Formate rescues neural tube defects caused by mutations in Slc25a32

Periconceptional folic acid (FA) supplementation significantly reduces the prevalence of neural tube defects (NTDs). Unfortunately, some NTDs are FA resistant, and as such, NTDs remain a global public health concern. Previous studies have identified SLC25A32 as a mitochondrial folate transporter (MF...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 115; no. 18; pp. 4690 - 4695
Main Authors Kim, Jimi, Lei, Yunping, Guo, Jin, Kim, Sung-Eun, Wlodarczyk, Bogdan J., Cabrera, Robert M., Lin, Ying Linda, Nilsson, Torbjorn K., Zhang, Ting, Ren, Aiguo, Wang, Linlin, Yuan, Zhengwei, Zheng, Yu-Fang, Wang, Hong-Yan, Finnell, Richard H.
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 01.05.2018
Subjects
Online AccessGet full text
ISSN0027-8424
1091-6490
1091-6490
DOI10.1073/pnas.1800138115

Cover

Abstract Periconceptional folic acid (FA) supplementation significantly reduces the prevalence of neural tube defects (NTDs). Unfortunately, some NTDs are FA resistant, and as such, NTDs remain a global public health concern. Previous studies have identified SLC25A32 as a mitochondrial folate transporter (MFT), which is capable of transferring tetrahydrofolate (THF) from cellular cytoplasm to the mitochondria in vitro. Herein, we show that gene trap inactivation of Slc25a32 (Mft) in mice induces NTDs that are folate (5-methyltetrahydrofolate, 5-mTHF) resistant yet are preventable by formate supplementation. Slc25a32gt/gt embryos die in utero with 100% penetrant cranial NTDs. 5-mTHF supplementation failed to promote normal neural tube closure (NTC) in mutant embryos, while formate supplementation enabled the majority (78%) of knockout embryos to complete NTC. A parallel genetic study in human subjects with NTDs identified biallelic loss of function SLC25A32 variants in a cranial NTD case. These data demonstrate that the loss of functional Slc25a32 results in cranial NTDs in mice and has also been observed in a human NTD patient.
AbstractList Periconceptional supplementation with folic acid (FA) has reduced the prevalence of neural tube defects (NTDs) in numerous global populations; however, more than 30% of NTDs remain FA resistant. Previous in vitro studies identified Slc25a32 -encoding mitochondrial folate transporter that delivers tetrahydrofolate across the mitochondrial membrane. Herein, we provide the original description of transgenic Slc25a32 gene trapped (Slc25a32 gt/gt ) knockout mice, who present with 100% penetrant NTDs. We demonstrate that formate supplementation rescues normal neural tube closure in the majority (78%) of Slc25a32 gt/gt embryos, whereas 5-methyltetrahydrofolate was not effective. Additionally, biallelic SLC25A32 loss-of-function mutations were identified in a human NTD case. Our findings add an NTD mouse model to several others that benefit developmentally from maternal formate supplementation. Periconceptional folic acid (FA) supplementation significantly reduces the prevalence of neural tube defects (NTDs). Unfortunately, some NTDs are FA resistant, and as such, NTDs remain a global public health concern. Previous studies have identified SLC25A32 as a mitochondrial folate transporter (MFT), which is capable of transferring tetrahydrofolate (THF) from cellular cytoplasm to the mitochondria in vitro. Herein, we show that gene trap inactivation of Slc25a32 ( Mft ) in mice induces NTDs that are folate (5-methyltetrahydrofolate, 5-mTHF) resistant yet are preventable by formate supplementation. Slc25a32 gt/gt embryos die in utero with 100% penetrant cranial NTDs. 5-mTHF supplementation failed to promote normal neural tube closure (NTC) in mutant embryos, while formate supplementation enabled the majority (78%) of knockout embryos to complete NTC. A parallel genetic study in human subjects with NTDs identified biallelic loss of function SLC25A32 variants in a cranial NTD case. These data demonstrate that the loss of functional Slc25a32 results in cranial NTDs in mice and has also been observed in a human NTD patient.
Periconceptional folic acid (FA) supplementation significantly reduces the prevalence of neural tube defects (NTDs). Unfortunately, some NTDs are FA resistant, and as such, NTDs remain a global public health concern. Previous studies have identified SLC25A32 as a mitochondrial folate transporter (MFT), which is capable of transferring tetrahydrofolate (THF) from cellular cytoplasm to the mitochondria in vitro. Herein, we show that gene trap inactivation of Slc25a32 (Mft) in mice induces NTDs that are folate (5-methyltetrahydrofolate, 5-mTHF) resistant yet are preventable by formate supplementation. Slc25a32 gt/gt embryos die in utero with 100% penetrant cranial NTDs. 5-mTHF supplementation failed to promote normal neural tube closure (NTC) in mutant embryos, while formate supplementation enabled the majority (78%) of knockout embryos to complete NTC. A parallel genetic study in human subjects with NTDs identified biallelic loss of function SLC25A32 variants in a cranial NTD case. These data demonstrate that the loss of functional Slc25a32 results in cranial NTDs in mice and has also been observed in a human NTD patient.
Periconceptional folic acid (FA) supplementation significantly reduces the prevalence of neural tube defects (NTDs). Unfortunately, some NTDs are FA resistant, and as such, NTDs remain a global public health concern. Previous studies have identified SLC25A32 as a mitochondrial folate transporter (MFT), which is capable of transferring tetrahydrofolate (THF) from cellular cytoplasm to the mitochondria in vitro. Herein, we show that gene trap inactivation of Slc25a32 (Mft) in mice induces NTDs that are folate (5-methyltetrahydrofolate, 5-mTHF) resistant yet are preventable by formate supplementation. Slc25a32gt/gt embryos die in utero with 100% penetrant cranial NTDs. 5-mTHF supplementation failed to promote normal neural tube closure (NTC) in mutant embryos, while formate supplementation enabled the majority (78%) of knockout embryos to complete NTC. A parallel genetic study in human subjects with NTDs identified biallelic loss of function SLC25A32 variants in a cranial NTD case. These data demonstrate that the loss of functional Slc25a32 results in cranial NTDs in mice and has also been observed in a human NTD patient.
Periconceptional folic acid (FA) supplementation significantly reduces the prevalence of neural tube defects (NTDs). Unfortunately, some NTDs are FA resistant, and as such, NTDs remain a global public health concern. Previous studies have identified SLC25A32 as a mitochondrial folate transporter (MFT), which is capable of transferring tetrahydrofolate (THF) from cellular cytoplasm to the mitochondria in vitro. Herein, we show that gene trap inactivation of Slc25a32 (Mft) in mice induces NTDs that are folate (5-methyltetrahydrofolate, 5-mTHF) resistant yet are preventable by formate supplementation. Slc25a32gt/gt embryos die in utero with 100% penetrant cranial NTDs. 5-mTHF supplementation failed to promote normal neural tube closure (NTC) in mutant embryos, while formate supplementation enabled the majority (78%) of knockout embryos to complete NTC. A parallel genetic study in human subjects with NTDs identified biallelic loss of function SLC25A32 variants in a cranial NTD case. These data demonstrate that the loss of functional Slc25a32 results in cranial NTDs in mice and has also been observed in a human NTD patient.
Periconceptional folic acid (FA) supplementation significantly reduces the prevalence of neural tube defects (NTDs). Unfortunately, some NTDs are FA resistant, and as such, NTDs remain a global public health concern. Previous studies have identified SLC25A32 as a mitochondrial folate transporter (MFT), which is capable of transferring tetrahydrofolate (THF) from cellular cytoplasm to the mitochondria in vitro. Herein, we show that gene trap inactivation of ( ) in mice induces NTDs that are folate (5-methyltetrahydrofolate, 5-mTHF) resistant yet are preventable by formate supplementation. embryos die in utero with 100% penetrant cranial NTDs. 5-mTHF supplementation failed to promote normal neural tube closure (NTC) in mutant embryos, while formate supplementation enabled the majority (78%) of knockout embryos to complete NTC. A parallel genetic study in human subjects with NTDs identified biallelic loss of function variants in a cranial NTD case. These data demonstrate that the loss of functional results in cranial NTDs in mice and has also been observed in a human NTD patient.
Periconceptional folic acid (FA) supplementation significantly reduces the prevalence of neural tube defects (NTDs). Unfortunately, some NTDs are FA resistant, and as such, NTDs remain a global public health concern. Previous studies have identified SLC25A32 as a mitochondrial folate transporter (MFT), which is capable of transferring tetrahydrofolate (THF) from cellular cytoplasm to the mitochondria in vitro. Herein, we show that gene trap inactivation of Slc25a32 (Mft) in mice induces NTDs that are folate (5-methyltetrahydrofolate, 5-mTHF) resistant yet are preventable by formate supplementation. Slc25a32gt/gt embryos die in utero with 100% penetrant cranial NTDs. 5-mTHF supplementation failed to promote normal neural tube closure (NTC) in mutant embryos, while formate supplementation enabled the majority (78%) of knockout embryos to complete NTC. A parallel genetic study in human subjects with NTDs identified biallelic loss of function SLC25A32 variants in a cranial NTD case. These data demonstrate that the loss of functional Slc25a32 results in cranial NTDs in mice and has also been observed in a human NTD patient.Periconceptional folic acid (FA) supplementation significantly reduces the prevalence of neural tube defects (NTDs). Unfortunately, some NTDs are FA resistant, and as such, NTDs remain a global public health concern. Previous studies have identified SLC25A32 as a mitochondrial folate transporter (MFT), which is capable of transferring tetrahydrofolate (THF) from cellular cytoplasm to the mitochondria in vitro. Herein, we show that gene trap inactivation of Slc25a32 (Mft) in mice induces NTDs that are folate (5-methyltetrahydrofolate, 5-mTHF) resistant yet are preventable by formate supplementation. Slc25a32gt/gt embryos die in utero with 100% penetrant cranial NTDs. 5-mTHF supplementation failed to promote normal neural tube closure (NTC) in mutant embryos, while formate supplementation enabled the majority (78%) of knockout embryos to complete NTC. A parallel genetic study in human subjects with NTDs identified biallelic loss of function SLC25A32 variants in a cranial NTD case. These data demonstrate that the loss of functional Slc25a32 results in cranial NTDs in mice and has also been observed in a human NTD patient.
Author Yuan, Zhengwei
Lin, Ying Linda
Zhang, Ting
Cabrera, Robert M.
Guo, Jin
Finnell, Richard H.
Wlodarczyk, Bogdan J.
Nilsson, Torbjorn K.
Zheng, Yu-Fang
Kim, Sung-Eun
Lei, Yunping
Ren, Aiguo
Wang, Linlin
Kim, Jimi
Wang, Hong-Yan
Author_xml – sequence: 1
  givenname: Jimi
  surname: Kim
  fullname: Kim, Jimi
  organization: Department of Nutritional Sciences, Dell Pediatric Research Institute, Dell Medical School, University of Texas at Austin, Austin, TX 78723
– sequence: 2
  givenname: Yunping
  surname: Lei
  fullname: Lei, Yunping
  organization: Department of Pediatrics, Dell Pediatric Research Institute, Dell Medical School, University of Texas at Austin , Austin, TX 78723
– sequence: 3
  givenname: Jin
  surname: Guo
  fullname: Guo, Jin
  organization: Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, 100700 Beijing, China
– sequence: 4
  givenname: Sung-Eun
  surname: Kim
  fullname: Kim, Sung-Eun
  organization: Department of Pediatrics, Dell Pediatric Research Institute, Dell Medical School, University of Texas at Austin , Austin, TX 78723
– sequence: 5
  givenname: Bogdan J.
  surname: Wlodarczyk
  fullname: Wlodarczyk, Bogdan J.
  organization: Department of Pediatrics, Dell Pediatric Research Institute, Dell Medical School, University of Texas at Austin , Austin, TX 78723
– sequence: 6
  givenname: Robert M.
  surname: Cabrera
  fullname: Cabrera, Robert M.
