Pose Estimation and Non-Rigid Registration for Augmented Reality During Neurosurgery
Objective: A craniotomy is the removal of a part of the skull to allow surgeons to have access to the brain and treat tumors. When accessing the brain, a tissue deformation occurs and can negatively influence the surgical procedure outcome. In this work, we present a novel Augmented Reality neurosur...
Saved in:
| Published in | IEEE transactions on biomedical engineering Vol. 69; no. 4; pp. 1310 - 1317 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
IEEE
01.04.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Institute of Electrical and Electronics Engineers |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0018-9294 1558-2531 1558-2531 |
| DOI | 10.1109/TBME.2021.3113841 |
Cover
| Abstract | Objective: A craniotomy is the removal of a part of the skull to allow surgeons to have access to the brain and treat tumors. When accessing the brain, a tissue deformation occurs and can negatively influence the surgical procedure outcome. In this work, we present a novel Augmented Reality neurosurgical system to superimpose pre-operative 3D meshes derived from MRI onto a view of the brain surface acquired during surgery. Methods: Our method uses cortical vessels as main features to drive a rigid then non-rigid 3D/2D registration. We first use a feature extractor network to produce probability maps that are fed to a pose estimator network to infer the 6-DoF rigid pose. Then, to account for brain deformation, we add a non-rigid refinement step formulated as a Shape-from-Template problem using physics-based constraints that helps propagate the deformation to sub-cortical level and update tumor location. Results: We tested our method retrospectively on 6 clinical datasets and obtained low pose error, and showed using synthetic dataset that considerable brain shift compensation and low TRE can be achieved at cortical and sub-cortical levels. Conclusion: The results show that our solution achieved accuracy below the actual clinical errors demonstrating the feasibility of practical use of our system. Significance: This work shows that we can provide coherent Augmented Reality visualization of 3D cortical vessels observed through the craniotomy using a single camera view and that cortical vessels provide strong features for performing both rigid and non-rigid registration. |
|---|---|
| AbstractList | Objective: A craniotomy is the removal of a part of the skull to allow surgeons to have access to the brain and treat tumors. When accessing the brain, a tissue deformation occurs and can negatively influence the surgical procedure outcome. In this work, we present a novel Augmented Reality neurosurgical system to superimpose pre-operative 3D meshes derived from MRI onto a view of the brain surface acquired during surgery. Methods: Our method uses cortical vessels as main features to drive a rigid then non-rigid 3D/2D registration. We first use a feature extractor network to produce probability maps that are fed to a pose estimator network to infer the 6-DoF rigid pose. Then, to account for brain deformation, we add a non-rigid refinement step formulated as a Shape-from-Template problem using physics-based constraints that helps propagate the deformation to sub-cortical level and update tumor location. Results: We tested our method retrospectively on 6 clinical datasets and obtained low pose error, and showed using synthetic dataset that considerable brain shift compensation and low TRE can be achieved at cortical and sub-cortical levels. Conclusion: The results show that our solution achieved accuracy below the actual clinical errors demonstrating the feasibility of practical use of our system. Significance: This work shows that we can provide coherent Augmented Reality visualization of 3D cortical vessels observed through the craniotomy using a single camera view and that cortical vessels provide strong features for performing both rigid and non-rigid registration. A craniotomy is the removal of a part of the skull to allow surgeons to have access to the brain and treat tumors. When accessing the brain, a tissue deformation occurs and can negatively influence the surgical procedure outcome. In this work, we present a novel Augmented Reality neurosurgical system to superimpose pre-operative 3D meshes derived from MRI onto a view of the brain surface acquired during surgery.OBJECTIVEA craniotomy is the removal of a part of the skull to allow surgeons to have access to the brain and treat tumors. When accessing the brain, a tissue deformation occurs and can negatively influence the surgical procedure outcome. In this work, we present a novel Augmented Reality neurosurgical system to superimpose pre-operative 3D meshes derived from MRI onto a view of the brain surface acquired during surgery.Our method uses cortical vessels as main features to drive a rigid then non-rigid 3D/2D registration. We first use a feature extractor network to produce probability maps that are fed to a pose estimator network to infer the 6-DoF rigid pose. Then, to account for brain deformation, we add a non-rigid refinement step formulated as a Shape-from-Template problem using physics-based constraints that helps propagate the deformation to sub-cortical level and update tumor location.METHODSOur method uses cortical vessels as main features to drive a rigid then non-rigid 3D/2D registration. We first use a feature extractor network to produce probability maps that are fed to a pose estimator network to infer the 6-DoF rigid pose. Then, to account for brain deformation, we add a non-rigid refinement step formulated as a Shape-from-Template problem using physics-based constraints that helps propagate the deformation to sub-cortical level and update tumor location.We tested our method retrospectively on 6 clinical datasets and obtained low pose error, and showed using synthetic dataset that considerable brain shift compensation and low TRE can be achieved at cortical and sub-cortical levels.RESULTSWe tested our method retrospectively on 6 clinical datasets and obtained low pose error, and showed using synthetic dataset that considerable brain shift compensation and low TRE can be achieved at cortical and sub-cortical levels.The results show that our solution achieved accuracy below the actual clinical errors demonstrating the feasibility of practical use of our system.CONCLUSIONThe results show that our solution achieved accuracy below the actual clinical errors demonstrating the feasibility of practical use of our system.This work shows that we can provide coherent Augmented Reality visualization of 3D cortical vessels observed through the craniotomy using a single camera view and that cortical vessels provide strong features for performing both rigid and non-rigid registration.SIGNIFICANCEThis work shows that we can provide coherent Augmented Reality visualization of 3D cortical vessels observed through the craniotomy using a single camera view and that cortical vessels provide strong features for performing both rigid and non-rigid registration. Objective: A craniotomy is the removal of a part of the skull to allow surgeons to have access to the brain and treat tumors. When accessing the brain, a tissue deformation occurs and can negatively influence the surgical procedure outcome. In this work, we present a novel Augmented Reality neurosurgical system to superimpose pre-operative 3D meshes derived from MRI onto a view of the brain surface acquired during surgery. Methods: Our method uses cortical vessels as main features to drive a rigid then non-rigid 3D/2D registration. We first use a feature extractor network to produce probability maps that are fed to a pose estimator network to infer the 6-DoF rigid pose. Then, to account for brain deformation, we add a nonrigid refinement step formulated as a Shape-from-Template problem using physics-based constraints that helps propagate the deformation to sub-cortical level and update tumor location. Results: We tested our method retrospectively on 6 clinical datasets and obtained low pose error, and showed using synthetic dataset that considerable brain shift compensation and low TRE can be achieved at cortical and sub-cortical levels. Conclusion: The results show that our solution achieved accuracy below the actual clinical errors demonstrating the feasibility of practical use of our system. Significance: This work shows that we can provide coherent Augmented Reality visualization of 3D cortical vessels observed through the craniotomy using a single camera view and that cortical vessels provide strong features for performing both rigid and non-rigid registration. A craniotomy is the removal of a part of the skull to allow surgeons to have access to the brain and treat tumors. When accessing the brain, a tissue deformation occurs and can negatively influence the surgical procedure outcome. In this work, we present a novel Augmented Reality neurosurgical system to superimpose pre-operative 3D meshes derived from MRI onto a view of the brain surface acquired during surgery. Our method uses cortical vessels as main features to drive a rigid then non-rigid 3D/2D registration. We first use a feature extractor network to produce probability maps that are fed to a pose estimator network to infer the 6-DoF rigid pose. Then, to account for brain deformation, we add a non-rigid refinement step formulated as a Shape-from-Template problem using physics-based constraints that helps propagate the deformation to sub-cortical level and update tumor location. We tested our method retrospectively on 6 clinical datasets and obtained low pose error, and showed using synthetic dataset that considerable brain shift compensation and low TRE can be achieved at cortical and sub-cortical levels. The results show that our solution achieved accuracy below the actual clinical errors demonstrating the feasibility of practical use of our system. This work shows that we can provide coherent Augmented Reality visualization of 3D cortical vessels observed through the craniotomy using a single camera view and that cortical vessels provide strong features for performing both rigid and non-rigid registration. |
| Author | Juvekar, Parikshit Golby, Alexandra Nercessian, Michael Haouchine, Nazim Wells, William Frisken, Sarah |
| Author_xml | – sequence: 1 givenname: Nazim orcidid: 0000-0002-1752-3479 surname: Haouchine fullname: Haouchine, Nazim email: nhaouchine@bwh.harvard.edu organization: Harvard Medical School and the Department of Radiology at Brigham and Women's Hospital, Boston, MA 02115, USA – sequence: 2 givenname: Parikshit surname: Juvekar fullname: Juvekar, Parikshit organization: Harvard Medical School and the Department of Neurosurgery at Brigham and Women's Hospital, USA – sequence: 3 givenname: Michael surname: Nercessian fullname: Nercessian, Michael organization: Cornell University, Ithaca, NY, USA – sequence: 4 givenname: William surname: Wells fullname: Wells, William organization: Massachusetts Institute of Technology, Harvard Medical School and the Department of Radiology at Brigham and Women's Hospital, USA – sequence: 5 givenname: Alexandra surname: Golby fullname: Golby, Alexandra organization: Harvard Medical School and the Department of Neurosurgery at Brigham and Women's Hospital, USA – sequence: 6 givenname: Sarah orcidid: 0000-0001-5731-5095 surname: Frisken fullname: Frisken, Sarah organization: Harvard Medical School and the Department of Radiology at Brigham and Women's Hospital, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34543188$$D View this record in MEDLINE/PubMed https://inria.hal.science/hal-03675005$$DView record in HAL |
| BookMark | eNp9Ultv0zAYtdAQ6wY_ACGhSLzAQ4rvdV6QyigMqQw0lWfLSb5knlK72MlQ_z0OKQOKxJNln3O-yzk-QyfOO0DoKcFzQnDxevP202pOMSVzRghTnDxAMyKEyqlg5ATNMCYqL2jBT9FZjLfpyhWXj9Ap44IzotQMbb74CNkq9nZreutdZlydXXmXX9vW1tk1tDb2YYIaH7Ll0G7B9TBCprP9Pns3BOva7AqG4OMQWgj7x-hhY7oITw7nOfr6frW5uMzXnz98vFiu84or0udKLLhoKlmTWpWSQ4mpILwuRSEFKxssKyEBs5oC45Q1FONCshozXjBDGiHYOaJT3cHtzP676Tq9C2mRsNcE69Ei3Zdb0KNF-mBREr2ZRLshYXWVtgnmt9Abq_9GnL3Rrb_TBcYLSscCr6YCN0eyy-Vaj2-YyYXAWNyN3JeHZsF_GyD2emtjBV1nHPghaioSUyrJVKK-OKLe-iG45J-mkuOUlxBFYj3_c_r7_r8STQQyEaoURwzQ_GPJ-GuOLVkcaSrb_8w8GWC7_yqfTUoLAPedCsFJ2oz9AAKEy6I |
| CODEN | IEBEAX |
| CitedBy_id | crossref_primary_10_1080_24699322_2024_2357164 crossref_primary_10_1080_21681163_2022_2163428 crossref_primary_10_1016_j_measurement_2024_114991 crossref_primary_10_1016_j_bas_2022_100926 crossref_primary_10_1109_ACCESS_2024_3397715 crossref_primary_10_3389_fsurg_2023_1245851 crossref_primary_10_3390_electronics13112089 crossref_primary_10_1016_j_compmedimag_2024_102418 |
| Cites_doi | 10.1109/JTEHM.2014.2327628 10.1016/j.media.2017.06.003 10.1007/springerreference_143585 10.1016/j.media.2014.07.001 10.1007/978-3-319-24574-428 10.1007/s11548-019-02057-2 10.1007/s11548-015-1295-x 10.1007/11566489_66 10.1007/s11548-015-1163-8 10.1007/978-3-642-40763-5_18 10.1007/978-3-030-00937-3_4 10.1007/s11548-015-1216-z 10.1007/978-3-642-37331-2_42 10.1109/EMBC.2015.7319180 10.1109/ISBI48211.2021.9433910 10.1007/s00701-014-2052-6 10.1007/s11548-018-1786-7 10.1007/springerreference_143584 10.1155/2017/6028645 10.1007/s11548-014-1099-4 10.1007/978-3-642-23623-5_43 10.1109/TPAMI.2015.2392759 10.1007/978-3-030-32254-0_76 10.1007/978-3-030-22212-3_34 10.1007/978-3-030-00937-3_14 10.1007/978-3-030-59719-1_71 10.1118/1.2977728 10.1007/s11548-011-0651-8 10.1007/s11548-016-1358-7 10.1615/CritRevBiomedEng.v40.i3.20 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 1XC VOOES 5PM ADTOC UNPAY |
| DOI | 10.1109/TBME.2021.3113841 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
| DatabaseTitleList | Materials Research Database MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: RIE name: IEL url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering Computer Science |
| EISSN | 1558-2531 |
| EndPage | 1317 |
| ExternalDocumentID | oai:HAL:hal-03675005v1 PMC9007221 34543188 10_1109_TBME_2021_3113841 9541257 |
| Genre | orig-research Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
| GrantInformation_xml | – fundername: BWH Radiology Department Research Pilot – fundername: National Institutes of Health grantid: R01 EB027134-01; R01 NS049251 funderid: 10.13039/100000002 – fundername: NIBIB NIH HHS grantid: R01 EB027134 – fundername: NIBIB NIH HHS grantid: R03 EB032050 – fundername: NINDS NIH HHS grantid: R01 NS049251 |
| GroupedDBID | --- -~X .55 .DC .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IF 6IK 6IL 6IN 85S 97E AAJGR AARMG AASAJ AAWTH AAYJJ ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT ACPRK ADZIZ AENEX AETIX AFFNX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IEGSK IFIPE IFJZH IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RIL RNS TAE TN5 VH1 VJK X7M ZGI ZXP AAYXX CITATION CGR CUY CVF ECM EIF NPM RIG 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D P64 7X8 1XC VOOES 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c481t-85745fc6d1d8b64eb02514db59653bf06c56e03d2e3423f200963d03493a1f553 |
| IEDL.DBID | RIE |
| ISSN | 0018-9294 1558-2531 |
| IngestDate | Sun Oct 26 04:01:34 EDT 2025 Tue Sep 30 17:14:54 EDT 2025 Tue Oct 28 06:33:48 EDT 2025 Sat Sep 27 22:12:44 EDT 2025 Mon Jun 30 10:12:57 EDT 2025 Thu Apr 03 07:09:18 EDT 2025 Thu Apr 24 23:02:34 EDT 2025 Wed Oct 01 04:08:53 EDT 2025 Wed Aug 27 02:48:01 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Pose Estimation Neurosurgery Image-guided Intervention Augmented Reality Registration |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 other-oa |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c481t-85745fc6d1d8b64eb02514db59653bf06c56e03d2e3423f200963d03493a1f553 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-1752-3479 0000-0001-5731-5095 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://inria.hal.science/hal-03675005 |
| PMID | 34543188 |
| PQID | 2640431559 |
| PQPubID | 85474 |
| PageCount | 8 |
| ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9007221 hal_primary_oai_HAL_hal_03675005v1 proquest_miscellaneous_2575068638 ieee_primary_9541257 crossref_primary_10_1109_TBME_2021_3113841 unpaywall_primary_10_1109_tbme_2021_3113841 proquest_journals_2640431559 pubmed_primary_34543188 crossref_citationtrail_10_1109_TBME_2021_3113841 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2022-04-01 |
| PublicationDateYYYYMMDD | 2022-04-01 |
| PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | IEEE transactions on biomedical engineering |
| PublicationTitleAbbrev | TBME |
| PublicationTitleAlternate | IEEE Trans Biomed Eng |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Institute of Electrical and Electronics Engineers |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) – name: Institute of Electrical and Electronics Engineers |
| References | ref13 Ebrahimi (ref31) 2009; 2 ref12 ref15 ref14 ref30 ref11 ref10 ref2 ref1 ref17 ref16 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref22 doi: 10.1109/JTEHM.2014.2327628 – ident: ref18 doi: 10.1016/j.media.2017.06.003 – ident: ref2 doi: 10.1007/springerreference_143585 – ident: ref25 doi: 10.1016/j.media.2014.07.001 – ident: ref26 doi: 10.1007/978-3-319-24574-428 – ident: ref4 doi: 10.1007/s11548-019-02057-2 – ident: ref7 doi: 10.1007/s11548-015-1295-x – ident: ref28 doi: 10.1007/11566489_66 – ident: ref5 doi: 10.1007/s11548-015-1163-8 – ident: ref19 doi: 10.1007/978-3-642-40763-5_18 – ident: ref17 doi: 10.1007/978-3-030-00937-3_4 – ident: ref24 doi: 10.1007/s11548-015-1216-z – ident: ref30 doi: 10.1007/978-3-642-37331-2_42 – ident: ref13 doi: 10.1109/EMBC.2015.7319180 – ident: ref27 doi: 10.1109/ISBI48211.2021.9433910 – ident: ref9 doi: 10.1007/s00701-014-2052-6 – ident: ref16 doi: 10.1007/s11548-018-1786-7 – ident: ref3 doi: 10.1007/springerreference_143584 – ident: ref6 doi: 10.1155/2017/6028645 – ident: ref11 doi: 10.1007/s11548-014-1099-4 – ident: ref12 doi: 10.1007/978-3-642-23623-5_43 – ident: ref29 doi: 10.1109/TPAMI.2015.2392759 – ident: ref20 doi: 10.1007/978-3-030-32254-0_76 – ident: ref1 doi: 10.1007/978-3-030-22212-3_34 – ident: ref15 doi: 10.1007/978-3-030-00937-3_14 – ident: ref23 doi: 10.1007/978-3-030-59719-1_71 – ident: ref10 doi: 10.1118/1.2977728 – ident: ref14 doi: 10.1007/s11548-011-0651-8 – ident: ref21 doi: 10.1007/s11548-016-1358-7 – ident: ref8 doi: 10.1615/CritRevBiomedEng.v40.i3.20 – volume: 2 start-page: 155 year: 2009 ident: ref31 article-title: Mechanical properties of normal and diseased cerebrovascular system publication-title: J. Vasc. Interventional Neurol. |
| SSID | ssj0014846 |
| Score | 2.5008836 |
| Snippet | Objective: A craniotomy is the removal of a part of the skull to allow surgeons to have access to the brain and treat tumors. When accessing the brain, a... A craniotomy is the removal of a part of the skull to allow surgeons to have access to the brain and treat tumors. When accessing the brain, a tissue... |
| SourceID | unpaywall pubmedcentral hal proquest pubmed crossref ieee |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1310 |
| SubjectTerms | Augmented Reality Blood vessels Brain Brain - diagnostic imaging Brain - surgery Brain tumors Computer Science Datasets Deformation Feature extraction image-guided intervention Imaging, Three-Dimensional - methods Magnetic Resonance Imaging Neurosurgery Pose estimation Registration Retrospective Studies Surgery, Computer-Assisted - methods Surgical mesh Three-dimensional displays Tumors Visualization |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELegk2A88LHByBjIIJ5A6fJhO8ljgY4K0WqaWmk8RU7stNWqdFoTEPz1u3PcaGEIxFsVX6rEd-f7XXz3MyFvY8YyBYHHjVSskVRbujIoIjfPIBpIUchQ4Qf98USMZuzLOT-3BbKmF6aEee8vAHfaCHAMv11YZiGyIVXpjuCAuXtkZzY5HXxrllnw2MCceAixEdQOVmW3L30vOa4gqkAaGPiQnfphzPxOALq7wPJHc67KnyDm7UrJ-3V5KX_-kKvVjTB08oh83r5AU31y0a-rrJ__-o3b8d9v-Jg8tEiUDhrTeULu6HKPPLjBT7hH7o3tzvs-mZ6uN5oOYUFoeh2pLBWdrEv3bDlfKnqm5y0DLwUcTAf13NB94pCB-vSTaYikhg1k0zRjPyWzk-H048i1JzK4OYv9yo15xHiRC-WrOBNMZ5ihMJWBTniYFZ7IudAeqFcjsWCBOy8iVEiBE0q_4Dx8RnrlutTPCZUqL5IQstcoK1jOhFQ6UsIrIF2PwHy4Q7ytmtLc0pXjqRmr1KQtXpJOP4yHKWo2tZp1yLv2lsuGq-Nvwm9g3ls5ZNkeDb6meG2ri-8gtI-m0UolnAEgjBxytDWV1Lr8JgVkiURFkKE55HU7DM6KOzCy1OsaZAAcY09OGDvkoLGs9r9DhrQEMYxEHZvrPGJ3pFwuDCF4gvzvATzt-9Y6b00A-kFnAg7_S_oF2Q2w8cPULB2RXnVV65cAx6rslfXFa_Z0LN0 priority: 102 providerName: Unpaywall |
| Title | Pose Estimation and Non-Rigid Registration for Augmented Reality During Neurosurgery |
| URI | https://ieeexplore.ieee.org/document/9541257 https://www.ncbi.nlm.nih.gov/pubmed/34543188 https://www.proquest.com/docview/2640431559 https://www.proquest.com/docview/2575068638 https://inria.hal.science/hal-03675005 https://pubmed.ncbi.nlm.nih.gov/PMC9007221 |
| UnpaywallVersion | submittedVersion |
| Volume | 69 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEL customDbUrl: eissn: 1558-2531 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014846 issn: 1558-2531 databaseCode: RIE dateStart: 19640101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-tQ-LjgY-Nj8CYDOIJli4ftpM8FuhUIVpNUyuNp8iJna6iSieagOCv585Jw8omxFsUn6M4d_bd5e5-B_Am5jzTqHjcSMeGQLWVq4IicvMMtYGShQo1_dAfT-Roxj-di_MdOOpqYYwxNvnM9OnSxvL1Kq_pV9lxIjjq46gHvSiWTa1WFzHgcVOU4_m4gYOEtxFM30uOp-_HQ_QEAx8dVD-MOXWHCTkVgdt-K3_UUe-CkiFtl5WbDM7reZN36vJS_fyhlssrSunkAYw3y2lyUb726yrr57_-Qnr83_U-hPutdcoGjTg9gh1T7sG9K5iFe3B73Ebj92F6ulobNsRDoql_ZKrUbLIq3bPFfKHZmZl3qLwMbWM2qOcWApSGrPnPPtoiSWYRQtZNgfZjmJ0Mpx9Gbtulwc157FduLCIuilxqX8eZ5CYjr4XrTCRShFnhyVxI4yHLDYENFhSNkaEmWJxQ-YUQ4RPYLVeleQZM6bxIQvRoo6zgOZdKm0hLr0AXPkKREg54G2aleQthTp00lql1ZbwkJVanxOq0ZbUDb7splw1-x7-IX6MEdHSEvD0afE7pHip6tK088R2J9olTHVXLJAcONgKTtsfAOkVrk8CL0Gtz4FU3jBuYojKqNKsaadBgpjqdMHbgaSNf3bM3UupAtCV5W6-4PVIuLixIeEKY8AG-7btORq99gAonbn2A5zev7QXcDajqwyYsHcBu9a02L9EWq7JDuwkP4dZscjr48hvEfi13 |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9NADLe2ITF44GPjIzAgIJ4Y6fJxd0keC3Qq0FRo6qS9RZfcpauokokmIPjrsS9pWNmEeItyvigX-852bP8M8DpiLFOoeJxQRZpAtaUj_SJ08gy1gRSFDBT90E-mYnzKPp3xsy1429fCaK1N8pke0KWJ5asqb-hX2VHMGerjcBtucMYYb6u1-pgBi9qyHNfDLezHrIthem58NHuXjNAX9D10Ub0gYtQfJmBUBm46rvxRSNvnlA5p-qxcZ3JezZzcbcoL-fOHXC4vqaXju5CsF9Rmo3wdNHU2yH_9hfX4vyu-B3c6-9QetgJ1H7Z0uQe3L6EW7sHNpIvH78PsS7XS9giPibYC0palsqdV6Zws5gtln-h5j8tro3VsD5u5AQGlIeMA2B9MmaRtMEJWbYn2Azg9Hs3ej52uT4OTs8irnYiHjBe5UJ6KMsF0Rn4LUxmPBQ-ywhU5F9pFpmuCGywoHiMCRcA4gfQKzoOHsFNWpX4MtlR5EQfo04ZZwXImpNKhEm6BTnyIQsUtcNfMSvMOxJx6aSxT48y4cUqsTonVacdqC970Uy5aBI9_Eb9CCejpCHt7PJykdA9VPVpXLv-ORPvEqZ6qY5IFB2uBSbuDYJWivUnwRei3WfCyH8YtTHEZWeqqQRo0malSJ4gseNTKV__stZRaEG5I3sYrbo6Ui3MDEx4TKryPb3vYy-iVD1DjxI0P8OT6tb2A3fEsmaSTj9PPT-GWTzUgJn3pAHbqb41-hpZZnT03G_I3LKcvFA |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELegk2A88LHByBjIIJ5A6fJhO8ljgY4K0WqaWmk8RU7stNWqdFoTEPz1u3PcaGEIxFsVX6rEd-f7XXz3MyFvY8YyBYHHjVSskVRbujIoIjfPIBpIUchQ4Qf98USMZuzLOT-3BbKmF6aEee8vAHfaCHAMv11YZiGyIVXpjuCAuXtkZzY5HXxrllnw2MCceAixEdQOVmW3L30vOa4gqkAaGPiQnfphzPxOALq7wPJHc67KnyDm7UrJ-3V5KX_-kKvVjTB08oh83r5AU31y0a-rrJ__-o3b8d9v-Jg8tEiUDhrTeULu6HKPPLjBT7hH7o3tzvs-mZ6uN5oOYUFoeh2pLBWdrEv3bDlfKnqm5y0DLwUcTAf13NB94pCB-vSTaYikhg1k0zRjPyWzk-H048i1JzK4OYv9yo15xHiRC-WrOBNMZ5ihMJWBTniYFZ7IudAeqFcjsWCBOy8iVEiBE0q_4Dx8RnrlutTPCZUqL5IQstcoK1jOhFQ6UsIrIF2PwHy4Q7ytmtLc0pXjqRmr1KQtXpJOP4yHKWo2tZp1yLv2lsuGq-Nvwm9g3ls5ZNkeDb6meG2ri-8gtI-m0UolnAEgjBxytDWV1Lr8JgVkiURFkKE55HU7DM6KOzCy1OsaZAAcY09OGDvkoLGs9r9DhrQEMYxEHZvrPGJ3pFwuDCF4gvzvATzt-9Y6b00A-kFnAg7_S_oF2Q2w8cPULB2RXnVV65cAx6rslfXFa_Z0LN0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pose+Estimation+and+Non-Rigid+Registration+for+Augmented+Reality+During+Neurosurgery&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Haouchine%2C+Nazim&rft.au=Juvekar%2C+Parikshit&rft.au=Nercessian%2C+Michael&rft.au=Wells%2C+William&rft.date=2022-04-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9294&rft.eissn=1558-2531&rft.volume=69&rft.issue=4&rft.spage=1310&rft_id=info:doi/10.1109%2FTBME.2021.3113841&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon |