High-content imaging-based pooled CRISPR screens in mammalian cells

CRISPR (clustered regularly interspaced short palindromic repeats)-based gene inactivation provides a powerful means for linking genes to particular cellular phenotypes. CRISPR-based screening typically uses large genomic pools of single guide RNAs (sgRNAs). However, this approach is limited to phen...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of cell biology Vol. 220; no. 2
Main Authors Yan, Xiaowei, Stuurman, Nico, Ribeiro, Susana A., Tanenbaum, Marvin E., Horlbeck, Max A., Liem, Christina R., Jost, Marco, Weissman, Jonathan S., Vale, Ronald D.
Format Journal Article
LanguageEnglish
Published United States Rockefeller University Press 01.02.2021
Subjects
Online AccessGet full text
ISSN0021-9525
1540-8140
1540-8140
DOI10.1083/jcb.202008158

Cover

Abstract CRISPR (clustered regularly interspaced short palindromic repeats)-based gene inactivation provides a powerful means for linking genes to particular cellular phenotypes. CRISPR-based screening typically uses large genomic pools of single guide RNAs (sgRNAs). However, this approach is limited to phenotypes that can be enriched by chemical selection or FACS sorting. Here, we developed a microscopy-based approach, which we name optical enrichment, to select cells displaying a particular CRISPR-induced phenotype by automated imaging-based computation, mark them by photoactivation of an expressed photoactivatable fluorescent protein, and then isolate the fluorescent cells using fluorescence-activated cell sorting (FACS). A plugin was developed for the open source software μManager to automate the phenotypic identification and photoactivation of cells, allowing ∼1.5 million individual cells to be screened in 8 h. We used this approach to screen 6,092 sgRNAs targeting 544 genes for their effects on nuclear size regulation and identified 14 bona fide hits. These results present a scalable approach to facilitate imaging-based pooled CRISPR screens.
AbstractList CRISPR (clustered regularly interspaced short palindromic repeats)-based gene inactivation provides a powerful means for linking genes to particular cellular phenotypes. CRISPR-based screening typically uses large genomic pools of single guide RNAs (sgRNAs). However, this approach is limited to phenotypes that can be enriched by chemical selection or FACS sorting. Here, we developed a microscopy-based approach, which we name optical enrichment, to select cells displaying a particular CRISPR-induced phenotype by automated imaging-based computation, mark them by photoactivation of an expressed photoactivatable fluorescent protein, and then isolate the fluorescent cells using fluorescence-activated cell sorting (FACS). A plugin was developed for the open source software μManager to automate the phenotypic identification and photoactivation of cells, allowing ∼1.5 million individual cells to be screened in 8 h. We used this approach to screen 6,092 sgRNAs targeting 544 genes for their effects on nuclear size regulation and identified 14 bona fide hits. These results present a scalable approach to facilitate imaging-based pooled CRISPR screens.
Yan et al. demonstrate high-throughput screening of pooled CRISPR libraries for phenotypes detectable by microscopy. Their approach uses photoactivation of cells displaying the phenotype of interest and FACS sorting of marked cells, followed by sequencing, and facilitates discovery of genes involved in cell biological processes. CRISPR (clustered regularly interspaced short palindromic repeats)-based gene inactivation provides a powerful means for linking genes to particular cellular phenotypes. CRISPR-based screening typically uses large genomic pools of single guide RNAs (sgRNAs). However, this approach is limited to phenotypes that can be enriched by chemical selection or FACS sorting. Here, we developed a microscopy-based approach, which we name optical enrichment, to select cells displaying a particular CRISPR-induced phenotype by automated imaging-based computation, mark them by photoactivation of an expressed photoactivatable fluorescent protein, and then isolate the fluorescent cells using fluorescence-activated cell sorting (FACS). A plugin was developed for the open source software μManager to automate the phenotypic identification and photoactivation of cells, allowing ∼1.5 million individual cells to be screened in 8 h. We used this approach to screen 6,092 sgRNAs targeting 544 genes for their effects on nuclear size regulation and identified 14 bona fide hits. These results present a scalable approach to facilitate imaging-based pooled CRISPR screens.
CRISPR (clustered regularly interspaced short palindromic repeats)-based gene inactivation provides a powerful means for linking genes to particular cellular phenotypes. CRISPR-based screening typically uses large genomic pools of single guide RNAs (sgRNAs). However, this approach is limited to phenotypes that can be enriched by chemical selection or FACS sorting. Here, we developed a microscopy-based approach, which we name optical enrichment, to select cells displaying a particular CRISPR-induced phenotype by automated imaging-based computation, mark them by photoactivation of an expressed photoactivatable fluorescent protein, and then isolate the fluorescent cells using fluorescence-activated cell sorting (FACS). A plugin was developed for the open source software μManager to automate the phenotypic identification and photoactivation of cells, allowing ∼1.5 million individual cells to be screened in 8 h. We used this approach to screen 6,092 sgRNAs targeting 544 genes for their effects on nuclear size regulation and identified 14 bona fide hits. These results present a scalable approach to facilitate imaging-based pooled CRISPR screens.CRISPR (clustered regularly interspaced short palindromic repeats)-based gene inactivation provides a powerful means for linking genes to particular cellular phenotypes. CRISPR-based screening typically uses large genomic pools of single guide RNAs (sgRNAs). However, this approach is limited to phenotypes that can be enriched by chemical selection or FACS sorting. Here, we developed a microscopy-based approach, which we name optical enrichment, to select cells displaying a particular CRISPR-induced phenotype by automated imaging-based computation, mark them by photoactivation of an expressed photoactivatable fluorescent protein, and then isolate the fluorescent cells using fluorescence-activated cell sorting (FACS). A plugin was developed for the open source software μManager to automate the phenotypic identification and photoactivation of cells, allowing ∼1.5 million individual cells to be screened in 8 h. We used this approach to screen 6,092 sgRNAs targeting 544 genes for their effects on nuclear size regulation and identified 14 bona fide hits. These results present a scalable approach to facilitate imaging-based pooled CRISPR screens.
Author Vale, Ronald D.
Jost, Marco
Ribeiro, Susana A.
Stuurman, Nico
Horlbeck, Max A.
Liem, Christina R.
Weissman, Jonathan S.
Yan, Xiaowei
Tanenbaum, Marvin E.
AuthorAffiliation 2 Cairn Biosciences, Inc., San Francisco, CA
4 Boston Children's Hospital, Boston, MA
6 Whitehead Institute and Department of Biology, MIT, Cambridge, MA
1 Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA
7 Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA
5 University of California, San Diego, San Diego, CA
3 Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, Netherlands
AuthorAffiliation_xml – name: 5 University of California, San Diego, San Diego, CA
– name: 6 Whitehead Institute and Department of Biology, MIT, Cambridge, MA
– name: 7 Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA
– name: 3 Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, Netherlands
– name: 2 Cairn Biosciences, Inc., San Francisco, CA
– name: 1 Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA
– name: 4 Boston Children's Hospital, Boston, MA
Author_xml – sequence: 1
  givenname: Xiaowei
  orcidid: 0000-0002-4846-8812
  surname: Yan
  fullname: Yan, Xiaowei
– sequence: 2
  givenname: Nico
  orcidid: 0000-0002-6179-8613
  surname: Stuurman
  fullname: Stuurman, Nico
– sequence: 3
  givenname: Susana A.
  orcidid: 0000-0003-3807-7540
  surname: Ribeiro
  fullname: Ribeiro, Susana A.
– sequence: 4
  givenname: Marvin E.
  surname: Tanenbaum
  fullname: Tanenbaum, Marvin E.
– sequence: 5
  givenname: Max A.
  orcidid: 0000-0002-3875-871X
  surname: Horlbeck
  fullname: Horlbeck, Max A.
– sequence: 6
  givenname: Christina R.
  orcidid: 0000-0003-2744-6312
  surname: Liem
  fullname: Liem, Christina R.
– sequence: 7
  givenname: Marco
  orcidid: 0000-0002-1369-4908
  surname: Jost
  fullname: Jost, Marco
– sequence: 8
  givenname: Jonathan S.
  surname: Weissman
  fullname: Weissman, Jonathan S.
– sequence: 9
  givenname: Ronald D.
  orcidid: 0000-0003-3460-2758
  surname: Vale
  fullname: Vale, Ronald D.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33465779$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1LHEEQxZtgiLsmx1zDgJdcxlR_zXRfBFkSFQRFk3NT09u99jLTvU7PCv736UVdEsFTHepXj_fqzclBTNER8pXCCQXFf6xtd8KAASgq1Qcyo1JAraiAAzIDYLTWkslDMs95DQCiFfwTOeRcNLJt9YwsLsLqvrYpTi5OVRhwFeKq7jC7ZbVJqS9jcXt5d3NbZTs6F3MVYjXgMGAfMFbW9X3-TD567LP78jKPyJ9fP38vLuqr6_PLxdlVbYWiU91RpT16ppn3LWLxQJfSK9kgIoWuRe5lBwiOIevQSWG1RsU710JhvOVH5PRZd7PtBre0xfGIvdmMxfb4ZBIG8_8mhnuzSo-mVYxSoEXg-4vAmB62Lk9mCHkXAaNL22yYaLVgXGhd0OM36Dptx1jiFUo1VEPT7AS__etob-X1vwWonwE7ppxH5_cIBbPrz5T-zL6_wvM3vA0TTiHtAoX-nau_RsqeDA
CitedBy_id crossref_primary_10_1083_jcb_202306048
crossref_primary_10_1016_j_csbj_2022_03_031
crossref_primary_10_3390_ijms222111773
crossref_primary_10_1016_j_crmeth_2023_100544
crossref_primary_10_1038_s41592_022_01743_5
crossref_primary_10_1016_j_stemcr_2022_03_019
crossref_primary_10_1038_s41571_024_00966_z
crossref_primary_10_1002_ijch_202200056
crossref_primary_10_3389_fcell_2022_1022723
crossref_primary_10_1038_s41592_020_01053_8
crossref_primary_10_1016_j_bcp_2023_115770
crossref_primary_10_1042_ETLS20210219
crossref_primary_10_1016_j_ohx_2023_e00400
crossref_primary_10_1101_cshperspect_a041382
crossref_primary_10_1146_annurev_cancerbio_070620_094029
crossref_primary_10_1093_hmg_ddac193
crossref_primary_10_1016_j_cell_2024_07_035
crossref_primary_10_15252_msb_202110768
crossref_primary_10_1038_s41592_022_01588_y
crossref_primary_10_1038_s41592_022_01589_x
crossref_primary_10_1038_s41551_024_01278_4
crossref_primary_10_1016_j_tcb_2021_06_002
crossref_primary_10_1021_acschembio_3c00140
crossref_primary_10_1146_annurev_genet_072920_013842
crossref_primary_10_1016_j_cels_2022_02_006
crossref_primary_10_1016_j_tig_2023_10_012
crossref_primary_10_1016_j_crmeth_2024_100737
crossref_primary_10_1016_j_tibs_2021_01_002
crossref_primary_10_1038_s41587_024_02516_5
crossref_primary_10_15252_msb_202211254
crossref_primary_10_1016_j_cell_2022_10_017
crossref_primary_10_1038_s42003_022_04089_y
crossref_primary_10_1126_science_abj3013
crossref_primary_10_3389_fcell_2023_1158373
crossref_primary_10_1016_j_tcb_2024_04_007
crossref_primary_10_1038_s41587_024_02391_0
crossref_primary_10_1038_s41596_021_00653_8
crossref_primary_10_1186_s13073_022_01134_7
crossref_primary_10_1039_D2LC00813K
crossref_primary_10_1016_j_semcdb_2022_02_002
crossref_primary_10_1038_s42256_022_00547_8
crossref_primary_10_3389_fcell_2021_760226
Cites_doi 10.1038/onc.2010.232
10.1089/scd.2014.0129
10.1016/j.cell.2018.09.022
10.1080/19491034.2016.1162933
10.1016/j.cell.2018.11.022
10.15252/msb.20209442
10.1016/j.tibtech.2018.08.002
10.1016/j.cell.2019.09.016
10.1038/nbt.3659
10.3389/fonc.2019.00516
10.1073/pnas.1903808116
10.4161/cc.26671
10.1038/s41592-018-0111-2
10.1039/C4SC03676J
10.1242/jcs.037333
10.1038/nrm3474
10.1016/j.cell.2014.09.029
10.1126/science.1247005
10.1016/j.cell.2014.05.010
10.1091/mbc.e13-07-0421
10.1247/csf.26.653
10.1038/s41589-018-0004-9
10.1101/gad.1495007
10.1038/s41592-020-0826-8
10.1016/j.cell.2015.06.059
10.1242/jcs.035360
10.3390/ijms18071562
10.1101/gad.1860310
10.1128/MCB.00908-07
10.1101/gad.1687508
10.1016/j.cell.2016.11.039
10.1038/nmeth.4177
10.1080/15384101.2016.1216928
10.1007/s12272-018-1029-z
10.1016/j.cub.2009.12.032
10.1101/2020.07.02.184390
10.1080/15384101.2016.1261765
10.15252/msb.20178064
10.1073/pnas.1307002110
10.7554/eLife.12902
10.14440/jbm.2014.36
10.7554/eLife.19760
10.1126/science.1246981
10.1128/MCB.01834-08
10.1016/j.cell.2016.11.038
10.1016/j.tcb.2012.11.004
10.1007/s00294-019-00999-3
10.3390/genes9120629
10.1101/298349
ContentType Journal Article
Copyright 2021 Yan et al.
Copyright Rockefeller University Press Feb 2021
2021 Yan et al. 2021
Copyright_xml – notice: 2021 Yan et al.
– notice: Copyright Rockefeller University Press Feb 2021
– notice: 2021 Yan et al. 2021
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7QR
7TK
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
DOI 10.1083/jcb.202008158
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Technology Research Database
Nucleic Acids Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Genetics Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList Virology and AIDS Abstracts
MEDLINE

MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate High-content imaging-based pooled CRISPR screens
EISSN 1540-8140
ExternalDocumentID PMC7821101
33465779
10_1083_jcb_202008158
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: T32 GM007618
– fundername: NIGMS NIH HHS
  grantid: R35 GM118106
– fundername: NIBIB NIH HHS
  grantid: T32 EB009383
– fundername: Howard Hughes Medical Institute
– fundername: ;
  grantid: NIH R35GM118106
GroupedDBID ---
-DZ
-~X
.55
123
18M
29K
2WC
34G
36B
39C
4.4
53G
85S
AAYXX
ABDNZ
ABOCM
ABPPZ
ABRJW
ABZEH
ACGFO
ACGOD
ACIWK
ACKOT
ACNCT
ACPRK
ADBBV
AEILP
AENEX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BKOMP
BTFSW
C45
CITATION
CS3
D-I
D0L
DIK
DU5
E3Z
EBS
EMB
F5P
F9R
FRP
GX1
H13
HF~
HYE
IH2
JZ9
KQ8
N9A
NHB
O5R
O5S
OK1
P2P
PQQKQ
R.V
RHI
RNS
RXW
SJN
TAE
TN5
TR2
TRP
TWZ
UBX
UHB
UKR
UPT
W8F
WH7
WOQ
X7M
YKV
YNH
YOC
YQT
YSK
YWH
YZZ
ZCA
~KM
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7QR
7TK
7TM
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ID FETCH-LOGICAL-c481t-b189faf292ff7aa3341d5f856aaa10b7a3f5b0a0e2a2bae54c99a83be7056afc3
ISSN 0021-9525
1540-8140
IngestDate Thu Aug 21 13:16:46 EDT 2025
Fri Sep 05 08:10:10 EDT 2025
Mon Jun 30 10:19:53 EDT 2025
Thu Apr 03 07:07:47 EDT 2025
Tue Jul 01 02:00:48 EDT 2025
Thu Apr 24 22:58:23 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License 2021 Yan et al.
This article is available under a Creative Commons License (Attribution 4.0 International, as described at https://creativecommons.org/licenses/by/4.0/).
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c481t-b189faf292ff7aa3341d5f856aaa10b7a3f5b0a0e2a2bae54c99a83be7056afc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-6179-8613
0000-0002-4846-8812
0000-0002-3875-871X
0000-0003-2744-6312
0000-0002-1369-4908
0000-0003-3460-2758
0000-0003-3807-7540
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC7821101
PMID 33465779
PQID 2486190661
PQPubID 48855
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_7821101
proquest_miscellaneous_2479423499
proquest_journals_2486190661
pubmed_primary_33465779
crossref_primary_10_1083_jcb_202008158
crossref_citationtrail_10_1083_jcb_202008158
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-02-01
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle The Journal of cell biology
PublicationTitleAlternate J Cell Biol
PublicationYear 2021
Publisher Rockefeller University Press
Publisher_xml – name: Rockefeller University Press
References Cantwell (2023072812143826200_bib4) 2019; 65
Hsu (2023072812143826200_bib19) 2014; 157
Webster (2023072812143826200_bib44) 2009; 122
Kampmann (2023072812143826200_bib22) 2013; 110
Bower (2023072812143826200_bib3) 2010; 29
Chien (2023072812143826200_bib6) 2015; 6
Kweon (2023072812143826200_bib24) 2018; 41
Wheeler (2023072812143826200_bib45) 2020; 17
Parnas (2023072812143826200_bib28) 2015; 162
Jaitin (2023072812143826200_bib21) 2016; 167
Wroblewska (2023072812143826200_bib46) 2018; 175
Adamson (2023072812143826200_bib1) 2018
Horlbeck (2023072812143826200_bib18) 2016; 5
Sokolova (2023072812143826200_bib38) 2017; 16
Dixit (2023072812143826200_bib9) 2016; 167
Wang (2023072812143826200_bib43) 2014; 343
Rapley (2023072812143826200_bib31) 2008; 121
Yoshida (2023072812143826200_bib48) 2016; 15
Ito (2023072812143826200_bib20) 2010; 20
Sansam (2023072812143826200_bib33) 2010; 24
Kanfer (2023072812143826200_bib23) 2020
Edens (2023072812143826200_bib12) 2013; 23
Sivakumar (2023072812143826200_bib36) 2014; 25
Hasle (2023072812143826200_bib17) 2020; 16
Gassmann (2023072812143826200_bib14) 2008; 22
Gilbert (2023072812143826200_bib15) 2014; 159
Ounkomol (2023072812143826200_bib27) 2018; 15
Edelstein (2023072812143826200_bib11) 2014; 1
Yu (2023072812143826200_bib49) 2019; 9
Terada (2023072812143826200_bib40) 2001; 26
Barrangou (2023072812143826200_bib2) 2016; 34
Carmena (2023072812143826200_bib5) 2012; 13
Sivakumar (2023072812143826200_bib37) 2016; 5
Verschuren (2023072812143826200_bib41) 2007; 27
Machida (2023072812143826200_bib25) 2007; 21
Pawłowska (2023072812143826200_bib29) 2017; 18
Datlinger (2023072812143826200_bib7) 2017; 14
Rubin (2023072812143826200_bib32) 2019; 176
Duxin (2023072812143826200_bib10) 2009; 29
Wang (2023072812143826200_bib42) 2019; 116
Piatkevich (2023072812143826200_bib30) 2018; 14
Feldman (2023072812143826200_bib13) 2019; 179
Sullivan (2023072812143826200_bib39) 2018; 9
Yoon (2023072812143826200_bib47) 2014; 23
Schuster (2023072812143826200_bib34) 2019; 37
de Groot (2023072812143826200_bib8) 2018; 14
Mukherjee (2023072812143826200_bib26) 2016; 7
Hashizume (2023072812143826200_bib16) 2013; 12
Shalem (2023072812143826200_bib35) 2014; 343
References_xml – volume: 29
  start-page: 4787
  year: 2010
  ident: 2023072812143826200_bib3
  article-title: Topoisomerase IIalpha maintains genomic stability through decatenation G(2) checkpoint signaling
  publication-title: Oncogene.
  doi: 10.1038/onc.2010.232
– volume: 23
  start-page: 2700
  year: 2014
  ident: 2023072812143826200_bib47
  article-title: Rad51 regulates cell cycle progression by preserving G2/M transition in mouse embryonic stem cells
  publication-title: Stem Cells Dev.
  doi: 10.1089/scd.2014.0129
– volume: 175
  start-page: 1141
  year: 2018
  ident: 2023072812143826200_bib46
  article-title: Protein Barcodes Enable High-Dimensional Single-Cell CRISPR Screens
  publication-title: Cell.
  doi: 10.1016/j.cell.2018.09.022
– volume: 7
  start-page: 167
  year: 2016
  ident: 2023072812143826200_bib26
  article-title: Recent advances in understanding nuclear size and shape
  publication-title: Nucleus.
  doi: 10.1080/19491034.2016.1162933
– volume: 176
  start-page: 361
  year: 2019
  ident: 2023072812143826200_bib32
  article-title: Coupled Single-Cell CRISPR Screening and Epigenomic Profiling Reveals Causal Gene Regulatory Networks
  publication-title: Cell.
  doi: 10.1016/j.cell.2018.11.022
– volume: 16
  year: 2020
  ident: 2023072812143826200_bib17
  article-title: High-throughput, microscope-based sorting to dissect cellular heterogeneity
  publication-title: Mol. Syst. Biol.
  doi: 10.15252/msb.20209442
– volume: 37
  start-page: 38
  year: 2019
  ident: 2023072812143826200_bib34
  article-title: RNAi/CRISPR Screens: from a Pool to a Valid Hit
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2018.08.002
– volume: 179
  start-page: 787
  year: 2019
  ident: 2023072812143826200_bib13
  article-title: Optical Pooled Screens in Human Cells
  publication-title: Cell.
  doi: 10.1016/j.cell.2019.09.016
– volume: 34
  start-page: 933
  year: 2016
  ident: 2023072812143826200_bib2
  article-title: Applications of CRISPR technologies in research and beyond
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3659
– volume: 9
  start-page: 516
  year: 2019
  ident: 2023072812143826200_bib49
  article-title: TICRR Contributes to Tumorigenesis Through Accelerating DNA Replication in Cancers
  publication-title: Front. Oncol.