  organization: Department of Pediatrics, Dell Pediatric Research Institute, Dell Medical School, University of Texas at Austin , Austin, TX 78723
– sequence: 7
  givenname: Ying Linda
  surname: Lin
  fullname: Lin, Ying Linda
  organization: Department of Pediatrics, Dell Pediatric Research Institute, Dell Medical School, University of Texas at Austin , Austin, TX 78723
– sequence: 8
  givenname: Torbjorn K.
  surname: Nilsson
  fullname: Nilsson, Torbjorn K.
  organization: Department of Medical Biosciences, Clinical Chemistry, Umea University, SE-90185 Umea, Sweden
– sequence: 9
  givenname: Ting
  surname: Zhang
  fullname: Zhang, Ting
  organization: Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, 100700 Beijing, China
– sequence: 10
  givenname: Aiguo
  surname: Ren
  fullname: Ren, Aiguo
  organization: Institute of Reproductive and Child Health, Peking University, 100191 Beijing, China
– sequence: 11
  givenname: Linlin
  surname: Wang
  fullname: Wang, Linlin
  organization: Institute of Reproductive and Child Health, Peking University, 100191 Beijing, China
– sequence: 12
  givenname: Zhengwei
  surname: Yuan
  fullname: Yuan, Zhengwei
  organization: Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, 117004 Shenyang, China
– sequence: 13
  givenname: Yu-Fang
  surname: Zheng
  fullname: Zheng, Yu-Fang
  organization: Obstetrics & Gynecology Hospital, State Key Laboratory of Genetic Engineering and School of Life Sciences of Fudan University, 20043 Shanghai, China
– sequence: 14
  givenname: Hong-Yan
  surname: Wang
  fullname: Wang, Hong-Yan
  organization: Obstetrics & Gynecology Hospital, State Key Laboratory of Genetic Engineering and School of Life Sciences of Fudan University, 20043 Shanghai, China
– sequence: 15
  givenname: Richard H.
  surname: Finnell
  fullname: Finnell, Richard H.
  organization: Department of Pediatrics, Dell Pediatric Research Institute, Dell Medical School, University of Texas at Austin , Austin, TX 78723
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29666258$$D View this record in MEDLINE/PubMed
https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-147816$$DView record from Swedish Publication Index
BookMark eNp1kUtv1TAUhC1URG8La1agSGzYpPXxK84GqbpQQKrEgsfWcpyTkqvEvthxUf89rtJSWomVF-eb0XjmiBz44JGQl0BPgDb8dO9tOgFNKXANIJ-QDdAWaiVaekA2lLKm1oKJQ3KU0o5S2kpNn5FD1iqlmNQbsj0PcbYLVhGTy5gqjznaqVpyh1WPA7olVc7mhH3VXVdzXuwyBp-q0VdfJ8ek5ew5eTrYKeGL2_eYfD__8G37qb748vHz9uyidkLDUiuuO90NbhBagpNW9ILrHjs9NDA4UEJqaXvJmUILLVJsoRmk0pIJHIoFPyb16pt-4z53Zh_H2cZrE-xo3o8_zkyIlybP2YBoNKjCv1v5As_YO_RL-doD2cOLH3-ay3BlZMtboKwYvL01iOFXKWcx85gcTpP1GHIyrPRLVQtaFvTNI3QXcvSlDsOAUq7LRqJQr_9N9DfK3R4FkCvgYkgp4mDcuDZeAo6TAWpudjc3u5v73Yvu9JHuzvr_ilerYpeWEO-TKEl1I4D_ASDquNc
CitedBy_id crossref_primary_10_1002_ajmg_a_40519
crossref_primary_10_1242_dmm_042234
crossref_primary_10_1038_s41431_021_00995_7
crossref_primary_10_1002_humu_24460
crossref_primary_10_1007_s00018_022_04404_0
crossref_primary_10_34883_PI_2021_11_1_018
crossref_primary_10_1093_aje_kwz040
crossref_primary_10_1016_j_jes_2023_03_036
crossref_primary_10_3390_biom13091314
crossref_primary_10_3390_biom10040655
crossref_primary_10_1186_s12885_023_11097_6
crossref_primary_10_1134_S2079057020020058
crossref_primary_10_1002_pd_5760
crossref_primary_10_1016_j_diff_2020_11_001
crossref_primary_10_1093_ajcn_nqz152
crossref_primary_10_1155_2024_1373659
crossref_primary_10_1038_s44319_024_00316_1
crossref_primary_10_3390_cells13050410
crossref_primary_10_1007_s12291_024_01217_9
crossref_primary_10_3389_fcell_2021_780207
crossref_primary_10_1016_j_biochi_2020_02_005
crossref_primary_10_1017_S0029665118002537
crossref_primary_10_1016_j_reprotox_2024_108576
crossref_primary_10_1093_biolre_ioab111
crossref_primary_10_1002_bdr2_1591
crossref_primary_10_1093_hmg_ddaa211
crossref_primary_10_1097_MOP_0000000000000817
crossref_primary_10_1093_jn_nxz329
crossref_primary_10_1002_ctm2_1521
crossref_primary_10_1016_j_semcdb_2021_09_009
crossref_primary_10_1093_nutrit_nuac015
crossref_primary_10_1002_humu_23969
crossref_primary_10_1097_MCO_0000000000000611
crossref_primary_10_1038_s41467_022_30126_9
crossref_primary_10_1186_s12967_023_04241_0
crossref_primary_10_1016_j_ydbio_2021_08_006
crossref_primary_10_3390_jdb6030022
crossref_primary_10_1038_s41598_019_52372_6
crossref_primary_10_1126_sciadv_adq3591
crossref_primary_10_1016_j_molmet_2019_05_012
Cites_doi 10.3945/ajcn.111.030783
10.1091/mbc.e07-12-1286
10.1002/bdra.23361
10.1073/pnas.1211199110
10.1016/j.cell.2012.04.021
10.3945/an.111.000992
10.1242/dev.145904
10.1074/jbc.M111.272187
10.1002/humu.23397
10.1146/annurev-nutr-071715-050738
10.1146/annurev-genet-120213-092208
10.1016/0140-6736(91)90133-A
10.1074/jbc.M109.079855
10.1111/dmcn.12929
10.1093/ajcn/82.1.188
10.1371/journal.pone.0041689
10.1371/journal.pone.0101169
10.1056/NEJMc1513610
10.1016/j.cmet.2016.08.009
10.1242/dev.056622
10.1002/bdra.23486
10.1016/S1474-4422(13)70110-8
10.1074/jbc.M403677200
10.1002/wdev.71
10.1111/ggi.12201
10.1016/j.ymgme.2005.07.014
10.1007/s12035-016-0164-0
10.1074/jbc.M005163200
10.1093/hmg/ddr585
10.1371/journal.pone.0151586
10.1038/ncomms7388
10.3945/ajcn.114.097279
10.3945/ajcn.110.002766
10.1038/ejhg.2017.62
10.1186/s13040-016-0097-1
10.1093/nar/gkv047
10.1146/annurev.nutr.012809.104810
10.1073/pnas.2336103100
10.1056/NEJM199911113412001
ContentType Journal Article
Copyright Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles
Copyright National Academy of Sciences May 1, 2018
2018
Copyright_xml – notice: Volumes 1–89 and 106–114, copyright as a collective work only; author(s) retains copyright to individual articles
– notice: Copyright National Academy of Sciences May 1, 2018
– notice: 2018
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ADTPV
AOWAS
D93
DOI 10.1073/pnas.1800138115
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
SwePub
SwePub Articles
SWEPUB Umeå universitet
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList CrossRef

Virology and AIDS Abstracts

MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Public Health
EISSN 1091-6490
EndPage 4695
ExternalDocumentID oai_DiVA_org_umu_147816
PMC5939102
29666258
10_1073_pnas_1800138115
26508741
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NICHD NIH HHS
  grantid: P01 HD067244
– fundername: NICHD NIH HHS
  grantid: R01 HD081216
– fundername: NICHD NIH HHS
  grantid: R01 HD083809
– fundername: HHS | National Institutes of Health (NIH)
  grantid: HD083809
– fundername: HHS | National Institutes of Health (NIH)
  grantid: HD067244
– fundername: HHS | National Institutes of Health (NIH)
  grantid: HD081216
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABXSQ
ABZEH
ACGOD
ACHIC
ACIWK
ACNCT
ACPRK
ADQXQ
ADULT
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AQVQM
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
.GJ
3O-
692
6TJ
79B
AAYJJ
AAYXX
ACKIV
ADXHL
AFHIN
AFQQW
AS~
CITATION
HGD
HQ3
HTVGU
MVM
NEJ
NHB
P-O
VOH
WHG
ZCG
CGR
CUY
CVF
DOOOF
ECM
EIF
JSODD
NPM
RHF
VQA
YIF
YIN
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ADTPV
AOWAS
D93
ID FETCH-LOGICAL-c481t-638b8bfcf4851c5a4d438deb8f71fc164585ad5326ea19e0e917f568524efc483
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 07:29:23 EDT 2025
Thu Aug 21 17:39:51 EDT 2025
Thu Sep 04 23:37:06 EDT 2025
Mon Jun 30 08:15:43 EDT 2025
Wed Feb 19 02:05:11 EST 2025
Thu Apr 24 22:51:46 EDT 2025
Tue Jul 01 03:19:48 EDT 2025
Fri May 30 11:17:19 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 18
Keywords formate
folate
neural tube defects
Slc25a32
Language English
License Published under the PNAS license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c481t-638b8bfcf4851c5a4d438deb8f71fc164585ad5326ea19e0e917f568524efc483
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Author contributions: J.K., Y.L., and R.H.F. designed research; J.K., Y.L., J.G., S.-E.K., B.J.W., R.M.C., Y.L.L., L.W., H.-Y.W., and R.H.F. performed research; J.K., Y.L., J.G., S.-E.K., B.J.W., R.M.C., T.K.N., T.Z., A.R., L.W., Z.Y., Y.-F.Z., H.-Y.W., and R.H.F. analyzed data; and J.K., Y.L., S.-E.K., B.J.W., R.M.C., T.Z., A.R., L.W., Z.Y., Y.-F.Z., H.-Y.W., and R.H.F. wrote the paper.
2Present address: Departments of Molecular and Cellular Biology and Medicine, Baylor College of Medicine, Houston, TX 77030.
Edited by Patrick J. Stover, Cornell University, Ithaca, NY, and approved March 28, 2018 (received for review January 4, 2018)
1J.K. and Y.L. contributed equally to this work.
ORCID 0000-0003-1504-0884
0000-0002-0488-2624
OpenAccessLink https://www.pnas.org/content/pnas/115/18/4690.full.pdf
PMID 29666258
PQID 2100388004
PQPubID 42026
PageCount 6
ParticipantIDs swepub_primary_oai_DiVA_org_umu_147816
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5939102
proquest_miscellaneous_2027069185
proquest_journals_2100388004
pubmed_primary_29666258
crossref_citationtrail_10_1073_pnas_1800138115
crossref_primary_10_1073_pnas_1800138115
jstor_primary_26508741
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-05-01
PublicationDateYYYYMMDD 2018-05-01
PublicationDate_xml – month: 05
  year: 2018
  text: 2018-05-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2018
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References e_1_3_3_17_2
e_1_3_3_16_2
e_1_3_3_19_2
e_1_3_3_38_2
e_1_3_3_18_2
e_1_3_3_39_2
e_1_3_3_13_2
e_1_3_3_36_2
e_1_3_3_12_2
e_1_3_3_37_2
e_1_3_3_15_2
e_1_3_3_34_2
e_1_3_3_14_2
e_1_3_3_35_2
e_1_3_3_32_2
e_1_3_3_33_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_10_2
e_1_3_3_31_2
e_1_3_3_6_2
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_28_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_24_2
e_1_3_3_23_2
e_1_3_3_26_2
e_1_3_3_25_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_1_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_3_2
e_1_3_3_21_2
References_xml – ident: e_1_3_3_23_2
  doi: 10.3945/ajcn.111.030783
– ident: e_1_3_3_19_2
  doi: 10.1091/mbc.e07-12-1286
– ident: e_1_3_3_27_2
  doi: 10.1002/bdra.23361
– ident: e_1_3_3_30_2
  doi: 10.1073/pnas.1211199110
– ident: e_1_3_3_18_2
  doi: 10.1016/j.cell.2012.04.021
– ident: e_1_3_3_9_2
  doi: 10.3945/an.111.000992
– ident: e_1_3_3_2_2
  doi: 10.1242/dev.145904
– ident: e_1_3_3_13_2
  doi: 10.1074/jbc.M111.272187
– ident: e_1_3_3_39_2
  doi: 10.1002/humu.23397
– ident: e_1_3_3_20_2
  doi: 10.1146/annurev-nutr-071715-050738
– ident: e_1_3_3_16_2
  doi: 10.1146/annurev-genet-120213-092208
– ident: e_1_3_3_6_2
  doi: 10.1016/0140-6736(91)90133-A
– ident: e_1_3_3_10_2
  doi: 10.1074/jbc.M109.079855
– ident: e_1_3_3_25_2
  doi: 10.1111/dmcn.12929
– ident: e_1_3_3_22_2
  doi: 10.1093/ajcn/82.1.188
– ident: e_1_3_3_26_2
  doi: 10.1371/journal.pone.0041689
– ident: e_1_3_3_24_2
  doi: 10.1371/journal.pone.0101169
– ident: e_1_3_3_21_2
  doi: 10.1056/NEJMc1513610
– ident: e_1_3_3_14_2
  doi: 10.1016/j.cmet.2016.08.009
– ident: e_1_3_3_17_2
  doi: 10.1242/dev.056622
– ident: e_1_3_3_37_2
  doi: 10.1002/bdra.23486
– ident: e_1_3_3_7_2
  doi: 10.1016/S1474-4422(13)70110-8
– ident: e_1_3_3_12_2
  doi: 10.1074/jbc.M403677200
– ident: e_1_3_3_3_2
  doi: 10.1002/wdev.71
– ident: e_1_3_3_35_2
  doi: 10.1111/ggi.12201
– ident: e_1_3_3_34_2
  doi: 10.1016/j.ymgme.2005.07.014
– ident: e_1_3_3_38_2
  doi: 10.1007/s12035-016-0164-0
– ident: e_1_3_3_11_2
  doi: 10.1074/jbc.M005163200
– ident: e_1_3_3_29_2
  doi: 10.1093/hmg/ddr585
– ident: e_1_3_3_1_2
  doi: 10.1371/journal.pone.0151586
– ident: e_1_3_3_32_2
  doi: 10.1038/ncomms7388
– ident: e_1_3_3_31_2
  doi: 10.3945/ajcn.114.097279
– ident: e_1_3_3_28_2
  doi: 10.3945/ajcn.110.002766
– ident: e_1_3_3_33_2
  doi: 10.1038/ejhg.2017.62
– ident: e_1_3_3_36_2
  doi: 10.1186/s13040-016-0097-1
– ident: e_1_3_3_8_2
  doi: 10.1093/nar/gkv047
– ident: e_1_3_3_4_2
  doi: 10.1146/annurev.nutr.012809.104810
– ident: e_1_3_3_15_2
  doi: 10.1073/pnas.2336103100
– ident: e_1_3_3_5_2
  doi: 10.1056/NEJM199911113412001
SSID ssj0009580
Score 2.4678118
Snippet Periconceptional folic acid (FA) supplementation significantly reduces the prevalence of neural tube defects (NTDs). Unfortunately, some NTDs are FA resistant,...
Periconceptional supplementation with folic acid (FA) has reduced the prevalence of neural tube defects (NTDs) in numerous global populations; however, more...
SourceID swepub
pubmedcentral
proquest
pubmed
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4690
SubjectTerms Animals
Biological Sciences
Biological Transport, Active - genetics
Cytoplasm
Deactivation
Defects
Embryos
folate
Folic acid
formate
Formates - pharmacology
Genes
Humans
Inactivation
Membrane Transport Proteins - genetics
Membrane Transport Proteins - metabolism
Membranes
Mice
Mice, Transgenic
Mitochondria
Mitochondrial DNA
Mutation
Neural Tube - embryology
Neural Tube - pathology
Neural tube defects
Neural Tube Defects - embryology
Neural Tube Defects - genetics
Neural Tube Defects - pathology
Neural Tube Defects - prevention & control
Public health
Skull
Slc25a32
Supplements
Tetrahydrofolic acid
Vitamin B
Title Formate rescues neural tube defects caused by mutations in Slc25a32
URI https://www.jstor.org/stable/26508741
https://www.ncbi.nlm.nih.gov/pubmed/29666258
https://www.proquest.com/docview/2100388004
https://www.proquest.com/docview/2027069185
https://pubmed.ncbi.nlm.nih.gov/PMC5939102
https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-147816
Volume 115
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1091-6490
  dateEnd: 20250329
  omitProxy: true
  ssIdentifier: ssj0009580
  issn: 0027-8424
  databaseCode: HH5
  dateStart: 19150101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1091-6490
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009580
  issn: 0027-8424
  databaseCode: KQ8
  dateStart: 19150101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1091-6490
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009580
  issn: 0027-8424
  databaseCode: KQ8
  dateStart: 19150115
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVBFR
  databaseName: Free Medical Journals - Free Access to All
  customDbUrl:
  eissn: 1091-6490
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009580
  issn: 0027-8424
  databaseCode: DIK
  dateStart: 19150101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1091-6490
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009580
  issn: 0027-8424
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central (OA)
  customDbUrl:
  eissn: 1091-6490
  dateEnd: 20250329
  omitProxy: true
  ssIdentifier: ssj0009580
  issn: 0027-8424
  databaseCode: RPM
  dateStart: 19150101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZW5cIFUaCwUJCRECpaZcnDjp3jqrSqelhVaovKKbIdh0bqZqtmc4A7_5tx7LzKVgIu0W5iW4nny3gm_mYGoQ-K5rAIBZknVZJ5RIGfIoTyvVwxwUKtJJENQXYZn1yS0yt6NZn8GrCW6o2cq59b40r-R6pwDuRqomT_QbLdoHACfoN84QgShuNfyfi4MThN4ZNKgXqfmeSUhjxeSxMNZYkaStSVtTJX9aZnjp_fqJAK99HPGadn3WJWtdSBZfutcNFHnjh1UM282dmyr2Ps6jKfFquiZ_k0XIFvdXnbrpCG6lPb3Z6ivNf1HBSPd1SXwy8RAe95f8NE3lvvaKiCQ1gWiQ2cnmurdcFo8WJi64Z2atmGebb44wMta1z6wYoNf-nW1QDUlylhXIpqHvBmT7YddJxiOzRmKjPpDx6FLI7DRr8PczdzG8nk7rzNEMWiz_fGHhk3lt-6zXP5k4A7SlPbmDYXT9ET55PghQXYLpro8hnabScVH7jU5J-eo0OHOOwQhy3isEEcdojDFnFY_sAd4nBR4hZxL9Dl8dHF4YnnynB4ivBg44GGllzmKidgnSsqSEYinmnJcxbkCtxt8DhFRsEP0CJItK-TgOU05jQkOochoj20U65L_QphrWWU-1EWESaJUImUXLNMikhTFkpKpmjezl-qXI56UyrlJm24EixKzYSn_YRP0UHX4damZ3m46V4jkK5dK_Up2m8llLqXu0rDwG_yJPlwT--7y6B6zX6aKPW6hjYACD9OwOKdopdWoP3gSQxAonyK2EjUXQOT1n18pSyum_TuNIlAfYZT9NGCYtTlS_F1ka7vvqf1qga3nfEgfv3Qg71Bj_vXdB_tbO5q_RZM6I181wD8N6ONxi0
linkProvider ABC ChemistRy
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Formate+rescues+neural+tube+defects+caused+by+mutations+in+Slc25a32&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Kim%2C+Jimi&rft.au=Lei%2C+Yunping&rft.au=Guo%2C+Jin&rft.au=Kim%2C+Sung-Eun&rft.date=2018-05-01&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=115&rft.issue=18&rft.spage=4690&rft.epage=4695&rft_id=info:doi/10.1073%2Fpnas.1800138115&rft.externalDocID=26508741
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon