Pose Estimation and Non-Rigid Registration for Augmented Reality During Neurosurgery

Objective: A craniotomy is the removal of a part of the skull to allow surgeons to have access to the brain and treat tumors. When accessing the brain, a tissue deformation occurs and can negatively influence the surgical procedure outcome. In this work, we present a novel Augmented Reality neurosur...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on biomedical engineering Vol. 69; no. 4; pp. 1310 - 1317
Main Authors Haouchine, Nazim, Juvekar, Parikshit, Nercessian, Michael, Wells, William, Golby, Alexandra, Frisken, Sarah
Format Journal Article
LanguageEnglish
Published United States IEEE 01.04.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Institute of Electrical and Electronics Engineers
Subjects
Online AccessGet full text
ISSN0018-9294
1558-2531
1558-2531
DOI10.1109/TBME.2021.3113841

Cover

Abstract Objective: A craniotomy is the removal of a part of the skull to allow surgeons to have access to the brain and treat tumors. When accessing the brain, a tissue deformation occurs and can negatively influence the surgical procedure outcome. In this work, we present a novel Augmented Reality neurosurgical system to superimpose pre-operative 3D meshes derived from MRI onto a view of the brain surface acquired during surgery. Methods: Our method uses cortical vessels as main features to drive a rigid then non-rigid 3D/2D registration. We first use a feature extractor network to produce probability maps that are fed to a pose estimator network to infer the 6-DoF rigid pose. Then, to account for brain deformation, we add a non-rigid refinement step formulated as a Shape-from-Template problem using physics-based constraints that helps propagate the deformation to sub-cortical level and update tumor location. Results: We tested our method retrospectively on 6 clinical datasets and obtained low pose error, and showed using synthetic dataset that considerable brain shift compensation and low TRE can be achieved at cortical and sub-cortical levels. Conclusion: The results show that our solution achieved accuracy below the actual clinical errors demonstrating the feasibility of practical use of our system. Significance: This work shows that we can provide coherent Augmented Reality visualization of 3D cortical vessels observed through the craniotomy using a single camera view and that cortical vessels provide strong features for performing both rigid and non-rigid registration.
AbstractList Objective: A craniotomy is the removal of a part of the skull to allow surgeons to have access to the brain and treat tumors. When accessing the brain, a tissue deformation occurs and can negatively influence the surgical procedure outcome. In this work, we present a novel Augmented Reality neurosurgical system to superimpose pre-operative 3D meshes derived from MRI onto a view of the brain surface acquired during surgery. Methods: Our method uses cortical vessels as main features to drive a rigid then non-rigid 3D/2D registration. We first use a feature extractor network to produce probability maps that are fed to a pose estimator network to infer the 6-DoF rigid pose. Then, to account for brain deformation, we add a non-rigid refinement step formulated as a Shape-from-Template problem using physics-based constraints that helps propagate the deformation to sub-cortical level and update tumor location. Results: We tested our method retrospectively on 6 clinical datasets and obtained low pose error, and showed using synthetic dataset that considerable brain shift compensation and low TRE can be achieved at cortical and sub-cortical levels. Conclusion: The results show that our solution achieved accuracy below the actual clinical errors demonstrating the feasibility of practical use of our system. Significance: This work shows that we can provide coherent Augmented Reality visualization of 3D cortical vessels observed through the craniotomy using a single camera view and that cortical vessels provide strong features for performing both rigid and non-rigid registration.
A craniotomy is the removal of a part of the skull to allow surgeons to have access to the brain and treat tumors. When accessing the brain, a tissue deformation occurs and can negatively influence the surgical procedure outcome. In this work, we present a novel Augmented Reality neurosurgical system to superimpose pre-operative 3D meshes derived from MRI onto a view of the brain surface acquired during surgery.OBJECTIVEA craniotomy is the removal of a part of the skull to allow surgeons to have access to the brain and treat tumors. When accessing the brain, a tissue deformation occurs and can negatively influence the surgical procedure outcome. In this work, we present a novel Augmented Reality neurosurgical system to superimpose pre-operative 3D meshes derived from MRI onto a view of the brain surface acquired during surgery.Our method uses cortical vessels as main features to drive a rigid then non-rigid 3D/2D registration. We first use a feature extractor network to produce probability maps that are fed to a pose estimator network to infer the 6-DoF rigid pose. Then, to account for brain deformation, we add a non-rigid refinement step formulated as a Shape-from-Template problem using physics-based constraints that helps propagate the deformation to sub-cortical level and update tumor location.METHODSOur method uses cortical vessels as main features to drive a rigid then non-rigid 3D/2D registration. We first use a feature extractor network to produce probability maps that are fed to a pose estimator network to infer the 6-DoF rigid pose. Then, to account for brain deformation, we add a non-rigid refinement step formulated as a Shape-from-Template problem using physics-based constraints that helps propagate the deformation to sub-cortical level and update tumor location.We tested our method retrospectively on 6 clinical datasets and obtained low pose error, and showed using synthetic dataset that considerable brain shift compensation and low TRE can be achieved at cortical and sub-cortical levels.RESULTSWe tested our method retrospectively on 6 clinical datasets and obtained low pose error, and showed using synthetic dataset that considerable brain shift compensation and low TRE can be achieved at cortical and sub-cortical levels.The results show that our solution achieved accuracy below the actual clinical errors demonstrating the feasibility of practical use of our system.CONCLUSIONThe results show that our solution achieved accuracy below the actual clinical errors demonstrating the feasibility of practical use of our system.This work shows that we can provide coherent Augmented Reality visualization of 3D cortical vessels observed through the craniotomy using a single camera view and that cortical vessels provide strong features for performing both rigid and non-rigid registration.SIGNIFICANCEThis work shows that we can provide coherent Augmented Reality visualization of 3D cortical vessels observed through the craniotomy using a single camera view and that cortical vessels provide strong features for performing both rigid and non-rigid registration.
Objective: A craniotomy is the removal of a part of the skull to allow surgeons to have access to the brain and treat tumors. When accessing the brain, a tissue deformation occurs and can negatively influence the surgical procedure outcome. In this work, we present a novel Augmented Reality neurosurgical system to superimpose pre-operative 3D meshes derived from MRI onto a view of the brain surface acquired during surgery. Methods: Our method uses cortical vessels as main features to drive a rigid then non-rigid 3D/2D registration. We first use a feature extractor network to produce probability maps that are fed to a pose estimator network to infer the 6-DoF rigid pose. Then, to account for brain deformation, we add a nonrigid refinement step formulated as a Shape-from-Template problem using physics-based constraints that helps propagate the deformation to sub-cortical level and update tumor location. Results: We tested our method retrospectively on 6 clinical datasets and obtained low pose error, and showed using synthetic dataset that considerable brain shift compensation and low TRE can be achieved at cortical and sub-cortical levels. Conclusion: The results show that our solution achieved accuracy below the actual clinical errors demonstrating the feasibility of practical use of our system. Significance: This work shows that we can provide coherent Augmented Reality visualization of 3D cortical vessels observed through the craniotomy using a single camera view and that cortical vessels provide strong features for performing both rigid and non-rigid registration.
A craniotomy is the removal of a part of the skull to allow surgeons to have access to the brain and treat tumors. When accessing the brain, a tissue deformation occurs and can negatively influence the surgical procedure outcome. In this work, we present a novel Augmented Reality neurosurgical system to superimpose pre-operative 3D meshes derived from MRI onto a view of the brain surface acquired during surgery. Our method uses cortical vessels as main features to drive a rigid then non-rigid 3D/2D registration. We first use a feature extractor network to produce probability maps that are fed to a pose estimator network to infer the 6-DoF rigid pose. Then, to account for brain deformation, we add a non-rigid refinement step formulated as a Shape-from-Template problem using physics-based constraints that helps propagate the deformation to sub-cortical level and update tumor location. We tested our method retrospectively on 6 clinical datasets and obtained low pose error, and showed using synthetic dataset that considerable brain shift compensation and low TRE can be achieved at cortical and sub-cortical levels. The results show that our solution achieved accuracy below the actual clinical errors demonstrating the feasibility of practical use of our system. This work shows that we can provide coherent Augmented Reality visualization of 3D cortical vessels observed through the craniotomy using a single camera view and that cortical vessels provide strong features for performing both rigid and non-rigid registration.
Author Juvekar, Parikshit
Golby, Alexandra
Nercessian, Michael
Haouchine, Nazim
Wells, William
Frisken, Sarah
Author_xml – sequence: 1
  givenname: Nazim
  orcidid: 0000-0002-1752-3479
  surname: Haouchine
  fullname: Haouchine, Nazim
  email: nhaouchine@bwh.harvard.edu
  organization: Harvard Medical School and the Department of Radiology at Brigham and Women's Hospital, Boston, MA 02115, USA
– sequence: 2
  givenname: Parikshit
  surname: Juvekar
  fullname: Juvekar, Parikshit
  organization: Harvard Medical School and the Department of Neurosurgery at Brigham and Women's Hospital, USA
– sequence: 3
  givenname: Michael
  surname: Nercessian
  fullname: Nercessian, Michael
  organization: Cornell University, Ithaca, NY, USA
– sequence: 4
  givenname: William
  surname: Wells
  fullname: Wells, William
  organization: Massachusetts Institute of Technology, Harvard Medical School and the Department of Radiology at Brigham and Women's Hospital, USA
– sequence: 5
  givenname: Alexandra
  surname: Golby
  fullname: Golby, Alexandra
  organization: Harvard Medical School and the Department of Neurosurgery at Brigham and Women's Hospital, USA
– sequence: 6
  givenname: Sarah
  orcidid: 0000-0001-5731-5095
  surname: Frisken
  fullname: Frisken, Sarah
  organization: Harvard Medical School and the Department of Radiology at Brigham and Women's Hospital, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34543188$$D View this record in MEDLINE/PubMed
https://inria.hal.science/hal-03675005$$DView record in HAL
BookMark eNp9Ultv0zAYtdAQ6wY_ACGhSLzAQ4rvdV6QyigMqQw0lWfLSb5knlK72MlQ_z0OKQOKxJNln3O-yzk-QyfOO0DoKcFzQnDxevP202pOMSVzRghTnDxAMyKEyqlg5ATNMCYqL2jBT9FZjLfpyhWXj9Ap44IzotQMbb74CNkq9nZreutdZlydXXmXX9vW1tk1tDb2YYIaH7Ll0G7B9TBCprP9Pns3BOva7AqG4OMQWgj7x-hhY7oITw7nOfr6frW5uMzXnz98vFiu84or0udKLLhoKlmTWpWSQ4mpILwuRSEFKxssKyEBs5oC45Q1FONCshozXjBDGiHYOaJT3cHtzP676Tq9C2mRsNcE69Ei3Zdb0KNF-mBREr2ZRLshYXWVtgnmt9Abq_9GnL3Rrb_TBcYLSscCr6YCN0eyy-Vaj2-YyYXAWNyN3JeHZsF_GyD2emtjBV1nHPghaioSUyrJVKK-OKLe-iG45J-mkuOUlxBFYj3_c_r7_r8STQQyEaoURwzQ_GPJ-GuOLVkcaSrb_8w8GWC7_yqfTUoLAPedCsFJ2oz9AAKEy6I
CODEN IEBEAX
CitedBy_id crossref_primary_10_1080_24699322_2024_2357164
crossref_primary_10_1080_21681163_2022_2163428
crossref_primary_10_1016_j_measurement_2024_114991
crossref_primary_10_1016_j_bas_2022_100926
crossref_primary_10_1109_ACCESS_2024_3397715
crossref_primary_10_3389_fsurg_2023_1245851
crossref_primary_10_3390_electronics13112089
crossref_primary_10_1016_j_compmedimag_2024_102418
Cites_doi 10.1109/JTEHM.2014.2327628
10.1016/j.media.2017.06.003
10.1007/springerreference_143585
10.1016/j.media.2014.07.001
10.1007/978-3-319-24574-428
10.1007/s11548-019-02057-2
10.1007/s11548-015-1295-x
10.1007/11566489_66
10.1007/s11548-015-1163-8
10.1007/978-3-642-40763-5_18
10.1007/978-3-030-00937-3_4
10.1007/s11548-015-1216-z
10.1007/978-3-642-37331-2_42
10.1109/EMBC.2015.7319180
10.1109/ISBI48211.2021.9433910
10.1007/s00701-014-2052-6
10.1007/s11548-018-1786-7
10.1007/springerreference_143584
10.1155/2017/6028645
10.1007/s11548-014-1099-4
10.1007/978-3-642-23623-5_43
10.1109/TPAMI.2015.2392759
10.1007/978-3-030-32254-0_76
10.1007/978-3-030-22212-3_34
10.1007/978-3-030-00937-3_14
10.1007/978-3-030-59719-1_71
10.1118/1.2977728
10.1007/s11548-011-0651-8
10.1007/s11548-016-1358-7
10.1615/CritRevBiomedEng.v40.i3.20
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
1XC
VOOES
5PM
ADTOC
UNPAY
DOI 10.1109/TBME.2021.3113841
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList Materials Research Database
MEDLINE - Academic

MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: RIE
  name: IEL
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Computer Science
EISSN 1558-2531
EndPage 1317
ExternalDocumentID oai:HAL:hal-03675005v1
PMC9007221
34543188
10_1109_TBME_2021_3113841
9541257
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: BWH Radiology Department Research Pilot
– fundername: National Institutes of Health
  grantid: R01 EB027134-01; R01 NS049251
  funderid: 10.13039/100000002
– fundername: NIBIB NIH HHS
  grantid: R01 EB027134
– fundername: NIBIB NIH HHS
  grantid: R03 EB032050
– fundername: NINDS NIH HHS
  grantid: R01 NS049251
GroupedDBID ---
-~X
.55
.DC
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IF
6IK
6IL
6IN
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
AAYJJ
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPRK
ADZIZ
AENEX
AETIX
AFFNX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RIL
RNS
TAE
TN5
VH1
VJK
X7M
ZGI
ZXP
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
RIG
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
1XC
VOOES
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c481t-85745fc6d1d8b64eb02514db59653bf06c56e03d2e3423f200963d03493a1f553
IEDL.DBID RIE
ISSN 0018-9294
1558-2531
IngestDate Sun Oct 26 04:01:34 EDT 2025
Tue Sep 30 17:14:54 EDT 2025
Tue Oct 28 06:33:48 EDT 2025
Sat Sep 27 22:12:44 EDT 2025
Mon Jun 30 10:12:57 EDT 2025
Thu Apr 03 07:09:18 EDT 2025
Thu Apr 24 23:02:34 EDT 2025
Wed Oct 01 04:08:53 EDT 2025
Wed Aug 27 02:48:01 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Pose Estimation
Neurosurgery
Image-guided Intervention
Augmented Reality
Registration
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
other-oa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c481t-85745fc6d1d8b64eb02514db59653bf06c56e03d2e3423f200963d03493a1f553
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1752-3479
0000-0001-5731-5095
OpenAccessLink https://proxy.k.utb.cz/login?url=https://inria.hal.science/hal-03675005
PMID 34543188
PQID 2640431559
PQPubID 85474
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9007221
hal_primary_oai_HAL_hal_03675005v1
proquest_miscellaneous_2575068638
ieee_primary_9541257
crossref_primary_10_1109_TBME_2021_3113841
unpaywall_primary_10_1109_tbme_2021_3113841
proquest_journals_2640431559
pubmed_primary_34543188
crossref_citationtrail_10_1109_TBME_2021_3113841
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-04-01
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on biomedical engineering
PublicationTitleAbbrev TBME
PublicationTitleAlternate IEEE Trans Biomed Eng
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Institute of Electrical and Electronics Engineers
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
– name: Institute of Electrical and Electronics Engineers
References ref13
Ebrahimi (ref31) 2009; 2
ref12
ref15
ref14
ref30
ref11
ref10
ref2
ref1
ref17
ref16
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref22
  doi: 10.1109/JTEHM.2014.2327628
– ident: ref18
  doi: 10.1016/j.media.2017.06.003
– ident: ref2
  doi: 10.1007/springerreference_143585
– ident: ref25
  doi: 10.1016/j.media.2014.07.001
– ident: ref26
  doi: 10.1007/978-3-319-24574-428
– ident: ref4
  doi: 10.1007/s11548-019-02057-2
– ident: ref7
  doi: 10.1007/s11548-015-1295-x
– ident: ref28
  doi: 10.1007/11566489_66
– ident: ref5
  doi: 10.1007/s11548-015-1163-8
– ident: ref19
  doi: 10.1007/978-3-642-40763-5_18
– ident: ref17
  doi: 10.1007/978-3-030-00937-3_4
– ident: ref24
  doi: 10.1007/s11548-015-1216-z
– ident: ref30
  doi: 10.1007/978-3-642-37331-2_42
– ident: ref13
  doi: 10.1109/EMBC.2015.7319180
– ident: ref27
  doi: 10.1109/ISBI48211.2021.9433910
– ident: ref9
  doi: 10.1007/s00701-014-2052-6
– ident: ref16
  doi: 10.1007/s11548-018-1786-7
– ident: ref3
  doi: 10.1007/springerreference_143584
– ident: ref6
  doi: 10.1155/2017/6028645
– ident: ref11
  doi: 10.1007/s11548-014-1099-4
– ident: ref12
  doi: 10.1007/978-3-642-23623-5_43
– ident: ref29
  doi: 10.1109/TPAMI.2015.2392759
– ident: ref20
  doi: 10.1007/978-3-030-32254-0_76
– ident: ref1
  doi: 10.1007/978-3-030-22212-3_34
– ident: ref15
  doi: 10.1007/978-3-030-00937-3_14
– ident: ref23
  doi: 10.1007/978-3-030-59719-1_71
– ident: ref10
  doi: 10.1118/1.2977728
– ident: ref14
  doi: 10.1007/s11548-011-0651-8
– ident: ref21
  doi: 10.1007/s11548-016-1358-7
– ident: ref8
  doi: 10.1615/CritRevBiomedEng.v40.i3.20
– volume: 2
  start-page: 155
  year: 2009
  ident: ref31
  article-title: Mechanical properties of normal and diseased cerebrovascular system
  publication-title: J. Vasc. Interventional Neurol.
SSID ssj0014846
Score 2.5008836
Snippet Objective: A craniotomy is the removal of a part of the skull to allow surgeons to have access to the brain and treat tumors. When accessing the brain, a...
A craniotomy is the removal of a part of the skull to allow surgeons to have access to the brain and treat tumors. When accessing the brain, a tissue...
