A novel PWM power amplifier of magnetic suspension spindle control system for micro EDM

Considering the traditional power amplifier has the disadvantage of poor reliability and flexibility, a three-level pulse-width modulation (PWM) power amplifier which is based on a novel field-programmable logic gate array (FPGA) algorithm and hardware solution is proposed. The power amplifier can p...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of advanced manufacturing technology Vol. 83; no. 5-8; pp. 961 - 973
Main Authors Guo, Yongfeng, Ling, Zebin, Zhang, Xiaoyou
Format Journal Article
LanguageEnglish
Published London Springer Science and Business Media LLC 01.03.2016
Springer London
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0268-3768
1433-3015
DOI10.1007/s00170-015-7622-0

Cover

More Information
Summary:Considering the traditional power amplifier has the disadvantage of poor reliability and flexibility, a three-level pulse-width modulation (PWM) power amplifier which is based on a novel field-programmable logic gate array (FPGA) algorithm and hardware solution is proposed. The power amplifier can provide various signals flexibly and realize rapid response of the magnetic suspension spindle in micro-electrical discharge machining (EDM). In this paper, the principle of three-level PWM amplifier with half bridge and full bridge power circuit is introduced. According to different functions, the amplifier is divided into four function modules which include PWM signal generator module, voltage signal convert module, bootstrap drive module, and power bridge module. PWM signal generator module is also divided into four sub-modules in term of a new FPGA algorithm. Voltage signals are converted by high-speed photo coupler HCPL-2630. IR2110S chips are applied to drive the half bridge and full bridge power circuits. According to Kirchhoff voltage law, when the period of PWM signals is 50 μs and the duty cycles are larger than 0.76 and 0.665, the average current of half bridge and full bridge are more than 3 and 4 A; however, the ripple of the half bridge and full bridge are still less than 0.25 and 0.2 A, this advantage is suitable for the control system of magnetic suspension spindle. Test results of the average current and ripple are close to theoretical value. The axial response frequency of the spindle can reach 125 Hz, using this power amplifier and the magnetic suspension spindle, micro EDM can be achieved in Z axis with 1.2 mm stroke.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0268-3768
1433-3015
DOI:10.1007/s00170-015-7622-0