Bayesian optimization algorithms for accelerator physics
Accelerator physics relies on numerical algorithms to solve optimization problems in online accelerator control and tasks such as experimental design and model calibration in simulations. The effectiveness of optimization algorithms in discovering ideal solutions for complex challenges with limited...
Saved in:
| Published in | Physical review. Accelerators and beams Vol. 27; no. 8; p. 084801 |
|---|---|
| Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
American Physical Society (APS)
01.08.2024
American Physical Society |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2469-9888 2469-9888 |
| DOI | 10.1103/PhysRevAccelBeams.27.084801 |
Cover
| Abstract | Accelerator physics relies on numerical algorithms to solve optimization problems in online accelerator control and tasks such as experimental design and model calibration in simulations. The effectiveness of optimization algorithms in discovering ideal solutions for complex challenges with limited resources often determines the problem complexity these methods can address. The accelerator physics community has recognized the advantages of Bayesian optimization algorithms, which leverage statistical surrogate models of objective functions to effectively address complex optimization challenges, especially in the presence of noise during accelerator operation and in resource-intensive physics simulations. In this review article, we offer a conceptual overview of applying Bayesian optimization techniques toward solving optimization problems in accelerator physics. We begin by providing a straightforward explanation of the essential components that make up Bayesian optimization techniques. We then give an overview of current and previous work applying and modifying these techniques to solve accelerator physics challenges. Finally, we explore practical implementation strategies for Bayesian optimization algorithms to maximize their performance, enabling users to effectively address complex optimization challenges in real-time beam control and accelerator design. |
|---|---|
| AbstractList | Accelerator physics relies on numerical algorithms to solve optimization problems in online accelerator control and tasks such as experimental design and model calibration in simulations. The effectiveness of optimization algorithms in discovering ideal solutions for complex challenges with limited resources often determines the problem complexity these methods can address. The accelerator physics community has recognized the advantages of Bayesian optimization algorithms, which leverage statistical surrogate models of objective functions to effectively address complex optimization challenges, especially in the presence of noise during accelerator operation and in resource-intensive physics simulations. In this review article, we offer a conceptual overview of applying Bayesian optimization techniques toward solving optimization problems in accelerator physics. We begin by providing a straightforward explanation of the essential components that make up Bayesian optimization techniques. We then give an overview of current and previous work applying and modifying these techniques to solve accelerator physics challenges. Finally, we explore practical implementation strategies for Bayesian optimization algorithms to maximize their performance, enabling users to effectively address complex optimization challenges in real-time beam control and accelerator design. |
| ArticleNumber | 084801 |
| Author | Lübsen, Jannis O. Mayes, Christopher Zhang, Zhe Huang, Xiaobiao Edelen, Auralee L. Martinez, Jose Xu, Chenran Pousa, Angel Ferran Garcia, Andrea Santamaria Mustapha, Brahim Liuzzo, Simone Maria Streeter, Matthew J. V. St. John, Jason Kennedy, Dylan Kuklev, Nikita Ratner, Daniel Lehe, Remi Neiswanger, Willie Boltz, Tobias Eichler, Annika Isenberg, Natalie M. Roussel, Ryan Kaiser, Jan Gao, Yuan Lin, Weijian Ji, Fuhao Kain, Verena |
| Author_xml | – sequence: 1 givenname: Ryan orcidid: 0000-0003-1656-8111 surname: Roussel fullname: Roussel, Ryan – sequence: 2 givenname: Auralee L. surname: Edelen fullname: Edelen, Auralee L. – sequence: 3 givenname: Tobias orcidid: 0000-0002-3448-3368 surname: Boltz fullname: Boltz, Tobias – sequence: 4 givenname: Dylan surname: Kennedy fullname: Kennedy, Dylan – sequence: 5 givenname: Zhe orcidid: 0000-0002-8143-0381 surname: Zhang fullname: Zhang, Zhe – sequence: 6 givenname: Fuhao orcidid: 0009-0003-9601-6233 surname: Ji fullname: Ji, Fuhao – sequence: 7 givenname: Xiaobiao orcidid: 0000-0002-8195-9277 surname: Huang fullname: Huang, Xiaobiao – sequence: 8 givenname: Daniel orcidid: 0000-0002-5747-7323 surname: Ratner fullname: Ratner, Daniel – sequence: 9 givenname: Andrea Santamaria orcidid: 0000-0002-7498-7640 surname: Garcia fullname: Garcia, Andrea Santamaria – sequence: 10 givenname: Chenran orcidid: 0000-0002-5034-2207 surname: Xu fullname: Xu, Chenran – sequence: 11 givenname: Jan orcidid: 0000-0003-3445-0678 surname: Kaiser fullname: Kaiser, Jan – sequence: 12 givenname: Angel Ferran orcidid: 0000-0001-6705-516X surname: Pousa fullname: Pousa, Angel Ferran – sequence: 13 givenname: Annika orcidid: 0000-0003-3282-3135 surname: Eichler fullname: Eichler, Annika – sequence: 14 givenname: Jannis O. surname: Lübsen fullname: Lübsen, Jannis O. – sequence: 15 givenname: Natalie M. orcidid: 0000-0003-3050-1597 surname: Isenberg fullname: Isenberg, Natalie M. – sequence: 16 givenname: Yuan orcidid: 0000-0002-9336-0640 surname: Gao fullname: Gao, Yuan – sequence: 17 givenname: Nikita surname: Kuklev fullname: Kuklev, Nikita – sequence: 18 givenname: Jose surname: Martinez fullname: Martinez, Jose – sequence: 19 givenname: Brahim surname: Mustapha fullname: Mustapha, Brahim – sequence: 20 givenname: Verena orcidid: 0000-0002-3135-2004 surname: Kain fullname: Kain, Verena – sequence: 21 givenname: Christopher surname: Mayes fullname: Mayes, Christopher – sequence: 22 givenname: Weijian orcidid: 0000-0002-8599-8329 surname: Lin fullname: Lin, Weijian – sequence: 23 givenname: Simone Maria orcidid: 0000-0003-3596-4654 surname: Liuzzo fullname: Liuzzo, Simone Maria – sequence: 24 givenname: Jason orcidid: 0000-0001-8110-4108 surname: St. John fullname: St. John, Jason – sequence: 25 givenname: Matthew J. V. orcidid: 0000-0001-9086-9831 surname: Streeter fullname: Streeter, Matthew J. V. – sequence: 26 givenname: Remi orcidid: 0000-0002-3656-9659 surname: Lehe fullname: Lehe, Remi – sequence: 27 givenname: Willie surname: Neiswanger fullname: Neiswanger, Willie |
| BackLink | https://www.osti.gov/biblio/2426962$$D View this record in Osti.gov |
| BookMark | eNp9kUFr3DAQhU1JoWma_7C0592OZFuWaC-b0CaBQENIz2I0HmcVvNYiqSnbX197XUKbQk4axLzvzbx5WxwNYeCi-CBgJQSUH282-3TLj2si7s8Yt2klmxXoSoN4VRzLSpml0Vof_VW_KU5TegAAocA0oI8LfYZ7Th6HRdhlv_W_MPswLLC_D9HnzTYtuhAXOHlwxDzWu9HWU3pXvO6wT3z65z0pvn_9cnd-ubz-dnF1vr5eUqVFXmpVtyyBW22AsIam0jVpo6UqWxSqM7UkFLojY6ATWgE41zIAG4OlK-vypLiauW3AB7uLfotxbwN6e_gI8d5izJ56tiV3ygATqbKuRNM4x84Ios45EqaRI-vzzPox7HD_E_v-CSjATqHaabvIj4eF3RSqlY2dQx3l72d5SNnbRD4zbSgMA1O2spLKqMljPTdRDGlEdXbsO4SaI_r-yei_6_1j9OkZ4_mYL6l_A73UqVs |
| CitedBy_id | crossref_primary_10_1016_j_jqsrt_2024_109260 crossref_primary_10_1103_PhysRevAccelBeams_27_122801 crossref_primary_10_1016_j_jhazmat_2024_135285 crossref_primary_10_1016_j_sasc_2024_200170 crossref_primary_10_1364_OE_549712 crossref_primary_10_1126_sciadv_adr4173 |
| Cites_doi | 10.1007/BF01349418 10.1103/PhysRevLett.126.104801 10.18429/JACoW-FEL2017-WEP031 10.1103/PhysRevLett.130.145001 10.1364/OE.432488 10.1093/comjnl/7.4.308 10.1137/0916069 10.1107/S1600577523007737 10.18429/JACoW-IPAC2021-WEPAB304 10.1038/s42005-023-01195-z 10.1088/1742-6596/874/1/012062 10.1214/ss/1177011145 10.1103/PhysRevAccelBeams.24.062801 10.1103/PhysRevAccelBeams.23.124801 10.1103/PhysRevAccelBeams.25.062802 10.1038/s41467-021-25757-3 10.1103/PhysRevAccelBeams.26.084601 10.1017/CBO9780511804441 10.1109/TPDS.2021.3082815 10.1016/j.rinp.2022.106116 10.2514/1.J052940 10.1103/PhysRevAccelBeams.23.044601 10.1103/PhysRevAccelBeams.25.104604 10.1038/s41598-024-66263-y 10.1103/PhysRevSTAB.8.034202 10.3389/fphy.2023.1233733 10.1038/s42254-021-00345-y 10.18429/JACoW-IPAC2022-TUPOST058 10.1016/j.ifacol.2023.10.1438 10.1038/s41598-019-48114-3 10.1103/PhysRevAccelBeams.25.044601 10.1103/PhysRevAccelBeams.24.072802 10.1038/s41598-020-74394-1 10.1109/JPROC.2015.2494218 10.1088/1742-6596/1350/1/012104 10.1103/PhysRevAccelBeams.24.082802 10.1016/j.nima.2023.168730 10.1088/2632-2153/abc81e 10.1038/s41467-024-48923-9 10.1088/1742-6596/2687/3/032030 10.1103/PhysRevAccelBeams.25.122801 10.1103/PhysRevResearch.5.013063 10.1016/j.envsoft.2018.11.018 10.1103/PhysRevLett.128.204801 10.1007/978-94-009-0909-0 10.1088/1748-0221/18/04/P04010 10.1103/PhysRevAccelBeams.26.034601 10.3390/instruments7030029 10.1007/978-0-8176-8232-3 10.1103/PhysRevLett.121.044801 10.1103/PhysRevAccelBeams.21.104601 10.1038/s41467-020-20245-6 10.1103/PhysRevSTAB.16.073401 10.1016/j.revip.2023.100085 10.1103/PhysRevAccelBeams.27.054601 10.1109/4235.996017 10.1137/S0895479897326432 10.1016/0893-6080(89)90020-8 10.1063/5.0003423 10.1016/j.compchemeng.2023.108211 10.1007/978-0-85729-398-5 10.1103/PhysRevLett.123.194801 10.1007/s10994-021-06019-1 10.1103/PhysRevAccelBeams.26.071302 10.1017/hpl.2023.23 10.1103/PhysRevLett.124.124801 10.1088/2632-2153/ad169f 10.18429/JACoW-IPAC2023-WEPA065 10.1103/PhysRevSTAB.16.102803 10.1109/TCST.2021.3136133 10.1103/PhysRevAccelBeams.25.014601 10.1016/j.nima.2020.164273 10.1016/j.nima.2013.05.046 |
| ContentType | Journal Article |
| CorporateAuthor | Brookhaven National Laboratory (BNL), Upton, NY (United States) Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States) Argonne National Laboratory (ANL), Argonne, IL (United States) SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States) Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States) |
| CorporateAuthor_xml | – name: Argonne National Laboratory (ANL), Argonne, IL (United States) – name: SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States) – name: Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States) – name: Brookhaven National Laboratory (BNL), Upton, NY (United States) – name: Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States) |
| DBID | AAYXX CITATION OTOTI ADTOC UNPAY DOA |
| DOI | 10.1103/PhysRevAccelBeams.27.084801 |
| DatabaseName | CrossRef OSTI.GOV Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 2469-9888 |
| ExternalDocumentID | oai_doaj_org_article_3ef690ecc6354177bbeb91ccfbbc1972 10.1103/physrevaccelbeams.27.084801 2426962 10_1103_PhysRevAccelBeams_27_084801 |
| GroupedDBID | 3MX 5VS AAFWJ AAYXX ABSSX ADBBV AFGMR AFKRA AFPKN AGDNE ALMA_UNASSIGNED_HOLDINGS ARAPS AUAIK BCNDV BENPR BGLVJ CCPQU CITATION EBS EJD GROUPED_DOAJ HCIFZ KQ8 M~E PHGZM PHGZT PIMPY PQGLB PUEGO ROL S7W OK1 OTOTI ADTOC AECSF AFFHD UNPAY |
| ID | FETCH-LOGICAL-c481t-865de20ed890ca507485c898263da16f952ca18fc990f18600bbde00e99a3b353 |
| IEDL.DBID | DOA |
| ISSN | 2469-9888 |
| IngestDate | Fri Oct 03 12:44:52 EDT 2025 Wed Oct 29 12:18:28 EDT 2025 Mon Sep 16 02:21:05 EDT 2024 Thu Apr 24 22:56:47 EDT 2025 Wed Oct 01 02:19:40 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c481t-865de20ed890ca507485c898263da16f952ca18fc990f18600bbde00e99a3b353 |
| Notes | FERMILAB-PUB-23-0846-AD; arXiv:2312.05667 USDOE Office of Science (SC), High Energy Physics (HEP) USDOE Office of Science (SC), Advanced Scientific Computing Research (ASCR). Scientific Discovery through Advanced Computing (SciDAC) USDOE Office of Science (SC), Basic Energy Sciences (BES) National Science Foundation (NSF) USDOE Office of Science (SC), Nuclear Physics (NP) Royal Society AC02-07CH11359; AC02-76SF00515; AC02-06CH11357; SC0012704; PHY-1549132; URF-R1221874 |
| ORCID | 0000-0003-3596-4654 0000-0002-3656-9659 0000-0002-8599-8329 0000-0002-8143-0381 0009-0003-9601-6233 0000-0002-9336-0640 0000-0003-3050-1597 0000-0002-5747-7323 0000-0001-8110-4108 0000-0002-5034-2207 0000-0003-3282-3135 0000-0002-8195-9277 0000-0003-3445-0678 0000-0002-7498-7640 0000-0003-1656-8111 0000-0001-6705-516X 0000-0002-3135-2004 0000-0002-3448-3368 0000-0001-9086-9831 0000000274987640 0000000234483368 0000000190869831 0000000330501597 0009000396016233 0000000332823135 0000000281959277 0000000250342207 000000016705516X 0000000293360640 0000000257477323 0000000316568111 0000000285998329 0000000236569659 0000000334450678 0000000181104108 0000000281430381 0000000335964654 0000000231352004 |
| OpenAccessLink | https://doaj.org/article/3ef690ecc6354177bbeb91ccfbbc1972 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_3ef690ecc6354177bbeb91ccfbbc1972 unpaywall_primary_10_1103_physrevaccelbeams_27_084801 osti_scitechconnect_2426962 crossref_citationtrail_10_1103_PhysRevAccelBeams_27_084801 crossref_primary_10_1103_PhysRevAccelBeams_27_084801 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-08-01 |
| PublicationDateYYYYMMDD | 2024-08-01 |
| PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Physical review. Accelerators and beams |
| PublicationYear | 2024 |
| Publisher | American Physical Society (APS) American Physical Society |
| Publisher_xml | – name: American Physical Society (APS) – name: American Physical Society |
| References | D. Ginsbourger (PhysRevAccelBeams.27.084801Cc97R1) 2010 R. A. Howard (PhysRevAccelBeams.27.084801Cc143R1) 1960 J. Mockus (PhysRevAccelBeams.27.084801Cc3R1) 1989 PhysRevAccelBeams.27.084801Cc71R1 PhysRevAccelBeams.27.084801Cc129R1 Y. Sui (PhysRevAccelBeams.27.084801Cc75R1) 2015 D. L. Kafkes (PhysRevAccelBeams.27.084801Cc139R1) 2021 M. McIntire (PhysRevAccelBeams.27.084801Cc9R1) 2016 PhysRevAccelBeams.27.084801Cc10R1 PhysRevAccelBeams.27.084801Cc33R1 PhysRevAccelBeams.27.084801Cc79R1 PhysRevAccelBeams.27.084801Cc136R1 PhysRevAccelBeams.27.084801Cc14R1 PhysRevAccelBeams.27.084801Cc52R1 H. H. Sohrab (PhysRevAccelBeams.27.084801Cc76R1) 2003 O. Stein (PhysRevAccelBeams.27.084801Cc115R1) 2022 PhysRevAccelBeams.27.084801Cc132R1 PhysRevAccelBeams.27.084801Cc18R1 J. Wilson (PhysRevAccelBeams.27.084801Cc90R1) 2017 J. P. Gonzalez-Aguilera (PhysRevAccelBeams.27.084801Cc113R1) 2023 PhysRevAccelBeams.27.084801Cc37R1 M. Balandat (PhysRevAccelBeams.27.084801Cc148R1) 2020 A. Wilson (PhysRevAccelBeams.27.084801Cc59R1) 2013 A. Paszke (PhysRevAccelBeams.27.084801Cc93R1) 2019 L. Emery (PhysRevAccelBeams.27.084801Cc118R1) 2003 PhysRevAccelBeams.27.084801Cc117R1 PhysRevAccelBeams.27.084801Cc22R1 PhysRevAccelBeams.27.084801Cc45R1 PhysRevAccelBeams.27.084801Cc68R1 S. P. Boyd (PhysRevAccelBeams.27.084801Cc70R1) 2004 J. Gonzalez (PhysRevAccelBeams.27.084801Cc100R1) 2016 H. Shang (PhysRevAccelBeams.27.084801Cc106R1) 2021 F. Ji (PhysRevAccelBeams.27.084801Cc83R1) 2022 Z. Zhang (PhysRevAccelBeams.27.084801Cc119R1) 2022 K. Deb (PhysRevAccelBeams.27.084801Cc104R1) 1995; 9 PhysRevAccelBeams.27.084801Cc7R1 N. Kuklev (PhysRevAccelBeams.27.084801Cc26R1) 2022 I. Agapov (PhysRevAccelBeams.27.084801Cc120R1) 2017 E. V. Bonilla (PhysRevAccelBeams.27.084801Cc61R1) 2007 A. G. Wilson (PhysRevAccelBeams.27.084801Cc56R1) 2010; 23 I. Goodfellow (PhysRevAccelBeams.27.084801Cc108R1) 2016 X. Huang (PhysRevAccelBeams.27.084801Cc36R1) 2021 Y. Kim (PhysRevAccelBeams.27.084801Cc72R1) 2020 PhysRevAccelBeams.27.084801Cc105R1 J. Kirschner (PhysRevAccelBeams.27.084801Cc30R1) 2019 R. M. Neal (PhysRevAccelBeams.27.084801Cc42R1) 2012 PhysRevAccelBeams.27.084801Cc34R1 M. G. Genton (PhysRevAccelBeams.27.084801Cc43R1) 2002; 2 C. Xu (PhysRevAccelBeams.27.084801Cc101R1) 2022 PhysRevAccelBeams.27.084801Cc11R1 PhysRevAccelBeams.27.084801Cc53R1 PhysRevAccelBeams.27.084801Cc95R1 PhysRevAccelBeams.27.084801Cc131R1 N. Kuklev (PhysRevAccelBeams.27.084801Cc112R1) 2023 PhysRevAccelBeams.27.084801Cc15R1 D. Eriksson (PhysRevAccelBeams.27.084801Cc47R1) 2021 PhysRevAccelBeams.27.084801Cc38R1 PhysRevAccelBeams.27.084801Cc19R1 PhysRevAccelBeams.27.084801Cc80R1 PhysRevAccelBeams.27.084801Cc23R1 E. Chong (PhysRevAccelBeams.27.084801Cc125R1) 2013 PhysRevAccelBeams.27.084801Cc46R1 PhysRevAccelBeams.27.084801Cc69R1 PhysRevAccelBeams.27.084801Cc123R1 N. Kuklev (PhysRevAccelBeams.27.084801Cc27R1) 2023 N. Srinivas (PhysRevAccelBeams.27.084801Cc64R1) 2010 S. Daulton (PhysRevAccelBeams.27.084801Cc82R1) 2020; 33 M. Balandat (PhysRevAccelBeams.27.084801Cc99R1) 2020 K. Kandasamy (PhysRevAccelBeams.27.084801Cc60R1) 2017 PhysRevAccelBeams.27.084801Cc84R1 C. E. Rasmussen (PhysRevAccelBeams.27.084801Cc8R1) 2006 D. Eriksson (PhysRevAccelBeams.27.084801Cc55R1) 2021 H. Shang (PhysRevAccelBeams.27.084801Cc121R1) 2005 PhysRevAccelBeams.27.084801Cc6R1 A. Edelen (PhysRevAccelBeams.27.084801Cc116R1) 2017 PhysRevAccelBeams.27.084801Cc4R1 F. Pedregosa (PhysRevAccelBeams.27.084801Cc147R1) 2011; 12 PhysRevAccelBeams.27.084801Cc92R1 PhysRevAccelBeams.27.084801Cc127R1 PhysRevAccelBeams.27.084801Cc35R1 PhysRevAccelBeams.27.084801Cc134R1 PhysRevAccelBeams.27.084801Cc12R1 PhysRevAccelBeams.27.084801Cc31R1 PhysRevAccelBeams.27.084801Cc54R1 PhysRevAccelBeams.27.084801Cc111R1 PhysRevAccelBeams.27.084801Cc130R1 PhysRevAccelBeams.27.084801Cc153R1 PhysRevAccelBeams.27.084801Cc16R1 Y. Sui (PhysRevAccelBeams.27.084801Cc77R1) 2018 E. F. Camacho (PhysRevAccelBeams.27.084801Cc141R1) 2007 PhysRevAccelBeams.27.084801Cc81R1 J. Wu (PhysRevAccelBeams.27.084801Cc88R1) 2017 J. R. Gardner (PhysRevAccelBeams.27.084801Cc149R1) 2018 R. S. Sutton (PhysRevAccelBeams.27.084801Cc142R1) 2018 PhysRevAccelBeams.27.084801Cc20R1 PhysRevAccelBeams.27.084801Cc126R1 PhysRevAccelBeams.27.084801Cc62R1 PhysRevAccelBeams.27.084801Cc122R1 J. R. Gardner (PhysRevAccelBeams.27.084801Cc73R1) 2014 J. T. Springenberg (PhysRevAccelBeams.27.084801Cc146R1) 2016 R. Roussel (PhysRevAccelBeams.27.084801Cc150R1) 2023 Y. A. LeCun (PhysRevAccelBeams.27.084801Cc44R1) 2012 S. M. Liuzzo (PhysRevAccelBeams.27.084801Cc96R1) 2023 N. Kuklev (PhysRevAccelBeams.27.084801Cc154R1) PhysRevAccelBeams.27.084801Cc28R1 D. Eriksson (PhysRevAccelBeams.27.084801Cc94R1) 2019 R. Roussel (PhysRevAccelBeams.27.084801Cc86R1) 2021 A. G. Wilson (PhysRevAccelBeams.27.084801Cc49R1) 2016 PhysRevAccelBeams.27.084801Cc137R1 PhysRevAccelBeams.27.084801Cc114R1 PhysRevAccelBeams.27.084801Cc156R1 PhysRevAccelBeams.27.084801Cc13R1 PhysRevAccelBeams.27.084801Cc133R1 K. Hwang (PhysRevAccelBeams.27.084801Cc25R1) 2022 PhysRevAccelBeams.27.084801Cc32R1 PhysRevAccelBeams.27.084801Cc74R1 K. Liagkouras (PhysRevAccelBeams.27.084801Cc103R1) 2013 PhysRevAccelBeams.27.084801Cc110R1 PhysRevAccelBeams.27.084801Cc17R1 C. X. (PhysRevAccelBeams.27.084801Cc124R1) 2023 A. Krause (PhysRevAccelBeams.27.084801Cc58R1) 2011 W. Neiswanger (PhysRevAccelBeams.27.084801Cc85R1) 2021 D. J. Rezende (PhysRevAccelBeams.27.084801Cc98R1) 2014 R. Horst (PhysRevAccelBeams.27.084801Cc5R1) 2013 T. Boltz (PhysRevAccelBeams.27.084801Cc138R1) 2019 J. Kaiser (PhysRevAccelBeams.27.084801Cc135R1) 2022 PhysRevAccelBeams.27.084801Cc67R1 PhysRevAccelBeams.27.084801Cc102R1 PhysRevAccelBeams.27.084801Cc144R1 PhysRevAccelBeams.27.084801Cc21R1 PhysRevAccelBeams.27.084801Cc48R1 PhysRevAccelBeams.27.084801Cc29R1 |
| References_xml | – ident: PhysRevAccelBeams.27.084801Cc62R1 doi: 10.1007/BF01349418 – volume-title: Proceedings of the International Conference on Machine Learning year: 2021 ident: PhysRevAccelBeams.27.084801Cc85R1 – ident: PhysRevAccelBeams.27.084801Cc19R1 doi: 10.1103/PhysRevLett.126.104801 – volume-title: Proceedings of the 31st International Conference on Machine Learning, Beijing, China year: 2014 ident: PhysRevAccelBeams.27.084801Cc98R1 – volume-title: Proceedings of the 38th International Free Electron Laser Conference, FEL2017, Santa Fe, NM year: 2017 ident: PhysRevAccelBeams.27.084801Cc116R1 doi: 10.18429/JACoW-FEL2017-WEP031 – volume-title: Proceedings of the International Workshop on the Foundations of Trustworthy AI Integrating Learning, Optimization and Reasoning year: 2020 ident: PhysRevAccelBeams.27.084801Cc72R1 – ident: PhysRevAccelBeams.27.084801Cc114R1 doi: 10.1103/PhysRevLett.130.145001 – volume: 9 start-page: 115 issn: 0891-2513 year: 1995 ident: PhysRevAccelBeams.27.084801Cc104R1 publication-title: Complex Syst. – volume-title: Proceedings of the 31st Conference on Neural Information Processing Systems, NIPS 2017, Long Beach, CA year: 2017 ident: PhysRevAccelBeams.27.084801Cc88R1 – volume-title: Proceedings of the 21st Particle Accelerator Conference, Knoxville, TN, 2005 year: 2005 ident: PhysRevAccelBeams.27.084801Cc121R1 – ident: PhysRevAccelBeams.27.084801Cc111R1 doi: 10.1364/OE.432488 – ident: PhysRevAccelBeams.27.084801Cc117R1 doi: 10.1093/comjnl/7.4.308 – volume: 33 start-page: 9851 issn: 1049-5258 year: 2020 ident: PhysRevAccelBeams.27.084801Cc82R1 publication-title: Adv. Neural Inf. Process. Syst. – ident: PhysRevAccelBeams.27.084801Cc92R1 doi: 10.1137/0916069 – ident: PhysRevAccelBeams.27.084801Cc13R1 doi: 10.1107/S1600577523007737 – volume-title: Proc. IPAC’21, Campinas, Brazil, 2021 year: 2021 ident: PhysRevAccelBeams.27.084801Cc36R1 doi: 10.18429/JACoW-IPAC2021-WEPAB304 – volume-title: Proceedings of the 7th International Particle Accelerator Conference, IPAC-2016, Busan, Korea year: 2016 ident: PhysRevAccelBeams.27.084801Cc9R1 – volume-title: On-line optimization of European XFEL with ocelot year: 2017 ident: PhysRevAccelBeams.27.084801Cc120R1 – ident: PhysRevAccelBeams.27.084801Cc95R1 doi: 10.1038/s42005-023-01195-z – volume-title: Bayesian Learning for Neural Networks year: 2012 ident: PhysRevAccelBeams.27.084801Cc42R1 – volume-title: Proceedings of the 30th International Conference on Machine Learning year: 2013 ident: PhysRevAccelBeams.27.084801Cc59R1 – volume-title: Computational Intelligence in Expensive Optimization Problems year: 2010 ident: PhysRevAccelBeams.27.084801Cc97R1 – volume-title: Global Optimization: Deterministic Approaches year: 2013 ident: PhysRevAccelBeams.27.084801Cc5R1 – ident: PhysRevAccelBeams.27.084801Cc129R1 doi: 10.1088/1742-6596/874/1/012062 – ident: PhysRevAccelBeams.27.084801Cc46R1 doi: 10.1214/ss/1177011145 – volume: 12 start-page: 2825 year: 2011 ident: PhysRevAccelBeams.27.084801Cc147R1 publication-title: J. Mach. Learn. Res. – ident: PhysRevAccelBeams.27.084801Cc34R1 doi: 10.1103/PhysRevAccelBeams.24.062801 – ident: PhysRevAccelBeams.27.084801Cc136R1 doi: 10.1103/PhysRevAccelBeams.23.124801 – ident: PhysRevAccelBeams.27.084801Cc31R1 doi: 10.1103/PhysRevAccelBeams.25.062802 – volume-title: Neural Networks: Tricks of the Trade: Second Edition year: 2012 ident: PhysRevAccelBeams.27.084801Cc44R1 – volume-title: Proceedings of the 14th International Particle Accelerator Conference, IPAC-2023, Venice, Italy year: 2023 ident: PhysRevAccelBeams.27.084801Cc124R1 – ident: PhysRevAccelBeams.27.084801Cc29R1 doi: 10.1038/s41467-021-25757-3 – volume-title: Proceedings of the IPAC’19 year: 2019 ident: PhysRevAccelBeams.27.084801Cc138R1 – volume-title: Proceedings of Fourth Workshop on Machine Learning and the Physical Sciences year: 2021 ident: PhysRevAccelBeams.27.084801Cc86R1 – ident: PhysRevAccelBeams.27.084801Cc38R1 doi: 10.1103/PhysRevAccelBeams.26.084601 – volume-title: Convex Optimization year: 2004 ident: PhysRevAccelBeams.27.084801Cc70R1 doi: 10.1017/CBO9780511804441 – ident: PhysRevAccelBeams.27.084801Cc153R1 doi: 10.1109/TPDS.2021.3082815 – volume-title: Proceedings of the 14th International Particle Accelerator Conference, IPAC-2023, Venice, Italy year: 2023 ident: PhysRevAccelBeams.27.084801Cc27R1 – volume-title: Proceedings of the 13th International Particle Accelerator Conference, IPAC-2022, Bangkok, Thailand year: 2022 ident: PhysRevAccelBeams.27.084801Cc83R1 – volume-title: Proceedings of the IPAC’21 year: 2021 ident: PhysRevAccelBeams.27.084801Cc139R1 – ident: PhysRevAccelBeams.27.084801Cc20R1 doi: 10.1016/j.rinp.2022.106116 – ident: PhysRevAccelBeams.27.084801Cc84R1 doi: 10.2514/1.J052940 – volume-title: Proceedings of the 36th International Conference on Machine Learning year: 2019 ident: PhysRevAccelBeams.27.084801Cc30R1 – ident: PhysRevAccelBeams.27.084801Cc54R1 doi: 10.1103/PhysRevAccelBeams.23.044601 – ident: PhysRevAccelBeams.27.084801Cc137R1 doi: 10.1103/PhysRevAccelBeams.25.104604 – volume-title: Proceedings of the 31st International Conference on Machine Learning, Beijing, China, ICML-2014 year: 2014 ident: PhysRevAccelBeams.27.084801Cc73R1 – volume-title: Proceedings of the 14th International Particle Accelerator Conference, IPAC-2023, Venice, Italy year: 2023 ident: PhysRevAccelBeams.27.084801Cc150R1 – ident: PhysRevAccelBeams.27.084801Cc123R1 doi: 10.1038/s41598-024-66263-y – ident: PhysRevAccelBeams.27.084801Cc6R1 doi: 10.1103/PhysRevSTAB.8.034202 – ident: PhysRevAccelBeams.27.084801Cc23R1 doi: 10.3389/fphy.2023.1233733 – volume-title: Advances in Neural Information Processing Systems 33 year: 2020 ident: PhysRevAccelBeams.27.084801Cc148R1 – ident: PhysRevAccelBeams.27.084801Cc68R1 doi: 10.1038/s42254-021-00345-y – volume-title: Proceedings of 33rd Conference on Neural Information Processing Systems, NeurIPS 2019, Vancouver, Canada year: 2019 ident: PhysRevAccelBeams.27.084801Cc94R1 – volume-title: An Introduction to Optimization year: 2013 ident: PhysRevAccelBeams.27.084801Cc125R1 – volume-title: Proc. IPAC’22, Bangkok, Thailand, 2022 year: 2022 ident: PhysRevAccelBeams.27.084801Cc119R1 doi: 10.18429/JACoW-IPAC2022-TUPOST058 – ident: PhysRevAccelBeams.27.084801Cc32R1 doi: 10.1016/j.ifacol.2023.10.1438 – ident: PhysRevAccelBeams.27.084801Cc67R1 doi: 10.1038/s41598-019-48114-3 – ident: PhysRevAccelBeams.27.084801Cc12R1 doi: 10.1103/PhysRevAccelBeams.25.044601 – volume-title: Reinforcement Learning: An Introduction year: 2018 ident: PhysRevAccelBeams.27.084801Cc142R1 – ident: PhysRevAccelBeams.27.084801Cc48R1 doi: 10.1103/PhysRevAccelBeams.24.072802 – ident: PhysRevAccelBeams.27.084801Cc69R1 doi: 10.1038/s41598-020-74394-1 – volume-title: Proceedings of the 20th International Conference on Neural Information Processing Systems year: 2007 ident: PhysRevAccelBeams.27.084801Cc61R1 – ident: PhysRevAccelBeams.27.084801Cc4R1 doi: 10.1109/JPROC.2015.2494218 – ident: PhysRevAccelBeams.27.084801Cc130R1 doi: 10.1088/1742-6596/1350/1/012104 – ident: PhysRevAccelBeams.27.084801Cc105R1 doi: 10.1103/PhysRevAccelBeams.24.082802 – volume-title: Proceedings of the 34th International Conference on Machine Learning, ICML-2017, Sydney, New South Wales, Australia year: 2017 ident: PhysRevAccelBeams.27.084801Cc60R1 – ident: PhysRevAccelBeams.27.084801Cc14R1 doi: 10.1016/j.nima.2023.168730 – volume-title: Proceedings of the 13th Particle Accelerator Conference, IPAC-2022, Bangkok, Thailand year: 2022 ident: PhysRevAccelBeams.27.084801Cc25R1 – ident: PhysRevAccelBeams.27.084801Cc102R1 doi: 10.1088/2632-2153/abc81e – volume-title: Proceedings of the Thirty-Seventh Conference on Uncertainty in Artificial Intelligence, UAI 2021 year: 2021 ident: PhysRevAccelBeams.27.084801Cc47R1 – volume-title: Advances in Neural Information Processing Systems year: 2020 ident: PhysRevAccelBeams.27.084801Cc99R1 – ident: PhysRevAccelBeams.27.084801Cc33R1 doi: 10.1038/s41467-024-48923-9 – ident: PhysRevAccelBeams.27.084801Cc17R1 doi: 10.1088/1742-6596/2687/3/032030 – ident: PhysRevAccelBeams.27.084801Cc127R1 doi: 10.1103/PhysRevAccelBeams.25.122801 – ident: PhysRevAccelBeams.27.084801Cc35R1 doi: 10.1103/PhysRevResearch.5.013063 – ident: PhysRevAccelBeams.27.084801Cc80R1 doi: 10.1016/j.envsoft.2018.11.018 – volume-title: Dynamic Programming and Markov Processes year: 1960 ident: PhysRevAccelBeams.27.084801Cc143R1 – ident: PhysRevAccelBeams.27.084801Cc28R1 doi: 10.1103/PhysRevLett.128.204801 – volume-title: The Bayesian Approach to Local Optimization year: 1989 ident: PhysRevAccelBeams.27.084801Cc3R1 doi: 10.1007/978-94-009-0909-0 – volume-title: Proceedings of the 20th Particle Accelerator Conference, PAC-2003, Portland, OR year: 2003 ident: PhysRevAccelBeams.27.084801Cc118R1 – volume-title: Proceedings of the 5th North American Particle Accelerator Conference, NAPAC’22, Albuquerque, NM year: 2022 ident: PhysRevAccelBeams.27.084801Cc26R1 – volume: 23 start-page: 2460 issn: 1049-5258 year: 2010 ident: PhysRevAccelBeams.27.084801Cc56R1 publication-title: Adv. Neural Inf. Process. Syst. – ident: PhysRevAccelBeams.27.084801Cc15R1 doi: 10.1088/1748-0221/18/04/P04010 – ident: PhysRevAccelBeams.27.084801Cc11R1 doi: 10.1103/PhysRevAccelBeams.26.034601 – ident: PhysRevAccelBeams.27.084801Cc74R1 doi: 10.3390/instruments7030029 – volume-title: Basic Real Analysis year: 2003 ident: PhysRevAccelBeams.27.084801Cc76R1 doi: 10.1007/978-0-8176-8232-3 – volume-title: International Conference on Artificial Intelligence and Statistics year: 2021 ident: PhysRevAccelBeams.27.084801Cc55R1 – ident: PhysRevAccelBeams.27.084801Cc134R1 doi: 10.1103/PhysRevLett.121.044801 – volume-title: Proceedings of the 35th International on Conference on Machine Learning, ICML-2018 year: 2018 ident: PhysRevAccelBeams.27.084801Cc77R1 – ident: PhysRevAccelBeams.27.084801Cc122R1 doi: 10.1103/PhysRevAccelBeams.21.104601 – ident: PhysRevAccelBeams.27.084801Cc18R1 doi: 10.1038/s41467-020-20245-6 – volume-title: Proceedings of the 13th International Particle Accelerator Conference, IPAC-2022, Bangkok, Thailand year: 2022 ident: PhysRevAccelBeams.27.084801Cc101R1 – volume-title: Proceedings of the 39th International Conference on Machine Learning year: 2022 ident: PhysRevAccelBeams.27.084801Cc135R1 – ident: PhysRevAccelBeams.27.084801Cc156R1 doi: 10.1103/PhysRevSTAB.16.073401 – volume-title: Proceedings of 2013 22nd International Conference on Computer Communication and Networks ICCCN, Nassau, Bahamas year: 2013 ident: PhysRevAccelBeams.27.084801Cc103R1 – ident: PhysRevAccelBeams.27.084801Cc110R1 doi: 10.1016/j.revip.2023.100085 – volume-title: Proceedings of the 32nd Conference on Neural Information Processing Systems, NeurIPS 2018, Montréal, Canada year: 2017 ident: PhysRevAccelBeams.27.084801Cc90R1 – volume-title: Gaussian Processes for Machine Learning year: 2006 ident: PhysRevAccelBeams.27.084801Cc8R1 – ident: PhysRevAccelBeams.27.084801Cc52R1 doi: 10.1103/PhysRevAccelBeams.27.054601 – ident: PhysRevAccelBeams.27.084801Cc81R1 doi: 10.1109/4235.996017 – volume-title: Deep Learning year: 2016 ident: PhysRevAccelBeams.27.084801Cc108R1 – ident: PhysRevAccelBeams.27.084801Cc45R1 doi: 10.1137/S0895479897326432 – ident: PhysRevAccelBeams.27.084801Cc53R1 doi: 10.1016/0893-6080(89)90020-8 – ident: PhysRevAccelBeams.27.084801Cc131R1 doi: 10.1063/5.0003423 – ident: PhysRevAccelBeams.27.084801Cc7R1 doi: 10.1016/j.compchemeng.2023.108211 – volume-title: Proceedings of the 32nd International Conference on Machine Learning year: 2015 ident: PhysRevAccelBeams.27.084801Cc75R1 – volume-title: Proceedings of the 13th International Particle Accelerator Conference, Bangkok, Thailand year: 2022 ident: PhysRevAccelBeams.27.084801Cc115R1 – volume-title: Model Predictive Control year: 2007 ident: PhysRevAccelBeams.27.084801Cc141R1 doi: 10.1007/978-0-85729-398-5 – volume-title: Proceedings of the 19th International Conference on Artificial Intelligence and Statistics year: 2016 ident: PhysRevAccelBeams.27.084801Cc49R1 – volume-title: Proceedings of the 27th International Conference on Machine Learning (ICML 2010) year: 2010 ident: PhysRevAccelBeams.27.084801Cc64R1 – volume-title: Proceedings of the 33rd International Conference on Neural Information Processing Systems year: 2019 ident: PhysRevAccelBeams.27.084801Cc93R1 – ident: PhysRevAccelBeams.27.084801Cc144R1 doi: 10.1103/PhysRevLett.123.194801 – ident: PhysRevAccelBeams.27.084801Cc71R1 doi: 10.1007/s10994-021-06019-1 – ident: PhysRevAccelBeams.27.084801Cc22R1 doi: 10.1103/PhysRevAccelBeams.26.071302 – volume-title: Proceedings of the 12th International Particle Accelerator Conference, IPAC-2021, Campinas, SP, Brazil year: 2021 ident: PhysRevAccelBeams.27.084801Cc106R1 – ident: PhysRevAccelBeams.27.084801Cc21R1 doi: 10.1017/hpl.2023.23 – ident: PhysRevAccelBeams.27.084801Cc10R1 doi: 10.1103/PhysRevLett.124.124801 – volume-title: Proceedings of the 19th International Conference on Accelerator and Large Experimental Physics Control Systems, ICALEPCS-2023, Cape Town, South Africa year: 2023 ident: PhysRevAccelBeams.27.084801Cc96R1 – volume-title: Advances in Neural Information Processing Systems year: 2016 ident: PhysRevAccelBeams.27.084801Cc146R1 – ident: PhysRevAccelBeams.27.084801Cc37R1 doi: 10.1088/2632-2153/ad169f – volume-title: Proc. IPAC’23, Venice, Italy year: 2023 ident: PhysRevAccelBeams.27.084801Cc113R1 doi: 10.18429/JACoW-IPAC2023-WEPA065 – volume-title: IPAC’24, Nashville, TN, USA, 2024 ident: PhysRevAccelBeams.27.084801Cc154R1 – ident: PhysRevAccelBeams.27.084801Cc132R1 doi: 10.1103/PhysRevSTAB.16.102803 – volume-title: Proceedings of the 19th International Conference on Artificial Intelligence and Statistics, Cadiz, Spain year: 2016 ident: PhysRevAccelBeams.27.084801Cc100R1 – volume-title: Proceedings of the 24th International Conference on Neural Information Processing Systems year: 2011 ident: PhysRevAccelBeams.27.084801Cc58R1 – ident: PhysRevAccelBeams.27.084801Cc133R1 doi: 10.1109/TCST.2021.3136133 – volume-title: Proceedings of 32nd Conference on Neural Information Processing Systems NeurIPS 2018, Montréal, Canada year: 2018 ident: PhysRevAccelBeams.27.084801Cc149R1 – ident: PhysRevAccelBeams.27.084801Cc16R1 doi: 10.1103/PhysRevAccelBeams.25.014601 – volume: 2 start-page: 299 year: 2002 ident: PhysRevAccelBeams.27.084801Cc43R1 publication-title: J. Mach. Learn. Res. – ident: PhysRevAccelBeams.27.084801Cc79R1 doi: 10.1016/j.nima.2020.164273 – volume-title: Proceedings of the 14th International Particle Accelerator Conference, IPAC-2023, Bangkok, Thailand year: 2023 ident: PhysRevAccelBeams.27.084801Cc112R1 – ident: PhysRevAccelBeams.27.084801Cc126R1 doi: 10.1016/j.nima.2013.05.046 |
| SSID | ssj0001609708 |
| Score | 2.4518218 |
| SecondaryResourceType | review_article |
| Snippet | Accelerator physics relies on numerical algorithms to solve optimization problems in online accelerator control and tasks such as experimental design and model... |
| SourceID | doaj unpaywall osti crossref |
| SourceType | Open Website Open Access Repository Enrichment Source Index Database |
| StartPage | 084801 |
| SubjectTerms | PARTICLE ACCELERATORS |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEB-OPdTzwW-59VQK-traNEmb6NOueByCh4gLJwghSZNTrttdtt2T86930nZXj32Reyq0TEgmM83MZOY3AK8ppZnAGcbaCBsz4mQsfeli4QWhOXEoZKFQ-NNpfjJjH8_42R6824Yu6otEL5vuDn9Z-l6pU_om5EN-cZcTa101dXreJFmRBCz4ULu1n3M0xEewPzv9PPkW2smh0xdLdO5uw6vNCCFSsHKXOoxgro9w7UzqoPvxsUAVuwt31vVSX_3SVfXPsXN8H75vinf6bJOLZN2axP7exXK8yYoewL3BHI0mvfw8hD1XP4JbXVqobR6DmOorF8osowX-WuZDzWakq_PF6mf7Y95EaPNG3WJdd18f9ZGS5gnMjj98fX8SD70WYssEaWOR89JlqSuFTEOXhIIJboVE54OWmuRe8sxqIrzF08sTgWaSMaVLUyelpoZy-hRG9aJ2hxDl0hLPslB1axjTUnBu0E2jVHPDuMjH8HbDbWUHIPLQD6NSnUOSUrXDGpUVqmfNGNiWeNnjcfwf2TRs65YkgGp3L3BX1KCjijqfyxRlGo0wRorCGGcksdYbY0N3tjEcBaFQaJsEgF0bMpFsq7pq4By_8q2s7ExtR_j-Tu3ZDemO4AB5zPpkxOcwaldr9wINpNa8HBThD6PAEPQ priority: 102 providerName: Unpaywall |
| Title | Bayesian optimization algorithms for accelerator physics |
| URI | https://www.osti.gov/biblio/2426962 http://link.aps.org/pdf/10.1103/PhysRevAccelBeams.27.084801 https://doaj.org/article/3ef690ecc6354177bbeb91ccfbbc1972 |
| UnpaywallVersion | publishedVersion |
| Volume | 27 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2469-9888 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001609708 issn: 2469-9888 databaseCode: KQ8 dateStart: 20160101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2469-9888 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001609708 issn: 2469-9888 databaseCode: DOA dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2469-9888 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001609708 issn: 2469-9888 databaseCode: M~E dateStart: 20160101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2469-9888 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001609708 issn: 2469-9888 databaseCode: BENPR dateStart: 19980501 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB5KSl-H0ifdpg2G9urEsiRb6m23JIRClxC6kJ6EJI_bg3c3ZDcJ-feZkZ1lSw7toSdjG-Hh08gzI818A_BZSlkakjD3wcRcCbS5bRvMTWuErASSknGh8PdpdTxT38702VarL84J6-mBe-AOJLYUwNGHyDIqUdchYLAixjaEyC2z-O9bGLsVTKXdlaqwdWEew6c-010ecELlKV6NY8Rugn6-2i_rfSaTH9rB3JmkxNxPlyWtsGfw5HJx7m-ufddtWZ2jF_B8cBezcS_mS3iAi1fwKKVtxtVrMBN_g1wGmS1p6c-HmsrMd7-WFPT_nq8y8kkzz9JgOk_P-p2M1RuYHR3--HqcD70Q8qiMWOem0g2WBTbGFtzFoFZGR2MpOJCNF1VrdRm9MG0k69IKQ25MCA0WBVrrZZBavoWdxXKB7yCrbBStKrkqNijlrdE6UBglpddBaVON4MsdHC4OROHcr6JzKWAopLuHpStr12M5ArUZfN7zZfzbsAnjvhnCpNfpAamCG1TB_U0VRrDLs-bId2AC3MiZQnHtUrVuRW_1ZjLvicbgX-BVmo_wp2jv_4dou_CUAFd95uAH2FlfXOJH8mbWYQ8eTg6nJ6d7SYHpbjY9Gf-8BV-G-F4 |
| linkProvider | Directory of Open Access Journals |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEB-OPdTzwW-59VQK-traNEmb6NOueByCh4gLJwghSZNTrttdtt2T86930nZXj32Reyq0TEgmM83MZOY3AK8ppZnAGcbaCBsz4mQsfeli4QWhOXEoZKFQ-NNpfjJjH8_42R6824Yu6otEL5vuDn9Z-l6pU_om5EN-cZcTa101dXreJFmRBCz4ULu1n3M0xEewPzv9PPkW2smh0xdLdO5uw6vNCCFSsHKXOoxgro9w7UzqoPvxsUAVuwt31vVSX_3SVfXPsXN8H75vinf6bJOLZN2axP7exXK8yYoewL3BHI0mvfw8hD1XP4JbXVqobR6DmOorF8osowX-WuZDzWakq_PF6mf7Y95EaPNG3WJdd18f9ZGS5gnMjj98fX8SD70WYssEaWOR89JlqSuFTEOXhIIJboVE54OWmuRe8sxqIrzF08sTgWaSMaVLUyelpoZy-hRG9aJ2hxDl0hLPslB1axjTUnBu0E2jVHPDuMjH8HbDbWUHIPLQD6NSnUOSUrXDGpUVqmfNGNiWeNnjcfwf2TRs65YkgGp3L3BX1KCjijqfyxRlGo0wRorCGGcksdYbY0N3tjEcBaFQaJsEgF0bMpFsq7pq4By_8q2s7ExtR_j-Tu3ZDemO4AB5zPpkxOcwaldr9wINpNa8HBThD6PAEPQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian+optimization+algorithms+for+accelerator+physics&rft.jtitle=Physical+review.+Accelerators+and+beams&rft.au=Ryan+Roussel&rft.au=Auralee+L.+Edelen&rft.au=Tobias+Boltz&rft.au=Dylan+Kennedy&rft.date=2024-08-01&rft.pub=American+Physical+Society&rft.eissn=2469-9888&rft.volume=27&rft.issue=8&rft.spage=084801&rft_id=info:doi/10.1103%2FPhysRevAccelBeams.27.084801&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_3ef690ecc6354177bbeb91ccfbbc1972 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2469-9888&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2469-9888&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2469-9888&client=summon |