  doi: 10.3389/fonc.2019.00516
– volume: 116
  start-page: 10842
  year: 2019
  ident: 2023072812143826200_bib42
  article-title: Imaging-based pooled CRISPR screening reveals regulators of lncRNA localization
  publication-title: Proc. Natl. Acad. Sci. USA.
  doi: 10.1073/pnas.1903808116
– volume: 12
  start-page: 3804
  year: 2013
  ident: 2023072812143826200_bib16
  article-title: Nucleoporin Nup62 maintains centrosome homeostasis
  publication-title: Cell Cycle.
  doi: 10.4161/cc.26671
– volume: 15
  start-page: 917
  year: 2018
  ident: 2023072812143826200_bib27
  article-title: Label-free prediction of three-dimensional fluorescence images from transmitted-light microscopy
  publication-title: Nat. Methods.
  doi: 10.1038/s41592-018-0111-2
– volume: 6
  start-page: 1701
  year: 2015
  ident: 2023072812143826200_bib6
  article-title: Photostick: a method for selective isolation of target cells from culture
  publication-title: Chem. Sci. (Camb.).
  doi: 10.1039/C4SC03676J
– volume: 122
  start-page: 1477
  year: 2009
  ident: 2023072812143826200_bib44
  article-title: Sizing up the nucleus: nuclear shape, size and nuclear-envelope assembly
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.037333
– volume: 13
  start-page: 789
  year: 2012
  ident: 2023072812143826200_bib5
  article-title: The chromosomal passenger complex (CPC): from easy rider to the godfather of mitosis
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm3474
– volume: 159
  start-page: 647
  year: 2014
  ident: 2023072812143826200_bib15
  article-title: Genome-Scale CRISPR-Mediated Control of Gene Repression and Activation
  publication-title: Cell.
  doi: 10.1016/j.cell.2014.09.029
– volume: 343
  start-page: 84
  year: 2014
  ident: 2023072812143826200_bib35
  article-title: Genome-scale CRISPR-Cas9 knockout screening in human cells
  publication-title: Science.
  doi: 10.1126/science.1247005
– volume: 157
  start-page: 1262
  year: 2014
  ident: 2023072812143826200_bib19
  article-title: Development and applications of CRISPR-Cas9 for genome engineering
  publication-title: Cell.
  doi: 10.1016/j.cell.2014.05.010
– volume: 25
  start-page: 594
  year: 2014
  ident: 2023072812143826200_bib36
  article-title: The spindle and kinetochore-associated (Ska) complex enhances binding of the anaphase-promoting complex/cyclosome (APC/C) to chromosomes and promotes mitotic exit
  publication-title: Mol. Biol. Cell.
  doi: 10.1091/mbc.e13-07-0421
– volume: 26
  start-page: 653
  year: 2001
  ident: 2023072812143826200_bib40
  article-title: Role of chromosomal passenger complex in chromosome segregation and cytokinesis
  publication-title: Cell Struct. Funct.
  doi: 10.1247/csf.26.653
– volume: 14
  start-page: 352
  year: 2018
  ident: 2023072812143826200_bib30
  article-title: A robotic multidimensional directed evolution approach applied to fluorescent voltage reporters
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/s41589-018-0004-9
– volume: 21
  start-page: 184
  year: 2007
  ident: 2023072812143826200_bib25
  article-title: The APC/C inhibitor, Emi1, is essential for prevention of rereplication
  publication-title: Genes Dev.
  doi: 10.1101/gad.1495007
– volume: 17
  start-page: 636
  year: 2020
  ident: 2023072812143826200_bib45
  article-title: Pooled CRISPR screens with imaging on microraft arrays reveals stress granule-regulatory factors
  publication-title: Nat. Methods.
  doi: 10.1038/s41592-020-0826-8
– volume: 162
  start-page: 675
  year: 2015
  ident: 2023072812143826200_bib28
  article-title: A Genome-wide CRISPR Screen in Primary Immune Cells to Dissect Regulatory Networks
  publication-title: Cell.
  doi: 10.1016/j.cell.2015.06.059
– volume: 121
  start-page: 3912
  year: 2008
  ident: 2023072812143826200_bib31
  article-title: The NIMA-family kinase Nek6 phosphorylates the kinesin Eg5 at a novel site necessary for mitotic spindle formation
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.035360
– volume: 18
  start-page: 1562
  year: 2017
  ident: 2023072812143826200_bib29
  article-title: DNA2-An Important Player in DNA Damage Response or Just Another DNA Maintenance Protein?
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms18071562
– volume: 24
  start-page: 183
  year: 2010
  ident: 2023072812143826200_bib33
  article-title: A vertebrate gene, ticrr, is an essential checkpoint and replication regulator
  publication-title: Genes Dev.
  doi: 10.1101/gad.1860310
– volume: 27
  start-page: 7955
  year: 2007
  ident: 2023072812143826200_bib41
  article-title: Loss of Emi1-dependent anaphase-promoting complex/cyclosome inhibition deregulates E2F target expression and elicits DNA damage-induced senescence
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.00908-07
– volume: 22
  start-page: 2385
  year: 2008
  ident: 2023072812143826200_bib14
  article-title: A new mechanism controlling kinetochore-microtubule interactions revealed by comparison of two dynein-targeting components: SPDL-1 and the Rod/Zwilch/Zw10 complex
  publication-title: Genes Dev.
  doi: 10.1101/gad.1687508
– volume: 167
  start-page: 1883
  year: 2016
  ident: 2023072812143826200_bib21
  article-title: Dissecting Immune Circuits by Linking CRISPR-Pooled Screens with Single-Cell RNA-Seq
  publication-title: Cell.
  doi: 10.1016/j.cell.2016.11.039
– volume: 14
  start-page: 297
  year: 2017
  ident: 2023072812143826200_bib7
  article-title: Pooled CRISPR screening with single-cell transcriptome readout
  publication-title: Nat. Methods.
  doi: 10.1038/nmeth.4177
– volume: 15
  start-page: 3151
  year: 2016
  ident: 2023072812143826200_bib48
  article-title: Mechanisms behind Topoisomerase II SUMOylation in chromosome segregation
  publication-title: Cell Cycle.
  doi: 10.1080/15384101.2016.1216928
– volume: 41
  start-page: 875
  year: 2018
  ident: 2023072812143826200_bib24
  article-title: High-throughput genetic screens using CRISPR-Cas9 system
  publication-title: Arch. Pharm. Res.
  doi: 10.1007/s12272-018-1029-z
– volume: 20
  start-page: 333
  year: 2010
  ident: 2023072812143826200_bib20
  article-title: Cell-nonautonomous regulation of C. elegans germ cell death by kri-1
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2009.12.032
– year: 2020
  ident: 2023072812143826200_bib23
  doi: 10.1101/2020.07.02.184390
– volume: 16
  start-page: 189
  year: 2017
  ident: 2023072812143826200_bib38
  article-title: Genome-wide screen of cell-cycle regulators in normal and tumor cells identifies a differential response to nucleosome depletion
  publication-title: Cell Cycle.
  doi: 10.1080/15384101.2016.1261765
– volume: 14
  year: 2018
  ident: 2023072812143826200_bib8
  article-title: Large-scale image-based profiling of single-cell phenotypes in arrayed CRISPR-Cas9 gene perturbation screens
  publication-title: Mol. Syst. Biol.
  doi: 10.15252/msb.20178064
– volume: 110
  start-page: E2317
  year: 2013
  ident: 2023072812143826200_bib22
  article-title: Integrated platform for genome-wide screening and construction of high-density genetic interaction maps in mammalian cells
  publication-title: Proc. Natl. Acad. Sci. USA.
  doi: 10.1073/pnas.1307002110
– volume: 5
  year: 2016
  ident: 2023072812143826200_bib37
  article-title: The human SKA complex drives the metaphase-anaphase cell cycle transition by recruiting protein phosphatase 1 to kinetochores
  publication-title: eLife.
  doi: 10.7554/eLife.12902
– volume: 1
  start-page: 10
  year: 2014
  ident: 2023072812143826200_bib11
  article-title: Advanced methods of microscope control using μManager software
  publication-title: J. Biol. Methods.
  doi: 10.14440/jbm.2014.36
– volume: 5
  year: 2016
  ident: 2023072812143826200_bib18
  article-title: Compact and highly active next-generation libraries for CRISPR-mediated gene repression and activation
  publication-title: eLife.
  doi: 10.7554/eLife.19760
– volume: 343
  start-page: 80
  year: 2014
  ident: 2023072812143826200_bib43
  article-title: Genetic screens in human cells using the CRISPR-Cas9 system
  publication-title: Science.
  doi: 10.1126/science.1246981
– volume: 29
  start-page: 4274
  year: 2009
  ident: 2023072812143826200_bib10
  article-title: Human Dna2 is a nuclear and mitochondrial DNA maintenance protein
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.01834-08
– volume: 167
  start-page: 1853
  year: 2016
  ident: 2023072812143826200_bib9
  article-title: Perturb-Seq: Dissecting Molecular Circuits with Scalable Single-Cell RNA Profiling of Pooled Genetic Screens
  publication-title: Cell.
  doi: 10.1016/j.cell.2016.11.038
– volume: 23
  start-page: 151
  year: 2013
  ident: 2023072812143826200_bib12
  article-title: Nuclear size regulation: from single cells to development and disease
  publication-title: Trends Cell Biol.
  doi: 10.1016/j.tcb.2012.11.004
– volume: 65
  start-page: 1281
  year: 2019
  ident: 2023072812143826200_bib4
  article-title: Unravelling nuclear size control
  publication-title: Curr. Genet.
  doi: 10.1007/s00294-019-00999-3
– volume: 9
  start-page: 629
  year: 2018
  ident: 2023072812143826200_bib39
  article-title: RAD-ical New Insights into RAD51 Regulation
  publication-title: Genes (Basel).
  doi: 10.3390/genes9120629
– year: 2018
  ident: 2023072812143826200_bib1
  doi: 10.1101/298349
SSID ssj0004743
Score 2.5482352
Snippet CRISPR (clustered regularly interspaced short palindromic repeats)-based gene inactivation provides a powerful means for linking genes to particular cellular...
Yan et al. demonstrate high-throughput screening of pooled CRISPR libraries for phenotypes detectable by microscopy. Their approach uses photoactivation of...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
SubjectTerms Automation
Cell Cycle and Division
Cell Line
Cell Nucleus - genetics
Cell Nucleus Size - genetics
CRISPR
CRISPR-Cas Systems - genetics
Flow Cytometry
Fluorescence
Genes
Genetic Testing
Green Fluorescent Proteins - metabolism
Humans
Imaging
Imaging, Three-Dimensional
Inactivation
Mammalian cells
Optics and Photonics
Phenotype
Phenotypes
Photoactivation
Technology
Title High-content imaging-based pooled CRISPR screens in mammalian cells
URI https://www.ncbi.nlm.nih.gov/pubmed/33465779
https://www.proquest.com/docview/2486190661
https://www.proquest.com/docview/2479423499
https://pubmed.ncbi.nlm.nih.gov/PMC7821101
Volume 220
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9UwFA86UfYifludUkF8udY1afr1KFPZlInMO7hvJWkTLNjesfUy5l_vOUn6NTdQX8qlyW1ofr-cnJyeD0JeM8EwrVoVhDqMA665DLJElEGSqxzV5bwypovDr8n-Mf-8ildjlU4TXdLJd-WvK-NK_gdVuAe4YpTsPyA7PBRuwG_AF66AMFz_CmN00gjQ2Rw_6NeNKTgU4L5ULbB0Fhpvjw6-fztagGzA8yoaNxrRNNa2gTb7s6lyOoaJGQUV2xcuSdMgHKy9dFWL9bmqB_NMt9mcOlMqUmv4ilNLVdtAGuP9I0bL6VK0qpXCVlk-FCCwWhcU4UwQjPZey7iDOLHJQzQmhlO5ylg4IRC7Ul6DAojyupRwUkdPDGrzuE-wO2kMeFHEkzi1dWcuJcjum26SWyxNEixj8eHgyxgcCzqSS64Ko-3Oxtomd_p_z_WSPw4bl31mJ0rI8h6568Dx31sq3Cc3VPuA3Lb1RC8ekr0pIfwZIXxLCN8SwneE8OvWHwjhG0I8IsefPi739gNXJSMoeUa7QNIs10KznGmdCgHvQ6tYZ3EihKChTEWkYxmKUMGylELFvMxzkUVSpaD7Cl1Gj8lWu27VU-JTzbhmooKOmpdYh5ryKpJxpnXFVck98rafo6J0KeSxksnPwrgyZFEBs1sMs-uRN0P3E5s75bqOO_2EF255nRWMZ3C4B3lBPfJqaAbhh5MBHF1vsA9sJyyCU7tHnlh8hpF6YD2SzpAbOmBi9XlLW_8wCdZBawatmD679pnPyfa4DnbIVne6US9AOe3kS0O-32SAj4o
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-content+imaging-based+pooled+CRISPR+screens+in+mammalian+cells&rft.jtitle=The+Journal+of+cell+biology&rft.au=Yan%2C+Xiaowei&rft.au=Stuurman%2C+Nico&rft.au=Ribeiro%2C+Susana+A&rft.au=Tanenbaum%2C+Marvin+E&rft.date=2021-02-01&rft.eissn=1540-8140&rft.volume=220&rft.issue=2&rft_id=info:doi/10.1083%2Fjcb.202008158&rft_id=info%3Apmid%2F33465779&rft.externalDocID=33465779
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9525&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9525&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9525&client=summon