be promoted by Co-HTC process. According to the FTIR spectrum, elimination and substitution were the primary mechanisms of dechlorination.The rigid polyvinyl chloride (PVC) and pinewood sawdust (PS) were selected for co-hydrothermal carbonization (Co-HTC) process. The effects of hydrothermal reaction temperatures and the mixing ratios of raw materials were fully investigated. The results showed that hydrothermal reaction temperature increased could significantly promote the dechlorination efficiency at the mixing ratio of 1:1, which was 92.98% at 280 °C. The experimental HHV were higher than theoretical value and increased by 4.04%, 8.21% and 2.81% at the mixing ratios of 3:1, 1:1 and 1:3. The combustion behavior and the thermodynamic parameters of hydrochar were determined, and the activation energy tended to decrease. The Py-GC/MS analysis showed the changes of the distribution for the pyrolysis product. Aliphatic and aliphatic cyclic hydrocarbons were the main products of hydrochar pyrolysis, and the yield could be promoted by Co-HTC process. According to the FTIR spectrum, elimination and substitution were the primary mechanisms of dechlorination.
The rigid polyvinyl chloride (PVC) and pinewood sawdust (PS) were selected for co-hydrothermal carbonization (Co-HTC) process. The effects of hydrothermal reaction temperatures and the mixing ratios of raw materials were fully investigated. The results showed that hydrothermal reaction temperature increased could significantly promote the dechlorination efficiency at the mixing ratio of 1:1, which was 92.98% at 280 °C. The experimental HHV were higher than theoretical value and increased by 4.04%, 8.21% and 2.81% at the mixing ratios of 3:1, 1:1 and 1:3. The combustion behavior and the thermodynamic parameters of hydrochar were determined, and the activation energy tended to decrease. The Py-GC/MS analysis showed the changes of the distribution for the pyrolysis product. Aliphatic and aliphatic cyclic hydrocarbons were the main products of hydrochar pyrolysis, and the yield could be promoted by Co-HTC process. According to the FTIR spectrum, elimination and substitution were the primary mechanisms of dechlorination.
[Display omitted] •The waste PVC and pinewood sawdust were employed to produce hydrochar.•Effects of hydrothermal reaction temperature and mixing ratio were investigated.•The effects of Co-HTC on the combustion and pyrolysis behavior were evaluated.•The synergistic effect and dichlorination mechanism involved were discussed. The rigid polyvinyl chloride (PVC) and pinewood sawdust (PS) were selected for co-hydrothermal carbonization (Co-HTC) process. The effects of hydrothermal reaction temperatures and the mixing ratios of raw materials were fully investigated. The results showed that hydrothermal reaction temperature increased could significantly promote the dechlorination efficiency at the mixing ratio of 1:1, which was 92.98% at 280 °C. The experimental HHV were higher than theoretical value and increased by 4.04%, 8.21% and 2.81% at the mixing ratios of 3:1, 1:1 and 1:3. The combustion behavior and the thermodynamic parameters of hydrochar were determined, and the activation energy tended to decrease. The Py-GC/MS analysis showed the changes of the distribution for the pyrolysis product. Aliphatic and aliphatic cyclic hydrocarbons were the main products of hydrochar pyrolysis, and the yield could be promoted by Co-HTC process. According to the FTIR spectrum, elimination and substitution were the primary mechanisms of dechlorination.
ArticleNumber 122113
Author Zhang, Xiaojuan
Zhang, Lei
Li, Aimin
Author_xml – sequence: 1
  givenname: Xiaojuan
  surname: Zhang
  fullname: Zhang, Xiaojuan
– sequence: 2
  givenname: Lei
  surname: Zhang
  fullname: Zhang, Lei
  email: zhanglei78@dlut.edu.cn
– sequence: 3
  givenname: Aimin
  surname: Li
  fullname: Li, Aimin
BookMark eNqFkUFv1DAQhSNUJLaFv4B85JLF42SdBHEArYBWqsQFzpZjT5pZeePUdhaF_8Z_I-nCpZc9WXqa773xvOvsavADZtlb4FvgIN8fti35kND0W8Gh2YIQAMWLbAN1VeSiqeRVtuGN5Hm9E-Wr7DrGA-e8gEpssj97n_ezDT71GI7aMaND6wf6rRP5gfmOOXoYvEHnJucjGbaEHXWMTA-W_dIxIRu9m080zAvcOx_IIut8YD099PnjpB2lmUXvyLJuQsfG4O1kVvsP7HaNNr0OqzpiSIRnZ0qRGX9sp_i0xyqNc1iCIkXWYq9Py5_j6-xlp13EN__em-zn1y8_9rf5_fdvd_vP97kpa0h5C20hKyuqtuZiUWwHlcFuV4PgRSUBuOZ1JQqoW8mNLbEFibYoF6iWqJviJnt39l22fJwwJnWkuN5ED-inqES5sDtopLg8KhoJJYhiHZXnURN8jAE7NQY66jAr4GqtVh3U_2rVWq06V7uAH5-BhtJTYSlocpfxT2ccl5OdCIOKhnAwaCmgScp6umTxF-tTy9k
CitedBy_id crossref_primary_10_1002_idm2_12211
crossref_primary_10_1016_j_jaap_2024_106469
crossref_primary_10_1016_j_crcon_2024_100231
crossref_primary_10_3390_en16145534
crossref_primary_10_1016_j_jclepro_2021_126734
crossref_primary_10_1016_j_gerr_2023_100005
crossref_primary_10_1016_j_scp_2023_101106
crossref_primary_10_1016_j_jhazmat_2020_122833
crossref_primary_10_1016_j_chemosphere_2022_137718
crossref_primary_10_1089_ees_2023_0242
crossref_primary_10_1007_s13399_024_05853_2
crossref_primary_10_2139_ssrn_3996936
crossref_primary_10_1007_s44378_025_00041_8
crossref_primary_10_1016_j_energy_2020_118606
crossref_primary_10_1016_j_scitotenv_2022_158034
crossref_primary_10_1016_j_cej_2024_152167
crossref_primary_10_1016_j_psep_2024_02_068
crossref_primary_10_1016_j_jwpe_2021_101999
crossref_primary_10_1016_j_jenvman_2022_116854
crossref_primary_10_1252_jcej_20we148
crossref_primary_10_1016_j_tsep_2023_101953
crossref_primary_10_1016_j_renene_2021_04_058
crossref_primary_10_52396_JUSTC_2022_0049
crossref_primary_10_1016_j_jece_2021_106975
crossref_primary_10_1016_j_jece_2022_108716
crossref_primary_10_1016_j_envres_2023_117905
crossref_primary_10_1016_j_fuel_2020_117246
crossref_primary_10_1016_j_tca_2023_179466
crossref_primary_10_3390_pr11072092
crossref_primary_10_1016_j_jaap_2023_106211
crossref_primary_10_1016_j_jclepro_2021_128306
crossref_primary_10_1016_j_biortech_2020_122921
crossref_primary_10_1016_j_apenergy_2024_125089
crossref_primary_10_3390_reactions5010003
crossref_primary_10_1080_03067319_2021_2015583
crossref_primary_10_1016_j_energy_2022_124733
crossref_primary_10_3390_environments9080099
crossref_primary_10_1016_j_cej_2022_135915
crossref_primary_10_1007_s13399_024_05743_7
crossref_primary_10_1016_j_cogsc_2020_01_001
crossref_primary_10_1016_j_jaap_2021_105235
crossref_primary_10_1016_j_wasman_2022_11_039
crossref_primary_10_1016_j_scitotenv_2020_142192
crossref_primary_10_1080_17518253_2022_2028017
crossref_primary_10_1016_j_biortech_2021_126084
crossref_primary_10_1016_j_psep_2021_12_041
crossref_primary_10_1155_2022_7670819
crossref_primary_10_18586_msufbd_1329561
crossref_primary_10_1016_j_scitotenv_2023_169823
crossref_primary_10_1007_s40726_020_00172_2
crossref_primary_10_1016_j_biteb_2022_101206
crossref_primary_10_1016_j_rser_2021_111873
crossref_primary_10_3390_app14146156
crossref_primary_10_1016_j_jece_2023_111545
crossref_primary_10_1016_j_cej_2021_133142
crossref_primary_10_1016_j_cej_2022_141004
crossref_primary_10_1016_j_biombioe_2023_106750
crossref_primary_10_1016_j_psep_2023_08_010
crossref_primary_10_2139_ssrn_3940873
crossref_primary_10_1016_j_jclepro_2023_139660
crossref_primary_10_1016_j_biortech_2021_125442
crossref_primary_10_1016_j_scitotenv_2021_150094
crossref_primary_10_1134_S1070427220100018
crossref_primary_10_1016_j_scitotenv_2023_161532
crossref_primary_10_1016_j_biortech_2022_127958
crossref_primary_10_1016_j_energy_2021_122350
crossref_primary_10_1016_j_psep_2024_03_029
crossref_primary_10_1016_j_fuel_2022_123932
crossref_primary_10_1016_j_ijhydene_2020_05_256
crossref_primary_10_1061_JHTRBP_HZENG_1326
crossref_primary_10_1016_j_fuproc_2023_107793
crossref_primary_10_3390_agronomy14050955
crossref_primary_10_1016_j_renene_2023_119103
Cites_doi 10.1016/j.fuproc.2010.05.008
10.1039/C5GC02493E
10.3390/en11102612
10.3390/app7030256
10.1016/j.chemosphere.2014.07.058
10.1016/j.jes.2018.02.010
10.1016/j.jaap.2006.03.001
10.1016/j.energy.2016.12.047
10.1080/09593330.2017.1317841
10.1016/j.biortech.2016.11.097
10.1016/j.jclepro.2017.03.101
10.1039/C6SE00065G
10.1016/j.compositesb.2015.08.007
10.1016/j.apenergy.2019.02.050
10.1016/j.wasman.2014.09.027
10.1016/j.biortech.2017.10.096
10.1021/es011186k
10.1016/j.wasman.2018.08.052
10.1016/j.enconman.2014.05.068
10.1021/acs.iecr.6b03365
10.1016/j.energy.2017.10.008
10.1016/j.biortech.2017.09.098
10.1016/j.biortech.2016.07.086
10.1016/j.biortech.2009.11.060
10.1021/ef020048t
10.1016/j.fuproc.2015.04.015
10.1016/j.jclepro.2018.06.074
10.1007/s10853-007-2015-x
10.1016/j.apcatb.2016.07.007
10.1016/j.biortech.2012.06.063
10.1016/j.supflu.2003.10.006
10.1016/j.proenv.2012.10.022
10.1016/j.rser.2016.11.185
10.1016/j.fuproc.2010.05.035
10.1016/j.enconman.2018.02.004
10.1016/j.cej.2016.03.131
10.1016/j.apenergy.2013.04.084
10.1038/201068a0
10.1016/j.fuproc.2016.01.027
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright © 2019 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2019 Elsevier Ltd
– notice: Copyright © 2019 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
7X8
7S9
L.6
DOI 10.1016/j.biortech.2019.122113
DatabaseName CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Agriculture
EISSN 1873-2976
ExternalDocumentID 10_1016_j_biortech_2019_122113
S0960852419313434
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
AAAJQ
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AARKO
AATLK
AAXUO
ABFNM
ABFYP
ABGRD
ABGSF
ABJNI
ABLST
ABMAC
ABNUV
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADQTV
ADUVX
AEBSH
AEHWI
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGEKW
AGHFR
AGRDE
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLECG
BLXMC
CBWCG
CJTIS
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMC
HVGLF
HZ~
IHE
J1W
JARJE
KCYFY
KOM
LUGTX
LW9
LY6
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SAC
SDF
SDG
SDP
SEN
SES
SEW
SPC
SPCBC
SSA
SSG
SSI
SSJ
SSR
SSU
SSZ
T5K
VH1
WUQ
Y6R
~02
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7X8
7S9
L.6
ID FETCH-LOGICAL-c481t-b1b367d27b802481df17cef58120376110a0872318b60cd4eb16ed3436786ea93
IEDL.DBID .~1
ISSN 0960-8524
1873-2976
IngestDate Thu Sep 25 08:34:16 EDT 2025
Sun Sep 28 02:14:49 EDT 2025
Sat Oct 25 05:14:03 EDT 2025
Thu Apr 24 23:13:22 EDT 2025
Fri Feb 23 02:49:58 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Hydrochar properties
Pyrolysis product
Combustion behavior
Synergistic effect
Hydrothermal carbonization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c481t-b1b367d27b802481df17cef58120376110a0872318b60cd4eb16ed3436786ea93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2296141232
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2431851962
proquest_miscellaneous_2296141232
crossref_primary_10_1016_j_biortech_2019_122113
crossref_citationtrail_10_1016_j_biortech_2019_122113
elsevier_sciencedirect_doi_10_1016_j_biortech_2019_122113
PublicationCentury 2000
PublicationDate 2019-12-01
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-12-01
  day: 01
PublicationDecade 2010
PublicationTitle Bioresource technology
PublicationYear 2019
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References López, de Marco, Caballero, Laresgoiti, Adrados (b0080) 2015; 137
Li, Zhao, Lei, Li (b0060) 2017; 7
Soler, Conesa, Ortuño (b0140) 2018; 11
López, de Marco, Caballero, Laresgoiti, Adrados (b0075) 2011; 92
Jiang, Yuan, Li, Chen, Xiao, Liang, Leng, Guo, Zeng (b0045) 2016; 145
Poerschmann, Weiner, Woszidlo, Koehler, Kopinke (b0105) 2015; 119
Qi, He, Xiu, Nie, Chen (b0115) 2018; 196
El-Sayed, Mostafa (b0020) 2014; 85
Zhao, Li, Li, Yan, Ge (b0190) 2017; 152
Coats, Redfern (b0010) 1964; 201
Yang, Damgaard, Scheutz, Shao, He (b0160) 2018; 74
Déniel, Haarlemmer, Roubaud, Weiss-Hortala, Fages (b0015) 2017; 1
Masuda, Uda, Terakado, Hirasawa (b0090) 2006; 77
Miranda, Arranz, Román, Rojas, Montero, López, Cruz (b0095) 2011; 92
Zhao, Li, Yan, Yuan (b0185) 2018; 39
Chen, Ma, Peng, Lin, Yao (b0005) 2018; 249
Liu, Balasubramanian (b0065) 2012; 16
Shen (b0130) 2016; 55
Lu, Ma, Gao (b0085) 2002; 16
Qian, Wang, Zarei, Sheng (b0120) 2015; 82
Muthuraman, Namioka, Yoshikawa (b0100) 2010; 101
Ren, Song, Li, Liu, Jin, Huo (b0125) 2016; 18
Uzoejinwa, He, Wang, Abomohra, Hu, Wang (b0150) 2018; 163
Wang, Li, Chang (b0155) 2016; 297
Kubátová, Lagadec, Hawthorne (b0050) 2002; 36
Li, Fang, Luo, Yang (b0055) 2017; 200
He, Giannis, Wang (b0030) 2013; 111
Huang, Zhao, Ghosh, Fedyukhin (b0040) 2019; 240
Zhang, Xi, Zhang, Yu, Wang (b0175) 2017; 224
Hong, Chen, Wang, Ye, Qi, Yuan, Zheng, Li (b0035) 2017; 69
Qi, He, Li, Yu, Xiu, Deng, Gao (b0110) 2018; 80
Hashimoto, Suga, Wakayama, Funazukuri (b0025) 2007; 43
Zhang, Chen, Li, Dong, Xiong (b0180) 2016; 218
Yao, Ma (b0170) 2018; 247
Liu, Quek, Hoekman, Srinivasan, Balasubramanian (b0070) 2012; 123
Yao, Ma (b0165) 2017; 141
Shen, Yu, Ge, Chen, Ge, Chen (b0135) 2017; 118
Takeshita, Kato, Takahashi, Sato, Nishi (b0145) 2004; 31
Zhou, Long, Meng, Li, Zhang (b0195) 2015; 38
Qi (10.1016/j.biortech.2019.122113_b0110) 2018; 80
Zhao (10.1016/j.biortech.2019.122113_b0185) 2018; 39
Liu (10.1016/j.biortech.2019.122113_b0065) 2012; 16
Hong (10.1016/j.biortech.2019.122113_b0035) 2017; 69
Qi (10.1016/j.biortech.2019.122113_b0115) 2018; 196
Hashimoto (10.1016/j.biortech.2019.122113_b0025) 2007; 43
Zhou (10.1016/j.biortech.2019.122113_b0195) 2015; 38
Ren (10.1016/j.biortech.2019.122113_b0125) 2016; 18
López (10.1016/j.biortech.2019.122113_b0075) 2011; 92
Muthuraman (10.1016/j.biortech.2019.122113_b0100) 2010; 101
Li (10.1016/j.biortech.2019.122113_b0060) 2017; 7
Wang (10.1016/j.biortech.2019.122113_b0155) 2016; 297
Déniel (10.1016/j.biortech.2019.122113_b0015) 2017; 1
Takeshita (10.1016/j.biortech.2019.122113_b0145) 2004; 31
Zhang (10.1016/j.biortech.2019.122113_b0180) 2016; 218
Shen (10.1016/j.biortech.2019.122113_b0135) 2017; 118
Jiang (10.1016/j.biortech.2019.122113_b0045) 2016; 145
Zhang (10.1016/j.biortech.2019.122113_b0175) 2017; 224
Qian (10.1016/j.biortech.2019.122113_b0120) 2015; 82
Uzoejinwa (10.1016/j.biortech.2019.122113_b0150) 2018; 163
Huang (10.1016/j.biortech.2019.122113_b0040) 2019; 240
Poerschmann (10.1016/j.biortech.2019.122113_b0105) 2015; 119
He (10.1016/j.biortech.2019.122113_b0030) 2013; 111
Soler (10.1016/j.biortech.2019.122113_b0140) 2018; 11
Zhao (10.1016/j.biortech.2019.122113_b0190) 2017; 152
El-Sayed (10.1016/j.biortech.2019.122113_b0020) 2014; 85
Lu (10.1016/j.biortech.2019.122113_b0085) 2002; 16
Coats (10.1016/j.biortech.2019.122113_b0010) 1964; 201
Li (10.1016/j.biortech.2019.122113_b0055) 2017; 200
Shen (10.1016/j.biortech.2019.122113_b0130) 2016; 55
Masuda (10.1016/j.biortech.2019.122113_b0090) 2006; 77
Kubátová (10.1016/j.biortech.2019.122113_b0050) 2002; 36
López (10.1016/j.biortech.2019.122113_b0080) 2015; 137
Liu (10.1016/j.biortech.2019.122113_b0070) 2012; 123
Miranda (10.1016/j.biortech.2019.122113_b0095) 2011; 92
Yao (10.1016/j.biortech.2019.122113_b0165) 2017; 141
Chen (10.1016/j.biortech.2019.122113_b0005) 2018; 249
Yang (10.1016/j.biortech.2019.122113_b0160) 2018; 74
Yao (10.1016/j.biortech.2019.122113_b0170) 2018; 247
References_xml – volume: 119
  start-page: 682
  year: 2015
  end-page: 689
  ident: b0105
  article-title: Hydrothermal carbonization of poly(vinyl chloride)
  publication-title: Chemosphere
– volume: 297
  start-page: 1
  year: 2016
  end-page: 10
  ident: b0155
  article-title: Hydrothermal treatment coupled with mechanical expression at increased temperature for excess sludge dewatering: heavy metals, volatile organic compounds and combustion characteristics of hydrochar
  publication-title: Chem. Eng. J.
– volume: 1
  start-page: 555
  year: 2017
  end-page: 582
  ident: b0015
  article-title: Hydrothermal liquefaction of blackcurrant pomace and model molecules: Understanding of reaction mechanisms
  publication-title: Sustain. Energ. Fuels
– volume: 137
  start-page: 229
  year: 2015
  end-page: 239
  ident: b0080
  article-title: Upgrading of chlorinated oils coming from pyrolysis of plastic waste
  publication-title: Fuel Process. Technol.
– volume: 74
  start-page: 1
  year: 2018
  end-page: 10
  ident: b0160
  article-title: A comparison of chemical MSW compositional data between China and Denmark
  publication-title: J. Environ. Sci.
– volume: 141
  start-page: 1156
  year: 2017
  end-page: 1165
  ident: b0165
  article-title: A new approach to transforming PVC waste into energy via combined hydrothermal carbonization and fast pyrolysis
  publication-title: Energy
– volume: 201
  start-page: 68
  year: 1964
  end-page: 69
  ident: b0010
  article-title: Kinetic parameters from thermogravimetric data
  publication-title: Nature
– volume: 85
  start-page: 165
  year: 2014
  end-page: 172
  ident: b0020
  article-title: Pyrolysis characteristics and kinetic parameters determination of biomass fuel powders by differential thermal gravimetric analysis (TGA/DTG)
  publication-title: Energy Conv. Manag.
– volume: 16
  start-page: 1251
  year: 2002
  end-page: 1255
  ident: b0085
  article-title: Study on the pressurized hydrolysis dechlorination of PVC
  publication-title: Energy Fuels
– volume: 196
  start-page: 331
  year: 2018
  end-page: 339
  ident: b0115
  article-title: Partial oxidation treatment of waste polyvinyl chloride in critical water: preparation of benzaldehyde/acetophenone and dechlorination
  publication-title: J. Clean Prod.
– volume: 224
  start-page: 656
  year: 2017
  end-page: 661
  ident: b0175
  article-title: Efficient catalytic system for the direct transformation of lignocellulosic biomass to furfural and 5-hydroxymethylfurfural
  publication-title: Bioresour. Technol.
– volume: 163
  start-page: 468
  year: 2018
  end-page: 492
  ident: b0150
  article-title: Co-pyrolysis of biomass and waste plastics as a thermochemical conversion technology for high-grade biofuel production: recent progress and future directions elsewhere worldwide
  publication-title: Energy Conv. Manag.
– volume: 218
  start-page: 1157
  year: 2016
  end-page: 1162
  ident: b0180
  article-title: Physicochemical properties and combustion behavior of duckweed during wet torrefaction
  publication-title: Bioresour. Technol.
– volume: 43
  start-page: 2457
  year: 2007
  end-page: 2462
  ident: b0025
  article-title: Hydrothermal dechlorination of PVC in the presence of ammonia
  publication-title: J. Mater. Sci.
– volume: 101
  start-page: 2477
  year: 2010
  end-page: 2482
  ident: b0100
  article-title: A comparison of co-combustion characteristics of coal with wood and hydrothermally treated municipal solid waste
  publication-title: Bioresour. Technol.
– volume: 247
  start-page: 302
  year: 2018
  end-page: 309
  ident: b0170
  article-title: Characteristics of co-hydrothermal carbonization on polyvinyl chloride wastes with bamboo
  publication-title: Bioresour. Technol.
– volume: 31
  start-page: 185
  year: 2004
  end-page: 193
  ident: b0145
  article-title: Basic study on treatment of waste polyvinyl chloride plastics by hydrothermal decomposition in subcritical and supercritical regions
  publication-title: J. Supercrit. Fluids
– volume: 80
  start-page: 1
  year: 2018
  end-page: 9
  ident: b0110
  article-title: A novel treatment method of PVC-medical waste by near-critical methanol: dechlorination and additives recovery
  publication-title: Waste Manage.
– volume: 69
  start-page: 168
  year: 2017
  end-page: 176
  ident: b0035
  article-title: Intensification of municipal solid waste disposal in China
  publication-title: Renew. Sust. Energ. Rev.
– volume: 36
  start-page: 1337
  year: 2002
  end-page: 1343
  ident: b0050
  article-title: Dechlorination of lindane, dieldrin, tetrachloroethane, trichloroethene, and PVC in subcritical water
  publication-title: Environ. Sci. Technol.
– volume: 111
  start-page: 257
  year: 2013
  end-page: 266
  ident: b0030
  article-title: Conversion of sewage sludge to clean solid fuel using hydrothermal carbonization: hydrochar fuel characteristics and combustion behavior
  publication-title: Appl. Energy
– volume: 240
  start-page: 882
  year: 2019
  end-page: 892
  ident: b0040
  article-title: Co-hydrothermal carbonization of polyvinyl chloride and moist biomass to remove chlorine and inorganics for clean fuel production
  publication-title: Appl. Energy
– volume: 145
  start-page: 109
  year: 2016
  end-page: 115
  ident: b0045
  article-title: Co-pelletization of sewage sludge and biomass: thermogravimetric analysis and ash deposits
  publication-title: Fuel Process. Technol.
– volume: 92
  start-page: 278
  year: 2011
  end-page: 283
  ident: b0095
  article-title: Characterization of grape pomace and pyrenean oak pellets
  publication-title: Fuel Process. Technol.
– volume: 11
  start-page: 2612
  year: 2018
  end-page: 2626
  ident: b0140
  article-title: Application of subcritical water to dechlorinate polyvinyl chloride electric wires
  publication-title: Energies
– volume: 55
  start-page: 11638
  year: 2016
  end-page: 11644
  ident: b0130
  article-title: Dechlorination of poly(vinyl chloride) wastes via hydrothermal carbonization with lignin for clean solid fuel production
  publication-title: Ind. Eng. Chem. Res.
– volume: 92
  start-page: 253
  year: 2011
  end-page: 260
  ident: b0075
  article-title: Dechlorination of fuels in pyrolysis of PVC containing plastic wastes
  publication-title: Fuel Process. Technol.
– volume: 118
  start-page: 312
  year: 2017
  end-page: 323
  ident: b0135
  article-title: Hydrothermal carbonization of medical wastes and lignocellulosic biomass for solid fuel production from lab-scale to pilot-scale
  publication-title: Energy
– volume: 77
  start-page: 159
  year: 2006
  end-page: 168
  ident: b0090
  article-title: Pyrolysis study of poly(vinyl chloride)–metal oxide mixtures: Quantitative product analysis and the chlorine fixing ability of metal oxides
  publication-title: J. Anal. Appl. Pyrolysis
– volume: 249
  start-page: 900
  year: 2018
  end-page: 907
  ident: b0005
  article-title: Conversion of sweet potato waste to solid fuel via hydrothermal carbonization
  publication-title: Bioresour. Technol.
– volume: 38
  start-page: 194
  year: 2015
  end-page: 200
  ident: b0195
  article-title: Thermogravimetric characteristics of typical municipal solid waste fractions during co-pyrolysis
  publication-title: Waste Manage.
– volume: 152
  start-page: 38
  year: 2017
  end-page: 46
  ident: b0190
  article-title: The study of nickel effect on the hydrothermal dechlorination of PVC
  publication-title: J. Clean Prod.
– volume: 200
  start-page: 182
  year: 2017
  end-page: 191
  ident: b0055
  article-title: Direct conversion of biomass components to the biofuel methyl levulinate catalyzed by acid-base bifunctional zirconia-zeolites
  publication-title: Appl. Catal. B-Environ.
– volume: 123
  start-page: 646
  year: 2012
  end-page: 652
  ident: b0070
  article-title: Thermogravimetric investigation of hydrochar-lignite co-combustion
  publication-title: Bioresour. Technol.
– volume: 18
  start-page: 3075
  year: 2016
  end-page: 3081
  ident: b0125
  article-title: Production of 2,5-hexanedione and 3-methyl-2-cyclopenten-1-one from 5-hydroxymethylfurfural
  publication-title: Green Chem.
– volume: 39
  start-page: 977
  year: 2018
  end-page: 985
  ident: b0185
  article-title: Dechlorination of PVC wastes by hydrothermal treatment using alkaline additives
  publication-title: Environ. Technol.
– volume: 7
  start-page: 256
  year: 2017
  end-page: 265
  ident: b0060
  article-title: Understanding hydrothermal dechlorination of PVC by focusing on the operating conditions and hydrochar characteristics
  publication-title: Appl. Sci.
– volume: 16
  start-page: 159
  year: 2012
  end-page: 166
  ident: b0065
  article-title: Hydrothermal carbonization of waste biomass for energy generation
  publication-title: Proc. Environ. Sci.
– volume: 82
  start-page: 23
  year: 2015
  end-page: 29
  ident: b0120
  article-title: Effect of hydrothermal pretreatment on the properties of moso bamboo particles reinforced polyvinyl chloride composites
  publication-title: Compos. Pt. B-Eng.
– volume: 92
  start-page: 253
  issue: 2
  year: 2011
  ident: 10.1016/j.biortech.2019.122113_b0075
  article-title: Dechlorination of fuels in pyrolysis of PVC containing plastic wastes
  publication-title: Fuel Process. Technol.
  doi: 10.1016/j.fuproc.2010.05.008
– volume: 18
  start-page: 3075
  issue: 10
  year: 2016
  ident: 10.1016/j.biortech.2019.122113_b0125
  article-title: Production of 2,5-hexanedione and 3-methyl-2-cyclopenten-1-one from 5-hydroxymethylfurfural
  publication-title: Green Chem.
  doi: 10.1039/C5GC02493E
– volume: 11
  start-page: 2612
  issue: 10
  year: 2018
  ident: 10.1016/j.biortech.2019.122113_b0140
  article-title: Application of subcritical water to dechlorinate polyvinyl chloride electric wires
  publication-title: Energies
  doi: 10.3390/en11102612
– volume: 7
  start-page: 256
  issue: 3
  year: 2017
  ident: 10.1016/j.biortech.2019.122113_b0060
  article-title: Understanding hydrothermal dechlorination of PVC by focusing on the operating conditions and hydrochar characteristics
  publication-title: Appl. Sci.
  doi: 10.3390/app7030256
– volume: 119
  start-page: 682
  year: 2015
  ident: 10.1016/j.biortech.2019.122113_b0105
  article-title: Hydrothermal carbonization of poly(vinyl chloride)
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2014.07.058
– volume: 74
  start-page: 1
  year: 2018
  ident: 10.1016/j.biortech.2019.122113_b0160
  article-title: A comparison of chemical MSW compositional data between China and Denmark
  publication-title: J. Environ. Sci.
  doi: 10.1016/j.jes.2018.02.010
– volume: 77
  start-page: 159
  issue: 2
  year: 2006
  ident: 10.1016/j.biortech.2019.122113_b0090
  article-title: Pyrolysis study of poly(vinyl chloride)–metal oxide mixtures: Quantitative product analysis and the chlorine fixing ability of metal oxides
  publication-title: J. Anal. Appl. Pyrolysis
  doi: 10.1016/j.jaap.2006.03.001
– volume: 118
  start-page: 312
  year: 2017
  ident: 10.1016/j.biortech.2019.122113_b0135
  article-title: Hydrothermal carbonization of medical wastes and lignocellulosic biomass for solid fuel production from lab-scale to pilot-scale
  publication-title: Energy
  doi: 10.1016/j.energy.2016.12.047
– volume: 39
  start-page: 977
  issue: 8
  year: 2018
  ident: 10.1016/j.biortech.2019.122113_b0185
  article-title: Dechlorination of PVC wastes by hydrothermal treatment using alkaline additives
  publication-title: Environ. Technol.
  doi: 10.1080/09593330.2017.1317841
– volume: 224
  start-page: 656
  year: 2017
  ident: 10.1016/j.biortech.2019.122113_b0175
  article-title: Efficient catalytic system for the direct transformation of lignocellulosic biomass to furfural and 5-hydroxymethylfurfural
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2016.11.097
– volume: 152
  start-page: 38
  year: 2017
  ident: 10.1016/j.biortech.2019.122113_b0190
  article-title: The study of nickel effect on the hydrothermal dechlorination of PVC
  publication-title: J. Clean Prod.
  doi: 10.1016/j.jclepro.2017.03.101
– volume: 1
  start-page: 555
  issue: 3
  year: 2017
  ident: 10.1016/j.biortech.2019.122113_b0015
  article-title: Hydrothermal liquefaction of blackcurrant pomace and model molecules: Understanding of reaction mechanisms
  publication-title: Sustain. Energ. Fuels
  doi: 10.1039/C6SE00065G
– volume: 82
  start-page: 23
  year: 2015
  ident: 10.1016/j.biortech.2019.122113_b0120
  article-title: Effect of hydrothermal pretreatment on the properties of moso bamboo particles reinforced polyvinyl chloride composites
  publication-title: Compos. Pt. B-Eng.
  doi: 10.1016/j.compositesb.2015.08.007
– volume: 240
  start-page: 882
  year: 2019
  ident: 10.1016/j.biortech.2019.122113_b0040
  article-title: Co-hydrothermal carbonization of polyvinyl chloride and moist biomass to remove chlorine and inorganics for clean fuel production
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.02.050
– volume: 38
  start-page: 194
  year: 2015
  ident: 10.1016/j.biortech.2019.122113_b0195
  article-title: Thermogravimetric characteristics of typical municipal solid waste fractions during co-pyrolysis
  publication-title: Waste Manage.
  doi: 10.1016/j.wasman.2014.09.027
– volume: 249
  start-page: 900
  year: 2018
  ident: 10.1016/j.biortech.2019.122113_b0005
  article-title: Conversion of sweet potato waste to solid fuel via hydrothermal carbonization
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2017.10.096
– volume: 36
  start-page: 1337
  issue: 6
  year: 2002
  ident: 10.1016/j.biortech.2019.122113_b0050
  article-title: Dechlorination of lindane, dieldrin, tetrachloroethane, trichloroethene, and PVC in subcritical water
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es011186k
– volume: 80
  start-page: 1
  year: 2018
  ident: 10.1016/j.biortech.2019.122113_b0110
  article-title: A novel treatment method of PVC-medical waste by near-critical methanol: dechlorination and additives recovery
  publication-title: Waste Manage.
  doi: 10.1016/j.wasman.2018.08.052
– volume: 85
  start-page: 165
  year: 2014
  ident: 10.1016/j.biortech.2019.122113_b0020
  article-title: Pyrolysis characteristics and kinetic parameters determination of biomass fuel powders by differential thermal gravimetric analysis (TGA/DTG)
  publication-title: Energy Conv. Manag.
  doi: 10.1016/j.enconman.2014.05.068
– volume: 55
  start-page: 11638
  issue: 44
  year: 2016
  ident: 10.1016/j.biortech.2019.122113_b0130
  article-title: Dechlorination of poly(vinyl chloride) wastes via hydrothermal carbonization with lignin for clean solid fuel production
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.6b03365
– volume: 141
  start-page: 1156
  year: 2017
  ident: 10.1016/j.biortech.2019.122113_b0165
  article-title: A new approach to transforming PVC waste into energy via combined hydrothermal carbonization and fast pyrolysis
  publication-title: Energy
  doi: 10.1016/j.energy.2017.10.008
– volume: 247
  start-page: 302
  year: 2018
  ident: 10.1016/j.biortech.2019.122113_b0170
  article-title: Characteristics of co-hydrothermal carbonization on polyvinyl chloride wastes with bamboo
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2017.09.098
– volume: 218
  start-page: 1157
  year: 2016
  ident: 10.1016/j.biortech.2019.122113_b0180
  article-title: Physicochemical properties and combustion behavior of duckweed during wet torrefaction
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2016.07.086
– volume: 101
  start-page: 2477
  issue: 7
  year: 2010
  ident: 10.1016/j.biortech.2019.122113_b0100
  article-title: A comparison of co-combustion characteristics of coal with wood and hydrothermally treated municipal solid waste
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2009.11.060
– volume: 16
  start-page: 1251
  issue: 5
  year: 2002
  ident: 10.1016/j.biortech.2019.122113_b0085
  article-title: Study on the pressurized hydrolysis dechlorination of PVC
  publication-title: Energy Fuels
  doi: 10.1021/ef020048t
– volume: 137
  start-page: 229
  year: 2015
  ident: 10.1016/j.biortech.2019.122113_b0080
  article-title: Upgrading of chlorinated oils coming from pyrolysis of plastic waste
  publication-title: Fuel Process. Technol.
  doi: 10.1016/j.fuproc.2015.04.015
– volume: 196
  start-page: 331
  year: 2018
  ident: 10.1016/j.biortech.2019.122113_b0115
  article-title: Partial oxidation treatment of waste polyvinyl chloride in critical water: preparation of benzaldehyde/acetophenone and dechlorination
  publication-title: J. Clean Prod.
  doi: 10.1016/j.jclepro.2018.06.074
– volume: 43
  start-page: 2457
  issue: 7
  year: 2007
  ident: 10.1016/j.biortech.2019.122113_b0025
  article-title: Hydrothermal dechlorination of PVC in the presence of ammonia
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-007-2015-x
– volume: 200
  start-page: 182
  year: 2017
  ident: 10.1016/j.biortech.2019.122113_b0055
  article-title: Direct conversion of biomass components to the biofuel methyl levulinate catalyzed by acid-base bifunctional zirconia-zeolites
  publication-title: Appl. Catal. B-Environ.
  doi: 10.1016/j.apcatb.2016.07.007
– volume: 123
  start-page: 646
  year: 2012
  ident: 10.1016/j.biortech.2019.122113_b0070
  article-title: Thermogravimetric investigation of hydrochar-lignite co-combustion
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2012.06.063
– volume: 31
  start-page: 185
  issue: 2
  year: 2004
  ident: 10.1016/j.biortech.2019.122113_b0145
  article-title: Basic study on treatment of waste polyvinyl chloride plastics by hydrothermal decomposition in subcritical and supercritical regions
  publication-title: J. Supercrit. Fluids
  doi: 10.1016/j.supflu.2003.10.006
– volume: 16
  start-page: 159
  year: 2012
  ident: 10.1016/j.biortech.2019.122113_b0065
  article-title: Hydrothermal carbonization of waste biomass for energy generation
  publication-title: Proc. Environ. Sci.
  doi: 10.1016/j.proenv.2012.10.022
– volume: 69
  start-page: 168
  year: 2017
  ident: 10.1016/j.biortech.2019.122113_b0035
  article-title: Intensification of municipal solid waste disposal in China
  publication-title: Renew. Sust. Energ. Rev.
  doi: 10.1016/j.rser.2016.11.185
– volume: 92
  start-page: 278
  issue: 2
  year: 2011
  ident: 10.1016/j.biortech.2019.122113_b0095
  article-title: Characterization of grape pomace and pyrenean oak pellets
  publication-title: Fuel Process. Technol.
  doi: 10.1016/j.fuproc.2010.05.035
– volume: 163
  start-page: 468
  year: 2018
  ident: 10.1016/j.biortech.2019.122113_b0150
  article-title: Co-pyrolysis of biomass and waste plastics as a thermochemical conversion technology for high-grade biofuel production: recent progress and future directions elsewhere worldwide
  publication-title: Energy Conv. Manag.
  doi: 10.1016/j.enconman.2018.02.004
– volume: 297
  start-page: 1
  year: 2016
  ident: 10.1016/j.biortech.2019.122113_b0155
  article-title: Hydrothermal treatment coupled with mechanical expression at increased temperature for excess sludge dewatering: heavy metals, volatile organic compounds and combustion characteristics of hydrochar
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2016.03.131
– volume: 111
  start-page: 257
  year: 2013
  ident: 10.1016/j.biortech.2019.122113_b0030
  article-title: Conversion of sewage sludge to clean solid fuel using hydrothermal carbonization: hydrochar fuel characteristics and combustion behavior
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2013.04.084
– volume: 201
  start-page: 68
  year: 1964
  ident: 10.1016/j.biortech.2019.122113_b0010
  article-title: Kinetic parameters from thermogravimetric data
  publication-title: Nature
  doi: 10.1038/201068a0
– volume: 145
  start-page: 109
  year: 2016
  ident: 10.1016/j.biortech.2019.122113_b0045
  article-title: Co-pelletization of sewage sludge and biomass: thermogravimetric analysis and ash deposits
  publication-title: Fuel Process. Technol.
  doi: 10.1016/j.fuproc.2016.01.027
SSID ssj0003172
Score 2.563388
Snippet [Display omitted] •The waste PVC and pinewood sawdust were employed to produce hydrochar.•Effects of hydrothermal reaction temperature and mixing ratio were...
The rigid polyvinyl chloride (PVC) and pinewood sawdust (PS) were selected for co-hydrothermal carbonization (Co-HTC) process. The effects of hydrothermal...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 122113
SubjectTerms activation energy
biomass
carbonization
combustion
Combustion behavior
dechlorination
Fourier transform infrared spectroscopy
fuel production
gas chromatography-mass spectrometry
hydrocarbons
Hydrochar properties
hydrochars
Hydrothermal carbonization
lignocellulose
poly(vinyl chloride)
pyrolysis
Pyrolysis product
sawdust
Synergistic effect
temperature
wastes
Title Co-hydrothermal carbonization of lignocellulosic biomass and waste polyvinyl chloride for high-quality solid fuel production: Hydrochar properties and its combustion and pyrolysis behaviors
URI https://dx.doi.org/10.1016/j.biortech.2019.122113
https://www.proquest.com/docview/2296141232
https://www.proquest.com/docview/2431851962
Volume 294
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-2976
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003172
  issn: 0960-8524
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-2976
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003172
  issn: 0960-8524
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-2976
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003172
  issn: 0960-8524
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1873-2976
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003172
  issn: 0960-8524
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-2976
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003172
  issn: 0960-8524
  databaseCode: AKRWK
  dateStart: 19910101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3BbtQwELWq9gAcEBQQpbQyElfvJrGdxNxWq1YLiF6gUm-RHTttqpBE2V2qXPgz_o2ZJC4FCXrguF7bsfImM283M28IeesSaZ2RMYtCXTBRcMV0KjUD-MFCRJS7oZ3Pp7N4dS4-XMiLHbL0tTCYVjn5_tGnD956GplPd3PeluX8M5LvVEIEUjzkgqMmqBAJdjGYff-V5gHxcXiTAJMZzr5TJXw9MyVmtA4vJUI1CyP4NcT_FqD-cNVD_Dl9Qh5PxJEuxrM9JTuu3iePFpfdJJ7h9smDpe_eBt_cERp8Rn4sG3bV224ot_oK2-S6M42vwaRNQavysm7wX_xt1QBwFMvygVdTXVt6o8EUaNtU_bey7mHxFabtWUeB8FLUO2ZjaWZPwZBLS4utq2g7SsnC9u_oCi-N9V042mImtxt3LjdrCnfeYEsxOAcOtX3XDDIp1CsIrJ-T89OTL8sVmxo3sFyk4YaZ0PA4sVFiUpRMC20RJrkrJJCJABwaMA4dpAkwy9TEQW4FxIvYWcAQImfstOIvyG7d1O4lobBLxJNccUBWFLJQgTSOB7mWWiXcuAMiPVpZPqmaY3ONKvPpa9eZRzlDlLMR5QMyv13Xjroe965Q3hiy3yw0g-Bz79o33noysANEU9eu2a6zKFJAkJDX_mOOwBJ3cJXRq_84wyF5iJ_GVJzXZHfTbd0REKqNOR6emGOyt3j_cXX2E8RlJbY
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZKORQOCAqI8jQSV-8mfuTBrVpRLdD2Qiv1ZtmJ06YKcZTdbZUL_4z_xkweUJCgB65-xfJMZr7EM98Q8s7FKndWRYyHpmCyECkziTIMxA8aInnm-nI-R8fR8lR-OlNnW2Qx5cJgWOVo-web3lvrsWU-nua8Kcv5FwTfiQIPlIpQSCHvkLtS8Ri_wGbffsV5gIPsrxJgNMPhN9KEL2e2xJDW_lYiTGchh88h8TcP9Yet7h3QwUPyYESOdH_Y3COy5epdcn__vB3ZM9wu2VlM5dug5wbT4GPyfeHZRZe3fb7VV1gmM631UxIm9QWtyvPa42_8TeVBchTz8gFYU1Pn9NqALtDGV91VWXcw-QLj9nJHAfFSJDxmQ25mR0GTy5wWG1fRZuCSheXf0yU-GhO8sLXBUG43rFyuVxSO3mJNMdgHNjVd63ueFDpRCKyekNODDyeLJRsrN7BMJuGa2dCKKM55bBPkTAvzIowzVyhAEwFYNIAcJkhigJaJjYIsl-AwIpeDEMF1Rs6k4inZrn3tnhEKq3ARZ6mQMZeFKtJAWSeCzCiTxsK6PaImaelspDXH6hqVnuLXLvUkZY1S1oOU98j857xmIPa4dUY6KYP-TUU1eJ9b576dtEeDHqA0Te38ZqU5TwEhIbD9xxiJOe5gK_nz_9jDG7KzPDk61Icfjz-_IPewZ4jLeUm21-3GvQJ0tbav-7fnB07cJ0s
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Co-hydrothermal+carbonization+of+lignocellulosic+biomass+and+waste+polyvinyl+chloride+for+high-quality+solid+fuel+production%3A+Hydrochar+properties+and+its+combustion+and+pyrolysis+behaviors&rft.jtitle=Bioresource+technology&rft.au=Zhang%2C+Xiaojuan&rft.au=Zhang%2C+Lei&rft.au=Li%2C+Aimin&rft.date=2019-12-01&rft.issn=1873-2976&rft.eissn=1873-2976&rft.volume=294&rft.spage=122113&rft_id=info:doi/10.1016%2Fj.biortech.2019.122113&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-8524&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-8524&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-8524&client=summon