SourceID unpaywall
pubmedcentral
hal
proquest
pubmed
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1310
SubjectTerms Augmented Reality
Blood vessels
Brain
Brain - diagnostic imaging
Brain - surgery
Brain tumors
Computer Science
Datasets
Deformation
Feature extraction
image-guided intervention
Imaging, Three-Dimensional - methods
Magnetic Resonance Imaging
Neurosurgery
Pose estimation
Registration
Retrospective Studies
Surgery, Computer-Assisted - methods
Surgical mesh
Three-dimensional displays
Tumors
Visualization
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELegk2A88LHByBjIIJ5A6fJhO8ljgY4K0WqaWmk8RU7stNWqdFoTEPz1u3PcaGEIxFsVX6rEd-f7XXz3MyFvY8YyBYHHjVSskVRbujIoIjfPIBpIUchQ4Qf98USMZuzLOT-3BbKmF6aEee8vAHfaCHAMv11YZiGyIVXpjuCAuXtkZzY5HXxrllnw2MCceAixEdQOVmW3L30vOa4gqkAaGPiQnfphzPxOALq7wPJHc67KnyDm7UrJ-3V5KX_-kKvVjTB08oh83r5AU31y0a-rrJ__-o3b8d9v-Jg8tEiUDhrTeULu6HKPPLjBT7hH7o3tzvs-mZ6uN5oOYUFoeh2pLBWdrEv3bDlfKnqm5y0DLwUcTAf13NB94pCB-vSTaYikhg1k0zRjPyWzk-H048i1JzK4OYv9yo15xHiRC-WrOBNMZ5ihMJWBTniYFZ7IudAeqFcjsWCBOy8iVEiBE0q_4Dx8RnrlutTPCZUqL5IQstcoK1jOhFQ6UsIrIF2PwHy4Q7ytmtLc0pXjqRmr1KQtXpJOP4yHKWo2tZp1yLv2lsuGq-Nvwm9g3ls5ZNkeDb6meG2ri-8gtI-m0UolnAEgjBxytDWV1Lr8JgVkiURFkKE55HU7DM6KOzCy1OsaZAAcY09OGDvkoLGs9r9DhrQEMYxEHZvrPGJ3pFwuDCF4gvzvATzt-9Y6b00A-kFnAg7_S_oF2Q2w8cPULB2RXnVV65cAx6rslfXFa_Z0LN0
  priority: 102
  providerName: Unpaywall
Title Pose Estimation and Non-Rigid Registration for Augmented Reality During Neurosurgery
URI https://ieeexplore.ieee.org/document/9541257
https://www.ncbi.nlm.nih.gov/pubmed/34543188
https://www.proquest.com/docview/2640431559
https://www.proquest.com/docview/2575068638
https://inria.hal.science/hal-03675005
https://pubmed.ncbi.nlm.nih.gov/PMC9007221
UnpaywallVersion submittedVersion
Volume 69
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEL
  customDbUrl:
  eissn: 1558-2531
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014846
  issn: 1558-2531
  databaseCode: RIE
  dateStart: 19640101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-tQ-LjgY-Nj8CYDOIJli4ftpM8FuhUIVpNUyuNp8iJna6iSieagOCv585Jw8omxFsUn6M4d_bd5e5-B_Am5jzTqHjcSMeGQLWVq4IicvMMtYGShQo1_dAfT-Roxj-di_MdOOpqYYwxNvnM9OnSxvL1Kq_pV9lxIjjq46gHvSiWTa1WFzHgcVOU4_m4gYOEtxFM30uOp-_HQ_QEAx8dVD-MOXWHCTkVgdt-K3_UUe-CkiFtl5WbDM7reZN36vJS_fyhlssrSunkAYw3y2lyUb726yrr57_-Qnr83_U-hPutdcoGjTg9gh1T7sG9K5iFe3B73Ebj92F6ulobNsRDoql_ZKrUbLIq3bPFfKHZmZl3qLwMbWM2qOcWApSGrPnPPtoiSWYRQtZNgfZjmJ0Mpx9Gbtulwc157FduLCIuilxqX8eZ5CYjr4XrTCRShFnhyVxI4yHLDYENFhSNkaEmWJxQ-YUQ4RPYLVeleQZM6bxIQvRoo6zgOZdKm0hLr0AXPkKREg54G2aleQthTp00lql1ZbwkJVanxOq0ZbUDb7splw1-x7-IX6MEdHSEvD0afE7pHip6tK088R2J9olTHVXLJAcONgKTtsfAOkVrk8CL0Gtz4FU3jBuYojKqNKsaadBgpjqdMHbgaSNf3bM3UupAtCV5W6-4PVIuLixIeEKY8AG-7btORq99gAonbn2A5zev7QXcDajqwyYsHcBu9a02L9EWq7JDuwkP4dZscjr48hvEfi13
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9NADLe2ITF44GPjIzAgIJ4Y6fJxd0keC3Qq0FRo6qS9RZfcpauokokmIPjrsS9pWNmEeItyvigX-852bP8M8DpiLFOoeJxQRZpAtaUj_SJ08gy1gRSFDBT90E-mYnzKPp3xsy1429fCaK1N8pke0KWJ5asqb-hX2VHMGerjcBtucMYYb6u1-pgBi9qyHNfDLezHrIthem58NHuXjNAX9D10Ub0gYtQfJmBUBm46rvxRSNvnlA5p-qxcZ3JezZzcbcoL-fOHXC4vqaXju5CsF9Rmo3wdNHU2yH_9hfX4vyu-B3c6-9QetgJ1H7Z0uQe3L6EW7sHNpIvH78PsS7XS9giPibYC0palsqdV6Zws5gtln-h5j8tro3VsD5u5AQGlIeMA2B9MmaRtMEJWbYn2Azg9Hs3ej52uT4OTs8irnYiHjBe5UJ6KMsF0Rn4LUxmPBQ-ywhU5F9pFpmuCGywoHiMCRcA4gfQKzoOHsFNWpX4MtlR5EQfo04ZZwXImpNKhEm6BTnyIQsUtcNfMSvMOxJx6aSxT48y4cUqsTonVacdqC970Uy5aBI9_Eb9CCejpCHt7PJykdA9VPVpXLv-ORPvEqZ6qY5IFB2uBSbuDYJWivUnwRei3WfCyH8YtTHEZWeqqQRo0malSJ4gseNTKV__stZRaEG5I3sYrbo6Ui3MDEx4TKryPb3vYy-iVD1DjxI0P8OT6tb2A3fEsmaSTj9PPT-GWTzUgJn3pAHbqb41-hpZZnT03G_I3LKcvFA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELegk2A88LHByBjIIJ5A6fJhO8ljgY4K0WqaWmk8RU7stNWqdFoTEPz1u3PcaGEIxFsVX6rEd-f7XXz3MyFvY8YyBYHHjVSskVRbujIoIjfPIBpIUchQ4Qf98USMZuzLOT-3BbKmF6aEee8vAHfaCHAMv11YZiGyIVXpjuCAuXtkZzY5HXxrllnw2MCceAixEdQOVmW3L30vOa4gqkAaGPiQnfphzPxOALq7wPJHc67KnyDm7UrJ-3V5KX_-kKvVjTB08oh83r5AU31y0a-rrJ__-o3b8d9v-Jg8tEiUDhrTeULu6HKPPLjBT7hH7o3tzvs-mZ6uN5oOYUFoeh2pLBWdrEv3bDlfKnqm5y0DLwUcTAf13NB94pCB-vSTaYikhg1k0zRjPyWzk-H048i1JzK4OYv9yo15xHiRC-WrOBNMZ5ihMJWBTniYFZ7IudAeqFcjsWCBOy8iVEiBE0q_4Dx8RnrlutTPCZUqL5IQstcoK1jOhFQ6UsIrIF2PwHy4Q7ytmtLc0pXjqRmr1KQtXpJOP4yHKWo2tZp1yLv2lsuGq-Nvwm9g3ls5ZNkeDb6meG2ri-8gtI-m0UolnAEgjBxytDWV1Lr8JgVkiURFkKE55HU7DM6KOzCy1OsaZAAcY09OGDvkoLGs9r9DhrQEMYxEHZvrPGJ3pFwuDCF4gvzvATzt-9Y6b00A-kFnAg7_S_oF2Q2w8cPULB2RXnVV65cAx6rslfXFa_Z0LN0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pose+Estimation+and+Non-Rigid+Registration+for+Augmented+Reality+During+Neurosurgery&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Haouchine%2C+Nazim&rft.au=Juvekar%2C+Parikshit&rft.au=Nercessian%2C+Michael&rft.au=Wells%2C+William&rft.date=2022-04-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9294&rft.eissn=1558-2531&rft.volume=69&rft.issue=4&rft.spage=1310&rft_id=info:doi/10.1109%2FTBME.2021.3113841&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon