Resonant thermal Hall effect of phonons coupled to dynamical defects

We present computations of the thermal Hall coefficient of phonons scattering off a defect with multiple energy levels. Using a microscopic formulation based on the Kubo formula, we find that the leading contribution perturbative in the phonon–defect coupling is proportional to the phonon lifetime a...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 119; no. 46; pp. 1 - 7
Main Authors Guo, Haoyu, Joshi, Darshan G., Sachdev, Subir
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 15.11.2022
Subjects
Online AccessGet full text
ISSN0027-8424
1091-6490
1091-6490
DOI10.1073/pnas.2215141119

Cover

Abstract We present computations of the thermal Hall coefficient of phonons scattering off a defect with multiple energy levels. Using a microscopic formulation based on the Kubo formula, we find that the leading contribution perturbative in the phonon–defect coupling is proportional to the phonon lifetime and has a “side-jump” interpretation. Consequently, the thermal Hall angle is independent of the phonon lifetime. The contribution to the thermal Hall coefficient is at resonance when the phonon energy equals a defect-level spacing. Our results are obtained for three different defect models, which apply to different correlated electron materials. For the pseudogap regime of the cuprates, we propose a model of phonons coupled to an impurity quantum spin in the presence of quasistaticmagnetic order with an isotropic Zeeman coupling to the applied field and without spin–orbit interaction.
AbstractList We present computations of the thermal Hall coefficient of phonons scattering off a defect with multiple energy levels. Using a microscopic formulation based on the Kubo formula, we find that the leading contribution perturbative in the phonon–defect coupling is proportional to the phonon lifetime and has a “side-jump” interpretation. Consequently, the thermal Hall angle is independent of the phonon lifetime. The contribution to the thermal Hall coefficient is at resonance when the phonon energy equals a defect-level spacing. Our results are obtained for three different defect models, which apply to different correlated electron materials. For the pseudogap regime of the cuprates, we propose a model of phonons coupled to an impurity quantum spin in the presence of quasistaticmagnetic order with an isotropic Zeeman coupling to the applied field and without spin–orbit interaction.
We present computations of the thermal Hall coefficient of phonons scattering off a defect with multiple energy levels. Using a microscopic formulation based on the Kubo formula, we find that the leading contribution perturbative in the phonon-defect coupling is proportional to the phonon lifetime and has a "side-jump" interpretation. Consequently, the thermal Hall angle is independent of the phonon lifetime. The contribution to the thermal Hall coefficient is at resonance when the phonon energy equals a defect-level spacing. Our results are obtained for three different defect models, which apply to different correlated electron materials. For the pseudogap regime of the cuprates, we propose a model of phonons coupled to an impurity quantum spin in the presence of quasistatic magnetic order with an isotropic Zeeman coupling to the applied field and without spin-orbit interaction.
We present computations of the thermal Hall coefficient of phonons scattering off a defect with multiple energy levels. Using a microscopic formulation based on the Kubo formula, we find that the leading contribution perturbative in the phonon-defect coupling is proportional to the phonon lifetime and has a "side-jump" interpretation. Consequently, the thermal Hall angle is independent of the phonon lifetime. The contribution to the thermal Hall coefficient is at resonance when the phonon energy equals a defect-level spacing. Our results are obtained for three different defect models, which apply to different correlated electron materials. For the pseudogap regime of the cuprates, we propose a model of phonons coupled to an impurity quantum spin in the presence of quasistatic magnetic order with an isotropic Zeeman coupling to the applied field and without spin-orbit interaction.We present computations of the thermal Hall coefficient of phonons scattering off a defect with multiple energy levels. Using a microscopic formulation based on the Kubo formula, we find that the leading contribution perturbative in the phonon-defect coupling is proportional to the phonon lifetime and has a "side-jump" interpretation. Consequently, the thermal Hall angle is independent of the phonon lifetime. The contribution to the thermal Hall coefficient is at resonance when the phonon energy equals a defect-level spacing. Our results are obtained for three different defect models, which apply to different correlated electron materials. For the pseudogap regime of the cuprates, we propose a model of phonons coupled to an impurity quantum spin in the presence of quasistatic magnetic order with an isotropic Zeeman coupling to the applied field and without spin-orbit interaction.
Modern quantum materials display numerous phases of electronic matter with many-particle quantum entanglement between the electrons. However, this entanglement is notoriously difficult to characterize experimentally. Recent experiments have shown that the thermal Hall effect (when in a magnetic field, there is heat flow in a direction transverse to a temperature gradient) is a sensitive probe of the many-electron quantum state. We propose that these observations detect the scattering of lattice vibrations (phonons) from electronic impurities and compute the influence of the electronic dynamics on the heat carried by the phonons. We also propose a specific mechanism for the thermal Hall effect in the “pseudogap” state of the cuprates, the entangled state that leads to high-temperature superconductivity at smaller electron density. We present computations of the thermal Hall coefficient of phonons scattering off a defect with multiple energy levels. Using a microscopic formulation based on the Kubo formula, we find that the leading contribution perturbative in the phonon–defect coupling is proportional to the phonon lifetime and has a “side-jump” interpretation. Consequently, the thermal Hall angle is independent of the phonon lifetime. The contribution to the thermal Hall coefficient is at resonance when the phonon energy equals a defect-level spacing. Our results are obtained for three different defect models, which apply to different correlated electron materials. For the pseudogap regime of the cuprates, we propose a model of phonons coupled to an impurity quantum spin in the presence of quasistatic magnetic order with an isotropic Zeeman coupling to the applied field and without spin–orbit interaction.
Author Guo, Haoyu
Sachdev, Subir
Joshi, Darshan G.
Author_xml – sequence: 1
  givenname: Haoyu
  surname: Guo
  fullname: Guo, Haoyu
– sequence: 2
  givenname: Darshan G.
  surname: Joshi
  fullname: Joshi, Darshan G.
– sequence: 3
  givenname: Subir
  surname: Sachdev
  fullname: Sachdev, Subir
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36367907$$D View this record in MEDLINE/PubMed
BookMark eNp1kUtLJDEUhYMo2jqzdqXU0k21eSe1EaR1xgFhYNB1SOVhl6SSspIW_PdW09rqgKu7uN8553LPIdiNKToAjhGcIyjI-RB1nmOMGKIIoWYHzBBsUM1pA3fBDEIsakkxPQCHOT9CCBsm4T44IJxw0UAxA1f_XE5Rx1KVpRt7HaobHULlvHemVMlXwzJNmbkyaTUEZ6uSKvsSdd-ZibVujeUfYM_rkN3Pt3kE7n9d3y1u6tu_v_8sLm9rQyUqNZGMYiu9p5p5j5HBLRat9p5N9yJoMOfMTedCK4klrKXWNMJJ2VqLKBOeHIGLje-wantnjYtl1EENY9fr8UUl3amvm9gt1UN6Vg0XFHM5GZy9GYzpaeVyUX2XjQtBR5dWWWFBmOSUcjyhp5-ztiHvr5sAtgHMmHIenVemK7p0aR3dBYWgWlek1hWpj4om3fl_unfr7xUnG8VjLmnc4lhg2BCGyStiYZ4s
CitedBy_id crossref_primary_10_1103_PhysRevResearch_6_023328
crossref_primary_10_1103_PhysRevB_108_L241121
crossref_primary_10_1103_PhysRevB_109_104304
crossref_primary_10_1103_PhysRevB_110_L100301
crossref_primary_10_1103_PhysRevB_106_245139
crossref_primary_10_1103_PhysRevResearch_6_023044
crossref_primary_10_1103_PhysRevB_109_115113
crossref_primary_10_1016_j_physrep_2024_03_004
crossref_primary_10_1103_PhysRevLett_131_236301
crossref_primary_10_1038_s41467_024_47858_5
crossref_primary_10_1038_s41567_024_02384_5
crossref_primary_10_1038_s41467_023_36750_3
crossref_primary_10_1103_PhysRevB_109_184435
crossref_primary_10_1103_PhysRevB_107_054434
crossref_primary_10_1103_PhysRevB_110_045144
crossref_primary_10_1103_PhysRevResearch_5_033197
crossref_primary_10_1038_s41567_023_02288_w
crossref_primary_10_1103_PhysRevB_107_184434
crossref_primary_10_1103_PhysRevB_107_L220406
crossref_primary_10_1073_pnas_2408546122
Cites_doi 10.1103/PhysRevB.104.035103
10.1103/PhysRevB.105.L220301
10.1103/PhysRevB.86.104305
10.1103/PhysRevB.75.045315
10.1103/PhysRevLett.124.105901
10.1103/PhysRevB.55.2344
10.1007/BF00660072
10.1038/s41467-020-18881-z
10.1103/PhysRevB.105.115101
10.1038/nmat4360
10.1103/PhysRevB.101.045137
10.1038/s41567-020-0950-5
10.1080/14786437208229210
10.1103/PhysRevB.106.245139
10.1103/PhysRevB.73.075318
10.1103/PhysRevB.85.245107
10.1073/pnas.2208016119
10.1038/s41467-022-32375-0
10.1103/RevModPhys.82.1539
10.1103/PhysRevLett.113.265901
10.1038/s41586-019-1375-0
10.1103/PhysRevB.103.205115
10.1016/j.matpr.2020.01.438
10.1103/PhysRevLett.124.167601
10.1103/PhysRevLett.107.236601
10.1038/s41567-020-0965-y
ContentType Journal Article
Copyright Copyright © 2022 the Author(s)
Copyright © 2022 the Author(s). Published by PNAS. 2022
Copyright_xml – notice: Copyright © 2022 the Author(s)
– notice: Copyright © 2022 the Author(s). Published by PNAS. 2022
DBID AAYXX
CITATION
NPM
7X8
5PM
DOI 10.1073/pnas.2215141119
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed
MEDLINE - Academic
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 7
ExternalDocumentID PMC9674268
36367907
10_1073_pnas_2215141119
27209352
Genre Journal Article
GrantInformation_xml – fundername: Deutsche Akademie der Naturforscher Leopoldina - Nationale Akademie der Wissenschaften (German National Academy of Sciences)
  grantid: LPDS 2020-01
– fundername: Simons Foundation (SF)
  grantid: 651440
– fundername: Center for Hierarchical Manufacturing, National Science Foundation (CHM, NSF)
  grantid: DMR-2002850
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABOCM
ABPLY
ABPPZ
ABTLG
ABZEH
ACGOD
ACIWK
ACNCT
ACPRK
AENEX
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BKOMP
CS3
D0L
DIK
DU5
E3Z
EBS
F5P
FRP
GX1
H13
HH5
HYE
JENOY
JLS
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
AAYXX
CITATION
NPM
7X8
5PM
ID FETCH-LOGICAL-c481t-38542d8ff4a5ff21c2b27baff564910c2665e8420d83d35b4dc97e88bdd1457f3
ISSN 0027-8424
1091-6490
IngestDate Thu Aug 21 18:37:02 EDT 2025
Thu Sep 04 17:13:55 EDT 2025
Mon Jul 21 06:03:27 EDT 2025
Tue Jul 01 01:03:27 EDT 2025
Thu Apr 24 23:08:25 EDT 2025
Thu May 29 08:49:15 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 46
Keywords thermal hall
phonons
cuprates
dynamical defects
Language English
License This article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c481t-38542d8ff4a5ff21c2b27baff564910c2665e8420d83d35b4dc97e88bdd1457f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Contributed by Subir Sachdev; received September 6, 2022; accepted October 7, 2022; reviewed by Lucile Savary and Louis Taillefer
Author contributions: H.G., D.G.J., and S.S. designed research, performed research, and wrote the paper.
ORCID 0000-0002-2432-7070
0000-0003-1154-5236
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC9674268
PMID 36367907
PQID 2735864462
PQPubID 23479
PageCount 7
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9674268
proquest_miscellaneous_2735864462
pubmed_primary_36367907
crossref_citationtrail_10_1073_pnas_2215141119
crossref_primary_10_1073_pnas_2215141119
jstor_primary_27209352
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-11-15
PublicationDateYYYYMMDD 2022-11-15
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-15
  day: 15
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2022
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References e_1_3_4_3_2
e_1_3_4_2_2
e_1_3_4_1_2
e_1_3_4_9_2
e_1_3_4_7_2
e_1_3_4_6_2
e_1_3_4_5_2
e_1_3_4_4_2
e_1_3_4_22_2
e_1_3_4_23_2
e_1_3_4_20_2
e_1_3_4_21_2
e_1_3_4_26_2
e_1_3_4_27_2
e_1_3_4_24_2
e_1_3_4_25_2
e_1_3_4_28_2
e_1_3_4_29_2
e_1_3_4_30_2
e_1_3_4_11_2
e_1_3_4_12_2
e_1_3_4_10_2
e_1_3_4_15_2
e_1_3_4_16_2
e_1_3_4_13_2
e_1_3_4_14_2
e_1_3_4_19_2
e_1_3_4_17_2
Lefrançois É. (e_1_3_4_8_2) 2022; 12
e_1_3_4_18_2
References_xml – ident: e_1_3_4_14_2
  doi: 10.1103/PhysRevB.104.035103
– ident: e_1_3_4_16_2
  doi: 10.1103/PhysRevB.105.L220301
– ident: e_1_3_4_20_2
– ident: e_1_3_4_10_2
  doi: 10.1103/PhysRevB.86.104305
– ident: e_1_3_4_22_2
  doi: 10.1103/PhysRevB.75.045315
– ident: e_1_3_4_7_2
  doi: 10.1103/PhysRevLett.124.105901
– ident: e_1_3_4_24_2
  doi: 10.1103/PhysRevB.55.2344
– ident: e_1_3_4_18_2
  doi: 10.1007/BF00660072
– ident: e_1_3_4_3_2
  doi: 10.1038/s41467-020-18881-z
– ident: e_1_3_4_4_2
  doi: 10.1103/PhysRevB.105.115101
– ident: e_1_3_4_27_2
  doi: 10.1038/nmat4360
– ident: e_1_3_4_26_2
  doi: 10.1103/PhysRevB.101.045137
– ident: e_1_3_4_28_2
  doi: 10.1038/s41567-020-0950-5
– ident: e_1_3_4_17_2
  doi: 10.1080/14786437208229210
– ident: e_1_3_4_29_2
  doi: 10.1103/PhysRevB.106.245139
– ident: e_1_3_4_19_2
– ident: e_1_3_4_21_2
  doi: 10.1103/PhysRevB.73.075318
– ident: e_1_3_4_12_2
  doi: 10.1103/PhysRevB.85.245107
– ident: e_1_3_4_5_2
  doi: 10.1073/pnas.2208016119
– ident: e_1_3_4_13_2
– volume: 12
  start-page: 021025
  year: 2022
  ident: e_1_3_4_8_2
  article-title: Evidence of a phonon hall effect in the kitaev spin liquid candidate α-RuCl3
  publication-title: Phys. Rev. X
– ident: e_1_3_4_6_2
  doi: 10.1038/s41467-022-32375-0
– ident: e_1_3_4_9_2
  doi: 10.1103/RevModPhys.82.1539
– ident: e_1_3_4_23_2
  doi: 10.1103/PhysRevLett.113.265901
– ident: e_1_3_4_1_2
  doi: 10.1038/s41586-019-1375-0
– ident: e_1_3_4_15_2
  doi: 10.1103/PhysRevB.103.205115
– ident: e_1_3_4_30_2
  doi: 10.1016/j.matpr.2020.01.438
– ident: e_1_3_4_11_2
  doi: 10.1103/PhysRevLett.124.167601
– ident: e_1_3_4_25_2
  doi: 10.1103/PhysRevLett.107.236601
– ident: e_1_3_4_2_2
  doi: 10.1038/s41567-020-0965-y
SSID ssj0009580
Score 2.5812116
Snippet We present computations of the thermal Hall coefficient of phonons scattering off a defect with multiple energy levels. Using a microscopic formulation based...
Modern quantum materials display numerous phases of electronic matter with many-particle quantum entanglement between the electrons. However, this entanglement...
SourceID pubmedcentral
proquest
pubmed
crossref
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Physical Sciences
Title Resonant thermal Hall effect of phonons coupled to dynamical defects
URI https://www.jstor.org/stable/27209352
https://www.ncbi.nlm.nih.gov/pubmed/36367907
https://www.proquest.com/docview/2735864462
https://pubmed.ncbi.nlm.nih.gov/PMC9674268
Volume 119
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Pb9MwFLbKuHBBDBiUATISh6EqIYnt2DlO_FiFRLXDJu1ElDi2OqlKprY5wF-_59hx0rJJg0tUpXHq5Pv6_Pz8vWeEPkaFLKKKVAHVTAY0FiooMhUHTAO9BJAoi0zu8M9FOr-kP67Y1WTya6RaardlKP_cmVfyP6jCOcDVZMn-A7L-pnACPgO-cASE4fggjE3s3QhZjPcIBnY1m5uFZivR6KTMy6Y2UhjZtDcr8CzBz6zsDvRmaUZ1So6xd3ruR7NNrx1Y9MHC0yH1xNmDzSyYnS-GjYzP2i7sOi-a3-0gzNksXSr7erMEW3IW-phOIZcVPHEnDSqv1-P4A0xdjQaOjW1qAuMctZnQobJmFLyQIKV2I1BvZ51ttISygce_DDhYHLPrcF1swsR4IzTum-2Uyt4bwrywsFtS5yQ3N8iHGzxCjxMOvlUfzfFFmYVNUXJP0Jd-4uTzXg92vBYrXL1rSrKvrB25KhfP0FM3x8CnljCHaKLq5-iwRw2fuFLjn16grz2DsGMQNgzClkG40dgxCDsG4W2DPYOwY9BLdPn928WXeeD21QgkFfE2IILRpBJa04JpncQyKRNeFlozgCyOJPhsTMH7iCpBKsJKWsmMKyHKqoop45ocoQP4bfUa4UhxDrykJZGa8izOyqwwJYVkmsUaxtkpCvv3lktXdN7sfbLK70Fqik58gxtbb-X-S486IPx1RlKQwYRiij70yORgLM0KWFGrpoXGnDABMwDTsVcWKd-apCTlWcSniO9g6C8whdh3v6mvl11B9izl4OiKNw_v-zF6MvyX3qKD7bpV78C73ZbvO4reAhTMo1M
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Resonant+thermal+Hall+effect+of+phonons+coupled+to+dynamical+defects&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Guo%2C+Haoyu&rft.au=Joshi%2C+Darshan+G.&rft.au=Sachdev%2C+Subir&rft.date=2022-11-15&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=119&rft.issue=46&rft_id=info:doi/10.1073%2Fpnas.2215141119&rft.externalDBID=n%2Fa&rft.externalDocID=10_1073_pnas_2215141119
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon