Deciphering the regulation of porcine genes influencing growth, fatness and yield-related traits through genetical genomics
Genetical genomics approaches aim at identifying quantitative trait loci for molecular traits, also known as intermediate phenotypes, such as gene expression, that could link variation in genetic information to physiological traits. In the current study, an expression GWAS has been carried out on an...
Saved in:
Published in | Mammalian genome Vol. 28; no. 3-4; pp. 130 - 142 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.04.2017
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 0938-8990 1432-1777 1432-1777 |
DOI | 10.1007/s00335-016-9674-3 |
Cover
Abstract | Genetical genomics approaches aim at identifying quantitative trait loci for molecular traits, also known as intermediate phenotypes, such as gene expression, that could link variation in genetic information to physiological traits. In the current study, an expression GWAS has been carried out on an experimental Iberian × Landrace backcross in order to identify the genomic regions regulating the gene expression of those genes whose expression is correlated with growth, fat deposition, and premium cut yield measures in pig. The analyses were conducted exploiting Porcine 60K SNP BeadChip genotypes and Porcine Expression Microarray data hybridized on mRNA from
Longissimus dorsi
muscle. In order to focus the analysis on productive traits and reduce the number of analyses, only those probesets whose expression showed significant correlation with at least one of the seven phenotypes of interest were selected for the eGWAS. A total of 63 eQTL regions were identified with effects on 36 different transcripts. Those eQTLs overlapping with phenotypic QTLs on SSC4, SSC9, SSC13, and SSC17 chromosomes previously detected in the same animal material were further analyzed. Moreover, candidate genes and SNPs were analyzed. Among the most promising results, a long non-coding RNA,
ALDBSSCG0000001928
, was identified, whose expression is correlated with premium cut yield. Association analysis and in silico sequence domain annotation support
TXNRD
3 polymorphisms as candidate to regulate
ALDBSSCG0000001928
expression, which can be involved in the transcriptional regulation of surrounding genes, affecting productive and meat quality traits. |
---|---|
AbstractList | Genetical genomics approaches aim at identifying quantitative trait loci for molecular traits, also known as intermediate phenotypes, such as gene expression, that could link variation in genetic information to physiological traits. In the current study, an expression GWAS has been carried out on an experimental Iberian × Landrace backcross in order to identify the genomic regions regulating the gene expression of those genes whose expression is correlated with growth, fat deposition, and premium cut yield measures in pig. The analyses were conducted exploiting Porcine 60K SNP BeadChip genotypes and Porcine Expression Microarray data hybridized on mRNA from Longissimus dorsi muscle. In order to focus the analysis on productive traits and reduce the number of analyses, only those probesets whose expression showed significant correlation with at least one of the seven phenotypes of interest were selected for the eGWAS. A total of 63 eQTL regions were identified with effects on 36 different transcripts. Those eQTLs overlapping with phenotypic QTLs on SSC4, SSC9, SSC13, and SSC17 chromosomes previously detected in the same animal material were further analyzed. Moreover, candidate genes and SNPs were analyzed. Among the most promising results, a long non-coding RNA, ALDBSSCG0000001928, was identified, whose expression is correlated with premium cut yield. Association analysis and in silico sequence domain annotation support TXNRD3 polymorphisms as candidate to regulate ALDBSSCG0000001928 expression, which can be involved in the transcriptional regulation of surrounding genes, affecting productive and meat quality traits. Genetical genomics approaches aim at identifying quantitative trait loci for molecular traits, also known as intermediate phenotypes, such as gene expression, that could link variation in genetic information to physiological traits. In the current study, an expression GWAS has been carried out on an experimental Iberian×Landrace backcross in order to identify the genomic regions regulating the gene expression of those genes whose expression is correlated with growth, fat deposition, and premium cut yield measures in pig. The analyses were conducted exploiting Porcine 60K SNP BeadChip genotypes and Porcine Expression Microarray data hybridized on mRNA from Longissimus dorsi muscle. In order to focus the analysis on productive traits and reduce the number of analyses, only those probesets whose expression showed significant correlation with at least one of the seven phenotypes of interest were selected for the eGWAS. A total of 63 eQTL regions were identified with effects on 36 different transcripts. Those eQTLs overlapping with phenotypic QTLs on SSC4, SSC9, SSC13, and SSC17 chromosomes previously detected in the same animal material were further analyzed. Moreover, candidate genes and SNPs were analyzed. Among the most promising results, a long non-coding RNA, ALDBSSCG0000001928, was identified, whose expression is correlated with premium cut yield. Association analysis and in silico sequence domain annotation support TXNRD3 polymorphisms as candidate to regulate ALDBSSCG0000001928 expression, which can be involved in the transcriptional regulation of surrounding genes, affecting productive and meat quality traits. Genetical genomics approaches aim at identifying quantitative trait loci for molecular traits, also known as intermediate phenotypes, such as gene expression, that could link variation in genetic information to physiological traits. In the current study, an expression GWAS has been carried out on an experimental IberianLandrace backcross in order to identify the genomic regions regulating the gene expression of those genes whose expression is correlated with growth, fat deposition, and premium cut yield measures in pig. The analyses were conducted exploiting Porcine 60K SNP BeadChip genotypes and Porcine Expression Microarray data hybridized on mRNA from Longissimus dorsi muscle. In order to focus the analysis on productive traits and reduce the number of analyses, only those probesets whose expression showed significant correlation with at least one of the seven phenotypes of interest were selected for the eGWAS. A total of 63 eQTL regions were identified with effects on 36 different transcripts. Those eQTLs overlapping with phenotypic QTLs on SSC4, SSC9, SSC13, and SSC17 chromosomes previously detected in the same animal material were further analyzed. Moreover, candidate genes and SNPs were analyzed. Among the most promising results, a long non-coding RNA, ALDBSSCG0000001928, was identified, whose expression is correlated with premium cut yield. Association analysis and in silico sequence domain annotation support TXNRD3 polymorphisms as candidate to regulate ALDBSSCG0000001928 expression, which can be involved in the transcriptional regulation of surrounding genes, affecting productive and meat quality traits. Genetical genomics approaches aim at identifying quantitative trait loci for molecular traits, also known as intermediate phenotypes, such as gene expression, that could link variation in genetic information to physiological traits. In the current study, an expression GWAS has been carried out on an experimental Iberian × Landrace backcross in order to identify the genomic regions regulating the gene expression of those genes whose expression is correlated with growth, fat deposition, and premium cut yield measures in pig. The analyses were conducted exploiting Porcine 60K SNP BeadChip genotypes and Porcine Expression Microarray data hybridized on mRNA from Longissimus dorsi muscle. In order to focus the analysis on productive traits and reduce the number of analyses, only those probesets whose expression showed significant correlation with at least one of the seven phenotypes of interest were selected for the eGWAS. A total of 63 eQTL regions were identified with effects on 36 different transcripts. Those eQTLs overlapping with phenotypic QTLs on SSC4, SSC9, SSC13, and SSC17 chromosomes previously detected in the same animal material were further analyzed. Moreover, candidate genes and SNPs were analyzed. Among the most promising results, a long non-coding RNA, ALDBSSCG0000001928, was identified, whose expression is correlated with premium cut yield. Association analysis and in silico sequence domain annotation support TXNRD3 polymorphisms as candidate to regulate ALDBSSCG0000001928 expression, which can be involved in the transcriptional regulation of surrounding genes, affecting productive and meat quality traits.Genetical genomics approaches aim at identifying quantitative trait loci for molecular traits, also known as intermediate phenotypes, such as gene expression, that could link variation in genetic information to physiological traits. In the current study, an expression GWAS has been carried out on an experimental Iberian × Landrace backcross in order to identify the genomic regions regulating the gene expression of those genes whose expression is correlated with growth, fat deposition, and premium cut yield measures in pig. The analyses were conducted exploiting Porcine 60K SNP BeadChip genotypes and Porcine Expression Microarray data hybridized on mRNA from Longissimus dorsi muscle. In order to focus the analysis on productive traits and reduce the number of analyses, only those probesets whose expression showed significant correlation with at least one of the seven phenotypes of interest were selected for the eGWAS. A total of 63 eQTL regions were identified with effects on 36 different transcripts. Those eQTLs overlapping with phenotypic QTLs on SSC4, SSC9, SSC13, and SSC17 chromosomes previously detected in the same animal material were further analyzed. Moreover, candidate genes and SNPs were analyzed. Among the most promising results, a long non-coding RNA, ALDBSSCG0000001928, was identified, whose expression is correlated with premium cut yield. Association analysis and in silico sequence domain annotation support TXNRD3 polymorphisms as candidate to regulate ALDBSSCG0000001928 expression, which can be involved in the transcriptional regulation of surrounding genes, affecting productive and meat quality traits. Genetical genomics approaches aim at identifying quantitative trait loci for molecular traits, also known as intermediate phenotypes, such as gene expression, that could link variation in genetic information to physiological traits. In the current study, an expression GWAS has been carried out on an experimental Iberian × Landrace backcross in order to identify the genomic regions regulating the gene expression of those genes whose expression is correlated with growth, fat deposition, and premium cut yield measures in pig. The analyses were conducted exploiting Porcine 60K SNP BeadChip genotypes and Porcine Expression Microarray data hybridized on mRNA from Longissimus dorsi muscle. In order to focus the analysis on productive traits and reduce the number of analyses, only those probesets whose expression showed significant correlation with at least one of the seven phenotypes of interest were selected for the eGWAS. A total of 63 eQTL regions were identified with effects on 36 different transcripts. Those eQTLs overlapping with phenotypic QTLs on SSC4, SSC9, SSC13, and SSC17 chromosomes previously detected in the same animal material were further analyzed. Moreover, candidate genes and SNPs were analyzed. Among the most promising results, a long non-coding RNA, ALDBSSCG0000001928 , was identified, whose expression is correlated with premium cut yield. Association analysis and in silico sequence domain annotation support TXNRD 3 polymorphisms as candidate to regulate ALDBSSCG0000001928 expression, which can be involved in the transcriptional regulation of surrounding genes, affecting productive and meat quality traits. |
Author | Ibáñez-Escriche, Noelia Fernández, Ana I. Martínez-Montes, Angel M. Muiños-Bühl, Anixa Fernández, Almudena Folch, Josep M. |
Author_xml | – sequence: 1 givenname: Angel M. orcidid: 0000-0001-6295-9880 surname: Martínez-Montes fullname: Martínez-Montes, Angel M. email: martinez.angel@inia.es organization: Departamento de Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) – sequence: 2 givenname: Anixa surname: Muiños-Bühl fullname: Muiños-Bühl, Anixa organization: Departamento de Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) – sequence: 3 givenname: Almudena surname: Fernández fullname: Fernández, Almudena organization: Departamento de Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) – sequence: 4 givenname: Josep M. surname: Folch fullname: Folch, Josep M. organization: Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), Plant and Animal Genomics, Centre de Recerca en Agrigenòmica (CRAG), Consorci CSIC-IRTA-UAB-UB – sequence: 5 givenname: Noelia surname: Ibáñez-Escriche fullname: Ibáñez-Escriche, Noelia organization: Departament de Genètica i Millora Animal, Institut de Recerca i Tecnologia Agroalimentàries (IRTA) – sequence: 6 givenname: Ana I. surname: Fernández fullname: Fernández, Ana I. organization: Departamento de Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27942838$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkktrFTEYhoO02NPqD3AjATcuHM1lJpel1FaFQje6DjmZb-akzEnGJEMp_nkzPS1IwcsqgTzPS5LvPUVHIQZA6BUl7ykh8kMmhPOuIVQ0Wsi24c_QhracNVRKeYQ2RHPVKK3JCTrN-YYQKgWVz9EJk7pliqsN-vkJnJ93kHwYcdkBTjAuky0-BhwHPMfkfAA8QoCMfRimBYJb2THF27J7hwdb6lHGNvT4zsPUNwmqDz0uyfqSa2iKy7i7jyje2Wndxb13-QU6HuyU4eXDeoa-X158O__SXF1__nr-8apxraKlEU4yJS1se1AAfSeV6LRQrhVUWc4dqydKgNY9cKXVVrpWCzFI1WumBsf4GXp7yJ1T_LFALmbvs4NpsgHikg0jhHScdOzfKFWaKkm17P4D7ZgQTMq2om-eoDdxSaG-uVKK6k4ISSr1-oFatnvozZz83qY78zisCsgD4FLMOcFgnC_3o1q_ejKUmLUW5lALU2th1loYXk36xHwM_5vDDk6e13JA-u3Sf5R-AbM7yeo |
CitedBy_id | crossref_primary_10_1038_s41576_018_0082_2 crossref_primary_10_1139_cjas_2023_0127 crossref_primary_10_3389_fgene_2020_00344 crossref_primary_10_1186_s12711_020_00579_x crossref_primary_10_1186_s12864_017_4354_6 crossref_primary_10_3390_foods13233927 |
Cites_doi | 10.1016/j.meatsci.2015.06.011 10.1371/journal.pone.0071576 10.1086/302804 10.4238/2015.September.22.7 10.1186/s12863-014-0148-x 10.1128/MCB.15.7.3823 10.1073/pnas.1114513109 10.2527/jas.2012-6170 10.1159/000124381 10.1016/j.bbagen.2012.05.016 10.1016/j.jss.2011.03.024 10.1017/S0016672302005803 10.12688/f1000research.8733.1 10.1111/j.1365-2052.2012.02338.x 10.3389/neuro.07.012.2009 10.1007/s11010-012-1413-9 10.1186/1297-9686-42-23 10.1371/journal.pone.0074295 10.1007/s003350010065 10.1186/s12864-015-1946-x 10.1186/s12864-015-2167-z 10.1371/journal.pone.0145162 10.3389/fgene.2015.00165 10.1038/hdy.2013.126 10.1186/1471-2105-12-202 10.1016/j.meatsci.2010.07.001 10.1093/bioinformatics/btq049 10.1371/journal.pone.0032297 10.1017/S0016672305007330 10.1038/sj.onc.1205886 10.1002/cbin.10115 10.1186/1471-2156-13-41 10.1093/nar/gku366 10.1016/j.cmet.2005.10.002 10.1101/gr.6981507 10.5808/GI.2012.10.2.117 10.1371/journal.pone.0006524 10.1534/genetics.167.1.485 10.1007/s00335-005-0060-9 10.1128/MCB.00014-10 10.2174/138920212800543110 10.1016/S0168-9525(01)02310-1 10.1038/srep31803 10.1007/s00335-004-2447-4 10.1093/nar/gkp335 10.1186/s12711-015-0111-y 10.1038/nature02064 10.1186/1753-6561-3-S7-S41 10.1186/gb-2007-8-2-r24 10.1371/journal.pone.0124003 10.1111/j.1365-2052.2006.01535.x 10.1371/journal.pgen.1000232 10.1146/annurev-genom-090314-024939 10.1371/journal.pone.0129501 10.1111/age.12066 10.1371/journal.pone.0053687 10.1371/journal.pgen.1002707 10.1186/1471-2164-13-584 10.1086/319501 10.1111/age.12507 10.1186/1471-2105-14-S2-S4 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media New York 2016 Mammalian Genome is a copyright of Springer, 2017. |
Copyright_xml | – notice: Springer Science+Business Media New York 2016 – notice: Mammalian Genome is a copyright of Springer, 2017. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7TK 7X7 7XB 88A 88E 8AO 8FD 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M7P P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 7X8 7S9 L.6 |
DOI | 10.1007/s00335-016-9674-3 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection PML(ProQuest Medical Library) Biological Science Database (ProQuest) Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Genetics Abstracts Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE ProQuest Central Student Genetics Abstracts MEDLINE - Academic AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Zoology |
EISSN | 1432-1777 |
EndPage | 142 |
ExternalDocumentID | 4321281215 27942838 10_1007_s00335_016_9674_3 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Ministerio de Economía y Competitividad grantid: AGL2011-29821-C02; AGL2014-56369-C2; BES-2012-056563 funderid: http://dx.doi.org/10.13039/501100003329 |
GroupedDBID | --- -4W -56 -5G -BR -EM -Y2 -~C -~X .86 .GJ .VR 06C 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29M 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 36B 3SX 3V. 4.4 406 408 409 40D 40E 53G 5GY 5QI 5VS 67N 67Z 6NX 78A 7X7 88A 88E 8AO 8FE 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACUHS ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYPR ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN B-. B0M BA0 BBNVY BBWZM BDATZ BENPR BGNMA BHPHI BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBD EBLON EBS EIOEI EJD EMB EMK EMOBN EN4 EPAXT EPL ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW KPH LAS LK8 LLZTM M0L M1P M4Y M7P MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P PF0 PQQKQ PROAC PSQYO PT4 PT5 Q2X QOK QOR QOS R4E R89 R9I RHV RIG RNI ROL RPX RRX RSV RZK S16 S1Z S26 S27 S28 S3A S3B SAP SBL SBY SCLPG SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZN T13 T16 TEORI TN5 TSG TSK TSV TUC TUS U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK6 WK8 YLTOR Z45 Z7U Z82 Z87 Z8O Z8V Z91 ZGI ZMTXR ZOVNA ZXP ~8M ~A9 ~EX ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7TK 7XB 8FD 8FK ABRTQ AZQEC DWQXO FR3 GNUQQ K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 7X8 PUEGO 7S9 L.6 |
ID | FETCH-LOGICAL-c481t-6c7287aebde8eed57865968c4618a33c2ebd86e99de3898b7c4966f78d928fc23 |
IEDL.DBID | 7X7 |
ISSN | 0938-8990 1432-1777 |
IngestDate | Fri Sep 05 10:38:24 EDT 2025 Thu Sep 04 17:04:21 EDT 2025 Thu Sep 04 23:09:10 EDT 2025 Fri Jul 25 18:58:30 EDT 2025 Wed Feb 19 02:41:58 EST 2025 Tue Jul 01 00:39:48 EDT 2025 Thu Apr 24 22:55:09 EDT 2025 Fri Feb 21 02:32:48 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3-4 |
Keywords | Residual Feed Intake Candidate SNPs Minimum Allele Frequency Meat Quality Trait Potential Causal Variant |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c481t-6c7287aebde8eed57865968c4618a33c2ebd86e99de3898b7c4966f78d928fc23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-6295-9880 |
OpenAccessLink | http://hdl.handle.net/10251/156107 |
PMID | 27942838 |
PQID | 1881956670 |
PQPubID | 54093 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_2000530522 proquest_miscellaneous_1891871975 proquest_miscellaneous_1852662774 proquest_journals_1881956670 pubmed_primary_27942838 crossref_citationtrail_10_1007_s00335_016_9674_3 crossref_primary_10_1007_s00335_016_9674_3 springer_journals_10_1007_s00335_016_9674_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20170400 2017-4-00 2017-Apr 20170401 |
PublicationDateYYYYMMDD | 2017-04-01 |
PublicationDate_xml | – month: 4 year: 2017 text: 20170400 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: United States |
PublicationTitle | Mammalian genome |
PublicationTitleAbbrev | Mamm Genome |
PublicationTitleAlternate | Mamm Genome |
PublicationYear | 2017 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | Ramos, Crooijmans, Affara, Amaral, Archibald, Beever, Bendixen, Churcher, Clark, Dehais, Hansen, Hedegaard, Hu, Kerstens, Law, Megens, Milan, Nonneman, Rohrer, Rothschild, Smith, Schnabel, Van Tassell, Taylor, Wiedmann, Schook, Groenen (CR45) 2009; 4 Priori, Colombo, Clavenzani, Jansman, Lallès, Trevisi, Bosi (CR42) 2015; 10 Pérez-Enciso, Misztal (CR40) 2011; 12 Guntani, Matsumoto, Kyuragi, Iwasa, Onohara, Itoh, Katusic, Maehara (CR18) 2011; 170 Ren, Zhou, Terwilliger, Newton, de Araujo (CR46) 2009; 3 Corominas, Marchesi, Puig-Oliveras, Revilla, Estellé, Alves, Folch, Ballester (CR10) 2015; 47 Pena, Noguera, Casellas, Díaz, Fernández, Folch, Ibáñez-Escriche (CR39) 2013; 44 Bailey, Boden, Buske, Frith, Grant, Clementi, Ren, Li, Noble (CR4) 2009; 37 Szczerbal, Chmurzynska (CR53) 2008; 121 Zizola, Frey, Jitngarmkusol, Kadereit, Yan, Vogel (CR63) 2010; 30 Garcia de la Serrana, Johnston (CR17) 2013; 8 Fernández, Pérez-Montarelo, Barragán, Ramayo-Caldas, Ibáñez-Escriche, Castelló, Noguera, Silió, Folch, Rodríguez (CR14) 2012; 13 Guo, Wang, Andrés, Smith, Walsh (CR19) 1995; 15 Schön, Utz, Groh, Truberg, Openshaw, Melchinger (CR49) 2004; 167 Pang, Wang, Wei, Xu, Xiong, Wang, Shen, Yang (CR37) 2013; 8 Pérez-Montarelo, Fernández, Folch, Pena, Ovilo, Rodríguez, Silió, Fernández (CR41) 2012; 43 Breitling, Li, Tesson, Fu, Wu, Wiltshire, Gerrits, Bystrykh, de Haan, Su, Jansen (CR6) 2008; 4 Puig-Oliveras, Revilla, Castelló, Fernández, Folch, Ballester (CR43) 2016; 6 CR5 Stephens, Smith, Donnelly (CR51) 2001; 68 Saura, Tenesa, Woolliams, Fernández, Villanueva (CR48) 2015; 16 Würschum, Kraft (CR60) 2014; 112 Yachdav, Kloppmann, Kajan, Hecht, Goldberg, Hamp, Hönigschmid, Schafferhans, Roos, Bernhofer (CR61) 2014; 42 Karisa, Thomson, Wang, Stothard, Moore, Plastow (CR25) 2013; 91 Kipp, Müller, Göken, Deubel, Brigelius-Flohé (CR27) 2012; 1820 Tabangin, Woo, Martin (CR54) 2009; 3 Ayuso, Fernández, Núñez, Benítez, Isabel, Barragán, Fernández, Rey, Medrano, Á, González-Bulnes, López-Bote, Ovilo (CR2) 2015; 10 Williams, Chan, Cowley, Little (CR59) 2007; 17 Hong, Kim, Cho, Sa, Choi, Kim, Park, Schmidt, Davis, Chung (CR22) 2015; 110 Chang, Huang, Hsu, Weng, Horng, Huang (CR8) 2013; 14 Park (CR38) 2012; 10 Zou, Chai, Younkin, Allen, Crook, Pankratz, Carrasquillo, Rowley, Nair, Middha, Maharjan, Nguyen, Ma, Malphrus, Palusak, Lincoln, Bisceglio, Georgescu, Kouri, Kolbert, Jen, Haines, Mayeux, Pericak-Vance, Farrer, Schellenberg, Petersen, Graff-Radford, Dickson, Younkin, Ertekin-Taner (CR64) 2012; 8 Corominas, Ramayo-Caldas, Puig-Oliveras, Pérez-Montarelo, Noguera, Folch, Ballester (CR9) 2013; 8 Nguyen, Lee, Choi, Choi, Le, Song, Kim, Seo, Oh, Lee, Kim, Park (CR34) 2012; 13 Martínez-Montes, Fernández, Pérez-Montarelo, Alves, Benítez, Nuñez, Óvilo, Ibañez-Escriche, Folch, Fernández (CR31) 2016 Ovilo, Pérez-Enciso, Barragán, Clop, Rodríquez, Oliver, Toro, Noruera (CR35) 2000; 11 Hu, Dracheva, Jang, Maglott, Bastiaansen, Rothschild, Reecy (CR23) 2005; 16 Rutenberg-Schoenberg, Sexton, Simon (CR47) 2016; 17 Fontanesi, Colombo, Scotti, Buttazzoni, Bertolini, Dall’Olio, Davoli, Russo (CR16) 2010; 86 Angrand, Vennin, Le Bourhis, Adriaenssens (CR1) 2015; 6 Kodama, Horikoshi, Toda, Yamada, Hara, Irie, Sirota, Morgan, Chen, Ohtsu, Maeda, Kadowaki, Butte (CR28) 2012; 109 Muñoz, Fernández, Ovilo, Muñoz, Rodriguez, Fernández, Alves, Silió (CR33) 2010; 42 Bailey, Elkan (CR3) 1994; 2 Deng, Chen, Recker (CR11) 2000; 66 Varona, Ovilo, Clop, Noguera, Pérez-Enciso, Coll, Folch, Barragán, Toro, Babot, Sánchez (CR56) 2002; 80 Gupta, Stamatoyannopoulos, Bailey, Noble (CR20) 2007; 8 Fernández, Muñoz, Alves, Folch, Noguera, Enciso, del Rodríguez, Silió (CR15) 2014; 15 Buske, Bodén, Bauer, Bailey (CR7) 2010; 26 Van Laere, Nguyen, Braunschweig, Nezer, Collette, Moreau, Archibald, Haley, Buys, Tally, Andersson, Georges, Andersson (CR55) 2003; 425 Yan, Weijun, Ning, Yu, Wenkai, Gongshe (CR62) 2013; 37 Wang, Lemon, You (CR57) 2002; 21 Estellé, Pérez-Enciso, Mercadé, Varona, Alves, Sánchez, Folch (CR13) 2006; 37 Qin, Li, Xu, Mo, Tong, Pan, Li, Chen, Zhang, Wang, Long (CR44) 2012; 370 Espigolan, Baldi, Boligon, Souza, Fernandes Júnior, Gordo, Venturini, de Camargo, Feitosa, Garcia, Tonhati, Chardulo, Oliveira, Albuquerque (CR12) 2015; 14 Mercadé, Estellé, Noguera, Folch, Varona, Silió, Sánchez, Pérez-Enciso (CR32) 2005; 16 Karssen, van Duijn, Aulchenko (CR26) 2016; 5 Sun, Chang, Yang, Wang, Li, Zhao, Chen, Wu, Zhang, Han (CR52) 2015; 16 Hill (CR21) 2012; 13 Scimè, Grenier, Huh, Gillespie, Bevilacqua, Harper, Rudnicki (CR50) 2005; 2 Jansen, Nap (CR24) 2001; 17 Li, Zhang, Zhou, Wang, Liu, Liu (CR30) 2015; 10 Óvilo, Fernández, Noguera, Barragán, Letón, Rodríguez, Mercadé, Alves, Folch, Varona, Toro (CR36) 2005; 85 Lahaye, Wouda, de Jong, Fradkin, Noordermeer (CR29) 2012; 7 Wewer, Thornell, Loechel, Zhang, Durkin, Amano, Burgeson, Engvall, Albrechtsen, Virtanen (CR58) 1997; 151 C Ovilo (9674_CR35) 2000; 11 F Zou (9674_CR64) 2012; 8 PO Angrand (9674_CR1) 2015; 6 BK Karisa (9674_CR25) 2013; 91 AM Ramos (9674_CR45) 2009; 4 D Wang (9674_CR57) 2002; 21 L Fontanesi (9674_CR16) 2010; 86 CC Schön (9674_CR49) 2004; 167 M Ayuso (9674_CR2) 2015; 10 AI Fernández (9674_CR15) 2014; 15 I Szczerbal (9674_CR53) 2008; 121 J Corominas (9674_CR10) 2015; 47 FA Buske (9674_CR7) 2010; 26 W Pang (9674_CR37) 2013; 8 S Gupta (9674_CR20) 2007; 8 C Óvilo (9674_CR36) 2005; 85 CF Zizola (9674_CR63) 2010; 30 K Guo (9674_CR19) 1995; 15 A Scimè (9674_CR50) 2005; 2 X Yan (9674_CR62) 2013; 37 9674_CR5 A Puig-Oliveras (9674_CR43) 2016; 6 D Garcia de la Serrana (9674_CR17) 2013; 8 K Kodama (9674_CR28) 2012; 109 JW Park (9674_CR38) 2012; 10 A Guntani (9674_CR18) 2011; 170 AM Martínez-Montes (9674_CR31) 2016 R Breitling (9674_CR6) 2008; 4 G Yachdav (9674_CR61) 2014; 42 HW Deng (9674_CR11) 2000; 66 X Ren (9674_CR46) 2009; 3 ZL Hu (9674_CR23) 2005; 16 WG Hill (9674_CR21) 2012; 13 LC Karssen (9674_CR26) 2016; 5 A Mercadé (9674_CR32) 2005; 16 T Würschum (9674_CR60) 2014; 112 D Priori (9674_CR42) 2015; 10 M Stephens (9674_CR51) 2001; 68 ME Tabangin (9674_CR54) 2009; 3 TL Bailey (9674_CR3) 1994; 2 M Saura (9674_CR48) 2015; 16 M Rutenberg-Schoenberg (9674_CR47) 2016; 17 J Estellé (9674_CR13) 2006; 37 AI Fernández (9674_CR14) 2012; 13 L Varona (9674_CR56) 2002; 80 M Muñoz (9674_CR33) 2010; 42 RB Williams (9674_CR59) 2007; 17 UM Wewer (9674_CR58) 1997; 151 TH Chang (9674_CR8) 2013; 14 RC Jansen (9674_CR24) 2001; 17 LL Qin (9674_CR44) 2012; 370 AS Laere Van (9674_CR55) 2003; 425 R Sun (9674_CR52) 2015; 16 TL Bailey (9674_CR4) 2009; 37 J Corominas (9674_CR9) 2013; 8 AP Kipp (9674_CR27) 2012; 1820 LL Lahaye (9674_CR29) 2012; 7 DT Nguyen (9674_CR34) 2012; 13 D Pérez-Montarelo (9674_CR41) 2012; 43 M Pérez-Enciso (9674_CR40) 2011; 12 J Hong (9674_CR22) 2015; 110 A Li (9674_CR30) 2015; 10 RN Pena (9674_CR39) 2013; 44 R Espigolan (9674_CR12) 2015; 14 23341976 - PLoS One. 2013;8(1):e53687 23369107 - BMC Bioinformatics. 2013;14 Suppl 2:S4 16261421 - Mamm Genome. 2005 Oct;16(10):792-800 9273822 - Am J Pathol. 1997 Aug;151(2):621-31 11254454 - Am J Hum Genet. 2001 Apr;68(4):978-89 19458158 - Nucleic Acids Res. 2009 Jul;37(Web Server issue):W202-8 19587847 - Front Integr Neurosci. 2009 Jun 19;3:12 20147307 - Bioinformatics. 2010 Apr 1;26(7):860-6 25853886 - PLoS One. 2015 Apr 08;10(4):e0124003 22875667 - Mol Cell Biochem. 2012 Nov;370(1-2):221-30 18949031 - PLoS Genet. 2008 Oct;4(10):e1000232 23105939 - Genomics Inform. 2012 Jun;10(2):117-22 24040223 - PLoS One. 2013 Sep 06;8(9):e74295 26559809 - BMC Genomics. 2015 Nov 11;16:922 27642173 - Anim Genet. 2017 Apr;48(2):151-165 25972893 - Front Genet. 2015 Apr 29;6:165 24799431 - Nucleic Acids Res. 2014 Jul;42(Web Server issue):W337-43 23115521 - Curr Genomics. 2012 May;13(3):196-206 23951196 - PLoS One. 2013 Aug 12;8(8):e71576 26076344 - PLoS One. 2015 Jun 15;10(6):e0129501 24326292 - Heredity (Edinb). 2014 Apr;112(4):463-8 27347381 - F1000Res. 2016 May 19;5:914 26400344 - Genet Mol Res. 2015 Sep 22;14(3):11133-44 26695515 - PLoS One. 2015 Dec 22;10(12):e0145162 16271529 - Cell Metab. 2005 Nov;2(5):283-95 17324271 - Genome Biol. 2007;8(2):R24 12534217 - Genet Res. 2002 Oct;80(2):145-54 11418218 - Trends Genet. 2001 Jul;17(7):388-91 7791789 - Mol Cell Biol. 1995 Jul;15(7):3823-9 23589423 - Cell Biol Int. 2013 Sep;37(9):905-16 20498279 - Mol Cell Biol. 2010 Jul;30(14):3412-20 22403643 - PLoS One. 2012;7(3):e32297 22499789 - Proc Natl Acad Sci U S A. 2012 May 1;109(18):7049-54 12360413 - Oncogene. 2002 Oct 3;21(44):6858-65 18544926 - Cytogenet Genome Res. 2008;121(1):50-4 23826865 - Anim Genet. 2013 Dec;44(6):648-60 20675060 - Meat Sci. 2010 Nov;86(3):808-13 22497241 - Anim Genet. 2012 Dec;43(6):805-9 14574411 - Nature. 2003 Oct 23;425(6960):832-6 21550059 - J Surg Res. 2011 Sep;170(1):143-9 10712216 - Am J Hum Genet. 2000 Mar;66(3):1027-45 22683372 - Biochim Biophys Acta. 2012 Oct;1820(10):1588-96 7584402 - Proc Int Conf Intell Syst Mol Biol. 1994;2:28-36 16104385 - Mamm Genome. 2005 May;16(5):374-82 23153364 - BMC Genomics. 2012 Nov 15;13:584 17121606 - Anim Genet. 2006 Dec;37(6):589-91 15166171 - Genetics. 2004 May;167(1):485-98 26172243 - Meat Sci. 2015 Dec;110:46-51 16089036 - Genet Res. 2005 Feb;85(1):57-67 22685416 - PLoS Genet. 2012;8(6):e1002707 19654876 - PLoS One. 2009 Aug 05;4(8):e6524 23736061 - J Anim Sci. 2013 Aug;91(8):3502-13 22607048 - BMC Genet. 2012 May 20;13:41 18063559 - Genome Res. 2007 Dec;17(12):1707-16 27666082 - Sci Rep. 2016 Aug 18;6:31803 10754115 - Mamm Genome. 2000 Apr;11(4):344-6 21612630 - BMC Bioinformatics. 2011 May 25;12:202 26437648 - BMC Genomics. 2015 Oct 05;16:747 20576168 - Genet Sel Evol. 2010 Jun 25;42:23 25526890 - BMC Genet. 2014 Dec 20;15:148 20018033 - BMC Proc. 2009 Dec 15;3 Suppl 7:S41 27147088 - Annu Rev Genomics Hum Genet. 2016 Aug 31;17 :69-94 25887840 - Genet Sel Evol. 2015 Mar 25;47:20 |
References_xml | – volume: 110 start-page: 46 year: 2015 end-page: 51 ident: CR22 article-title: Effects of genetic variants for the swine FABP3, HMGA1, MC4R, IGF2, and FABP4 genes on fatty acid composition publication-title: Meat Sci doi: 10.1016/j.meatsci.2015.06.011 – volume: 2 start-page: 28 year: 1994 end-page: 36 ident: CR3 article-title: Fitting a mixture model by expectation maximization to discover motifs in biopolymers publication-title: Proc Int Conf Intell Syst Mol Biol – volume: 8 start-page: e71576 year: 2013 ident: CR37 article-title: Sirt1 inhibits akt2-mediated porcine adipogenesis potentially by direct protein–protein interaction publication-title: PLoS One doi: 10.1371/journal.pone.0071576 – volume: 66 start-page: 1027 year: 2000 end-page: 1045 ident: CR11 article-title: QTL fine mapping by measuring and testing for Hardy–Weinberg and linkage disequilibrium at a series of linked marker loci in extreme samples of populations publication-title: Am J Hum Genet doi: 10.1086/302804 – volume: 14 start-page: 11133 year: 2015 end-page: 11144 ident: CR12 article-title: Associations between single nucleotide polymorphisms and carcass traits in Nellore cattle using high-density panels publication-title: Genet Mol Res doi: 10.4238/2015.September.22.7 – volume: 15 start-page: 148 year: 2014 ident: CR15 article-title: Recombination of the porcine X chromosome: a high density linkage map publication-title: BMC Genet doi: 10.1186/s12863-014-0148-x – volume: 15 start-page: 3823 year: 1995 end-page: 3829 ident: CR19 article-title: MyoD-induced expression of p21 inhibits cyclin-dependent kinase activity upon myocyte terminal differentiation publication-title: Mol Cell Biol doi: 10.1128/MCB.15.7.3823 – volume: 109 start-page: 7049 year: 2012 end-page: 7054 ident: CR28 article-title: Expression-based genome-wide association study links the receptor CD44 in adipose tissue with type 2 diabetes publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1114513109 – year: 2016 ident: CR31 article-title: Using RNA-Seq SNP data to reveal potential causal mutations related to pig production traits and RNA editing publication-title: Anim Genet – volume: 91 start-page: 3502 year: 2013 end-page: 3513 ident: CR25 article-title: Candidate genes and single nucleotide polymorphisms associated with variation in residual feed intake in beef cattle publication-title: J Anim Sci doi: 10.2527/jas.2012-6170 – volume: 121 start-page: 150 year: 2008 end-page: 154 ident: CR53 article-title: Chromosomal localization of nine porcine genes encoding transcription factors involved in adipogenesis publication-title: Cytogenet Genome Res doi: 10.1159/000124381 – volume: 1820 start-page: 1588 year: 2012 end-page: 1596 ident: CR27 article-title: The selenoproteins GPx2, TrxR2 and TrxR3 are regulated by Wnt signalling in the intestinal epithelium publication-title: Biochim Biophys Acta doi: 10.1016/j.bbagen.2012.05.016 – volume: 151 start-page: 621 year: 1997 end-page: 631 ident: CR58 article-title: Extrasynaptic location of laminin beta 2 chain in developing and adult human skeletal muscle publication-title: Am J Pathol – volume: 170 start-page: 143 year: 2011 end-page: 149 ident: CR18 article-title: Reduced proliferation of aged human vascular smooth muscle cells–role of oxygen-derived free radicals and BubR1 expression publication-title: J Surg Res doi: 10.1016/j.jss.2011.03.024 – volume: 80 start-page: 145 year: 2002 end-page: 154 ident: CR56 article-title: QTL mapping for growth and carcass traits in an Iberian by Landrace pig intercross: additive, dominant and epistatic effects publication-title: Genet Res doi: 10.1017/S0016672302005803 – volume: 5 start-page: 914 year: 2016 ident: CR26 article-title: The GenABEL Project for statistical genomics publication-title: F1000Res doi: 10.12688/f1000research.8733.1 – volume: 43 start-page: 805 year: 2012 end-page: 809 ident: CR41 article-title: Joint effects of porcine leptin and leptin receptor polymorphisms on productivity and quality traits publication-title: Anim Genet doi: 10.1111/j.1365-2052.2012.02338.x – volume: 3 start-page: 12 year: 2009 ident: CR46 article-title: Sweet taste signaling functions as a hypothalamic glucose sensor publication-title: Front Integr Neurosci doi: 10.3389/neuro.07.012.2009 – volume: 370 start-page: 221 year: 2012 end-page: 230 ident: CR44 article-title: QM Mechano growth factor (MGF) promotes proliferation and inhibits differentiation of porcine satellite cells (PSCs) by down-regulation of key myogenic transcriptional factors publication-title: Mol Cell Biochem doi: 10.1007/s11010-012-1413-9 – volume: 42 start-page: 23 year: 2010 ident: CR33 article-title: Non-additive effects of RBP4, ESR1 and IGF2 polymorphisms on litter size at different parities in a Chinese-European porcine line publication-title: Genet Sel Evol doi: 10.1186/1297-9686-42-23 – volume: 8 start-page: e74295 year: 2013 ident: CR17 article-title: Expression of heat shock protein (Hsp90) paralogues is regulated by amino acids in skeletal muscle of Atlantic salmon publication-title: PLoS One doi: 10.1371/journal.pone.0074295 – volume: 11 start-page: 344 year: 2000 end-page: 346 ident: CR35 article-title: A QTL for intramuscular fat and backfat thickness is located on porcine chromosome 6 publication-title: Mamm Genome doi: 10.1007/s003350010065 – volume: 16 start-page: 747 year: 2015 ident: CR52 article-title: A dense SNP genetic map constructed using restriction site-associated DNA sequencing enables detection of QTLs controlling apple fruit quality publication-title: BMC Genom doi: 10.1186/s12864-015-1946-x – volume: 16 start-page: 922 year: 2015 ident: CR48 article-title: Evaluation of the linkage-disequilibrium method for the estimation of effective population size when generations overlap: an empirical case publication-title: BMC Genom doi: 10.1186/s12864-015-2167-z – volume: 10 start-page: e0145162 year: 2015 ident: CR2 article-title: Comparative analysis of muscle transcriptome between pig genotypes identifies genes and regulatory mechanisms associated to growth, fatness and metabolism publication-title: PLoS One doi: 10.1371/journal.pone.0145162 – volume: 6 start-page: 165 year: 2015 ident: CR1 article-title: The role of long non-coding RNAs in genome formatting and expression publication-title: Front Genet doi: 10.3389/fgene.2015.00165 – volume: 112 start-page: 463 year: 2014 end-page: 468 ident: CR60 article-title: Cross-validation in association mapping and its relevance for the estimation of QTL parameters of complex traits publication-title: Heredity (Edinb) doi: 10.1038/hdy.2013.126 – ident: CR5 – volume: 12 start-page: 202 year: 2011 ident: CR40 article-title: Qxpak.5: old mixed model solutions for new genomics problems publication-title: BMC Bioinforma doi: 10.1186/1471-2105-12-202 – volume: 86 start-page: 808 year: 2010 end-page: 813 ident: CR16 article-title: The porcine tribbles homolog 3 (TRIB3) gene: identification of a missense mutation and association analysis with meat quality and production traits in Italian heavy pigs publication-title: Meat Sci doi: 10.1016/j.meatsci.2010.07.001 – volume: 26 start-page: 860 year: 2010 end-page: 866 ident: CR7 article-title: Assigning roles to DNA regulatory motifs using comparative genomics publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq049 – volume: 7 start-page: e32297 year: 2012 ident: CR29 article-title: WNT5 interacts with the Ryk receptors doughnut and derailed to mediate muscle attachment site selection in publication-title: PLoS One doi: 10.1371/journal.pone.0032297 – volume: 85 start-page: 57 year: 2005 end-page: 67 ident: CR36 article-title: Fine mapping of porcine chromosome 6 QTL and LEPR effects on body composition in multiple generations of an Iberian by Landrace intercross publication-title: Genet Res doi: 10.1017/S0016672305007330 – volume: 21 start-page: 6858 year: 2002 end-page: 6865 ident: CR57 article-title: Linkage disequilibrium mapping of novel lung tumor susceptibility quantitative trait loci in mice publication-title: Oncogene doi: 10.1038/sj.onc.1205886 – volume: 37 start-page: 905 year: 2013 end-page: 916 ident: CR62 article-title: Knockdown of both FoxO1 and C/EBPβ promotes adipogenesis in porcine preadipocytes through feedback regulation publication-title: Cell Biol Int doi: 10.1002/cbin.10115 – volume: 13 start-page: 41 year: 2012 ident: CR14 article-title: Genome-wide linkage analysis of QTL for growth and body composition employing the PorcineSNP60 BeadChip publication-title: BMC Genet doi: 10.1186/1471-2156-13-41 – volume: 42 start-page: W337 issue: Web Server issue year: 2014 end-page: W343 ident: CR61 article-title: PredictProtein—an open resource for online prediction of protein structural and functional features publication-title: Nucleic Acids Res doi: 10.1093/nar/gku366 – volume: 2 start-page: 283 year: 2005 end-page: 295 ident: CR50 article-title: Rb and p107 regulate preadipocyte differentiation into white versus brown fat through repression of PGC-1alpha publication-title: Cell Metab doi: 10.1016/j.cmet.2005.10.002 – volume: 17 start-page: 1707 year: 2007 end-page: 1716 ident: CR59 article-title: The influence of genetic variation on gene expression publication-title: Genome Res doi: 10.1101/gr.6981507 – volume: 10 start-page: 117 year: 2012 end-page: 122 ident: CR38 article-title: Sample size and statistical power calculation in genetic association studies publication-title: Genom Inform doi: 10.5808/GI.2012.10.2.117 – volume: 4 start-page: e6524 year: 2009 ident: CR45 article-title: Design of a high density SNP genotyping assay in the pig using SNPs identified and characterized by next generation sequencing technology publication-title: PLoS One doi: 10.1371/journal.pone.0006524 – volume: 167 start-page: 485 year: 2004 end-page: 498 ident: CR49 article-title: Quantitative trait locus mapping based on resampling in a vast maize testcross experiment and its relevance to quantitative genetics for complex traits publication-title: Genetics doi: 10.1534/genetics.167.1.485 – volume: 16 start-page: 792 year: 2005 end-page: 800 ident: CR23 article-title: A QTL resource and comparison tool for pigs: PigQTLDB publication-title: Mamm Genome doi: 10.1007/s00335-005-0060-9 – volume: 30 start-page: 3412 year: 2010 end-page: 3420 ident: CR63 article-title: Cellular retinol-binding protein type I (CRBP-I) regulates adipogenesis publication-title: Mol Cell Biol doi: 10.1128/MCB.00014-10 – volume: 13 start-page: 196 year: 2012 end-page: 206 ident: CR21 article-title: Quantitative genetics in the genomics era publication-title: Curr Genom doi: 10.2174/138920212800543110 – volume: 17 start-page: 388 year: 2001 end-page: 391 ident: CR24 article-title: Genetical genomics: the added value from segregation publication-title: Trends Genet doi: 10.1016/S0168-9525(01)02310-1 – volume: 6 start-page: 31803 year: 2016 ident: CR43 article-title: Expression-based GWAS identifies variants, gene interactions and key regulators affecting intramuscular fatty acid content and composition in porcine meat publication-title: Sci Rep doi: 10.1038/srep31803 – volume: 16 start-page: 374 year: 2005 end-page: 382 ident: CR32 article-title: On growth, fatness, and form: a further look at porcine chromosome 4 in an Iberian×Landrace cross publication-title: Mamm Genome doi: 10.1007/s00335-004-2447-4 – volume: 37 start-page: 202 year: 2009 end-page: 208 ident: CR4 article-title: MEME SUITE: tools for motif discovery and searching publication-title: Nucleic Acids Res doi: 10.1093/nar/gkp335 – volume: 47 start-page: 20 year: 2015 ident: CR10 article-title: Epigenetic regulation of the ELOVL6 gene is associated with a major QTL effect on fatty acid composition in pigs publication-title: Genet Sel Evol doi: 10.1186/s12711-015-0111-y – volume: 425 start-page: 832 year: 2003 end-page: 836 ident: CR55 article-title: A regulatory mutation in IGF2 causes a major QTL effect on muscle growth in the pig publication-title: Nature doi: 10.1038/nature02064 – volume: 3 start-page: S41 issue: Suppl 7 year: 2009 ident: CR54 article-title: The effect of minor allele frequency on the likelihood of obtaining false positives publication-title: BMC Proc doi: 10.1186/1753-6561-3-S7-S41 – volume: 14 start-page: S4 issue: Suppl 2 year: 2013 ident: CR8 article-title: An enhanced computational platform for investigating the roles of regulatory RNA and for identifying functional RNA motifs publication-title: BMC Bioinform – volume: 8 start-page: R24 year: 2007 ident: CR20 article-title: Quantifying similarity between motifs publication-title: Genome Biol doi: 10.1186/gb-2007-8-2-r24 – volume: 10 start-page: e0124003 year: 2015 ident: CR30 article-title: ALDB: a domestic-animal long noncoding RNA database publication-title: PLoS One doi: 10.1371/journal.pone.0124003 – volume: 37 start-page: 589 year: 2006 end-page: 591 ident: CR13 article-title: Characterization of the porcine FABP5 gene and its association with the FAT1 QTL in an Iberian by Landrace cross publication-title: Anim Genet doi: 10.1111/j.1365-2052.2006.01535.x – volume: 4 start-page: e1000232 year: 2008 ident: CR6 article-title: Genetical genomics: spotlight on QTL hotspots publication-title: PLoS Genet doi: 10.1371/journal.pgen.1000232 – volume: 17 start-page: 69 year: 2016 end-page: 94 ident: CR47 article-title: The properties of long noncoding RNAs that regulate chromatin publication-title: Annu Rev Genom Hum Genet doi: 10.1146/annurev-genom-090314-024939 – volume: 10 start-page: e0129501 year: 2015 ident: CR42 article-title: The olfactory receptor OR51E1 is present along the gastrointestinal tract of pigs, co-localizes with enteroendocrine cells and is modulated by intestinal microbiota publication-title: PLoS One doi: 10.1371/journal.pone.0129501 – volume: 44 start-page: 648 year: 2013 end-page: 660 ident: CR39 article-title: Transcriptional analysis of intramuscular fatty acid composition in the longissimus thoracis muscle of Iberian×Landrace back-crossed pigs publication-title: Anim Genet doi: 10.1111/age.12066 – volume: 8 start-page: e53687 year: 2013 ident: CR9 article-title: Polymorphism in the ELOVL6 gene is associated with a major QTL effect on fatty acid composition in pigs publication-title: PLoS One doi: 10.1371/journal.pone.0053687 – volume: 8 start-page: e1002707 year: 2012 ident: CR64 article-title: Brain expression genome-wide association study (eGWAS) identifies human disease-associated variants publication-title: PLoS Genet doi: 10.1371/journal.pgen.1002707 – volume: 13 start-page: 584 year: 2012 ident: CR34 article-title: The complete swine olfactory subgenome: expansion of the olfactory gene repertoire in the pig genome publication-title: BMC Genom doi: 10.1186/1471-2164-13-584 – volume: 68 start-page: 978 year: 2001 end-page: 989 ident: CR51 article-title: A new statistical method for haplotype reconstruction from population data publication-title: Am J Hum Genet doi: 10.1086/319501 – volume: 8 start-page: R24 year: 2007 ident: 9674_CR20 publication-title: Genome Biol doi: 10.1186/gb-2007-8-2-r24 – volume: 37 start-page: 202 year: 2009 ident: 9674_CR4 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkp335 – volume: 112 start-page: 463 year: 2014 ident: 9674_CR60 publication-title: Heredity (Edinb) doi: 10.1038/hdy.2013.126 – volume: 47 start-page: 20 year: 2015 ident: 9674_CR10 publication-title: Genet Sel Evol doi: 10.1186/s12711-015-0111-y – volume: 13 start-page: 41 year: 2012 ident: 9674_CR14 publication-title: BMC Genet doi: 10.1186/1471-2156-13-41 – volume: 11 start-page: 344 year: 2000 ident: 9674_CR35 publication-title: Mamm Genome doi: 10.1007/s003350010065 – volume: 43 start-page: 805 year: 2012 ident: 9674_CR41 publication-title: Anim Genet doi: 10.1111/j.1365-2052.2012.02338.x – volume: 6 start-page: 31803 year: 2016 ident: 9674_CR43 publication-title: Sci Rep doi: 10.1038/srep31803 – volume: 13 start-page: 584 year: 2012 ident: 9674_CR34 publication-title: BMC Genom doi: 10.1186/1471-2164-13-584 – volume: 8 start-page: e71576 year: 2013 ident: 9674_CR37 publication-title: PLoS One doi: 10.1371/journal.pone.0071576 – volume: 7 start-page: e32297 year: 2012 ident: 9674_CR29 publication-title: PLoS One doi: 10.1371/journal.pone.0032297 – volume: 3 start-page: 12 year: 2009 ident: 9674_CR46 publication-title: Front Integr Neurosci – volume: 30 start-page: 3412 year: 2010 ident: 9674_CR63 publication-title: Mol Cell Biol doi: 10.1128/MCB.00014-10 – volume: 8 start-page: e53687 year: 2013 ident: 9674_CR9 publication-title: PLoS One doi: 10.1371/journal.pone.0053687 – volume: 8 start-page: e74295 year: 2013 ident: 9674_CR17 publication-title: PLoS One doi: 10.1371/journal.pone.0074295 – volume: 14 start-page: 11133 year: 2015 ident: 9674_CR12 publication-title: Genet Mol Res doi: 10.4238/2015.September.22.7 – volume: 26 start-page: 860 year: 2010 ident: 9674_CR7 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq049 – volume: 21 start-page: 6858 year: 2002 ident: 9674_CR57 publication-title: Oncogene doi: 10.1038/sj.onc.1205886 – volume: 16 start-page: 922 year: 2015 ident: 9674_CR48 publication-title: BMC Genom doi: 10.1186/s12864-015-2167-z – volume: 17 start-page: 388 year: 2001 ident: 9674_CR24 publication-title: Trends Genet doi: 10.1016/S0168-9525(01)02310-1 – volume: 12 start-page: 202 year: 2011 ident: 9674_CR40 publication-title: BMC Bioinforma doi: 10.1186/1471-2105-12-202 – volume: 3 start-page: S41 issue: Suppl 7 year: 2009 ident: 9674_CR54 publication-title: BMC Proc doi: 10.1186/1753-6561-3-S7-S41 – volume: 10 start-page: e0145162 year: 2015 ident: 9674_CR2 publication-title: PLoS One doi: 10.1371/journal.pone.0145162 – volume: 85 start-page: 57 year: 2005 ident: 9674_CR36 publication-title: Genet Res doi: 10.1017/S0016672305007330 – volume: 80 start-page: 145 year: 2002 ident: 9674_CR56 publication-title: Genet Res doi: 10.1017/S0016672302005803 – volume: 8 start-page: e1002707 year: 2012 ident: 9674_CR64 publication-title: PLoS Genet doi: 10.1371/journal.pgen.1002707 – volume: 4 start-page: e6524 year: 2009 ident: 9674_CR45 publication-title: PLoS One doi: 10.1371/journal.pone.0006524 – volume: 17 start-page: 69 year: 2016 ident: 9674_CR47 publication-title: Annu Rev Genom Hum Genet doi: 10.1146/annurev-genom-090314-024939 – volume: 121 start-page: 150 year: 2008 ident: 9674_CR53 publication-title: Cytogenet Genome Res doi: 10.1159/000124381 – volume: 5 start-page: 914 year: 2016 ident: 9674_CR26 publication-title: F1000Res doi: 10.12688/f1000research.8733.1 – volume: 170 start-page: 143 year: 2011 ident: 9674_CR18 publication-title: J Surg Res doi: 10.1016/j.jss.2011.03.024 – volume: 42 start-page: 23 year: 2010 ident: 9674_CR33 publication-title: Genet Sel Evol doi: 10.1186/1297-9686-42-23 – volume: 1820 start-page: 1588 year: 2012 ident: 9674_CR27 publication-title: Biochim Biophys Acta doi: 10.1016/j.bbagen.2012.05.016 – volume: 2 start-page: 283 year: 2005 ident: 9674_CR50 publication-title: Cell Metab doi: 10.1016/j.cmet.2005.10.002 – year: 2016 ident: 9674_CR31 publication-title: Anim Genet doi: 10.1111/age.12507 – volume: 4 start-page: e1000232 year: 2008 ident: 9674_CR6 publication-title: PLoS Genet doi: 10.1371/journal.pgen.1000232 – volume: 16 start-page: 747 year: 2015 ident: 9674_CR52 publication-title: BMC Genom doi: 10.1186/s12864-015-1946-x – volume: 37 start-page: 905 year: 2013 ident: 9674_CR62 publication-title: Cell Biol Int doi: 10.1002/cbin.10115 – volume: 91 start-page: 3502 year: 2013 ident: 9674_CR25 publication-title: J Anim Sci doi: 10.2527/jas.2012-6170 – volume: 167 start-page: 485 year: 2004 ident: 9674_CR49 publication-title: Genetics doi: 10.1534/genetics.167.1.485 – volume: 68 start-page: 978 year: 2001 ident: 9674_CR51 publication-title: Am J Hum Genet doi: 10.1086/319501 – volume: 10 start-page: e0129501 year: 2015 ident: 9674_CR42 publication-title: PLoS One doi: 10.1371/journal.pone.0129501 – volume: 10 start-page: e0124003 year: 2015 ident: 9674_CR30 publication-title: PLoS One doi: 10.1371/journal.pone.0124003 – volume: 86 start-page: 808 year: 2010 ident: 9674_CR16 publication-title: Meat Sci doi: 10.1016/j.meatsci.2010.07.001 – volume: 10 start-page: 117 year: 2012 ident: 9674_CR38 publication-title: Genom Inform doi: 10.5808/GI.2012.10.2.117 – volume: 15 start-page: 148 year: 2014 ident: 9674_CR15 publication-title: BMC Genet doi: 10.1186/s12863-014-0148-x – volume: 151 start-page: 621 year: 1997 ident: 9674_CR58 publication-title: Am J Pathol – volume: 16 start-page: 792 year: 2005 ident: 9674_CR23 publication-title: Mamm Genome doi: 10.1007/s00335-005-0060-9 – volume: 16 start-page: 374 year: 2005 ident: 9674_CR32 publication-title: Mamm Genome doi: 10.1007/s00335-004-2447-4 – volume: 6 start-page: 165 year: 2015 ident: 9674_CR1 publication-title: Front Genet doi: 10.3389/fgene.2015.00165 – volume: 17 start-page: 1707 year: 2007 ident: 9674_CR59 publication-title: Genome Res doi: 10.1101/gr.6981507 – volume: 13 start-page: 196 year: 2012 ident: 9674_CR21 publication-title: Curr Genom doi: 10.2174/138920212800543110 – ident: 9674_CR5 – volume: 110 start-page: 46 year: 2015 ident: 9674_CR22 publication-title: Meat Sci doi: 10.1016/j.meatsci.2015.06.011 – volume: 425 start-page: 832 year: 2003 ident: 9674_CR55 publication-title: Nature doi: 10.1038/nature02064 – volume: 66 start-page: 1027 year: 2000 ident: 9674_CR11 publication-title: Am J Hum Genet doi: 10.1086/302804 – volume: 37 start-page: 589 year: 2006 ident: 9674_CR13 publication-title: Anim Genet doi: 10.1111/j.1365-2052.2006.01535.x – volume: 44 start-page: 648 year: 2013 ident: 9674_CR39 publication-title: Anim Genet doi: 10.1111/age.12066 – volume: 2 start-page: 28 year: 1994 ident: 9674_CR3 publication-title: Proc Int Conf Intell Syst Mol Biol – volume: 14 start-page: S4 issue: Suppl 2 year: 2013 ident: 9674_CR8 publication-title: BMC Bioinform doi: 10.1186/1471-2105-14-S2-S4 – volume: 42 start-page: W337 issue: Web Server issu year: 2014 ident: 9674_CR61 publication-title: Nucleic Acids Res doi: 10.1093/nar/gku366 – volume: 370 start-page: 221 year: 2012 ident: 9674_CR44 publication-title: Mol Cell Biochem doi: 10.1007/s11010-012-1413-9 – volume: 109 start-page: 7049 year: 2012 ident: 9674_CR28 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1114513109 – volume: 15 start-page: 3823 year: 1995 ident: 9674_CR19 publication-title: Mol Cell Biol doi: 10.1128/MCB.15.7.3823 – reference: 24799431 - Nucleic Acids Res. 2014 Jul;42(Web Server issue):W337-43 – reference: 27642173 - Anim Genet. 2017 Apr;48(2):151-165 – reference: 21550059 - J Surg Res. 2011 Sep;170(1):143-9 – reference: 22499789 - Proc Natl Acad Sci U S A. 2012 May 1;109(18):7049-54 – reference: 18063559 - Genome Res. 2007 Dec;17(12):1707-16 – reference: 24326292 - Heredity (Edinb). 2014 Apr;112(4):463-8 – reference: 27666082 - Sci Rep. 2016 Aug 18;6:31803 – reference: 23369107 - BMC Bioinformatics. 2013;14 Suppl 2:S4 – reference: 16089036 - Genet Res. 2005 Feb;85(1):57-67 – reference: 9273822 - Am J Pathol. 1997 Aug;151(2):621-31 – reference: 14574411 - Nature. 2003 Oct 23;425(6960):832-6 – reference: 26076344 - PLoS One. 2015 Jun 15;10(6):e0129501 – reference: 18544926 - Cytogenet Genome Res. 2008;121(1):50-4 – reference: 25972893 - Front Genet. 2015 Apr 29;6:165 – reference: 20576168 - Genet Sel Evol. 2010 Jun 25;42:23 – reference: 23341976 - PLoS One. 2013;8(1):e53687 – reference: 18949031 - PLoS Genet. 2008 Oct;4(10):e1000232 – reference: 23951196 - PLoS One. 2013 Aug 12;8(8):e71576 – reference: 11418218 - Trends Genet. 2001 Jul;17(7):388-91 – reference: 22403643 - PLoS One. 2012;7(3):e32297 – reference: 17324271 - Genome Biol. 2007;8(2):R24 – reference: 23589423 - Cell Biol Int. 2013 Sep;37(9):905-16 – reference: 25887840 - Genet Sel Evol. 2015 Mar 25;47:20 – reference: 27147088 - Annu Rev Genomics Hum Genet. 2016 Aug 31;17 :69-94 – reference: 26437648 - BMC Genomics. 2015 Oct 05;16:747 – reference: 10712216 - Am J Hum Genet. 2000 Mar;66(3):1027-45 – reference: 23736061 - J Anim Sci. 2013 Aug;91(8):3502-13 – reference: 25853886 - PLoS One. 2015 Apr 08;10(4):e0124003 – reference: 23105939 - Genomics Inform. 2012 Jun;10(2):117-22 – reference: 19458158 - Nucleic Acids Res. 2009 Jul;37(Web Server issue):W202-8 – reference: 26695515 - PLoS One. 2015 Dec 22;10(12):e0145162 – reference: 7584402 - Proc Int Conf Intell Syst Mol Biol. 1994;2:28-36 – reference: 17121606 - Anim Genet. 2006 Dec;37(6):589-91 – reference: 16104385 - Mamm Genome. 2005 May;16(5):374-82 – reference: 26559809 - BMC Genomics. 2015 Nov 11;16:922 – reference: 25526890 - BMC Genet. 2014 Dec 20;15:148 – reference: 19654876 - PLoS One. 2009 Aug 05;4(8):e6524 – reference: 22497241 - Anim Genet. 2012 Dec;43(6):805-9 – reference: 22607048 - BMC Genet. 2012 May 20;13:41 – reference: 22683372 - Biochim Biophys Acta. 2012 Oct;1820(10):1588-96 – reference: 10754115 - Mamm Genome. 2000 Apr;11(4):344-6 – reference: 12360413 - Oncogene. 2002 Oct 3;21(44):6858-65 – reference: 7791789 - Mol Cell Biol. 1995 Jul;15(7):3823-9 – reference: 22685416 - PLoS Genet. 2012;8(6):e1002707 – reference: 19587847 - Front Integr Neurosci. 2009 Jun 19;3:12 – reference: 22875667 - Mol Cell Biochem. 2012 Nov;370(1-2):221-30 – reference: 11254454 - Am J Hum Genet. 2001 Apr;68(4):978-89 – reference: 21612630 - BMC Bioinformatics. 2011 May 25;12:202 – reference: 27347381 - F1000Res. 2016 May 19;5:914 – reference: 20675060 - Meat Sci. 2010 Nov;86(3):808-13 – reference: 15166171 - Genetics. 2004 May;167(1):485-98 – reference: 23826865 - Anim Genet. 2013 Dec;44(6):648-60 – reference: 20498279 - Mol Cell Biol. 2010 Jul;30(14):3412-20 – reference: 23115521 - Curr Genomics. 2012 May;13(3):196-206 – reference: 26400344 - Genet Mol Res. 2015 Sep 22;14(3):11133-44 – reference: 16271529 - Cell Metab. 2005 Nov;2(5):283-95 – reference: 16261421 - Mamm Genome. 2005 Oct;16(10):792-800 – reference: 26172243 - Meat Sci. 2015 Dec;110:46-51 – reference: 12534217 - Genet Res. 2002 Oct;80(2):145-54 – reference: 24040223 - PLoS One. 2013 Sep 06;8(9):e74295 – reference: 20147307 - Bioinformatics. 2010 Apr 1;26(7):860-6 – reference: 20018033 - BMC Proc. 2009 Dec 15;3 Suppl 7:S41 – reference: 23153364 - BMC Genomics. 2012 Nov 15;13:584 |
SSID | ssj0017617 |
Score | 2.224244 |
Snippet | Genetical genomics approaches aim at identifying quantitative trait loci for molecular traits, also known as intermediate phenotypes, such as gene expression,... |
SourceID | proquest pubmed crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 130 |
SubjectTerms | Animal Genetics and Genomics Animals backcrossing Biomedical and Life Sciences Cell Biology chromosomes Chromosomes - genetics gene expression Gene Expression Regulation - genetics genes Genome-Wide Association Study Genomics Genotype Human Genetics landraces Life Sciences longissimus muscle Meat meat quality messenger RNA microarray technology non-coding RNA Phenotype Polymorphism, Single Nucleotide quantitative trait loci Quantitative Trait Loci - genetics RNA, Long Noncoding - genetics single nucleotide polymorphism swine Swine - genetics Swine - growth & development Swine - metabolism Thioredoxin-Disulfide Reductase - genetics transcription (genetics) |
SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS-0wEB58ILgR9V61vsiFu_JaOE3TPJbiAxF0dQ-Im9KmyVGQHrF1If55Z3LaovgAd4VOS9rJJN9k5psB-KuFlk6UaEjOoINSSBGb0iex11I5b7mpUiI4X17J87G4uM6uOx5302e79yHJsFIPZDdqO0aJZjI2Uok4nYfFjMpJ4SQe86MhdIB-eeBIG7RkdCaGUOZnr3i_GX1AmB-io2HTOVuFlQ4tsqOZetdgztXrsHQzDWfhv-DlxNm7h8DgmzBEcuxx1lke_zWbeobQmsLmbELrGbvr2pGQ7ASd7_b2kHnK720aVtQVe6ZctjhwW1zFqHVE27CujU94RTj1pisiMje_YXx2-v_4PO66KcRW6KSNpVXoHRWurJzGjREtVWZGaitkoos0tRzvoN6MqRyCGF0qK9AV8kpXhmvUWroBC_W0dlvAjPFceOEKQRXREqV9Io2WxnqpC136CEb9b81tV2qchn2fD0WSgyZySi8jTeRpBAfDIw-zOhvfCe_2uso7k2vyRFNIUEo1iuDPcBuNhSIgRe2mTySTcap4r8R3MiZBL9Ko7GsZHjjMI8SuEWzO5sowao4rHGI2HcG_fvK8GeRXn7T9I-kdWOYEL0IG0S4stI9Pbg_BUVvuB2N4BVYDBms priority: 102 providerName: Springer Nature |
Title | Deciphering the regulation of porcine genes influencing growth, fatness and yield-related traits through genetical genomics |
URI | https://link.springer.com/article/10.1007/s00335-016-9674-3 https://www.ncbi.nlm.nih.gov/pubmed/27942838 https://www.proquest.com/docview/1881956670 https://www.proquest.com/docview/1852662774 https://www.proquest.com/docview/1891871975 https://www.proquest.com/docview/2000530522 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELdgExIviG8yxmQkngCL2nH98YRa1jKBmBCiUuElShy7TEJJt2QPiH-eO9cNoGl9SiRfItvns3_n-yLkhZFGeVmBIHkLCkqpJLNV4CwYpX1wwtY5Bjh_OlUnC_lhOV6mC7cuuVVu98S4UdetwzvyN9ygxUcpPXq7PmdYNQqtq6mExk2yzwGJYOkGvRwULg4qegyXtiDUoFcMVs1RTCKa5-i2pphVWrL8_3PpCti8YiiN58_8LrmTgCOdbDh9j9zwzX1y63sbr8UfkN_H3p2tYzDfigKooxebIvMw7bQNFFA2WtDpCrc2epYqkyDtCvTw_sdrGtDVt-to2dT0F7q1sRjm4muKVST6jqaKPvEX8QIc3zCmuXtIFvPZ13cnLBVWYE4a3jPlNChKpa9qb-CMBKFVY6uMk4qbMs-dgBZgobW1BzxjKu0kaEVBm9oKAwzMH5G9pm38E0KtDUIG6UuJydG4NoEra5R1QZnSVCEjo-20Fi5lHcdu_yyGfMmREwV6miEnijwjL4dP1puUG7uID7e8KpL0dcXftZKR50MzyA0aQ8rGt5dIMxaY_F7LXTSWg0Jp9fh6GhHDmUcAYzPyeLNWhl4L2OwAvpmMvNounn86ed2QDnYP6Sm5LRBaRO-hQ7LXX1z6ZwCM-uoorv4jsj-ZHk_n-Hz_7eMMntPZ6ecv0LoQkz-skw9q |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEB_qFbEv4rfRqivoixpMNnub3Ycialuutj1EWih9iclm91qQy3lJKcX_zb_Nmb0kKqX31reDzIXdzMfO7Hz8AF4poaQVBSqS1Rig5FKEunBx6JRMrTNclwk1OO-P5ehQfDkaHq3A764XhsoqO5voDXVZGbojfx8ryvhImUYfZj9DQo2i7GoHoZG30Arlhh8x1jZ27NqLcwzh6o2dTeT3a863tw4-j8IWZSA0QsVNKE2KUUNui9IqPDBQguVQS2WEjFWeJIbjE9yP1qXFw10VqREYIrhUlZor3E2C770Bq4IuUAaw-mlr_PVbn8dIpcf8jTSaFYxs-rxq5MeYJgkVzslQy1SEyf8n4yV391Kq1p-A23fgduu6so8LWbsLK3Z6D24eV_5i_j782rTmdObbCScM3Uo2X8DcI-NZ5Rj6-ZTDZxMyruy0xUYh2sm8Om9O3jFHxcZ1zfJpyS6osC70jTa2ZIRj0dSsxRTyr_BX8PSLuqrrB3B4LR_9IQym1dQ-Bqa148IJmwsazxanysVSK6mNkypXhQsg6j5rZtq557TsH1k_sdlzIqNaN-JElgTwpv_LbDH0YxnxeserrNX_OvsrrQG87B-j5lI6Jp_a6oxohpzG76diGY2OMaTV6fBqGu4bqiN0pAN4tJCVftUczS06kCqAt53w_LPIq7b0ZPmWXsCt0cH-Xra3M959CmucHB1fy7QOg2Z-Zp-hm9YUz1tdYPD9utXvD3hyTb0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9RAFB5qi-KLeDdadQR9UUOTyexcHoqo26W1uhSxUHyJyWRmLUiyblJK8R_6qzxndhKV0n3r20LOhpnMuc65fIQ8V1wJy0sQJKshQCkEj3Xp0tgpIa0zTFcZNjh_mordQ_7haHS0Rn73vTBYVtnrRK-oq8bgHflWqjDjI4RMtlwoizgYT97Mf8aIIIWZ1h5OowgwC9W2HzcWmjz27dkphHPt9t4Yzv4FY5OdL-9344A4EBuu0i4WRkIEUdiysgqMB3CzGGmhDBepKrLMMHgCe9O6smDoVSkNh3DBSVVppmBnGbz3CtmQYPUhENx4tzM9-DzkNKTw-L-JBhUDUc6QY038SNMswyI6EWsheZz9byXPub7n0rbeGk5ukhvBjaVvl3x3i6zZ-ja5-rXxl_R3yK-xNcdz31o4o-Bi0sUS8h6YgDaOgs-P-Xw6Q0VLjwNOCtLOFs1p9_01dVh43La0qCt6hkV2sW-6sRVFTIuupQFfyL_CX8fjL-ywbu-Sw0v56PfIet3U9gGhWjvGHbcFx1FtqVQuFVoJbZxQhSpdRJL-s-YmzEDHZf_Ih-nN_iRyrHvDk8iziLwc_jJfDgBZRbzZn1UedEGb_-XciDwbHoMUY2qmqG1zgjQjhqP4JV9Fo1MIb7UcXUzDfHN1Ak51RO4veWVYNQPVC86kisirnnn-WeRFW3q4ektPyTUQw_zj3nT_EbnO0OfxZU2bZL1bnNjH4LF15ZMgCpR8u2zp-wNREVIB |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deciphering+the+regulation+of+porcine+genes+influencing+growth%2C+fatness+and+yield-related+traits+through+genetical+genomics&rft.jtitle=Mammalian+genome&rft.au=Mart%C3%ADnez-Montes%2C+Angel+M&rft.au=Mui%C3%B1os-B%C3%BChl%2C+Anixa&rft.au=Fern%C3%A1ndez%2C+Almudena&rft.au=Folch%2C+Josep+M&rft.date=2017-04-01&rft.issn=1432-1777&rft.eissn=1432-1777&rft.volume=28&rft.issue=3-4&rft.spage=130&rft_id=info:doi/10.1007%2Fs00335-016-9674-3&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0938-8990&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0938-8990&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0938-8990&client=summon |