Subject-specific and group-based running pattern classification using a single wearable sensor
The objective of this study was to determine whether subject-specific or group-based models provided better classification accuracy to identify changes in biomechanical running gait patterns across different inclination conditions. The classification process was based on measurements from a single w...
Saved in:
Published in | Journal of biomechanics Vol. 84; pp. 227 - 233 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Ltd
14.02.2019
Elsevier Limited |
Subjects | |
Online Access | Get full text |
ISSN | 0021-9290 1873-2380 1873-2380 |
DOI | 10.1016/j.jbiomech.2019.01.001 |
Cover
Summary: | The objective of this study was to determine whether subject-specific or group-based models provided better classification accuracy to identify changes in biomechanical running gait patterns across different inclination conditions. The classification process was based on measurements from a single wearable sensor using a total of 41,780 strides from eleven recreational runners while running in real-world and uncontrolled environment. Biomechanical variables included pelvic drop, ground contact time, braking, vertical oscillation of pelvis, pelvic rotation, and cadence were recorded during running on three inclination grades: downhill, −2° to −7°; level, −0.2° to +0.2°; and uphill, +2° to +7°. An ensemble and non-linear machine learning algorithm, random forest (RF), was used to classify inclination condition and determine the importance of each of the biomechanical variables. Classification accuracy was determined for subject-specific and group-based RF models. The mean classification accuracy of all subject-specific RF models was 86.29%, while group-based classification accuracy was 76.17%. Braking was identified as the most important variable for all the runners using the group-based model and for most of the runners based on a subject-specific models. In addition, individual runners used different strategies across different inclination conditions and the ranked order of variable importance was unique for each runner. These results demonstrate that subject-specific models can better characterize changes in gait biomechanical patterns compared to a more traditional group-based approach. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 0021-9290 1873-2380 1873-2380 |
DOI: | 10.1016/j.jbiomech.2019.01.001 |