Co-hydrothermal carbonization of lignocellulosic biomass and waste polyvinyl chloride for high-quality solid fuel production: Hydrochar properties and its combustion and pyrolysis behaviors
[Display omitted] •The waste PVC and pinewood sawdust were employed to produce hydrochar.•Effects of hydrothermal reaction temperature and mixing ratio were investigated.•The effects of Co-HTC on the combustion and pyrolysis behavior were evaluated.•The synergistic effect and dichlorination mechanis...
Saved in:
| Published in | Bioresource technology Vol. 294; p. 122113 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
01.12.2019
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0960-8524 1873-2976 1873-2976 |
| DOI | 10.1016/j.biortech.2019.122113 |
Cover
| Abstract | [Display omitted]
•The waste PVC and pinewood sawdust were employed to produce hydrochar.•Effects of hydrothermal reaction temperature and mixing ratio were investigated.•The effects of Co-HTC on the combustion and pyrolysis behavior were evaluated.•The synergistic effect and dichlorination mechanism involved were discussed.
The rigid polyvinyl chloride (PVC) and pinewood sawdust (PS) were selected for co-hydrothermal carbonization (Co-HTC) process. The effects of hydrothermal reaction temperatures and the mixing ratios of raw materials were fully investigated. The results showed that hydrothermal reaction temperature increased could significantly promote the dechlorination efficiency at the mixing ratio of 1:1, which was 92.98% at 280 °C. The experimental HHV were higher than theoretical value and increased by 4.04%, 8.21% and 2.81% at the mixing ratios of 3:1, 1:1 and 1:3. The combustion behavior and the thermodynamic parameters of hydrochar were determined, and the activation energy tended to decrease. The Py-GC/MS analysis showed the changes of the distribution for the pyrolysis product. Aliphatic and aliphatic cyclic hydrocarbons were the main products of hydrochar pyrolysis, and the yield could be promoted by Co-HTC process. According to the FTIR spectrum, elimination and substitution were the primary mechanisms of dechlorination. |
|---|---|
| AbstractList | The rigid polyvinyl chloride (PVC) and pinewood sawdust (PS) were selected for co-hydrothermal carbonization (Co-HTC) process. The effects of hydrothermal reaction temperatures and the mixing ratios of raw materials were fully investigated. The results showed that hydrothermal reaction temperature increased could significantly promote the dechlorination efficiency at the mixing ratio of 1:1, which was 92.98% at 280 °C. The experimental HHV were higher than theoretical value and increased by 4.04%, 8.21% and 2.81% at the mixing ratios of 3:1, 1:1 and 1:3. The combustion behavior and the thermodynamic parameters of hydrochar were determined, and the activation energy tended to decrease. The Py-GC/MS analysis showed the changes of the distribution for the pyrolysis product. Aliphatic and aliphatic cyclic hydrocarbons were the main products of hydrochar pyrolysis, and the yield could be promoted by Co-HTC process. According to the FTIR spectrum, elimination and substitution were the primary mechanisms of dechlorination.The rigid polyvinyl chloride (PVC) and pinewood sawdust (PS) were selected for co-hydrothermal carbonization (Co-HTC) process. The effects of hydrothermal reaction temperatures and the mixing ratios of raw materials were fully investigated. The results showed that hydrothermal reaction temperature increased could significantly promote the dechlorination efficiency at the mixing ratio of 1:1, which was 92.98% at 280 °C. The experimental HHV were higher than theoretical value and increased by 4.04%, 8.21% and 2.81% at the mixing ratios of 3:1, 1:1 and 1:3. The combustion behavior and the thermodynamic parameters of hydrochar were determined, and the activation energy tended to decrease. The Py-GC/MS analysis showed the changes of the distribution for the pyrolysis product. Aliphatic and aliphatic cyclic hydrocarbons were the main products of hydrochar pyrolysis, and the yield could be promoted by Co-HTC process. According to the FTIR spectrum, elimination and substitution were the primary mechanisms of dechlorination. The rigid polyvinyl chloride (PVC) and pinewood sawdust (PS) were selected for co-hydrothermal carbonization (Co-HTC) process. The effects of hydrothermal reaction temperatures and the mixing ratios of raw materials were fully investigated. The results showed that hydrothermal reaction temperature increased could significantly promote the dechlorination efficiency at the mixing ratio of 1:1, which was 92.98% at 280 °C. The experimental HHV were higher than theoretical value and increased by 4.04%, 8.21% and 2.81% at the mixing ratios of 3:1, 1:1 and 1:3. The combustion behavior and the thermodynamic parameters of hydrochar were determined, and the activation energy tended to decrease. The Py-GC/MS analysis showed the changes of the distribution for the pyrolysis product. Aliphatic and aliphatic cyclic hydrocarbons were the main products of hydrochar pyrolysis, and the yield could be promoted by Co-HTC process. According to the FTIR spectrum, elimination and substitution were the primary mechanisms of dechlorination. [Display omitted] •The waste PVC and pinewood sawdust were employed to produce hydrochar.•Effects of hydrothermal reaction temperature and mixing ratio were investigated.•The effects of Co-HTC on the combustion and pyrolysis behavior were evaluated.•The synergistic effect and dichlorination mechanism involved were discussed. The rigid polyvinyl chloride (PVC) and pinewood sawdust (PS) were selected for co-hydrothermal carbonization (Co-HTC) process. The effects of hydrothermal reaction temperatures and the mixing ratios of raw materials were fully investigated. The results showed that hydrothermal reaction temperature increased could significantly promote the dechlorination efficiency at the mixing ratio of 1:1, which was 92.98% at 280 °C. The experimental HHV were higher than theoretical value and increased by 4.04%, 8.21% and 2.81% at the mixing ratios of 3:1, 1:1 and 1:3. The combustion behavior and the thermodynamic parameters of hydrochar were determined, and the activation energy tended to decrease. The Py-GC/MS analysis showed the changes of the distribution for the pyrolysis product. Aliphatic and aliphatic cyclic hydrocarbons were the main products of hydrochar pyrolysis, and the yield could be promoted by Co-HTC process. According to the FTIR spectrum, elimination and substitution were the primary mechanisms of dechlorination. |
| ArticleNumber | 122113 |
| Author | Zhang, Xiaojuan Zhang, Lei Li, Aimin |
| Author_xml | – sequence: 1 givenname: Xiaojuan surname: Zhang fullname: Zhang, Xiaojuan – sequence: 2 givenname: Lei surname: Zhang fullname: Zhang, Lei email: zhanglei78@dlut.edu.cn – sequence: 3 givenname: Aimin surname: Li fullname: Li, Aimin |
| BookMark | eNqFkUFv1DAQhSNUJLaFv4B85JLF42SdBHEArYBWqsQFzpZjT5pZeePUdhaF_8Z_I-nCpZc9WXqa773xvOvsavADZtlb4FvgIN8fti35kND0W8Gh2YIQAMWLbAN1VeSiqeRVtuGN5Hm9E-Wr7DrGA-e8gEpssj97n_ezDT71GI7aMaND6wf6rRP5gfmOOXoYvEHnJucjGbaEHXWMTA-W_dIxIRu9m080zAvcOx_IIut8YD099PnjpB2lmUXvyLJuQsfG4O1kVvsP7HaNNr0OqzpiSIRnZ0qRGX9sp_i0xyqNc1iCIkXWYq9Py5_j6-xlp13EN__em-zn1y8_9rf5_fdvd_vP97kpa0h5C20hKyuqtuZiUWwHlcFuV4PgRSUBuOZ1JQqoW8mNLbEFibYoF6iWqJviJnt39l22fJwwJnWkuN5ED-inqES5sDtopLg8KhoJJYhiHZXnURN8jAE7NQY66jAr4GqtVh3U_2rVWq06V7uAH5-BhtJTYSlocpfxT2ccl5OdCIOKhnAwaCmgScp6umTxF-tTy9k |
| CitedBy_id | crossref_primary_10_1002_idm2_12211 crossref_primary_10_1016_j_jaap_2024_106469 crossref_primary_10_1016_j_crcon_2024_100231 crossref_primary_10_3390_en16145534 crossref_primary_10_1016_j_jclepro_2021_126734 crossref_primary_10_1016_j_gerr_2023_100005 crossref_primary_10_1016_j_scp_2023_101106 crossref_primary_10_1016_j_jhazmat_2020_122833 crossref_primary_10_1016_j_chemosphere_2022_137718 crossref_primary_10_1089_ees_2023_0242 crossref_primary_10_1007_s13399_024_05853_2 crossref_primary_10_2139_ssrn_3996936 crossref_primary_10_1007_s44378_025_00041_8 crossref_primary_10_1016_j_energy_2020_118606 crossref_primary_10_1016_j_scitotenv_2022_158034 crossref_primary_10_1016_j_cej_2024_152167 crossref_primary_10_1016_j_psep_2024_02_068 crossref_primary_10_1016_j_jwpe_2021_101999 crossref_primary_10_1016_j_jenvman_2022_116854 crossref_primary_10_1252_jcej_20we148 crossref_primary_10_1016_j_tsep_2023_101953 crossref_primary_10_1016_j_renene_2021_04_058 crossref_primary_10_52396_JUSTC_2022_0049 crossref_primary_10_1016_j_jece_2021_106975 crossref_primary_10_1016_j_jece_2022_108716 crossref_primary_10_1016_j_envres_2023_117905 crossref_primary_10_1016_j_fuel_2020_117246 crossref_primary_10_1016_j_tca_2023_179466 crossref_primary_10_3390_pr11072092 crossref_primary_10_1016_j_jaap_2023_106211 crossref_primary_10_1016_j_jclepro_2021_128306 crossref_primary_10_1016_j_biortech_2020_122921 crossref_primary_10_1016_j_apenergy_2024_125089 crossref_primary_10_3390_reactions5010003 crossref_primary_10_1080_03067319_2021_2015583 crossref_primary_10_1016_j_energy_2022_124733 crossref_primary_10_3390_environments9080099 crossref_primary_10_1016_j_cej_2022_135915 crossref_primary_10_1007_s13399_024_05743_7 crossref_primary_10_1016_j_cogsc_2020_01_001 crossref_primary_10_1016_j_jaap_2021_105235 crossref_primary_10_1016_j_wasman_2022_11_039 crossref_primary_10_1016_j_scitotenv_2020_142192 crossref_primary_10_1080_17518253_2022_2028017 crossref_primary_10_1016_j_biortech_2021_126084 crossref_primary_10_1016_j_psep_2021_12_041 crossref_primary_10_1155_2022_7670819 crossref_primary_10_18586_msufbd_1329561 crossref_primary_10_1016_j_scitotenv_2023_169823 crossref_primary_10_1007_s40726_020_00172_2 crossref_primary_10_1016_j_biteb_2022_101206 crossref_primary_10_1016_j_rser_2021_111873 crossref_primary_10_3390_app14146156 crossref_primary_10_1016_j_jece_2023_111545 crossref_primary_10_1016_j_cej_2021_133142 crossref_primary_10_1016_j_cej_2022_141004 crossref_primary_10_1016_j_biombioe_2023_106750 crossref_primary_10_1016_j_psep_2023_08_010 crossref_primary_10_2139_ssrn_3940873 crossref_primary_10_1016_j_jclepro_2023_139660 crossref_primary_10_1016_j_biortech_2021_125442 crossref_primary_10_1016_j_scitotenv_2021_150094 crossref_primary_10_1134_S1070427220100018 crossref_primary_10_1016_j_scitotenv_2023_161532 crossref_primary_10_1016_j_biortech_2022_127958 crossref_primary_10_1016_j_energy_2021_122350 crossref_primary_10_1016_j_psep_2024_03_029 crossref_primary_10_1016_j_fuel_2022_123932 crossref_primary_10_1016_j_ijhydene_2020_05_256 crossref_primary_10_1061_JHTRBP_HZENG_1326 crossref_primary_10_1016_j_fuproc_2023_107793 crossref_primary_10_3390_agronomy14050955 crossref_primary_10_1016_j_renene_2023_119103 |
| Cites_doi | 10.1016/j.fuproc.2010.05.008 10.1039/C5GC02493E 10.3390/en11102612 10.3390/app7030256 10.1016/j.chemosphere.2014.07.058 10.1016/j.jes.2018.02.010 10.1016/j.jaap.2006.03.001 10.1016/j.energy.2016.12.047 10.1080/09593330.2017.1317841 10.1016/j.biortech.2016.11.097 10.1016/j.jclepro.2017.03.101 10.1039/C6SE00065G 10.1016/j.compositesb.2015.08.007 10.1016/j.apenergy.2019.02.050 10.1016/j.wasman.2014.09.027 10.1016/j.biortech.2017.10.096 10.1021/es011186k 10.1016/j.wasman.2018.08.052 10.1016/j.enconman.2014.05.068 10.1021/acs.iecr.6b03365 10.1016/j.energy.2017.10.008 10.1016/j.biortech.2017.09.098 10.1016/j.biortech.2016.07.086 10.1016/j.biortech.2009.11.060 10.1021/ef020048t 10.1016/j.fuproc.2015.04.015 10.1016/j.jclepro.2018.06.074 10.1007/s10853-007-2015-x 10.1016/j.apcatb.2016.07.007 10.1016/j.biortech.2012.06.063 10.1016/j.supflu.2003.10.006 10.1016/j.proenv.2012.10.022 10.1016/j.rser.2016.11.185 10.1016/j.fuproc.2010.05.035 10.1016/j.enconman.2018.02.004 10.1016/j.cej.2016.03.131 10.1016/j.apenergy.2013.04.084 10.1038/201068a0 10.1016/j.fuproc.2016.01.027 |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier Ltd Copyright © 2019 Elsevier Ltd. All rights reserved. |
| Copyright_xml | – notice: 2019 Elsevier Ltd – notice: Copyright © 2019 Elsevier Ltd. All rights reserved. |
| DBID | AAYXX CITATION 7X8 7S9 L.6 |
| DOI | 10.1016/j.biortech.2019.122113 |
| DatabaseName | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | MEDLINE - Academic AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Chemistry Agriculture |
| EISSN | 1873-2976 |
| ExternalDocumentID | 10_1016_j_biortech_2019_122113 S0960852419313434 |
| GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN AAAJQ AABNK AABVA AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AARJD AARKO AATLK AAXUO ABFNM ABFYP ABGRD ABGSF ABJNI ABLST ABMAC ABNUV ABUDA ABXDB ABYKQ ACDAQ ACGFS ACIUM ACRLP ADBBV ADEWK ADEZE ADMUD ADQTV ADUVX AEBSH AEHWI AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGEKW AGHFR AGRDE AGUBO AGYEJ AHEUO AHHHB AHIDL AHPOS AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLECG BLXMC CBWCG CJTIS CS3 DOVZS DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMC HVGLF HZ~ IHE J1W JARJE KCYFY KOM LUGTX LW9 LY6 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SAB SAC SDF SDG SDP SEN SES SEW SPC SPCBC SSA SSG SSI SSJ SSR SSU SSZ T5K VH1 WUQ Y6R ~02 ~G- ~KM AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c481t-b1b367d27b802481df17cef58120376110a0872318b60cd4eb16ed3436786ea93 |
| IEDL.DBID | .~1 |
| ISSN | 0960-8524 1873-2976 |
| IngestDate | Thu Sep 25 08:34:16 EDT 2025 Sun Sep 28 02:14:49 EDT 2025 Sat Oct 25 05:14:03 EDT 2025 Thu Apr 24 23:13:22 EDT 2025 Fri Feb 23 02:49:58 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Hydrochar properties Pyrolysis product Combustion behavior Synergistic effect Hydrothermal carbonization |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c481t-b1b367d27b802481df17cef58120376110a0872318b60cd4eb16ed3436786ea93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 2296141232 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2431851962 proquest_miscellaneous_2296141232 crossref_primary_10_1016_j_biortech_2019_122113 crossref_citationtrail_10_1016_j_biortech_2019_122113 elsevier_sciencedirect_doi_10_1016_j_biortech_2019_122113 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-12-01 |
| PublicationDateYYYYMMDD | 2019-12-01 |
| PublicationDate_xml | – month: 12 year: 2019 text: 2019-12-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Bioresource technology |
| PublicationYear | 2019 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | López, de Marco, Caballero, Laresgoiti, Adrados (b0080) 2015; 137 Li, Zhao, Lei, Li (b0060) 2017; 7 Soler, Conesa, Ortuño (b0140) 2018; 11 López, de Marco, Caballero, Laresgoiti, Adrados (b0075) 2011; 92 Jiang, Yuan, Li, Chen, Xiao, Liang, Leng, Guo, Zeng (b0045) 2016; 145 Poerschmann, Weiner, Woszidlo, Koehler, Kopinke (b0105) 2015; 119 Qi, He, Xiu, Nie, Chen (b0115) 2018; 196 El-Sayed, Mostafa (b0020) 2014; 85 Zhao, Li, Li, Yan, Ge (b0190) 2017; 152 Coats, Redfern (b0010) 1964; 201 Yang, Damgaard, Scheutz, Shao, He (b0160) 2018; 74 Déniel, Haarlemmer, Roubaud, Weiss-Hortala, Fages (b0015) 2017; 1 Masuda, Uda, Terakado, Hirasawa (b0090) 2006; 77 Miranda, Arranz, Román, Rojas, Montero, López, Cruz (b0095) 2011; 92 Zhao, Li, Yan, Yuan (b0185) 2018; 39 Chen, Ma, Peng, Lin, Yao (b0005) 2018; 249 Liu, Balasubramanian (b0065) 2012; 16 Shen (b0130) 2016; 55 Lu, Ma, Gao (b0085) 2002; 16 Qian, Wang, Zarei, Sheng (b0120) 2015; 82 Muthuraman, Namioka, Yoshikawa (b0100) 2010; 101 Ren, Song, Li, Liu, Jin, Huo (b0125) 2016; 18 Uzoejinwa, He, Wang, Abomohra, Hu, Wang (b0150) 2018; 163 Wang, Li, Chang (b0155) 2016; 297 Kubátová, Lagadec, Hawthorne (b0050) 2002; 36 Li, Fang, Luo, Yang (b0055) 2017; 200 He, Giannis, Wang (b0030) 2013; 111 Huang, Zhao, Ghosh, Fedyukhin (b0040) 2019; 240 Zhang, Xi, Zhang, Yu, Wang (b0175) 2017; 224 Hong, Chen, Wang, Ye, Qi, Yuan, Zheng, Li (b0035) 2017; 69 Qi, He, Li, Yu, Xiu, Deng, Gao (b0110) 2018; 80 Hashimoto, Suga, Wakayama, Funazukuri (b0025) 2007; 43 Zhang, Chen, Li, Dong, Xiong (b0180) 2016; 218 Yao, Ma (b0170) 2018; 247 Liu, Quek, Hoekman, Srinivasan, Balasubramanian (b0070) 2012; 123 Yao, Ma (b0165) 2017; 141 Shen, Yu, Ge, Chen, Ge, Chen (b0135) 2017; 118 Takeshita, Kato, Takahashi, Sato, Nishi (b0145) 2004; 31 Zhou, Long, Meng, Li, Zhang (b0195) 2015; 38 Qi (10.1016/j.biortech.2019.122113_b0110) 2018; 80 Zhao (10.1016/j.biortech.2019.122113_b0185) 2018; 39 Liu (10.1016/j.biortech.2019.122113_b0065) 2012; 16 Hong (10.1016/j.biortech.2019.122113_b0035) 2017; 69 Qi (10.1016/j.biortech.2019.122113_b0115) 2018; 196 Hashimoto (10.1016/j.biortech.2019.122113_b0025) 2007; 43 Zhou (10.1016/j.biortech.2019.122113_b0195) 2015; 38 Ren (10.1016/j.biortech.2019.122113_b0125) 2016; 18 López (10.1016/j.biortech.2019.122113_b0075) 2011; 92 Muthuraman (10.1016/j.biortech.2019.122113_b0100) 2010; 101 Li (10.1016/j.biortech.2019.122113_b0060) 2017; 7 Wang (10.1016/j.biortech.2019.122113_b0155) 2016; 297 Déniel (10.1016/j.biortech.2019.122113_b0015) 2017; 1 Takeshita (10.1016/j.biortech.2019.122113_b0145) 2004; 31 Zhang (10.1016/j.biortech.2019.122113_b0180) 2016; 218 Shen (10.1016/j.biortech.2019.122113_b0135) 2017; 118 Jiang (10.1016/j.biortech.2019.122113_b0045) 2016; 145 Zhang (10.1016/j.biortech.2019.122113_b0175) 2017; 224 Qian (10.1016/j.biortech.2019.122113_b0120) 2015; 82 Uzoejinwa (10.1016/j.biortech.2019.122113_b0150) 2018; 163 Huang (10.1016/j.biortech.2019.122113_b0040) 2019; 240 Poerschmann (10.1016/j.biortech.2019.122113_b0105) 2015; 119 He (10.1016/j.biortech.2019.122113_b0030) 2013; 111 Soler (10.1016/j.biortech.2019.122113_b0140) 2018; 11 Zhao (10.1016/j.biortech.2019.122113_b0190) 2017; 152 El-Sayed (10.1016/j.biortech.2019.122113_b0020) 2014; 85 Lu (10.1016/j.biortech.2019.122113_b0085) 2002; 16 Coats (10.1016/j.biortech.2019.122113_b0010) 1964; 201 Li (10.1016/j.biortech.2019.122113_b0055) 2017; 200 Shen (10.1016/j.biortech.2019.122113_b0130) 2016; 55 Masuda (10.1016/j.biortech.2019.122113_b0090) 2006; 77 Kubátová (10.1016/j.biortech.2019.122113_b0050) 2002; 36 López (10.1016/j.biortech.2019.122113_b0080) 2015; 137 Liu (10.1016/j.biortech.2019.122113_b0070) 2012; 123 Miranda (10.1016/j.biortech.2019.122113_b0095) 2011; 92 Yao (10.1016/j.biortech.2019.122113_b0165) 2017; 141 Chen (10.1016/j.biortech.2019.122113_b0005) 2018; 249 Yang (10.1016/j.biortech.2019.122113_b0160) 2018; 74 Yao (10.1016/j.biortech.2019.122113_b0170) 2018; 247 |
| References_xml | – volume: 119 start-page: 682 year: 2015 end-page: 689 ident: b0105 article-title: Hydrothermal carbonization of poly(vinyl chloride) publication-title: Chemosphere – volume: 297 start-page: 1 year: 2016 end-page: 10 ident: b0155 article-title: Hydrothermal treatment coupled with mechanical expression at increased temperature for excess sludge dewatering: heavy metals, volatile organic compounds and combustion characteristics of hydrochar publication-title: Chem. Eng. J. – volume: 1 start-page: 555 year: 2017 end-page: 582 ident: b0015 article-title: Hydrothermal liquefaction of blackcurrant pomace and model molecules: Understanding of reaction mechanisms publication-title: Sustain. Energ. Fuels – volume: 137 start-page: 229 year: 2015 end-page: 239 ident: b0080 article-title: Upgrading of chlorinated oils coming from pyrolysis of plastic waste publication-title: Fuel Process. Technol. – volume: 74 start-page: 1 year: 2018 end-page: 10 ident: b0160 article-title: A comparison of chemical MSW compositional data between China and Denmark publication-title: J. Environ. Sci. – volume: 141 start-page: 1156 year: 2017 end-page: 1165 ident: b0165 article-title: A new approach to transforming PVC waste into energy via combined hydrothermal carbonization and fast pyrolysis publication-title: Energy – volume: 201 start-page: 68 year: 1964 end-page: 69 ident: b0010 article-title: Kinetic parameters from thermogravimetric data publication-title: Nature – volume: 85 start-page: 165 year: 2014 end-page: 172 ident: b0020 article-title: Pyrolysis characteristics and kinetic parameters determination of biomass fuel powders by differential thermal gravimetric analysis (TGA/DTG) publication-title: Energy Conv. Manag. – volume: 16 start-page: 1251 year: 2002 end-page: 1255 ident: b0085 article-title: Study on the pressurized hydrolysis dechlorination of PVC publication-title: Energy Fuels – volume: 196 start-page: 331 year: 2018 end-page: 339 ident: b0115 article-title: Partial oxidation treatment of waste polyvinyl chloride in critical water: preparation of benzaldehyde/acetophenone and dechlorination publication-title: J. Clean Prod. – volume: 224 start-page: 656 year: 2017 end-page: 661 ident: b0175 article-title: Efficient catalytic system for the direct transformation of lignocellulosic biomass to furfural and 5-hydroxymethylfurfural publication-title: Bioresour. Technol. – volume: 163 start-page: 468 year: 2018 end-page: 492 ident: b0150 article-title: Co-pyrolysis of biomass and waste plastics as a thermochemical conversion technology for high-grade biofuel production: recent progress and future directions elsewhere worldwide publication-title: Energy Conv. Manag. – volume: 218 start-page: 1157 year: 2016 end-page: 1162 ident: b0180 article-title: Physicochemical properties and combustion behavior of duckweed during wet torrefaction publication-title: Bioresour. Technol. – volume: 43 start-page: 2457 year: 2007 end-page: 2462 ident: b0025 article-title: Hydrothermal dechlorination of PVC in the presence of ammonia publication-title: J. Mater. Sci. – volume: 101 start-page: 2477 year: 2010 end-page: 2482 ident: b0100 article-title: A comparison of co-combustion characteristics of coal with wood and hydrothermally treated municipal solid waste publication-title: Bioresour. Technol. – volume: 247 start-page: 302 year: 2018 end-page: 309 ident: b0170 article-title: Characteristics of co-hydrothermal carbonization on polyvinyl chloride wastes with bamboo publication-title: Bioresour. Technol. – volume: 31 start-page: 185 year: 2004 end-page: 193 ident: b0145 article-title: Basic study on treatment of waste polyvinyl chloride plastics by hydrothermal decomposition in subcritical and supercritical regions publication-title: J. Supercrit. Fluids – volume: 80 start-page: 1 year: 2018 end-page: 9 ident: b0110 article-title: A novel treatment method of PVC-medical waste by near-critical methanol: dechlorination and additives recovery publication-title: Waste Manage. – volume: 69 start-page: 168 year: 2017 end-page: 176 ident: b0035 article-title: Intensification of municipal solid waste disposal in China publication-title: Renew. Sust. Energ. Rev. – volume: 36 start-page: 1337 year: 2002 end-page: 1343 ident: b0050 article-title: Dechlorination of lindane, dieldrin, tetrachloroethane, trichloroethene, and PVC in subcritical water publication-title: Environ. Sci. Technol. – volume: 111 start-page: 257 year: 2013 end-page: 266 ident: b0030 article-title: Conversion of sewage sludge to clean solid fuel using hydrothermal carbonization: hydrochar fuel characteristics and combustion behavior publication-title: Appl. Energy – volume: 240 start-page: 882 year: 2019 end-page: 892 ident: b0040 article-title: Co-hydrothermal carbonization of polyvinyl chloride and moist biomass to remove chlorine and inorganics for clean fuel production publication-title: Appl. Energy – volume: 145 start-page: 109 year: 2016 end-page: 115 ident: b0045 article-title: Co-pelletization of sewage sludge and biomass: thermogravimetric analysis and ash deposits publication-title: Fuel Process. Technol. – volume: 92 start-page: 278 year: 2011 end-page: 283 ident: b0095 article-title: Characterization of grape pomace and pyrenean oak pellets publication-title: Fuel Process. Technol. – volume: 11 start-page: 2612 year: 2018 end-page: 2626 ident: b0140 article-title: Application of subcritical water to dechlorinate polyvinyl chloride electric wires publication-title: Energies – volume: 55 start-page: 11638 year: 2016 end-page: 11644 ident: b0130 article-title: Dechlorination of poly(vinyl chloride) wastes via hydrothermal carbonization with lignin for clean solid fuel production publication-title: Ind. Eng. Chem. Res. – volume: 92 start-page: 253 year: 2011 end-page: 260 ident: b0075 article-title: Dechlorination of fuels in pyrolysis of PVC containing plastic wastes publication-title: Fuel Process. Technol. – volume: 118 start-page: 312 year: 2017 end-page: 323 ident: b0135 article-title: Hydrothermal carbonization of medical wastes and lignocellulosic biomass for solid fuel production from lab-scale to pilot-scale publication-title: Energy – volume: 77 start-page: 159 year: 2006 end-page: 168 ident: b0090 article-title: Pyrolysis study of poly(vinyl chloride)–metal oxide mixtures: Quantitative product analysis and the chlorine fixing ability of metal oxides publication-title: J. Anal. Appl. Pyrolysis – volume: 249 start-page: 900 year: 2018 end-page: 907 ident: b0005 article-title: Conversion of sweet potato waste to solid fuel via hydrothermal carbonization publication-title: Bioresour. Technol. – volume: 38 start-page: 194 year: 2015 end-page: 200 ident: b0195 article-title: Thermogravimetric characteristics of typical municipal solid waste fractions during co-pyrolysis publication-title: Waste Manage. – volume: 152 start-page: 38 year: 2017 end-page: 46 ident: b0190 article-title: The study of nickel effect on the hydrothermal dechlorination of PVC publication-title: J. Clean Prod. – volume: 200 start-page: 182 year: 2017 end-page: 191 ident: b0055 article-title: Direct conversion of biomass components to the biofuel methyl levulinate catalyzed by acid-base bifunctional zirconia-zeolites publication-title: Appl. Catal. B-Environ. – volume: 123 start-page: 646 year: 2012 end-page: 652 ident: b0070 article-title: Thermogravimetric investigation of hydrochar-lignite co-combustion publication-title: Bioresour. Technol. – volume: 18 start-page: 3075 year: 2016 end-page: 3081 ident: b0125 article-title: Production of 2,5-hexanedione and 3-methyl-2-cyclopenten-1-one from 5-hydroxymethylfurfural publication-title: Green Chem. – volume: 39 start-page: 977 year: 2018 end-page: 985 ident: b0185 article-title: Dechlorination of PVC wastes by hydrothermal treatment using alkaline additives publication-title: Environ. Technol. – volume: 7 start-page: 256 year: 2017 end-page: 265 ident: b0060 article-title: Understanding hydrothermal dechlorination of PVC by focusing on the operating conditions and hydrochar characteristics publication-title: Appl. Sci. – volume: 16 start-page: 159 year: 2012 end-page: 166 ident: b0065 article-title: Hydrothermal carbonization of waste biomass for energy generation publication-title: Proc. Environ. Sci. – volume: 82 start-page: 23 year: 2015 end-page: 29 ident: b0120 article-title: Effect of hydrothermal pretreatment on the properties of moso bamboo particles reinforced polyvinyl chloride composites publication-title: Compos. Pt. B-Eng. – volume: 92 start-page: 253 issue: 2 year: 2011 ident: 10.1016/j.biortech.2019.122113_b0075 article-title: Dechlorination of fuels in pyrolysis of PVC containing plastic wastes publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2010.05.008 – volume: 18 start-page: 3075 issue: 10 year: 2016 ident: 10.1016/j.biortech.2019.122113_b0125 article-title: Production of 2,5-hexanedione and 3-methyl-2-cyclopenten-1-one from 5-hydroxymethylfurfural publication-title: Green Chem. doi: 10.1039/C5GC02493E – volume: 11 start-page: 2612 issue: 10 year: 2018 ident: 10.1016/j.biortech.2019.122113_b0140 article-title: Application of subcritical water to dechlorinate polyvinyl chloride electric wires publication-title: Energies doi: 10.3390/en11102612 – volume: 7 start-page: 256 issue: 3 year: 2017 ident: 10.1016/j.biortech.2019.122113_b0060 article-title: Understanding hydrothermal dechlorination of PVC by focusing on the operating conditions and hydrochar characteristics publication-title: Appl. Sci. doi: 10.3390/app7030256 – volume: 119 start-page: 682 year: 2015 ident: 10.1016/j.biortech.2019.122113_b0105 article-title: Hydrothermal carbonization of poly(vinyl chloride) publication-title: Chemosphere doi: 10.1016/j.chemosphere.2014.07.058 – volume: 74 start-page: 1 year: 2018 ident: 10.1016/j.biortech.2019.122113_b0160 article-title: A comparison of chemical MSW compositional data between China and Denmark publication-title: J. Environ. Sci. doi: 10.1016/j.jes.2018.02.010 – volume: 77 start-page: 159 issue: 2 year: 2006 ident: 10.1016/j.biortech.2019.122113_b0090 article-title: Pyrolysis study of poly(vinyl chloride)–metal oxide mixtures: Quantitative product analysis and the chlorine fixing ability of metal oxides publication-title: J. Anal. Appl. Pyrolysis doi: 10.1016/j.jaap.2006.03.001 – volume: 118 start-page: 312 year: 2017 ident: 10.1016/j.biortech.2019.122113_b0135 article-title: Hydrothermal carbonization of medical wastes and lignocellulosic biomass for solid fuel production from lab-scale to pilot-scale publication-title: Energy doi: 10.1016/j.energy.2016.12.047 – volume: 39 start-page: 977 issue: 8 year: 2018 ident: 10.1016/j.biortech.2019.122113_b0185 article-title: Dechlorination of PVC wastes by hydrothermal treatment using alkaline additives publication-title: Environ. Technol. doi: 10.1080/09593330.2017.1317841 – volume: 224 start-page: 656 year: 2017 ident: 10.1016/j.biortech.2019.122113_b0175 article-title: Efficient catalytic system for the direct transformation of lignocellulosic biomass to furfural and 5-hydroxymethylfurfural publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2016.11.097 – volume: 152 start-page: 38 year: 2017 ident: 10.1016/j.biortech.2019.122113_b0190 article-title: The study of nickel effect on the hydrothermal dechlorination of PVC publication-title: J. Clean Prod. doi: 10.1016/j.jclepro.2017.03.101 – volume: 1 start-page: 555 issue: 3 year: 2017 ident: 10.1016/j.biortech.2019.122113_b0015 article-title: Hydrothermal liquefaction of blackcurrant pomace and model molecules: Understanding of reaction mechanisms publication-title: Sustain. Energ. Fuels doi: 10.1039/C6SE00065G – volume: 82 start-page: 23 year: 2015 ident: 10.1016/j.biortech.2019.122113_b0120 article-title: Effect of hydrothermal pretreatment on the properties of moso bamboo particles reinforced polyvinyl chloride composites publication-title: Compos. Pt. B-Eng. doi: 10.1016/j.compositesb.2015.08.007 – volume: 240 start-page: 882 year: 2019 ident: 10.1016/j.biortech.2019.122113_b0040 article-title: Co-hydrothermal carbonization of polyvinyl chloride and moist biomass to remove chlorine and inorganics for clean fuel production publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.02.050 – volume: 38 start-page: 194 year: 2015 ident: 10.1016/j.biortech.2019.122113_b0195 article-title: Thermogravimetric characteristics of typical municipal solid waste fractions during co-pyrolysis publication-title: Waste Manage. doi: 10.1016/j.wasman.2014.09.027 – volume: 249 start-page: 900 year: 2018 ident: 10.1016/j.biortech.2019.122113_b0005 article-title: Conversion of sweet potato waste to solid fuel via hydrothermal carbonization publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.10.096 – volume: 36 start-page: 1337 issue: 6 year: 2002 ident: 10.1016/j.biortech.2019.122113_b0050 article-title: Dechlorination of lindane, dieldrin, tetrachloroethane, trichloroethene, and PVC in subcritical water publication-title: Environ. Sci. Technol. doi: 10.1021/es011186k – volume: 80 start-page: 1 year: 2018 ident: 10.1016/j.biortech.2019.122113_b0110 article-title: A novel treatment method of PVC-medical waste by near-critical methanol: dechlorination and additives recovery publication-title: Waste Manage. doi: 10.1016/j.wasman.2018.08.052 – volume: 85 start-page: 165 year: 2014 ident: 10.1016/j.biortech.2019.122113_b0020 article-title: Pyrolysis characteristics and kinetic parameters determination of biomass fuel powders by differential thermal gravimetric analysis (TGA/DTG) publication-title: Energy Conv. Manag. doi: 10.1016/j.enconman.2014.05.068 – volume: 55 start-page: 11638 issue: 44 year: 2016 ident: 10.1016/j.biortech.2019.122113_b0130 article-title: Dechlorination of poly(vinyl chloride) wastes via hydrothermal carbonization with lignin for clean solid fuel production publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.6b03365 – volume: 141 start-page: 1156 year: 2017 ident: 10.1016/j.biortech.2019.122113_b0165 article-title: A new approach to transforming PVC waste into energy via combined hydrothermal carbonization and fast pyrolysis publication-title: Energy doi: 10.1016/j.energy.2017.10.008 – volume: 247 start-page: 302 year: 2018 ident: 10.1016/j.biortech.2019.122113_b0170 article-title: Characteristics of co-hydrothermal carbonization on polyvinyl chloride wastes with bamboo publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2017.09.098 – volume: 218 start-page: 1157 year: 2016 ident: 10.1016/j.biortech.2019.122113_b0180 article-title: Physicochemical properties and combustion behavior of duckweed during wet torrefaction publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2016.07.086 – volume: 101 start-page: 2477 issue: 7 year: 2010 ident: 10.1016/j.biortech.2019.122113_b0100 article-title: A comparison of co-combustion characteristics of coal with wood and hydrothermally treated municipal solid waste publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2009.11.060 – volume: 16 start-page: 1251 issue: 5 year: 2002 ident: 10.1016/j.biortech.2019.122113_b0085 article-title: Study on the pressurized hydrolysis dechlorination of PVC publication-title: Energy Fuels doi: 10.1021/ef020048t – volume: 137 start-page: 229 year: 2015 ident: 10.1016/j.biortech.2019.122113_b0080 article-title: Upgrading of chlorinated oils coming from pyrolysis of plastic waste publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2015.04.015 – volume: 196 start-page: 331 year: 2018 ident: 10.1016/j.biortech.2019.122113_b0115 article-title: Partial oxidation treatment of waste polyvinyl chloride in critical water: preparation of benzaldehyde/acetophenone and dechlorination publication-title: J. Clean Prod. doi: 10.1016/j.jclepro.2018.06.074 – volume: 43 start-page: 2457 issue: 7 year: 2007 ident: 10.1016/j.biortech.2019.122113_b0025 article-title: Hydrothermal dechlorination of PVC in the presence of ammonia publication-title: J. Mater. Sci. doi: 10.1007/s10853-007-2015-x – volume: 200 start-page: 182 year: 2017 ident: 10.1016/j.biortech.2019.122113_b0055 article-title: Direct conversion of biomass components to the biofuel methyl levulinate catalyzed by acid-base bifunctional zirconia-zeolites publication-title: Appl. Catal. B-Environ. doi: 10.1016/j.apcatb.2016.07.007 – volume: 123 start-page: 646 year: 2012 ident: 10.1016/j.biortech.2019.122113_b0070 article-title: Thermogravimetric investigation of hydrochar-lignite co-combustion publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2012.06.063 – volume: 31 start-page: 185 issue: 2 year: 2004 ident: 10.1016/j.biortech.2019.122113_b0145 article-title: Basic study on treatment of waste polyvinyl chloride plastics by hydrothermal decomposition in subcritical and supercritical regions publication-title: J. Supercrit. Fluids doi: 10.1016/j.supflu.2003.10.006 – volume: 16 start-page: 159 year: 2012 ident: 10.1016/j.biortech.2019.122113_b0065 article-title: Hydrothermal carbonization of waste biomass for energy generation publication-title: Proc. Environ. Sci. doi: 10.1016/j.proenv.2012.10.022 – volume: 69 start-page: 168 year: 2017 ident: 10.1016/j.biortech.2019.122113_b0035 article-title: Intensification of municipal solid waste disposal in China publication-title: Renew. Sust. Energ. Rev. doi: 10.1016/j.rser.2016.11.185 – volume: 92 start-page: 278 issue: 2 year: 2011 ident: 10.1016/j.biortech.2019.122113_b0095 article-title: Characterization of grape pomace and pyrenean oak pellets publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2010.05.035 – volume: 163 start-page: 468 year: 2018 ident: 10.1016/j.biortech.2019.122113_b0150 article-title: Co-pyrolysis of biomass and waste plastics as a thermochemical conversion technology for high-grade biofuel production: recent progress and future directions elsewhere worldwide publication-title: Energy Conv. Manag. doi: 10.1016/j.enconman.2018.02.004 – volume: 297 start-page: 1 year: 2016 ident: 10.1016/j.biortech.2019.122113_b0155 article-title: Hydrothermal treatment coupled with mechanical expression at increased temperature for excess sludge dewatering: heavy metals, volatile organic compounds and combustion characteristics of hydrochar publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2016.03.131 – volume: 111 start-page: 257 year: 2013 ident: 10.1016/j.biortech.2019.122113_b0030 article-title: Conversion of sewage sludge to clean solid fuel using hydrothermal carbonization: hydrochar fuel characteristics and combustion behavior publication-title: Appl. Energy doi: 10.1016/j.apenergy.2013.04.084 – volume: 201 start-page: 68 year: 1964 ident: 10.1016/j.biortech.2019.122113_b0010 article-title: Kinetic parameters from thermogravimetric data publication-title: Nature doi: 10.1038/201068a0 – volume: 145 start-page: 109 year: 2016 ident: 10.1016/j.biortech.2019.122113_b0045 article-title: Co-pelletization of sewage sludge and biomass: thermogravimetric analysis and ash deposits publication-title: Fuel Process. Technol. doi: 10.1016/j.fuproc.2016.01.027 |
| SSID | ssj0003172 |
| Score | 2.563388 |
| Snippet | [Display omitted]
•The waste PVC and pinewood sawdust were employed to produce hydrochar.•Effects of hydrothermal reaction temperature and mixing ratio were... The rigid polyvinyl chloride (PVC) and pinewood sawdust (PS) were selected for co-hydrothermal carbonization (Co-HTC) process. The effects of hydrothermal... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 122113 |
| SubjectTerms | activation energy biomass carbonization combustion Combustion behavior dechlorination Fourier transform infrared spectroscopy fuel production gas chromatography-mass spectrometry hydrocarbons Hydrochar properties hydrochars Hydrothermal carbonization lignocellulose poly(vinyl chloride) pyrolysis Pyrolysis product sawdust Synergistic effect temperature wastes |
| Title | Co-hydrothermal carbonization of lignocellulosic biomass and waste polyvinyl chloride for high-quality solid fuel production: Hydrochar properties and its combustion and pyrolysis behaviors |
| URI | https://dx.doi.org/10.1016/j.biortech.2019.122113 https://www.proquest.com/docview/2296141232 https://www.proquest.com/docview/2431851962 |
| Volume | 294 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-2976 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003172 issn: 0960-8524 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-2976 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003172 issn: 0960-8524 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-2976 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003172 issn: 0960-8524 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1873-2976 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003172 issn: 0960-8524 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-2976 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003172 issn: 0960-8524 databaseCode: AKRWK dateStart: 19910101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3BbtQwELWq9gAcEBQQpbQyElfvJrGdxNxWq1YLiF6gUm-RHTttqpBE2V2qXPgz_o2ZJC4FCXrguF7bsfImM283M28IeesSaZ2RMYtCXTBRcMV0KjUD-MFCRJS7oZ3Pp7N4dS4-XMiLHbL0tTCYVjn5_tGnD956GplPd3PeluX8M5LvVEIEUjzkgqMmqBAJdjGYff-V5gHxcXiTAJMZzr5TJXw9MyVmtA4vJUI1CyP4NcT_FqD-cNVD_Dl9Qh5PxJEuxrM9JTuu3iePFpfdJJ7h9smDpe_eBt_cERp8Rn4sG3bV224ot_oK2-S6M42vwaRNQavysm7wX_xt1QBwFMvygVdTXVt6o8EUaNtU_bey7mHxFabtWUeB8FLUO2ZjaWZPwZBLS4utq2g7SsnC9u_oCi-N9V042mImtxt3LjdrCnfeYEsxOAcOtX3XDDIp1CsIrJ-T89OTL8sVmxo3sFyk4YaZ0PA4sVFiUpRMC20RJrkrJJCJABwaMA4dpAkwy9TEQW4FxIvYWcAQImfstOIvyG7d1O4lobBLxJNccUBWFLJQgTSOB7mWWiXcuAMiPVpZPqmaY3ONKvPpa9eZRzlDlLMR5QMyv13Xjroe965Q3hiy3yw0g-Bz79o33noysANEU9eu2a6zKFJAkJDX_mOOwBJ3cJXRq_84wyF5iJ_GVJzXZHfTbd0REKqNOR6emGOyt3j_cXX2E8RlJbY |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZKORQOCAqI8jQSV-8mfuTBrVpRLdD2Qiv1ZtmJ06YKcZTdbZUL_4z_xkweUJCgB65-xfJMZr7EM98Q8s7FKndWRYyHpmCyECkziTIMxA8aInnm-nI-R8fR8lR-OlNnW2Qx5cJgWOVo-web3lvrsWU-nua8Kcv5FwTfiQIPlIpQSCHvkLtS8Ri_wGbffsV5gIPsrxJgNMPhN9KEL2e2xJDW_lYiTGchh88h8TcP9Yet7h3QwUPyYESOdH_Y3COy5epdcn__vB3ZM9wu2VlM5dug5wbT4GPyfeHZRZe3fb7VV1gmM631UxIm9QWtyvPa42_8TeVBchTz8gFYU1Pn9NqALtDGV91VWXcw-QLj9nJHAfFSJDxmQ25mR0GTy5wWG1fRZuCSheXf0yU-GhO8sLXBUG43rFyuVxSO3mJNMdgHNjVd63ueFDpRCKyekNODDyeLJRsrN7BMJuGa2dCKKM55bBPkTAvzIowzVyhAEwFYNIAcJkhigJaJjYIsl-AwIpeDEMF1Rs6k4inZrn3tnhEKq3ARZ6mQMZeFKtJAWSeCzCiTxsK6PaImaelspDXH6hqVnuLXLvUkZY1S1oOU98j857xmIPa4dUY6KYP-TUU1eJ9b576dtEeDHqA0Te38ZqU5TwEhIbD9xxiJOe5gK_nz_9jDG7KzPDk61Icfjz-_IPewZ4jLeUm21-3GvQJ0tbav-7fnB07cJ0s |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Co-hydrothermal+carbonization+of+lignocellulosic+biomass+and+waste+polyvinyl+chloride+for+high-quality+solid+fuel+production%3A+Hydrochar+properties+and+its+combustion+and+pyrolysis+behaviors&rft.jtitle=Bioresource+technology&rft.au=Zhang%2C+Xiaojuan&rft.au=Zhang%2C+Lei&rft.au=Li%2C+Aimin&rft.date=2019-12-01&rft.issn=1873-2976&rft.eissn=1873-2976&rft.volume=294&rft.spage=122113&rft_id=info:doi/10.1016%2Fj.biortech.2019.122113&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-8524&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-8524&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-8524&client=summon |