Hybrid feature selection algorithm using symmetrical uncertainty and a harmony search algorithm

Microarray technology can be used as an efficient diagnostic system to recognise diseases such as tumours or to discriminate between different types of cancers in normal tissues. This technology has received increasing attention from the bioinformatics community because of its potential in designing...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of systems science Vol. 47; no. 6; pp. 1312 - 1329
Main Authors Shreem, Salam Salameh, Abdullah, Salwani, Nazri, Mohd Zakree Ahmad
Format Journal Article
LanguageEnglish
Published Taylor & Francis 25.04.2016
Subjects
Online AccessGet full text
ISSN0020-7721
1464-5319
DOI10.1080/00207721.2014.924600

Cover

Abstract Microarray technology can be used as an efficient diagnostic system to recognise diseases such as tumours or to discriminate between different types of cancers in normal tissues. This technology has received increasing attention from the bioinformatics community because of its potential in designing powerful decision-making tools for cancer diagnosis. However, the presence of thousands or tens of thousands of genes affects the predictive accuracy of this technology from the perspective of classification. Thus, a key issue in microarray data is identifying or selecting the smallest possible set of genes from the input data that can achieve good predictive accuracy for classification. In this work, we propose a two-stage selection algorithm for gene selection problems in microarray data-sets called the symmetrical uncertainty filter and harmony search algorithm wrapper (SU-HSA). Experimental results show that the SU-HSA is better than HSA in isolation for all data-sets in terms of the accuracy and achieves a lower number of genes on 6 out of 10 instances. Furthermore, the comparison with state-of-the-art methods shows that our proposed approach is able to obtain 5 (out of 10) new best results in terms of the number of selected genes and competitive results in terms of the classification accuracy.
AbstractList Microarray technology can be used as an efficient diagnostic system to recognise diseases such as tumours or to discriminate between different types of cancers in normal tissues. This technology has received increasing attention from the bioinformatics community because of its potential in designing powerful decision-making tools for cancer diagnosis. However, the presence of thousands or tens of thousands of genes affects the predictive accuracy of this technology from the perspective of classification. Thus, a key issue in microarray data is identifying or selecting the smallest possible set of genes from the input data that can achieve good predictive accuracy for classification. In this work, we propose a two-stage selection algorithm for gene selection problems in microarray data-sets called the symmetrical uncertainty filter and harmony search algorithm wrapper (SU-HSA). Experimental results show that the SU-HSA is better than HSA in isolation for all data-sets in terms of the accuracy and achieves a lower number of genes on 6 out of 10 instances. Furthermore, the comparison with state-of-the-art methods shows that our proposed approach is able to obtain 5 (out of 10) new best results in terms of the number of selected genes and competitive results in terms of the classification accuracy.
Author Abdullah, Salwani
Shreem, Salam Salameh
Nazri, Mohd Zakree Ahmad
Author_xml – sequence: 1
  givenname: Salam Salameh
  surname: Shreem
  fullname: Shreem, Salam Salameh
  organization: Universiti Kebangsaan Malaysia
– sequence: 2
  givenname: Salwani
  surname: Abdullah
  fullname: Abdullah, Salwani
  email: salwani@ukm.edu.my
  organization: Universiti Kebangsaan Malaysia
– sequence: 3
  givenname: Mohd Zakree Ahmad
  surname: Nazri
  fullname: Nazri, Mohd Zakree Ahmad
  organization: Universiti Kebangsaan Malaysia
BookMark eNqFkEGL1TAQgIOs4NvVf-AhRy99TtK0efUisqgrLHjRc5imyb5ImqyTFOm_t-Upggc9DQPfNzDfNbtKOTnGXgo4CjjBawAJWktxlCDUcZCqB3jCDkL1qulaMVyxw440O_OMXZfyDQC6TsKBmbt1pDBx77Au5Hhx0dkacuIYHzKFep75UkJ64GWdZ1cpWIx8SdZRxZDqyjFNHPkZac5p3Xwke_4jP2dPPcbiXvyaN-zrh_dfbu-a-88fP92-u2-sOkFtxs5j2_Wg-7H3OPlWTJNsO9TdeOrlqJzelkGLvtPayQ3pUbfjgO3ovLKbe8NeXe4-Uv6-uFLNHIp1MWJyeSlG6KGVCkDoDX1zQS3lUsh5Y0PF_edKGKIRYPaq5ndVs1c1l6qbrP6SHynMSOv_tLcXLSSfacYfmeJkKq4xkydMNhTT_vPCTyfRkbk
CitedBy_id crossref_primary_10_1080_19942060_2019_1683076
crossref_primary_10_1016_j_asoc_2020_106994
crossref_primary_10_1016_j_chemolab_2022_104573
crossref_primary_10_3390_sym13101812
crossref_primary_10_1016_j_knosys_2023_110635
crossref_primary_10_1155_2022_3397972
crossref_primary_10_1109_JBHI_2017_2769711
crossref_primary_10_4018_IJIIT_289966
crossref_primary_10_1186_s12859_021_04443_7
crossref_primary_10_1016_j_eswa_2021_115882
crossref_primary_10_1016_j_jhydrol_2019_03_092
crossref_primary_10_1080_00207721_2015_1086931
crossref_primary_10_1016_j_imu_2020_100408
crossref_primary_10_1088_1757_899X_671_1_012013
crossref_primary_10_3390_w12020385
crossref_primary_10_2166_wcc_2022_399
crossref_primary_10_1088_1742_6596_1192_1_012038
crossref_primary_10_1080_0952813X_2019_1647561
crossref_primary_10_1109_ACCESS_2021_3098808
crossref_primary_10_3390_diagnostics13040708
crossref_primary_10_1109_ACCESS_2020_3029890
crossref_primary_10_1007_s11063_023_11159_7
crossref_primary_10_1007_s13721_021_00313_7
crossref_primary_10_1007_s00704_019_02948_z
crossref_primary_10_3390_sym14101955
crossref_primary_10_1016_j_atmosres_2018_07_008
crossref_primary_10_1016_j_atmosres_2019_104632
crossref_primary_10_1109_ACCESS_2019_2922987
crossref_primary_10_1016_j_atmosres_2020_105061
crossref_primary_10_1007_s12559_022_10022_6
crossref_primary_10_3390_w10121793
crossref_primary_10_3390_atmos12121597
crossref_primary_10_3390_su142114238
crossref_primary_10_1155_2022_1928343
crossref_primary_10_1016_j_neucom_2022_04_083
crossref_primary_10_3390_cancers15133411
crossref_primary_10_1007_s00216_021_03813_7
crossref_primary_10_1080_20476965_2021_1966324
crossref_primary_10_3390_app122211795
crossref_primary_10_3233_IDA_173720
crossref_primary_10_1109_ACCESS_2019_2942413
crossref_primary_10_1016_j_atmosres_2018_06_006
crossref_primary_10_1016_j_jher_2020_05_002
Cites_doi 10.1007/978-3-642-00185-7_12
10.1016/j.advwatres.2009.03.003
10.1016/S1088-467X(97)00008-5
10.1016/j.patrec.2010.12.016
10.1016/j.patrec.2008.11.012
10.1007/978-1-4615-5689-3
10.1016/j.amc.2006.11.033
10.1016/j.ins.2012.12.043
10.1093/bib/bbp035
10.1080/03052150701618153
10.1089/cmb.2007.0211
10.1177/003754970107600201
10.1016/j.cor.2009.02.010
10.1016/j.eswa.2013.12.021
10.1016/j.amc.2007.12.058
10.1080/03052150802449227
10.1016/j.neucom.2009.07.014
10.1016/j.knosys.2010.03.016
10.1016/j.applthermaleng.2008.05.018
10.1016/j.ins.2011.09.005
10.1016/j.eswa.2011.04.165
10.1016/j.ins.2012.07.025
10.1016/S0004-3702(97)00043-X
10.1007/978-3-540-74819-9_46
10.1016/j.ijepes.2007.06.006
10.1016/j.advwatres.2007.05.009
10.1016/j.patcog.2005.11.001
10.1007/978-3-642-03450-3
10.1007/978-3-642-04317-8_13
10.1073/pnas.102102699
10.1109/TSG.2012.2237420
10.1007/s10115-010-0288-x
10.1016/S0031-3203(01)00046-2
10.1016/j.ijepes.2012.05.068
10.1016/j.ins.2012.03.005
10.1016/j.compstruc.2004.01.002
10.1109/ISSPIT.2009.5407590
10.1016/j.knosys.2012.10.001
10.1093/bioinformatics/bth267
10.1016/j.eswa.2011.01.050
10.1016/j.amc.2013.12.139
10.1016/j.compstruc.2014.02.001
10.1016/S0304-3975(97)00115-1
10.1016/j.patcog.2007.02.007
10.1016/j.compbiomed.2011.02.004
ContentType Journal Article
Copyright 2014 Taylor & Francis 2014
Copyright_xml – notice: 2014 Taylor & Francis 2014
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1080/00207721.2014.924600
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1464-5319
EndPage 1329
ExternalDocumentID 10_1080_00207721_2014_924600
924600
Genre Article
GroupedDBID -~X
.7F
.DC
.QJ
0BK
0R~
29J
30N
4.4
5GY
5VS
8VB
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACNCT
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EBS
EJD
E~A
E~B
F5P
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
M4Z
MS~
NA5
NX~
O9-
P2P
QWB
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TNC
TTHFI
TUROJ
TWF
UT5
UU3
ZGOLN
ZL0
~02
~S~
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c480t-b5fa356076b6fadf31dd235a75b862b4e735a9716577e26fa6a73b9a3bef4cfa3
ISSN 0020-7721
IngestDate Thu Sep 04 16:36:52 EDT 2025
Wed Oct 01 01:42:23 EDT 2025
Thu Apr 24 22:54:00 EDT 2025
Mon Oct 20 23:30:26 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c480t-b5fa356076b6fadf31dd235a75b862b4e735a9716577e26fa6a73b9a3bef4cfa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1793240017
PQPubID 23500
PageCount 18
ParticipantIDs crossref_citationtrail_10_1080_00207721_2014_924600
crossref_primary_10_1080_00207721_2014_924600
informaworld_taylorfrancis_310_1080_00207721_2014_924600
proquest_miscellaneous_1793240017
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-04-25
PublicationDateYYYYMMDD 2016-04-25
PublicationDate_xml – month: 04
  year: 2016
  text: 2016-04-25
  day: 25
PublicationDecade 2010
PublicationTitle International journal of systems science
PublicationYear 2016
Publisher Taylor & Francis
Publisher_xml – name: Taylor & Francis
References cit0033
cit0034
cit0032
cit0030
cit0039
cit0038
Geem Z.W. (cit0026) 2007
cit0035
cit0036
cit0022
cit0023
cit0020
cit0062
Agrawal R. (cit0001) 2007; 1
cit0060
Alia O.M. (cit0004) 2010; 4
Lin S.W. (cit0040) 2012; 16
Al-Betar M.A. (cit0002) 2008; 194
cit0028
cit0029
cit0024
cit0025
cit0055
cit0012
cit0056
cit0053
cit0010
cit0051
cit0052
cit0050
Geem Z. (cit0027) 2007; 4448
Chuang L.Y. (cit0014) 2011; 19
Alia O. (cit0005) 2009
cit0017
cit0018
cit0059
cit0016
cit0013
Talbi E.G. (cit0054) 2008
cit0057
cit0058
cit0044
cit0045
cit0042
cit0043
cit0041
cit0008
cit0009
cit0006
cit0007
cit0049
cit0046
cit0003
cit0047
References_xml – ident: cit0047
  doi: 10.1007/978-3-642-00185-7_12
– ident: cit0055
  doi: 10.1016/j.advwatres.2009.03.003
– ident: cit0018
  doi: 10.1016/S1088-467X(97)00008-5
– ident: cit0010
  doi: 10.1016/j.patrec.2010.12.016
– ident: cit0059
  doi: 10.1016/j.patrec.2008.11.012
– ident: cit0041
  doi: 10.1007/978-1-4615-5689-3
– ident: cit0044
  doi: 10.1016/j.amc.2006.11.033
– year: 2008
  ident: cit0054
  publication-title: In International Conference on Computer Systems and Applications (pp 45–52). Doha: IEEE
– ident: cit0057
  doi: 10.1016/j.ins.2012.12.043
– ident: cit0020
  doi: 10.1093/bib/bbp035
– volume: 194
  start-page: 1
  issue: 1
  year: 2008
  ident: cit0002
  publication-title: Annals of Operations Research
– ident: cit0012
  doi: 10.1080/03052150701618153
– ident: cit0013
  doi: 10.1089/cmb.2007.0211
– ident: cit0030
  doi: 10.1177/003754970107600201
– ident: cit0042
  doi: 10.1016/j.cor.2009.02.010
– volume: 19
  start-page: 1
  issue: 1
  year: 2011
  ident: cit0014
  publication-title: Journal of Computational Biology
– ident: cit0038
  doi: 10.1016/j.eswa.2013.12.021
– ident: cit0043
  doi: 10.1016/j.amc.2007.12.058
– ident: cit0029
  doi: 10.1080/03052150802449227
– ident: cit0034
  doi: 10.1016/j.neucom.2009.07.014
– ident: cit0051
  doi: 10.1016/j.knosys.2010.03.016
– ident: cit0024
  doi: 10.1016/j.applthermaleng.2008.05.018
– ident: cit0022
  doi: 10.1016/j.ins.2011.09.005
– volume: 4
  start-page: 1
  issue: 1
  year: 2010
  ident: cit0004
  publication-title: Evolutionary Intelligence
– ident: cit0017
  doi: 10.1016/j.eswa.2011.04.165
– ident: cit0025
  doi: 10.1016/j.ins.2012.07.025
– ident: cit0035
  doi: 10.1016/S0004-3702(97)00043-X
– start-page: 371
  year: 2007
  ident: cit0026
  publication-title: In Apolloni, B., Howlett, R. and Jain, L. (Eds.), Knowledge-Based Intelligent Information and Engineering Systems (pp.
  doi: 10.1007/978-3-540-74819-9_46
– ident: cit0056
  doi: 10.1016/j.ijepes.2007.06.006
– ident: cit0009
  doi: 10.1016/j.advwatres.2007.05.009
– volume: 16
  start-page: 63
  issue: 1
  year: 2012
  ident: cit0040
  publication-title: Soft Computing – A Fusion of Foundations, Methodologies and Applications
– ident: cit0050
  doi: 10.1016/j.patcog.2005.11.001
– ident: cit0028
  doi: 10.1007/978-3-642-03450-3
– ident: cit0003
  doi: 10.1007/978-3-642-04317-8_13
– ident: cit0008
  doi: 10.1073/pnas.102102699
– ident: cit0046
  doi: 10.1109/TSG.2012.2237420
– ident: cit0023
  doi: 10.1007/s10115-010-0288-x
– ident: cit0060
  doi: 10.1016/S0031-3203(01)00046-2
– ident: cit0052
  doi: 10.1016/j.ijepes.2012.05.068
– volume: 4448
  start-page: 593
  year: 2007
  ident: cit0027
  publication-title: Applications of Evolutionary Computing
– volume: 1
  start-page: 196
  issue: 4
  year: 2007
  ident: cit0001
  publication-title: International Journal of Computer, Information Science and Engineering
– ident: cit0058
  doi: 10.1016/j.ins.2012.03.005
– ident: cit0036
  doi: 10.1016/j.compstruc.2004.01.002
– ident: cit0006
  doi: 10.1109/ISSPIT.2009.5407590
– ident: cit0053
  doi: 10.1016/j.knosys.2012.10.001
– ident: cit0039
  doi: 10.1093/bioinformatics/bth267
– ident: cit0049
  doi: 10.1016/j.eswa.2011.01.050
– ident: cit0033
  doi: 10.1016/j.amc.2013.12.139
– ident: cit0045
  doi: 10.1016/j.compstruc.2014.02.001
– ident: cit0007
  doi: 10.1016/S0304-3975(97)00115-1
– ident: cit0062
  doi: 10.1016/j.patcog.2007.02.007
– ident: cit0032
– year: 2009
  ident: cit0005
  publication-title: In TENCON 2009–2009 IEEE region 10 conference (pp. 1–6). Singapore: IEEE
– ident: cit0016
  doi: 10.1016/j.compbiomed.2011.02.004
SSID ssj0005520
Score 2.3320167
Snippet Microarray technology can be used as an efficient diagnostic system to recognise diseases such as tumours or to discriminate between different types of cancers...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1312
SubjectTerms Algorithms
Bioinformatics
Cancer
Classification
Communities
feature selection
filter
Genes
harmony search
microarray
Search algorithms
Uncertainty
wrapper
Title Hybrid feature selection algorithm using symmetrical uncertainty and a harmony search algorithm
URI https://www.tandfonline.com/doi/abs/10.1080/00207721.2014.924600
https://www.proquest.com/docview/1793240017
Volume 47
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: aylor and Francis Online
  customDbUrl:
  mediaType: online
  eissn: 1464-5319
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005520
  issn: 0020-7721
  databaseCode: AHDZW
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAWR
  databaseName: Taylor & Francis Science and Technology Library-DRAA
  customDbUrl:
  eissn: 1464-5319
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005520
  issn: 0020-7721
  databaseCode: 30N
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.tandfonline.com/page/title-lists
  providerName: Taylor & Francis
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdK9wIPiE8xvmQkxEuUKYkdJ3usYFOFtvHSimovlp04FLEkg6ZC3X_Bf8xd7KSpNsHgxWoiO1F9v_jO57vfEfI2FKkCxWf8VIWpzwWDb44b7XMT6jAyBYs0ugZOz8R0zj8u4sVo9GsQtbRu9EF2dWNeyf9IFe6BXDFL9h8k2z8UbsBvkC-0IGFobyXj6QbzrbzCtOyc3qqtadPGF198qWHXvyy9desLWG3KEktnoUBAkdkwgMZSLykP2avrauM5D0g_eGi47noOB3wTlgp65TlV2ntsACOmtD5nAJ1tTe97nugc9r5q6Tr8VNXX3i2trmz2-2m9zL1z9Q0e5E2WpcqHHopQ4GGLzWbuMwYCtOIthoxdaLngPn7_w5XYcm86xA2X1ZC5WGvjLq2X5Nry38VLRgG-DgP3-AFsMEUQbNVdd8R_9kkez09O5OxoMXt3-d3HQmR4YO-qstwhexEoimBM9ibTD-eft3FDseP6dH-qy8dEwvYbXrxj7-yw4V7T_q1JM3tA7ru9CJ1YYD0kI1M9IvcGDJWPibQQow5itIcY7VFCW4jRAcToAGIUIEYVdRCjFmLbwU_I_Pho9n7qu5ocfsbToPF1XCgGVnIitChUXrAwzyMWqyTWsDfW3CRwgbRkcZKYCLoIlTB9qJg2Bc9g7FMyrurKPCM0UiYRRVqADRxx5IzSKmWJzmEDkR-KTO8T1s2czBxhPdZNuZBhz2tr51vifEs73_vE70ddWsKWv_RPh0KRTesoK2xVG8n-PPRNJ0AJizKetKnK1OuVRK2Hwdlh8vwWfV6Qu9vP5iUZNz_W5hWYuo1-7cD3G5KhqmE
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZ4DMDAG_HGSKypmthxwogQqDzaqZXYLDuxAdGmqE2H8Ou5ixOgIECCMbLPcmyf787-_B0hJ76IFRg-48XKjz0uGOgcN9rjxtd-YCwLNB4NtDui1ePXd2GNJhxXsEqMoa0jiij3alRuPIyuIXH4hLsJXiGGdz5vQAQBVnuWzIfg62MSA9bsvKM8woqZEaIkFKlfz33TypR1muIu_bJXlwbocoXouusOd_LUmOS6kbx8YnX817-tkuXKPaVnbj2tkRmTrZOlD6SFG0S2CnzlRa0pOUHpuMykA9NLVf9-OHrMHwYU0fT3dFwMBpiwC5YBBfPpwAd5QaFzVFHkzB5mBXW69i68SXqXF93zllelafASHjdzT4dWMXCcIqGFVallfpoGLFRRqCFc0txE8IFMVWEUmQCqCBUxfaqYNpYnILtF5rJhZrYJDZSJhI0tuEUBRxohrSCA1in4lOmpSPQOYfX0yKTiMMdUGn3pv1GduuGTOHzSDd8O8d6knh2Hxy_1448zL_Py7MS6RCeS_Sx6XK8SCXqKly8qM8PJWOJGiHhdP9r9e_NHZKHVbd_K26vOzR5ZhBKBN1tBuE_m8tHEHICDlOvDUgVeAZ0LAqI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI5gSAgOvBFvgsS109qkaXdEwDReEweQuEVJmwzE1k2sO4xfj92sbIAACY5V6yhN4thOPn8m5NgXsQLDZ7xY-bHHBQOd40Z73PjaD4xlgcajgZuWaN7zy4fwYSqLH2GVGENbRxRR7NWo3P3Ulog4zOCugVOI0Z3PqxBAgNGeJXMCL8UwiaPWmoA8wjExIwRJKFImz33Tygfj9IG69MtWXdifxjJRZc8d7OS5Osx1NXn9ROr4n19bIUtj55SeuNW0SmZMtkYWpygL14lsjjDHi1pTMILSQVFHByaXqk679_KUP3YpYunbdDDqdrFcFywCCsbTQQ_yEYW-UUWRMbuXjajTtInwBrlvnN-dNr1xkQYv4XEt93RoFQO3KRJaWJVa5qdpwEIVhRqCJc1NBA_IUxVGkQngE6EipuuKaWN5ArKbpJL1MrNFaKBMJGxswSkKOJIIaQXhs07Bo0zrItHbhJWzI5MxgzkW0uhI_53o1A2fxOGTbvi2ifcu1XcMHr98H09PvMyLkxPrypxI9rPoUblIJGgpXr2ozPSGA4nbIKJ1_Wjn780fkvnbs4a8vmhd7ZIFeCHwWisI90glfxmaffCOcn1QKMAbZRYBRg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+feature+selection+algorithm+using+symmetrical+uncertainty+and+a+harmony+search+algorithm&rft.jtitle=International+journal+of+systems+science&rft.au=Shreem%2C+Salam+Salameh&rft.au=Abdullah%2C+Salwani&rft.au=Nazri%2C+Mohd+Zakree+Ahmad&rft.date=2016-04-25&rft.issn=0020-7721&rft.eissn=1464-5319&rft.volume=47&rft.issue=6&rft.spage=1312&rft.epage=1329&rft_id=info:doi/10.1080%2F00207721.2014.924600&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0020-7721&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0020-7721&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0020-7721&client=summon