BPDA2d-a 2D global optimization-based Bayesian peptide detection algorithm for liquid chromatograph-mass spectrometry

Motivation: Peptide detection is a crucial step in mass spectrometry (MS) based proteomics. Most existing algorithms are based upon greedy isotope template matching and thus may be prone to error propagation and ineffective to detect overlapping peptides. In addition, existing algorithms usually wor...

Full description

Saved in:
Bibliographic Details
Published inBioinformatics Vol. 28; no. 4; pp. 564 - 572
Main Authors Sun, Youting, Zhang, Jianqiu, Braga-Neto, Ulisses, Dougherty, Edward R.
Format Journal Article
LanguageEnglish
Published Oxford Oxford University Press 15.02.2012
Subjects
Online AccessGet full text
ISSN1367-4803
1367-4811
1460-2059
1367-4811
DOI10.1093/bioinformatics/btr675

Cover

Abstract Motivation: Peptide detection is a crucial step in mass spectrometry (MS) based proteomics. Most existing algorithms are based upon greedy isotope template matching and thus may be prone to error propagation and ineffective to detect overlapping peptides. In addition, existing algorithms usually work at different charge states separately, isolating useful information that can be drawn from other charge states, which may lead to poor detection of low abundance peptides. Results: BPDA2d models spectra as a mixture of candidate peptide signals and systematically evaluates all possible combinations of possible peptide candidates to interpret the given spectra. For each candidate, BPDA2d takes into account its elution profile, charge state distribution and isotope pattern, and it combines all evidence to infer the candidate's signal and existence probability. By piecing all evidence together-especially by deriving information across charge states-low abundance peptides can be better identified and peptide detection rates can be improved. Instead of local template matching, BPDA2d performs global optimization for all candidates and systematically optimizes their signals. Since BPDA2d looks for the optimal among all possible interpretations of the given spectra, it has the capability in handling complex spectra where features overlap. BPDA2d estimates the posterior existence probability of detected peptides, which can be directly used for probability-based evaluation in subsequent processing steps. Our experiments indicate that BPDA2d outperforms state-of-the-art detection methods on both simulated data and real liquid chromatography-mass spectrometry data, according to sensitivity and detection accuracy. Availability: The BPDA2d software package is available at http://gsp.tamu.edu/Publications/supplementary/sun11a/ Contact: Michelle.Zhang@utsa.edu; edward@ece.tamu.edu Supplementary information: Supplementary data are available at Bioinformatics online.
AbstractList Peptide detection is a crucial step in mass spectrometry (MS) based proteomics. Most existing algorithms are based upon greedy isotope template matching and thus may be prone to error propagation and ineffective to detect overlapping peptides. In addition, existing algorithms usually work at different charge states separately, isolating useful information that can be drawn from other charge states, which may lead to poor detection of low abundance peptides.MOTIVATIONPeptide detection is a crucial step in mass spectrometry (MS) based proteomics. Most existing algorithms are based upon greedy isotope template matching and thus may be prone to error propagation and ineffective to detect overlapping peptides. In addition, existing algorithms usually work at different charge states separately, isolating useful information that can be drawn from other charge states, which may lead to poor detection of low abundance peptides.BPDA2d models spectra as a mixture of candidate peptide signals and systematically evaluates all possible combinations of possible peptide candidates to interpret the given spectra. For each candidate, BPDA2d takes into account its elution profile, charge state distribution and isotope pattern, and it combines all evidence to infer the candidate's signal and existence probability. By piecing all evidence together--especially by deriving information across charge states--low abundance peptides can be better identified and peptide detection rates can be improved. Instead of local template matching, BPDA2d performs global optimization for all candidates and systematically optimizes their signals. Since BPDA2d looks for the optimal among all possible interpretations of the given spectra, it has the capability in handling complex spectra where features overlap. BPDA2d estimates the posterior existence probability of detected peptides, which can be directly used for probability-based evaluation in subsequent processing steps. Our experiments indicate that BPDA2d outperforms state-of-the-art detection methods on both simulated data and real liquid chromatography-mass spectrometry data, according to sensitivity and detection accuracy.RESULTSBPDA2d models spectra as a mixture of candidate peptide signals and systematically evaluates all possible combinations of possible peptide candidates to interpret the given spectra. For each candidate, BPDA2d takes into account its elution profile, charge state distribution and isotope pattern, and it combines all evidence to infer the candidate's signal and existence probability. By piecing all evidence together--especially by deriving information across charge states--low abundance peptides can be better identified and peptide detection rates can be improved. Instead of local template matching, BPDA2d performs global optimization for all candidates and systematically optimizes their signals. Since BPDA2d looks for the optimal among all possible interpretations of the given spectra, it has the capability in handling complex spectra where features overlap. BPDA2d estimates the posterior existence probability of detected peptides, which can be directly used for probability-based evaluation in subsequent processing steps. Our experiments indicate that BPDA2d outperforms state-of-the-art detection methods on both simulated data and real liquid chromatography-mass spectrometry data, according to sensitivity and detection accuracy.The BPDA2d software package is available at http://gsp.tamu.edu/Publications/supplementary/sun11a/.AVAILABILITYThe BPDA2d software package is available at http://gsp.tamu.edu/Publications/supplementary/sun11a/.
Motivation: Peptide detection is a crucial step in mass spectrometry (MS) based proteomics. Most existing algorithms are based upon greedy isotope template matching and thus may be prone to error propagation and ineffective to detect overlapping peptides. In addition, existing algorithms usually work at different charge states separately, isolating useful information that can be drawn from other charge states, which may lead to poor detection of low abundance peptides. Results: BPDA2d models spectra as a mixture of candidate peptide signals and systematically evaluates all possible combinations of possible peptide candidates to interpret the given spectra. For each candidate, BPDA2d takes into account its elution profile, charge state distribution and isotope pattern, and it combines all evidence to infer the candidate's signal and existence probability. By piecing all evidence together-especially by deriving information across charge states-low abundance peptides can be better identified and peptide detection rates can be improved. Instead of local template matching, BPDA2d performs global optimization for all candidates and systematically optimizes their signals. Since BPDA2d looks for the optimal among all possible interpretations of the given spectra, it has the capability in handling complex spectra where features overlap. BPDA2d estimates the posterior existence probability of detected peptides, which can be directly used for probability-based evaluation in subsequent processing steps. Our experiments indicate that BPDA2d outperforms state-of-the-art detection methods on both simulated data and real liquid chromatography-mass spectrometry data, according to sensitivity and detection accuracy. Availability: The BPDA2d software package is available at http://gsp.tamu.edu/Publications/supplementary/sun11a/ Contact: Michelle.Zhang@utsa.edu; edward@ece.tamu.edu Supplementary information: Supplementary data are available at Bioinformatics online.
Motivation: Peptide detection is a crucial step in mass spectrometry (MS) based proteomics. Most existing algorithms are based upon greedy isotope template matching and thus may be prone to error propagation and ineffective to detect overlapping peptides. In addition, existing algorithms usually work at different charge states separately, isolating useful information that can be drawn from other charge states, which may lead to poor detection of low abundance peptides. Results: BPDA2d models spectra as a mixture of candidate peptide signals and systematically evaluates all possible combinations of possible peptide candidates to interpret the given spectra. For each candidate, BPDA2d takes into account its elution profile, charge state distribution and isotope pattern, and it combines all evidence to infer the candidate's signal and existence probability. By piecing all evidence together—especially by deriving information across charge states—low abundance peptides can be better identified and peptide detection rates can be improved. Instead of local template matching, BPDA2d performs global optimization for all candidates and systematically optimizes their signals. Since BPDA2d looks for the optimal among all possible interpretations of the given spectra, it has the capability in handling complex spectra where features overlap. BPDA2d estimates the posterior existence probability of detected peptides, which can be directly used for probability-based evaluation in subsequent processing steps. Our experiments indicate that BPDA2d outperforms state-of-the-art detection methods on both simulated data and real liquid chromatography–mass spectrometry data, according to sensitivity and detection accuracy. Availability: The BPDA2d software package is available at http://gsp.tamu.edu/Publications/supplementary/sun11a/ Contact:  Michelle.Zhang@utsa.edu; edward@ece.tamu.edu Supplementary information:  Supplementary data are available at Bioinformatics online.
Motivation: Peptide detection is a crucial step in mass spectrometry (MS) based proteomics. Most existing algorithms are based upon greedy isotope template matching and thus may be prone to error propagation and ineffective to detect overlapping peptides. In addition, existing algorithms usually work at different charge states separately, isolating useful information that can be drawn from other charge states, which may lead to poor detection of low abundance peptides. Results: BPDA2d models spectra as a mixture of candidate peptide signals and systematically evaluates all possible combinations of possible peptide candidates to interpret the given spectra. For each candidate, BPDA2d takes into account its elution profile, charge state distribution and isotope pattern, and it combines all evidence to infer the candidate's signal and existence probability. By piecing all evidence together—especially by deriving information across charge states—low abundance peptides can be better identified and peptide detection rates can be improved. Instead of local template matching, BPDA2d performs global optimization for all candidates and systematically optimizes their signals. Since BPDA2d looks for the optimal among all possible interpretations of the given spectra, it has the capability in handling complex spectra where features overlap. BPDA2d estimates the posterior existence probability of detected peptides, which can be directly used for probability-based evaluation in subsequent processing steps. Our experiments indicate that BPDA2d outperforms state-of-the-art detection methods on both simulated data and real liquid chromatography–mass spectrometry data, according to sensitivity and detection accuracy. Availability: The BPDA2d software package is available at http://gsp.tamu.edu/Publications/supplementary/sun11a/ Contact: Michelle.Zhang@utsa.edu; edward@ece.tamu.edu Supplementary information: Supplementary data are available at Bioinformatics online.
Peptide detection is a crucial step in mass spectrometry (MS) based proteomics. Most existing algorithms are based upon greedy isotope template matching and thus may be prone to error propagation and ineffective to detect overlapping peptides. In addition, existing algorithms usually work at different charge states separately, isolating useful information that can be drawn from other charge states, which may lead to poor detection of low abundance peptides. BPDA2d models spectra as a mixture of candidate peptide signals and systematically evaluates all possible combinations of possible peptide candidates to interpret the given spectra. For each candidate, BPDA2d takes into account its elution profile, charge state distribution and isotope pattern, and it combines all evidence to infer the candidate's signal and existence probability. By piecing all evidence together--especially by deriving information across charge states--low abundance peptides can be better identified and peptide detection rates can be improved. Instead of local template matching, BPDA2d performs global optimization for all candidates and systematically optimizes their signals. Since BPDA2d looks for the optimal among all possible interpretations of the given spectra, it has the capability in handling complex spectra where features overlap. BPDA2d estimates the posterior existence probability of detected peptides, which can be directly used for probability-based evaluation in subsequent processing steps. Our experiments indicate that BPDA2d outperforms state-of-the-art detection methods on both simulated data and real liquid chromatography-mass spectrometry data, according to sensitivity and detection accuracy. The BPDA2d software package is available at http://gsp.tamu.edu/Publications/supplementary/sun11a/.
Author Zhang, Jianqiu
Dougherty, Edward R.
Sun, Youting
Braga-Neto, Ulisses
AuthorAffiliation 1 Department of Electrical Engineering, Texas A&M University, College Station, TX 77843, 2 Department of Electrical Engineering, University of Texas at San Antonio, San Antonio, TX 78249, 3 Computational Biology Division, Translational Genomics Research Institution, Phoenix, AZ 85004 and 4 Department of Bioinformatics and Computational Biology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
AuthorAffiliation_xml – name: 1 Department of Electrical Engineering, Texas A&M University, College Station, TX 77843, 2 Department of Electrical Engineering, University of Texas at San Antonio, San Antonio, TX 78249, 3 Computational Biology Division, Translational Genomics Research Institution, Phoenix, AZ 85004 and 4 Department of Bioinformatics and Computational Biology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
Author_xml – sequence: 1
  givenname: Youting
  surname: Sun
  fullname: Sun, Youting
  organization: 1Department of Electrical Engineering, Texas A&M University, College Station, TX 77843, 2Department of Electrical Engineering, University of Texas at San Antonio, San Antonio, TX 78249, 3Computational Biology Division, Translational Genomics Research Institution, Phoenix, AZ 85004 and 4Department of Bioinformatics and Computational Biology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
– sequence: 2
  givenname: Jianqiu
  surname: Zhang
  fullname: Zhang, Jianqiu
  organization: 1Department of Electrical Engineering, Texas A&M University, College Station, TX 77843, 2Department of Electrical Engineering, University of Texas at San Antonio, San Antonio, TX 78249, 3Computational Biology Division, Translational Genomics Research Institution, Phoenix, AZ 85004 and 4Department of Bioinformatics and Computational Biology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
– sequence: 3
  givenname: Ulisses
  surname: Braga-Neto
  fullname: Braga-Neto, Ulisses
  organization: 1Department of Electrical Engineering, Texas A&M University, College Station, TX 77843, 2Department of Electrical Engineering, University of Texas at San Antonio, San Antonio, TX 78249, 3Computational Biology Division, Translational Genomics Research Institution, Phoenix, AZ 85004 and 4Department of Bioinformatics and Computational Biology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
– sequence: 4
  givenname: Edward R.
  surname: Dougherty
  fullname: Dougherty, Edward R.
  organization: 1Department of Electrical Engineering, Texas A&M University, College Station, TX 77843, 2Department of Electrical Engineering, University of Texas at San Antonio, San Antonio, TX 78249, 3Computational Biology Division, Translational Genomics Research Institution, Phoenix, AZ 85004 and 4Department of Bioinformatics and Computational Biology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25544195$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/22155863$$D View this record in MEDLINE/PubMed
BookMark eNqNUdmKFDEULWTEWfQTlLyIT-VkrQVBmM0FBvRBn8PNUt2RVKUmSSnt10_abh3HFwcCCbnnnHvuucfVwRQmW1XPCX5NcM9OlQtuGkIcITudTlWOTSseVUeEN7imWPQH5c2atuYdZofVcUrfMBaEc_6kOqSUCNE17Khazj9fnlFTA6KXaOWDAo_CnN3ofhbhMNUKkjXoHDY2OZjQbEvRWGRstnoLQOBXIbq8HlFxg7y7WZxBeh1DcRZWEeZ1PUJKKM2FUH5tjpun1eMBfLLP9vdJ9fXd1ZeLD_X1p_cfL86ua807kmuiGVgzEMPaocN6gKGlgqqmHzDlpjzAdEz0XRlZKdEMArqCU4ZxxWijG3ZSNTvdZZph8wO8l3N0I8SNJFhuc5T3c5S7HAvx7Y44L2q0RtspR7gjB3DyfmVya7kK3yWjbdcKXgRe7QViuFlsynJ0SVvvYbJhSbKnpC2HkIJ88XerPz1-76gAXu4BkDT4IcKkXbrDCcE56bee3-xwOoaUoh2kdvnXEotD5_87sfiH_dCk8I4XlvmBlFvvU-UE
CitedBy_id crossref_primary_10_1016_j_talanta_2020_121580
crossref_primary_10_1021_acs_analchem_5b01521
crossref_primary_10_1109_TCBB_2014_2377723
crossref_primary_10_1371_journal_pone_0072951
crossref_primary_10_1186_1471_2164_13_S6_S2
crossref_primary_10_1002_pmic_201800444
crossref_primary_10_1016_j_ultramic_2020_113014
Cites_doi 10.1038/nbt.1511
10.1016/S0021-9673(01)01136-0
10.1016/1044-0305(95)00017-8
10.1186/1471-2105-9-163
10.1186/1471-2105-9-423
10.1126/science.1124619
10.1002/pmic.200700057
10.1093/bioinformatics/btl276
10.1002/pmic.200500201
10.1002/(SICI)1522-2683(19991201)20:18<3551::AID-ELPS3551>3.0.CO;2-2
10.1186/1471-2105-6-179
10.1021/ac0700833
10.1007/978-1-4757-4145-2
10.1093/bioinformatics/btm281
10.1093/bioinformatics/bti254
10.1007/s00216-007-1486-6
10.1214/aos/1176344136
10.2174/138920209789177638
10.1021/ac025747h
10.1186/1471-2105-11-490
10.1074/mcp.M500319-MCP200
10.1002/pmic.200701064
10.1186/1471-2105-9-355
10.1021/ac00111a031
10.1109/TPAMI.1984.4767596
10.1021/pr070244j
10.1038/nrd1130
10.1186/1471-2105-10-87
10.1186/1471-2105-12-74
10.1074/mcp.M500141-MCP200
ContentType Journal Article
Copyright The Author 2011. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2011
2015 INIST-CNRS
Copyright_xml – notice: The Author 2011. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2011
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ADTOC
UNPAY
DOI 10.1093/bioinformatics/btr675
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

CrossRef

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1460-2059
1367-4811
EndPage 572
ExternalDocumentID 10.1093/bioinformatics/btr675
PMC3278754
22155863
25544195
10_1093_bioinformatics_btr675
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCRR NIH HHS
  grantid: 2G12RR013646-11
– fundername: NCRR NIH HHS
  grantid: G12 RR013646
GroupedDBID -~X
.2P
.I3
482
48X
5GY
AAMVS
ABPTD
ACGFS
ACUFI
ADRIX
ADZXQ
ALMA_UNASSIGNED_HOLDINGS
BCRHZ
CZ4
EE~
F5P
F9B
H5~
HAR
HW0
IOX
KOP
KSI
KSN
NGC
Q5Y
RD5
ROX
ROZ
RXO
TLC
TN5
TOX
WH7
~91
---
-E4
.DC
0R~
1TH
23N
2WC
4.4
53G
5WA
70D
AAIJN
AAIMJ
AAJKP
AAJQQ
AAKPC
AAMDB
AAOGV
AAPQZ
AAPXW
AAUQX
AAVAP
AAVLN
AAYXX
ABEJV
ABEUO
ABGNP
ABIXL
ABNKS
ABPQP
ABQLI
ABWST
ABXVV
ABZBJ
ACIWK
ACPRK
ACUXJ
ACYTK
ADBBV
ADEYI
ADEZT
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADMLS
ADOCK
ADPDF
ADRDM
ADRTK
ADVEK
ADYVW
ADZTZ
AECKG
AEGPL
AEJOX
AEKKA
AEKSI
AELWJ
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGQXC
AGSYK
AHMBA
AHXPO
AIJHB
AJEEA
AJEUX
AKHUL
AKWXX
ALTZX
ALUQC
AMNDL
APIBT
APWMN
ARIXL
ASPBG
AVWKF
AXUDD
AYOIW
AZVOD
BAWUL
BAYMD
BHONS
BQDIO
BQUQU
BSWAC
BTQHN
C1A
C45
CDBKE
CITATION
COF
CS3
DAKXR
DIK
DILTD
DU5
D~K
EBD
EBS
EJD
EMOBN
FEDTE
FHSFR
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
GROUPED_DOAJ
GX1
H13
HZ~
J21
JXSIZ
KAQDR
KQ8
M-Z
MK~
ML0
N9A
NLBLG
NMDNZ
NOMLY
NU-
NVLIB
O0~
O9-
OAWHX
ODMLO
OJQWA
OK1
OVD
OVEED
P2P
PAFKI
PEELM
PQQKQ
Q1.
R44
RNS
ROL
RPM
RUSNO
RW1
SV3
TEORI
TJP
TR2
W8F
WOQ
X7H
YAYTL
YKOAZ
YXANX
ZKX
~KM
.-4
.GJ
ABEFU
ABNGD
ACUKT
AFFNX
AGQPQ
AI.
AQDSO
ATTQO
AZFZN
CAG
ELUNK
HVGLF
IQODW
NTWIH
O~Y
PB-
RIG
RNI
RZF
RZO
VH1
ZGI
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c481t-1c3aedf1d37f80cfaf7252b69f024d2b6ad83598460bb56f5a8f80bd34b326c63
IEDL.DBID UNPAY
ISSN 1367-4803
1367-4811
IngestDate Wed Oct 29 12:13:25 EDT 2025
Tue Sep 30 16:34:32 EDT 2025
Fri Jul 11 11:51:46 EDT 2025
Mon Jul 21 05:54:10 EDT 2025
Mon Jul 21 09:13:59 EDT 2025
Tue Jul 01 03:27:05 EDT 2025
Thu Apr 24 23:04:56 EDT 2025
Wed Aug 28 03:23:53 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Peptides
Detection
Algorithm
Mass spectrometry
Optimization
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c481t-1c3aedf1d37f80cfaf7252b69f024d2b6ad83598460bb56f5a8f80bd34b326c63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Associate Editor: John Quackenbush
OpenAccessLink https://proxy.k.utb.cz/login?url=https://academic.oup.com/bioinformatics/article-pdf/28/4/564/48881002/bioinformatics_28_4_564.pdf
PMID 22155863
PQID 921721711
PQPubID 23479
PageCount 9
ParticipantIDs unpaywall_primary_10_1093_bioinformatics_btr675
pubmedcentral_primary_oai_pubmedcentral_nih_gov_3278754
proquest_miscellaneous_921721711
pubmed_primary_22155863
pascalfrancis_primary_25544195
crossref_citationtrail_10_1093_bioinformatics_btr675
crossref_primary_10_1093_bioinformatics_btr675
oup_primary_10_1093_bioinformatics_btr675
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-02-15
PublicationDateYYYYMMDD 2012-02-15
PublicationDate_xml – month: 02
  year: 2012
  text: 2012-02-15
  day: 15
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
– name: England
PublicationTitle Bioinformatics
PublicationTitleAlternate Bioinformatics
PublicationYear 2012
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Schulz-Trieglaf (2023012512183351300_B25) 2008; 9
Bellew (2023012512183351300_B2) 2006; 22
Frank (2023012512183351300_B7) 2003; 2
Rockwood (2023012512183351300_B24) 1995; 67
Hoopmann (2023012512183351300_B10) 2007; 79
Schwarz (2023012512183351300_B26) 1978; 6
Mueller (2023012512183351300_B19) 2007; 7
Senko (2023012512183351300_B27) 1995; 6
Sun (2023012512183351300_B29) 2010; 11
Klimek (2023012512183351300_B14) 2008; 7
Nesvizhskii (2023012512183351300_B20) 2006; 5
Cox (2023012512183351300_B3) 2008; 26
Di Marco (2023012512183351300_B4) 2001; 931
Robert (2023012512183351300_B23) 2004
Bantscheff (2023012512183351300_B1) 2007; 389
Geman (2023012512183351300_B8) 1984; 6
Dijkstra (2023012512183351300_B5) 2009; 9
Domon (2023012512183351300_B6) 2006; 312
Keller (2023012512183351300_B13) 2002; 74
Zhang (2023012512183351300_B30) 2009; 10
Jaitly (2023012512183351300_B11) 2009; 10
Leptos (2023012512183351300_B15) 2006; 6
Perkins (2023012512183351300_B21) 1999; 20
Haskins (2023012512183351300_B9) 2011; 12
Monroe (2023012512183351300_B17) 2007; 23
Sturm (2023012512183351300_B28) 2008; 9
Morris (2023012512183351300_B18) 2005; 21
Katajamaa (2023012512183351300_B12) 2005; 6
Renard (2023012512183351300_B22) 2008; 9
Li (2023012512183351300_B16) 2005; 4
References_xml – volume: 26
  start-page: 1367
  year: 2008
  ident: 2023012512183351300_B3
  article-title: Maxquant enables high peptide identification rates, individualized p.p.b-range mass accuracies and proteome-wide protein quantification
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.1511
– volume: 931
  start-page: 1
  year: 2001
  ident: 2023012512183351300_B4
  article-title: Mathematical functions for the representation of chromatographic peaks
  publication-title: J. Chromatogr. A
  doi: 10.1016/S0021-9673(01)01136-0
– volume: 6
  start-page: 229
  year: 1995
  ident: 2023012512183351300_B27
  article-title: Determination of monoisotopic masses and ion populations for large biomolecules from resolved isotopic distributions
  publication-title: J. Am. Soc. Mass Spectrom.
  doi: 10.1016/1044-0305(95)00017-8
– volume: 9
  start-page: 163
  year: 2008
  ident: 2023012512183351300_B28
  article-title: Openms — an open-source software framework for mass spectrometry
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-9-163
– volume: 9
  start-page: 423
  year: 2008
  ident: 2023012512183351300_B25
  article-title: Lc-MSsim – a simulation software for liquid chromatography mass spectrometry data
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-9-423
– volume: 312
  start-page: 212
  year: 2006
  ident: 2023012512183351300_B6
  article-title: Mass spectrometry and protein analysis
  publication-title: Science
  doi: 10.1126/science.1124619
– volume: 7
  start-page: 3470
  year: 2007
  ident: 2023012512183351300_B19
  article-title: Superhirn-a novel tool for high resolution LC-MS based peptide/protein profiling
  publication-title: Proteomics
  doi: 10.1002/pmic.200700057
– volume: 22
  start-page: 1902
  year: 2006
  ident: 2023012512183351300_B2
  article-title: A suite of algorithms for the comprehensive analysis of complex protein mixtures using high-resolution LC-MS
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btl276
– volume: 6
  start-page: 1770
  year: 2006
  ident: 2023012512183351300_B15
  article-title: MapQuant: open-source software for large-scale protein quantification
  publication-title: Proteomics
  doi: 10.1002/pmic.200500201
– volume: 20
  start-page: 3551
  year: 1999
  ident: 2023012512183351300_B21
  article-title: Probability-based protein identification by searching sequence databases using mass spectrometry data
  publication-title: Electrophoresis
  doi: 10.1002/(SICI)1522-2683(19991201)20:18<3551::AID-ELPS3551>3.0.CO;2-2
– volume: 6
  start-page: 179
  year: 2005
  ident: 2023012512183351300_B12
  article-title: Processing methods for differential analysis of lc/ms profile data
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-6-179
– volume: 79
  start-page: 5630
  year: 2007
  ident: 2023012512183351300_B10
  article-title: High speed data reduction, feature selection, and MS/MS spectrum quality assessment of shotgun proteomics datasets using high resolution mass spectrometry
  publication-title: Anal. Chem.
  doi: 10.1021/ac0700833
– volume-title: Monte Carlo Statistical Methods.
  year: 2004
  ident: 2023012512183351300_B23
  doi: 10.1007/978-1-4757-4145-2
– volume: 23
  start-page: 2021
  year: 2007
  ident: 2023012512183351300_B17
  article-title: VIPER: an advanced software package to support high-throughput LC-MS peptide identification
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm281
– volume: 21
  start-page: 1764
  year: 2005
  ident: 2023012512183351300_B18
  article-title: Feature extraction and quantification for mass spectrometry in biomedical applications using the mean spectrum
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti254
– volume: 389
  start-page: 1017
  year: 2007
  ident: 2023012512183351300_B1
  article-title: Quantitative mass spectrometry in proteomics: a critical review
  publication-title: Anal. Bioanal. Chem.
  doi: 10.1007/s00216-007-1486-6
– volume: 6
  start-page: 461
  year: 1978
  ident: 2023012512183351300_B26
  article-title: Estimating the dimension of a model
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1176344136
– volume: 10
  start-page: 388
  year: 2009
  ident: 2023012512183351300_B30
  article-title: Review of peak detection algorithms in liquid-chromatography-mass spectrometry
  publication-title: Curr. Genomics
  doi: 10.2174/138920209789177638
– volume: 74
  start-page: 5383
  year: 2002
  ident: 2023012512183351300_B13
  article-title: Empirical statistical model to estimate the accuracy of peptide identifications made by ms/ms and database search
  publication-title: Anal. Chem.
  doi: 10.1021/ac025747h
– volume: 11
  start-page: 490
  year: 2010
  ident: 2023012512183351300_B29
  article-title: BPDA — a Bayesian peptide detection algorithm for mass spectrometry
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-11-490
– volume: 5
  start-page: 652
  year: 2006
  ident: 2023012512183351300_B20
  article-title: Dynamic spectrum quality assessment and iterative computational analysis of shotgun proteomic data: toward more efficient idenfitication of post-translational modifications, sequence polymorphisms, and novel peptides
  publication-title: Mol. Cell. Proteomics
  doi: 10.1074/mcp.M500319-MCP200
– volume: 9
  start-page: 3869
  year: 2009
  ident: 2023012512183351300_B5
  article-title: Optimal analysis of complex protein mass spectra
  publication-title: Proteomics
  doi: 10.1002/pmic.200701064
– volume: 9
  start-page: 355
  year: 2008
  ident: 2023012512183351300_B22
  article-title: NITPICK: peak identifcation for mass spectrometry data
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-9-355
– volume: 67
  start-page: 2699
  year: 1995
  ident: 2023012512183351300_B24
  article-title: Rapid calculation of isotope distributions
  publication-title: Anal. Chem.
  doi: 10.1021/ac00111a031
– volume: 6
  start-page: 721
  year: 1984
  ident: 2023012512183351300_B8
  article-title: Stochastic relaxation, gibbs distributions, and the bayesian restoration of images
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.1984.4767596
– volume: 7
  start-page: 96
  year: 2008
  ident: 2023012512183351300_B14
  article-title: The standard protein mix database: a diverse dataset to assist in the production of improved peptide and protein identification software tools
  publication-title: J. Proteome Res.
  doi: 10.1021/pr070244j
– volume: 2
  start-page: 566
  year: 2003
  ident: 2023012512183351300_B7
  article-title: Clinical biomarkers in drug discovery and development
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/nrd1130
– volume: 10
  start-page: 87
  year: 2009
  ident: 2023012512183351300_B11
  article-title: Decon2ls: an open-source software package for automated processing and visualization of high resolution mass spectrometry data
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-10-87
– volume: 12
  start-page: 74
  year: 2011
  ident: 2023012512183351300_B9
  article-title: MRCQuant- an accurate lc-ms relative isotopic quantification algorithm on tof instruments
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-12-74
– volume: 4
  start-page: 1328
  year: 2005
  ident: 2023012512183351300_B16
  article-title: A software suite for the generation and comparison of peptide arrays from sets of data collected by liquid chromatography-mass spectrometry
  publication-title: Mol. Cell Proteomics.
  doi: 10.1074/mcp.M500141-MCP200
SSID ssj0051444
ssj0005056
Score 2.0802126
Snippet Motivation: Peptide detection is a crucial step in mass spectrometry (MS) based proteomics. Most existing algorithms are based upon greedy isotope template...
Peptide detection is a crucial step in mass spectrometry (MS) based proteomics. Most existing algorithms are based upon greedy isotope template matching and...
SourceID unpaywall
pubmedcentral
proquest
pubmed
pascalfrancis
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 564
SubjectTerms Algorithms
Bayes Theorem
Biological and medical sciences
Chromatography, Liquid
Fundamental and applied biological sciences. Psychology
General aspects
Mass Spectrometry
Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)
Original Papers
Peptides - analysis
Probability
Proteomics - methods
Software
Title BPDA2d-a 2D global optimization-based Bayesian peptide detection algorithm for liquid chromatograph-mass spectrometry
URI https://www.ncbi.nlm.nih.gov/pubmed/22155863
https://www.proquest.com/docview/921721711
https://pubmed.ncbi.nlm.nih.gov/PMC3278754
https://academic.oup.com/bioinformatics/article-pdf/28/4/564/48881002/bioinformatics_28_4_564.pdf
UnpaywallVersion publishedVersion
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1460-2059
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: KQ8
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1460-2059
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: ADMLS
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1460-2059
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: DIK
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1460-2059
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: GX1
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1460-2059
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: RPM
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVOVD
  databaseName: Journals@Ovid LWW All Open Access Journal Collection Rolling
  customDbUrl:
  eissn: 1460-2059
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: OVEED
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://ovidsp.ovid.com/
  providerName: Ovid
– providerCode: PRVASL
  databaseName: Oxford University Press Journals
  customDbUrl:
  eissn: 1460-2059
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: TOX
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
– providerCode: PRVASL
  databaseName: Oxford University Press Journals
  customDbUrl:
  eissn: 1460-2059
  dateEnd: 20220930
  omitProxy: true
  ssIdentifier: ssj0005056
  issn: 1367-4811
  databaseCode: TOX
  dateStart: 19850101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZ2u0IgId6P8Kh84MIhzct2nGOXZbVCYtnDViqnyI6dbUSalG4qVE4r_gL8wv0ljOukbAsSy4FbpMzkMZnYn-X5vkHolaBCES6460uqXZJL4ibUF26W84xmCazlhOE7vz9mRyPybkzHO0h0XBjRVoUPOkqDLOpWQtTIFnttPN2Zyr2Qe8SjjHiQhNxIiW4ZpyFPSQoGA7DeRXuMAlzvob3R8cnwo-VjxS7hq-7J7XEQdCyfJNq-tWzmzJQjXpm_LCfu9kycQ0Bz2wnjT1D194rLm4tqJpZfRFlemc4O76JvXSBsFcunwaKRg-zrlkbkf43UPXSnBcN4aK9xH-3o6gG6YdtjLh-i5f7JwTBUlxc_BA4PsNUuwTUMctOWPeqaSVjhfbHUhgyKZ6ZGR2msdLMqMauwKM_qedFMphgeA5fF50WhcDaZ1_BIVq378uL7FFYQeMU5NeINzXz5CI0O356-OXLbVhFuBh-tcYMsElrlgYrinPtZLvI4pKFkSQ4YRMGBUNxoFRLmS0lZTgUHO6kiIgG_Zix6jHpVXemnCPsMhjgR6SBWjDCtJWAqQGWhjpNQ-L5yEOkSIM1aHXXTzqNM7X5-lG7F1uaNgwZrt5kVEvmbw2v4ste17W_k4NoLFoyAdxMwwF1SpjB-mE0hUel6cZ4mpkNZEAeBg57YHP3lDHCQchY5KN7I3rWBkSbfPFMVk5VEeRTCRECJg7x1nl_vTZ79s8dzdAtAbGgq6QP6AvWa-UK_BKDYyD7aPf0w7rc__E_HtnfD
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKVggkxPsRHpUPXDhk87Id57ilVBUSVQ-sVE6RHTvsimyypIlQOFX8BfiF_SWM18nSXZAoB26RMpPHZGJ_luf7BqGXggpFuOCuL6l2SS6Jm1BfuFnOM5olsJYThu_87pgdTcnbU3q6g8TAhRF9Vfh4oDTIedVLiBrZYq-Pp7tUuRdyj3iUEQ-SkBsp0S3jNOQpScFgDNbX0C6jANdHaHd6fDL5YPlYsUv4qntyfxwEA8snibZvLZuamXLES_OX5cTdWoozCGhuO2H8Car-XnF5oy2XovsiiuLSdHZ4B30bAmGrWD6N20aOs69bGpH_NVJ30e0eDOOJvcY9tKPL--i6bY_ZPUDd_snBJFQX5z8EDg-w1S7BFQxyi5496ppJWOF90WlDBsVLU6OjNFa6WZWYlVgUH6t63swWGB4DF_PP7VzhbFZX8EhWrfvi_PsCVhB4xTk14g1N3T1E08M3718fuX2rCDeDj9a4QRYJrfJARXHO_SwXeRzSULIkBwyi4EAobrQKCfOlpCyngoOdVBGRgF8zFj1Co7Iq9ROEfQZDnIh0ECtGmNYSMBWgslDHSSh8XzmIDAmQZr2OumnnUaR2Pz9Kt2Jr88ZB47Xb0gqJ_M3hFXzZq9rubeTg2gsWjIB3EzDAQ1KmMH6YTSFR6qo9SxPToSyIg8BBj22O_nIGOEg5ixwUb2Tv2sBIk2-eKeezlUR5FMJEQImDvHWeX-1Nnv6zxzN0E0BsaCrpA_ocjZq61S8AKDZyr__VfwL-LXan
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=BPDA2d--a+2D+global+optimization-based+Bayesian+peptide+detection+algorithm+for+liquid+chromatograph-mass+spectrometry&rft.jtitle=Bioinformatics+%28Oxford%2C+England%29&rft.au=Sun%2C+Youting&rft.au=Zhang%2C+Jianqiu&rft.au=Braga-Neto%2C+Ulisses&rft.au=Dougherty%2C+Edward+R&rft.date=2012-02-15&rft.issn=1367-4811&rft.eissn=1367-4811&rft.volume=28&rft.issue=4&rft.spage=564&rft_id=info:doi/10.1093%2Fbioinformatics%2Fbtr675&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1367-4803&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1367-4803&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1367-4803&client=summon