Resonant thermal Hall effect of phonons coupled to dynamical defects
We present computations of the thermal Hall coefficient of phonons scattering off a defect with multiple energy levels. Using a microscopic formulation based on the Kubo formula, we find that the leading contribution perturbative in the phonon–defect coupling is proportional to the phonon lifetime a...
Saved in:
Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 119; no. 46; pp. 1 - 7 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
National Academy of Sciences
15.11.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 0027-8424 1091-6490 1091-6490 |
DOI | 10.1073/pnas.2215141119 |
Cover
Abstract | We present computations of the thermal Hall coefficient of phonons scattering off a defect with multiple energy levels. Using a microscopic formulation based on the Kubo formula, we find that the leading contribution perturbative in the phonon–defect coupling is proportional to the phonon lifetime and has a “side-jump” interpretation. Consequently, the thermal Hall angle is independent of the phonon lifetime. The contribution to the thermal Hall coefficient is at resonance when the phonon energy equals a defect-level spacing. Our results are obtained for three different defect models, which apply to different correlated electron materials. For the pseudogap regime of the cuprates, we propose a model of phonons coupled to an impurity quantum spin in the presence of quasistaticmagnetic order with an isotropic Zeeman coupling to the applied field and without spin–orbit interaction. |
---|---|
AbstractList | We present computations of the thermal Hall coefficient of phonons scattering off a defect with multiple energy levels. Using a microscopic formulation based on the Kubo formula, we find that the leading contribution perturbative in the phonon–defect coupling is proportional to the phonon lifetime and has a “side-jump” interpretation. Consequently, the thermal Hall angle is independent of the phonon lifetime. The contribution to the thermal Hall coefficient is at resonance when the phonon energy equals a defect-level spacing. Our results are obtained for three different defect models, which apply to different correlated electron materials. For the pseudogap regime of the cuprates, we propose a model of phonons coupled to an impurity quantum spin in the presence of quasistaticmagnetic order with an isotropic Zeeman coupling to the applied field and without spin–orbit interaction. We present computations of the thermal Hall coefficient of phonons scattering off a defect with multiple energy levels. Using a microscopic formulation based on the Kubo formula, we find that the leading contribution perturbative in the phonon-defect coupling is proportional to the phonon lifetime and has a "side-jump" interpretation. Consequently, the thermal Hall angle is independent of the phonon lifetime. The contribution to the thermal Hall coefficient is at resonance when the phonon energy equals a defect-level spacing. Our results are obtained for three different defect models, which apply to different correlated electron materials. For the pseudogap regime of the cuprates, we propose a model of phonons coupled to an impurity quantum spin in the presence of quasistatic magnetic order with an isotropic Zeeman coupling to the applied field and without spin-orbit interaction. We present computations of the thermal Hall coefficient of phonons scattering off a defect with multiple energy levels. Using a microscopic formulation based on the Kubo formula, we find that the leading contribution perturbative in the phonon-defect coupling is proportional to the phonon lifetime and has a "side-jump" interpretation. Consequently, the thermal Hall angle is independent of the phonon lifetime. The contribution to the thermal Hall coefficient is at resonance when the phonon energy equals a defect-level spacing. Our results are obtained for three different defect models, which apply to different correlated electron materials. For the pseudogap regime of the cuprates, we propose a model of phonons coupled to an impurity quantum spin in the presence of quasistatic magnetic order with an isotropic Zeeman coupling to the applied field and without spin-orbit interaction.We present computations of the thermal Hall coefficient of phonons scattering off a defect with multiple energy levels. Using a microscopic formulation based on the Kubo formula, we find that the leading contribution perturbative in the phonon-defect coupling is proportional to the phonon lifetime and has a "side-jump" interpretation. Consequently, the thermal Hall angle is independent of the phonon lifetime. The contribution to the thermal Hall coefficient is at resonance when the phonon energy equals a defect-level spacing. Our results are obtained for three different defect models, which apply to different correlated electron materials. For the pseudogap regime of the cuprates, we propose a model of phonons coupled to an impurity quantum spin in the presence of quasistatic magnetic order with an isotropic Zeeman coupling to the applied field and without spin-orbit interaction. Modern quantum materials display numerous phases of electronic matter with many-particle quantum entanglement between the electrons. However, this entanglement is notoriously difficult to characterize experimentally. Recent experiments have shown that the thermal Hall effect (when in a magnetic field, there is heat flow in a direction transverse to a temperature gradient) is a sensitive probe of the many-electron quantum state. We propose that these observations detect the scattering of lattice vibrations (phonons) from electronic impurities and compute the influence of the electronic dynamics on the heat carried by the phonons. We also propose a specific mechanism for the thermal Hall effect in the “pseudogap” state of the cuprates, the entangled state that leads to high-temperature superconductivity at smaller electron density. We present computations of the thermal Hall coefficient of phonons scattering off a defect with multiple energy levels. Using a microscopic formulation based on the Kubo formula, we find that the leading contribution perturbative in the phonon–defect coupling is proportional to the phonon lifetime and has a “side-jump” interpretation. Consequently, the thermal Hall angle is independent of the phonon lifetime. The contribution to the thermal Hall coefficient is at resonance when the phonon energy equals a defect-level spacing. Our results are obtained for three different defect models, which apply to different correlated electron materials. For the pseudogap regime of the cuprates, we propose a model of phonons coupled to an impurity quantum spin in the presence of quasistatic magnetic order with an isotropic Zeeman coupling to the applied field and without spin–orbit interaction. |
Author | Guo, Haoyu Sachdev, Subir Joshi, Darshan G. |
Author_xml | – sequence: 1 givenname: Haoyu surname: Guo fullname: Guo, Haoyu – sequence: 2 givenname: Darshan G. surname: Joshi fullname: Joshi, Darshan G. – sequence: 3 givenname: Subir surname: Sachdev fullname: Sachdev, Subir |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36367907$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kUtLJDEUhYMo2jqzdqXU0k21eSe1EaR1xgFhYNB1SOVhl6SSspIW_PdW09rqgKu7uN8553LPIdiNKToAjhGcIyjI-RB1nmOMGKIIoWYHzBBsUM1pA3fBDEIsakkxPQCHOT9CCBsm4T44IJxw0UAxA1f_XE5Rx1KVpRt7HaobHULlvHemVMlXwzJNmbkyaTUEZ6uSKvsSdd-ZibVujeUfYM_rkN3Pt3kE7n9d3y1u6tu_v_8sLm9rQyUqNZGMYiu9p5p5j5HBLRat9p5N9yJoMOfMTedCK4klrKXWNMJJ2VqLKBOeHIGLje-wantnjYtl1EENY9fr8UUl3amvm9gt1UN6Vg0XFHM5GZy9GYzpaeVyUX2XjQtBR5dWWWFBmOSUcjyhp5-ztiHvr5sAtgHMmHIenVemK7p0aR3dBYWgWlek1hWpj4om3fl_unfr7xUnG8VjLmnc4lhg2BCGyStiYZ4s |
CitedBy_id | crossref_primary_10_1103_PhysRevResearch_6_023328 crossref_primary_10_1103_PhysRevB_108_L241121 crossref_primary_10_1103_PhysRevB_109_104304 crossref_primary_10_1103_PhysRevB_110_L100301 crossref_primary_10_1103_PhysRevB_106_245139 crossref_primary_10_1103_PhysRevResearch_6_023044 crossref_primary_10_1103_PhysRevB_109_115113 crossref_primary_10_1016_j_physrep_2024_03_004 crossref_primary_10_1103_PhysRevLett_131_236301 crossref_primary_10_1038_s41467_024_47858_5 crossref_primary_10_1038_s41567_024_02384_5 crossref_primary_10_1038_s41467_023_36750_3 crossref_primary_10_1103_PhysRevB_109_184435 crossref_primary_10_1103_PhysRevB_107_054434 crossref_primary_10_1103_PhysRevB_110_045144 crossref_primary_10_1103_PhysRevResearch_5_033197 crossref_primary_10_1038_s41567_023_02288_w crossref_primary_10_1103_PhysRevB_107_184434 crossref_primary_10_1103_PhysRevB_107_L220406 crossref_primary_10_1073_pnas_2408546122 |
Cites_doi | 10.1103/PhysRevB.104.035103 10.1103/PhysRevB.105.L220301 10.1103/PhysRevB.86.104305 10.1103/PhysRevB.75.045315 10.1103/PhysRevLett.124.105901 10.1103/PhysRevB.55.2344 10.1007/BF00660072 10.1038/s41467-020-18881-z 10.1103/PhysRevB.105.115101 10.1038/nmat4360 10.1103/PhysRevB.101.045137 10.1038/s41567-020-0950-5 10.1080/14786437208229210 10.1103/PhysRevB.106.245139 10.1103/PhysRevB.73.075318 10.1103/PhysRevB.85.245107 10.1073/pnas.2208016119 10.1038/s41467-022-32375-0 10.1103/RevModPhys.82.1539 10.1103/PhysRevLett.113.265901 10.1038/s41586-019-1375-0 10.1103/PhysRevB.103.205115 10.1016/j.matpr.2020.01.438 10.1103/PhysRevLett.124.167601 10.1103/PhysRevLett.107.236601 10.1038/s41567-020-0965-y |
ContentType | Journal Article |
Copyright | Copyright © 2022 the Author(s) Copyright © 2022 the Author(s). Published by PNAS. 2022 |
Copyright_xml | – notice: Copyright © 2022 the Author(s) – notice: Copyright © 2022 the Author(s). Published by PNAS. 2022 |
DBID | AAYXX CITATION NPM 7X8 5PM |
DOI | 10.1073/pnas.2215141119 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) |
EISSN | 1091-6490 |
EndPage | 7 |
ExternalDocumentID | PMC9674268 36367907 10_1073_pnas_2215141119 27209352 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Deutsche Akademie der Naturforscher Leopoldina - Nationale Akademie der Wissenschaften (German National Academy of Sciences) grantid: LPDS 2020-01 – fundername: Simons Foundation (SF) grantid: 651440 – fundername: Center for Hierarchical Manufacturing, National Science Foundation (CHM, NSF) grantid: DMR-2002850 |
GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABOCM ABPLY ABPPZ ABTLG ABZEH ACGOD ACIWK ACNCT ACPRK AENEX AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS BKOMP CS3 D0L DIK DU5 E3Z EBS F5P FRP GX1 H13 HH5 HYE JENOY JLS JSG JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM AAYXX CITATION NPM 7X8 5PM |
ID | FETCH-LOGICAL-c481t-38542d8ff4a5ff21c2b27baff564910c2665e8420d83d35b4dc97e88bdd1457f3 |
ISSN | 0027-8424 1091-6490 |
IngestDate | Thu Aug 21 18:37:02 EDT 2025 Thu Sep 04 17:13:55 EDT 2025 Mon Jul 21 06:03:27 EDT 2025 Tue Jul 01 01:03:27 EDT 2025 Thu Apr 24 23:08:25 EDT 2025 Thu May 29 08:49:15 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 46 |
Keywords | thermal hall phonons cuprates dynamical defects |
Language | English |
License | This article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND). |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c481t-38542d8ff4a5ff21c2b27baff564910c2665e8420d83d35b4dc97e88bdd1457f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Contributed by Subir Sachdev; received September 6, 2022; accepted October 7, 2022; reviewed by Lucile Savary and Louis Taillefer Author contributions: H.G., D.G.J., and S.S. designed research, performed research, and wrote the paper. |
ORCID | 0000-0002-2432-7070 0000-0003-1154-5236 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC9674268 |
PMID | 36367907 |
PQID | 2735864462 |
PQPubID | 23479 |
PageCount | 7 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9674268 proquest_miscellaneous_2735864462 pubmed_primary_36367907 crossref_citationtrail_10_1073_pnas_2215141119 crossref_primary_10_1073_pnas_2215141119 jstor_primary_27209352 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-11-15 |
PublicationDateYYYYMMDD | 2022-11-15 |
PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Proceedings of the National Academy of Sciences - PNAS |
PublicationTitleAlternate | Proc Natl Acad Sci U S A |
PublicationYear | 2022 |
Publisher | National Academy of Sciences |
Publisher_xml | – name: National Academy of Sciences |
References | e_1_3_4_3_2 e_1_3_4_2_2 e_1_3_4_1_2 e_1_3_4_9_2 e_1_3_4_7_2 e_1_3_4_6_2 e_1_3_4_5_2 e_1_3_4_4_2 e_1_3_4_22_2 e_1_3_4_23_2 e_1_3_4_20_2 e_1_3_4_21_2 e_1_3_4_26_2 e_1_3_4_27_2 e_1_3_4_24_2 e_1_3_4_25_2 e_1_3_4_28_2 e_1_3_4_29_2 e_1_3_4_30_2 e_1_3_4_11_2 e_1_3_4_12_2 e_1_3_4_10_2 e_1_3_4_15_2 e_1_3_4_16_2 e_1_3_4_13_2 e_1_3_4_14_2 e_1_3_4_19_2 e_1_3_4_17_2 Lefrançois É. (e_1_3_4_8_2) 2022; 12 e_1_3_4_18_2 |
References_xml | – ident: e_1_3_4_14_2 doi: 10.1103/PhysRevB.104.035103 – ident: e_1_3_4_16_2 doi: 10.1103/PhysRevB.105.L220301 – ident: e_1_3_4_20_2 – ident: e_1_3_4_10_2 doi: 10.1103/PhysRevB.86.104305 – ident: e_1_3_4_22_2 doi: 10.1103/PhysRevB.75.045315 – ident: e_1_3_4_7_2 doi: 10.1103/PhysRevLett.124.105901 – ident: e_1_3_4_24_2 doi: 10.1103/PhysRevB.55.2344 – ident: e_1_3_4_18_2 doi: 10.1007/BF00660072 – ident: e_1_3_4_3_2 doi: 10.1038/s41467-020-18881-z – ident: e_1_3_4_4_2 doi: 10.1103/PhysRevB.105.115101 – ident: e_1_3_4_27_2 doi: 10.1038/nmat4360 – ident: e_1_3_4_26_2 doi: 10.1103/PhysRevB.101.045137 – ident: e_1_3_4_28_2 doi: 10.1038/s41567-020-0950-5 – ident: e_1_3_4_17_2 doi: 10.1080/14786437208229210 – ident: e_1_3_4_29_2 doi: 10.1103/PhysRevB.106.245139 – ident: e_1_3_4_19_2 – ident: e_1_3_4_21_2 doi: 10.1103/PhysRevB.73.075318 – ident: e_1_3_4_12_2 doi: 10.1103/PhysRevB.85.245107 – ident: e_1_3_4_5_2 doi: 10.1073/pnas.2208016119 – ident: e_1_3_4_13_2 – volume: 12 start-page: 021025 year: 2022 ident: e_1_3_4_8_2 article-title: Evidence of a phonon hall effect in the kitaev spin liquid candidate α-RuCl3 publication-title: Phys. Rev. X – ident: e_1_3_4_6_2 doi: 10.1038/s41467-022-32375-0 – ident: e_1_3_4_9_2 doi: 10.1103/RevModPhys.82.1539 – ident: e_1_3_4_23_2 doi: 10.1103/PhysRevLett.113.265901 – ident: e_1_3_4_1_2 doi: 10.1038/s41586-019-1375-0 – ident: e_1_3_4_15_2 doi: 10.1103/PhysRevB.103.205115 – ident: e_1_3_4_30_2 doi: 10.1016/j.matpr.2020.01.438 – ident: e_1_3_4_11_2 doi: 10.1103/PhysRevLett.124.167601 – ident: e_1_3_4_25_2 doi: 10.1103/PhysRevLett.107.236601 – ident: e_1_3_4_2_2 doi: 10.1038/s41567-020-0965-y |
SSID | ssj0009580 |
Score | 2.5812116 |
Snippet | We present computations of the thermal Hall coefficient of phonons scattering off a defect with multiple energy levels. Using a microscopic formulation based... Modern quantum materials display numerous phases of electronic matter with many-particle quantum entanglement between the electrons. However, this entanglement... |
SourceID | pubmedcentral proquest pubmed crossref jstor |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1 |
SubjectTerms | Physical Sciences |
Title | Resonant thermal Hall effect of phonons coupled to dynamical defects |
URI | https://www.jstor.org/stable/27209352 https://www.ncbi.nlm.nih.gov/pubmed/36367907 https://www.proquest.com/docview/2735864462 https://pubmed.ncbi.nlm.nih.gov/PMC9674268 |
Volume | 119 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLbKuHBBDBiUATISh6EqIYnt2DlO_FiFRLXDJu1ElDi2OqlKprY5wF-_59hx0rJJg0tUpXHq5Pv6_Pz8vWeEPkaFLKKKVAHVTAY0FiooMhUHTAO9BJAoi0zu8M9FOr-kP67Y1WTya6RaardlKP_cmVfyP6jCOcDVZMn-A7L-pnACPgO-cASE4fggjE3s3QhZjPcIBnY1m5uFZivR6KTMy6Y2UhjZtDcr8CzBz6zsDvRmaUZ1So6xd3ruR7NNrx1Y9MHC0yH1xNmDzSyYnS-GjYzP2i7sOi-a3-0gzNksXSr7erMEW3IW-phOIZcVPHEnDSqv1-P4A0xdjQaOjW1qAuMctZnQobJmFLyQIKV2I1BvZ51ttISygce_DDhYHLPrcF1swsR4IzTum-2Uyt4bwrywsFtS5yQ3N8iHGzxCjxMOvlUfzfFFmYVNUXJP0Jd-4uTzXg92vBYrXL1rSrKvrB25KhfP0FM3x8CnljCHaKLq5-iwRw2fuFLjn16grz2DsGMQNgzClkG40dgxCDsG4W2DPYOwY9BLdPn928WXeeD21QgkFfE2IILRpBJa04JpncQyKRNeFlozgCyOJPhsTMH7iCpBKsJKWsmMKyHKqoop45ocoQP4bfUa4UhxDrykJZGa8izOyqwwJYVkmsUaxtkpCvv3lktXdN7sfbLK70Fqik58gxtbb-X-S486IPx1RlKQwYRiij70yORgLM0KWFGrpoXGnDABMwDTsVcWKd-apCTlWcSniO9g6C8whdh3v6mvl11B9izl4OiKNw_v-zF6MvyX3qKD7bpV78C73ZbvO4reAhTMo1M |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Resonant+thermal+Hall+effect+of+phonons+coupled+to+dynamical+defects&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Guo%2C+Haoyu&rft.au=Joshi%2C+Darshan+G.&rft.au=Sachdev%2C+Subir&rft.date=2022-11-15&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=119&rft.issue=46&rft_id=info:doi/10.1073%2Fpnas.2215141119&rft.externalDBID=n%2Fa&rft.externalDocID=10_1073_pnas_2215141119 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |