Functional Implications and Ubiquitin-Dependent Degradation of the Peptide Transporter Ptr2 in Saccharomyces cerevisiae
The peptide transporter Ptr2 plays a central role in di- or tripeptide import in Saccharomyces cerevisiae . Although PTR2 transcription has been extensively analyzed in terms of upregulation by the Ubr1-Cup9 circuit, the structural and functional information for this transporter is limited. Here we...
Saved in:
Published in | Eukaryotic cell Vol. 13; no. 11; pp. 1380 - 1392 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Society for Microbiology
01.11.2014
|
Subjects | |
Online Access | Get full text |
ISSN | 1535-9778 1535-9786 1535-9786 |
DOI | 10.1128/EC.00094-14 |
Cover
Abstract | The peptide transporter Ptr2 plays a central role in di- or tripeptide import in
Saccharomyces cerevisiae
. Although
PTR2
transcription has been extensively analyzed in terms of upregulation by the Ubr1-Cup9 circuit, the structural and functional information for this transporter is limited. Here we identified 14 amino acid residues required for peptide import through Ptr2 based on the crystallographic information of
Streptococcus thermophilus
peptide transporter PepT
st
and based on the conservation of primary sequences among the proton-dependent oligopeptide transporters (POTs). Expression of Ptr2 carrying one of the 14 mutations of which the corresponding residues of PepT
st
are involved in peptide recognition, salt bridge interaction, or peptide translocation failed to enable
ptr2
Δ
trp1
cell growth in alanyl-tryptophan (Ala-Trp) medium. We observed that Ptr2 underwent rapid degradation after cycloheximide treatment (half-life, approximately 1 h), and this degradation depended on Rsp5 ubiquitin ligase. The ubiquitination of Ptr2 most likely occurs at the N-terminal lysines 16, 27, and 34. Simultaneous substitution of arginine for the three lysines fully prevented Ptr2 degradation. Ptr2 mutants of the presumed peptide-binding site (E92Q, R93K, K205R, W362L, and E480D) exhibited severe defects in peptide import and were subjected to Rsp5-dependent degradation when cells were moved to Ala-Trp medium, whereas, similar to what occurs in the wild-type Ptr2, mutant proteins of the intracellular gate were upregulated. These results suggest that Ptr2 undergoes quality control and the defects in peptide binding and the concomitant conformational change render Ptr2 subject to efficient ubiquitination and subsequent degradation. |
---|---|
AbstractList | The peptide transporter Ptr2 plays a central role in di- or tripeptide import in Saccharomyces cerevisiae. Although PTR2 transcription has been extensively analyzed in terms of upregulation by the Ubr1-Cup9 circuit, the structural and functional information for this transporter is limited. Here we identified 14 amino acid residues required for peptide import through Ptr2 based on the crystallographic information of Streptococcus thermophilus peptide transporter PepTst and based on the conservation of primary sequences among the proton-dependent oligopeptide transporters (POTs). Expression of Ptr2 carrying one of the 14 mutations of which the corresponding residues of PepTst are involved in peptide recognition, salt bridge interaction, or peptide translocation failed to enable ptr2Δtrp1 cell growth in alanyl-tryptophan (Ala-Trp) medium. We observed that Ptr2 underwent rapid degradation after cycloheximide treatment (half-life, approximately 1 h), and this degradation depended on Rsp5 ubiquitin ligase. The ubiquitination of Ptr2 most likely occurs at the N-terminal lysines 16, 27, and 34. Simultaneous substitution of arginine for the three lysines fully prevented Ptr2 degradation. Ptr2 mutants of the presumed peptide-binding site (E92Q, R93K, K205R, W362L, and E480D) exhibited severe defects in peptide import and were subjected to Rsp5-dependent degradation when cells were moved to Ala-Trp medium, whereas, similar to what occurs in the wild-type Ptr2, mutant proteins of the intracellular gate were upregulated. These results suggest that Ptr2 undergoes quality control and the defects in peptide binding and the concomitant conformational change render Ptr2 subject to efficient ubiquitination and subsequent degradation. The peptide transporter Ptr2 plays a central role in di- or tripeptide import in Saccharomyces cerevisiae. Although PTR2 transcription has been extensively analyzed in terms of upregulation by the Ubr1-Cup9 circuit, the structural and functional information for this transporter is limited. Here we identified 14 amino acid residues required for peptide import through Ptr2 based on the crystallographic information of Streptococcus thermophilus peptide transporter PepTst and based on the conservation of primary sequences among the proton-dependent oligopeptide transporters (POTs). Expression of Ptr2 carrying one of the 14 mutations of which the corresponding residues of PepTst are involved in peptide recognition, salt bridge interaction, or peptide translocation failed to enable ptr2Δtrp1 cell growth in alanyl-tryptophan (Ala-Trp) medium. We observed that Ptr2 underwent rapid degradation after cycloheximide treatment (half-life, approximately 1 h), and this degradation depended on Rsp5 ubiquitin ligase. The ubiquitination of Ptr2 most likely occurs at the N-terminal lysines 16, 27, and 34. Simultaneous substitution of arginine for the three lysines fully prevented Ptr2 degradation. Ptr2 mutants of the presumed peptide-binding site (E92Q, R93K, K205R, W362L, and E480D) exhibited severe defects in peptide import and were subjected to Rsp5-dependent degradation when cells were moved to Ala-Trp medium, whereas, similar to what occurs in the wild-type Ptr2, mutant proteins of the intracellular gate were upregulated. These results suggest that Ptr2 undergoes quality control and the defects in peptide binding and the concomitant conformational change render Ptr2 subject to efficient ubiquitination and subsequent degradation.The peptide transporter Ptr2 plays a central role in di- or tripeptide import in Saccharomyces cerevisiae. Although PTR2 transcription has been extensively analyzed in terms of upregulation by the Ubr1-Cup9 circuit, the structural and functional information for this transporter is limited. Here we identified 14 amino acid residues required for peptide import through Ptr2 based on the crystallographic information of Streptococcus thermophilus peptide transporter PepTst and based on the conservation of primary sequences among the proton-dependent oligopeptide transporters (POTs). Expression of Ptr2 carrying one of the 14 mutations of which the corresponding residues of PepTst are involved in peptide recognition, salt bridge interaction, or peptide translocation failed to enable ptr2Δtrp1 cell growth in alanyl-tryptophan (Ala-Trp) medium. We observed that Ptr2 underwent rapid degradation after cycloheximide treatment (half-life, approximately 1 h), and this degradation depended on Rsp5 ubiquitin ligase. The ubiquitination of Ptr2 most likely occurs at the N-terminal lysines 16, 27, and 34. Simultaneous substitution of arginine for the three lysines fully prevented Ptr2 degradation. Ptr2 mutants of the presumed peptide-binding site (E92Q, R93K, K205R, W362L, and E480D) exhibited severe defects in peptide import and were subjected to Rsp5-dependent degradation when cells were moved to Ala-Trp medium, whereas, similar to what occurs in the wild-type Ptr2, mutant proteins of the intracellular gate were upregulated. These results suggest that Ptr2 undergoes quality control and the defects in peptide binding and the concomitant conformational change render Ptr2 subject to efficient ubiquitination and subsequent degradation. The peptide transporter Ptr2 plays a central role in di- or tripeptide import in Saccharomyces cerevisiae . Although PTR2 transcription has been extensively analyzed in terms of upregulation by the Ubr1-Cup9 circuit, the structural and functional information for this transporter is limited. Here we identified 14 amino acid residues required for peptide import through Ptr2 based on the crystallographic information of Streptococcus thermophilus peptide transporter PepT st and based on the conservation of primary sequences among the proton-dependent oligopeptide transporters (POTs). Expression of Ptr2 carrying one of the 14 mutations of which the corresponding residues of PepT st are involved in peptide recognition, salt bridge interaction, or peptide translocation failed to enable ptr2 Δ trp1 cell growth in alanyl-tryptophan (Ala-Trp) medium. We observed that Ptr2 underwent rapid degradation after cycloheximide treatment (half-life, approximately 1 h), and this degradation depended on Rsp5 ubiquitin ligase. The ubiquitination of Ptr2 most likely occurs at the N-terminal lysines 16, 27, and 34. Simultaneous substitution of arginine for the three lysines fully prevented Ptr2 degradation. Ptr2 mutants of the presumed peptide-binding site (E92Q, R93K, K205R, W362L, and E480D) exhibited severe defects in peptide import and were subjected to Rsp5-dependent degradation when cells were moved to Ala-Trp medium, whereas, similar to what occurs in the wild-type Ptr2, mutant proteins of the intracellular gate were upregulated. These results suggest that Ptr2 undergoes quality control and the defects in peptide binding and the concomitant conformational change render Ptr2 subject to efficient ubiquitination and subsequent degradation. The peptide transporter Ptr2 plays a central role in di- or tripeptide import in Saccharomyces cerevisiae. Although PTR2 transcription has been extensively analyzed in terms of upregulation by the Ubr1-Cup9 circuit, the structural and functional information for this transporter is limited. Here we identified 14 amino acid residues required for peptide import through Ptr2 based on the crystallographic information of Streptococcus thermophilus peptide transporter PepTst and based on the conservation of primary sequences among the proton-dependent oligopeptide transporters (POTs). Expression of Ptr2 carrying one of the 14 mutations of which the corresponding residues of PepTst are involved in peptide recognition, salt bridge interaction, or peptide translocation failed to enable ptr2 Delta trp1 cell growth in alanyl-tryptophan (Ala-Trp) medium. We observed that Ptr2 underwent rapid degradation after cycloheximide treatment (half-life, approximately 1 h), and this degradation depended on Rsp5 ubiquitin ligase. The ubiquitination of Ptr2 most likely occurs at the N-terminal lysines 16, 27, and 34. Simultaneous substitution of arginine for the three lysines fully prevented Ptr2 degradation. Ptr2 mutants of the presumed peptide-binding site (E92Q, R93K, K205R, W362L, and E480D) exhibited severe defects in peptide import and were subjected to Rsp5-dependent degradation when cells were moved to Ala-Trp medium, whereas, similar to what occurs in the wild-type Ptr2, mutant proteins of the intracellular gate were upregulated. These results suggest that Ptr2 undergoes quality control and the defects in peptide binding and the concomitant conformational change render Ptr2 subject to efficient ubiquitination and subsequent degradation. |
Author | Uemura, Satoshi Kawai, Ken Moriya, Atsuto Abe, Fumiyoshi |
Author_xml | – sequence: 1 givenname: Ken surname: Kawai fullname: Kawai, Ken organization: Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, Sagamihara, Japan – sequence: 2 givenname: Atsuto surname: Moriya fullname: Moriya, Atsuto organization: Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, Sagamihara, Japan – sequence: 3 givenname: Satoshi surname: Uemura fullname: Uemura, Satoshi organization: Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, Sagamihara, Japan – sequence: 4 givenname: Fumiyoshi surname: Abe fullname: Abe, Fumiyoshi organization: Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, Sagamihara, Japan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25172766$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkc1r3DAQxUVJaT7aU-9Fx0JxqrEly7oUymaTBgINNDkLWR5nVWzJkeSE_Pd1NsnSlh56mhnmN495vEOy54NHQt4DOwYom8_r1TFjTPEC-CtyAKIShZJNvbfrZbNPDlP6yRgIJas3ZL8UIEtZ1wfk_nT2NrvgzUDPx2lw1jxOiRrf0evW3c4uO1-c4IS-Q5_pCd5E020hGnqaN0gvccquQ3oVjU9TiBkjvcyxpM7TH8bajYlhfLCYqMWIdy45g2_J694MCd891yNyfbq-Wn0rLr6fna--XhSWNywXrSg73rScG6GYlV2DzFYS-m4x3ou2qaFvpWJ1j4YhB2mVEm1vKlCm5A1X1RH58qQ7ze2InV0sRDPoKbrRxAcdjNN_brzb6Jtwp_lyL5lYBD4-C8RwO2PKenTJ4jAYj2FOGupKsJKrWv0HCqqCWgBb0A-_v7X75yWYBfj0BNgYUorY7xBg-jF2vV7pbewa-ELDX7R1eZvR4skN_7z5BVt9sTs |
CitedBy_id | crossref_primary_10_1111_jam_14577 crossref_primary_10_1074_mcp_M116_064923 crossref_primary_10_1111_boc_202000137 crossref_primary_10_1093_bbb_zbab028 crossref_primary_10_1371_journal_pbio_3000512 crossref_primary_10_3390_ijms20030515 crossref_primary_10_1016_j_bbrep_2022_101221 crossref_primary_10_1016_j_bbamcr_2016_11_030 crossref_primary_10_1080_09168451_2018_1433994 crossref_primary_10_3390_ijms23094988 crossref_primary_10_1038_s41467_018_07734_5 crossref_primary_10_1111_gtc_13174 crossref_primary_10_1080_08957959_2018_1556650 crossref_primary_10_1002_yea_3137 crossref_primary_10_1128_mbio_00981_24 crossref_primary_10_1080_08957959_2019_1610747 |
Cites_doi | 10.1128/mmbr.61.1.17-32.1997 10.1007/s00253-010-3001-9 10.1091/mbc.E06-06-0506 10.1006/jmbi.1993.1626 10.1091/mbc.E10-10-0800 10.1128/MMBR.62.1.1-34.1998 10.1111/j.2042-7158.1997.tb06115.x 10.1016/S0014-5793(03)00265-5 10.1263/jbb.105.360 10.1093/genetics/158.3.973 10.1002/yea.320060502 10.1083/jcb.146.6.1227 10.1007/BF00334772 10.1016/0378-1119(88)90185-0 10.1271/bbb.67.278 10.15252/embr.201338403 10.1038/35014629 10.1007/s00253-007-0855-6 10.1128/MCB.23.21.7566-7584.2003 10.1006/bbrc.1998.8628 10.1111/tra.12039 10.1128/EC.00257-06 10.1046/j.1365-2958.1998.00931.x 10.1074/jbc.M102945200 10.1080/713816114 10.1042/BST0391353 10.1021/mp034001k 10.1021/bi4004638 10.1271/bbb.65.72 10.1111/j.1365-2958.1995.tb02310.x 10.2174/1389450033491028 10.1128/EC.05253-11 10.1038/emboj.2012.157 10.1152/physiol.00054.2005 10.1080/09687860500093248 10.1038/ncomms3502 10.1128/EC.00049-13 10.1016/j.mam.2012.11.003 10.1038/emboj.2010.309 10.1046/j.1365-2958.2001.02627.x 10.1073/pnas.1301079110 10.1006/bbrc.2001.5697 10.1021/js980090u 10.1111/j.1476-5381.1995.tb15958.x 10.1093/bioinformatics/18.9.1250 10.1099/mic.0.29055-0 10.1073/pnas.0808891105 10.1128/MCB.21.3.814-826.2001 10.1074/jbc.M803980200 10.1128/mcb.14.1.104-115.1994 10.1093/nar/gki390 10.1016/j.tibs.2013.01.003 10.1093/emboj/17.1.269 |
ContentType | Journal Article |
Copyright | Copyright © 2014, American Society for Microbiology. All Rights Reserved. Copyright © 2014, American Society for Microbiology. All Rights Reserved. 2014 American Society for Microbiology |
Copyright_xml | – notice: Copyright © 2014, American Society for Microbiology. All Rights Reserved. – notice: Copyright © 2014, American Society for Microbiology. All Rights Reserved. 2014 American Society for Microbiology |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 M7N 5PM |
DOI | 10.1128/EC.00094-14 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Algology Mycology and Protozoology Abstracts (Microbiology C) PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Algology Mycology and Protozoology Abstracts (Microbiology C) |
DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef Algology Mycology and Protozoology Abstracts (Microbiology C) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Zoology Biology |
EISSN | 1535-9786 |
EndPage | 1392 |
ExternalDocumentID | PMC4248705 25172766 10_1128_EC_00094_14 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- 0R~ 18M 29G 2WC 4.4 53G 5GY 5VS AAFWJ AAGFI AAYXX ACGFO ADBBV ADXHL AENEX ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BTFSW C1A CITATION CS3 DIK DU5 E3Z EBS EJD F5P FRP GX1 H13 HYE HZ~ KQ8 O9- OK1 P2P RHI RNS RPM RSF TR2 W8F WHG WOQ CGR CUY CVF ECM EIF NPM 7X8 M7N 5PM |
ID | FETCH-LOGICAL-c480t-b52d48b44a590c7d8e0c371fd128f5b861fb7906fea0e417c995bfa319a248493 |
ISSN | 1535-9778 1535-9786 |
IngestDate | Thu Aug 21 18:32:43 EDT 2025 Fri Jul 11 06:51:05 EDT 2025 Fri Jul 11 13:37:12 EDT 2025 Thu Apr 03 07:07:38 EDT 2025 Tue Jul 01 01:19:57 EDT 2025 Thu Apr 24 23:01:54 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 11 |
Language | English |
License | Copyright © 2014, American Society for Microbiology. All Rights Reserved. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c480t-b52d48b44a590c7d8e0c371fd128f5b861fb7906fea0e417c995bfa319a248493 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://ec.asm.org/content/eukcell/13/11/1380.full.pdf |
PMID | 25172766 |
PQID | 1619316510 |
PQPubID | 23479 |
PageCount | 13 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4248705 proquest_miscellaneous_1635024969 proquest_miscellaneous_1619316510 pubmed_primary_25172766 crossref_primary_10_1128_EC_00094_14 crossref_citationtrail_10_1128_EC_00094_14 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-11-00 2014-Nov 20141101 |
PublicationDateYYYYMMDD | 2014-11-01 |
PublicationDate_xml | – month: 11 year: 2014 text: 2014-11-00 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: 1752 N St., N.W., Washington, DC |
PublicationTitle | Eukaryotic cell |
PublicationTitleAlternate | Eukaryot Cell |
PublicationYear | 2014 |
Publisher | American Society for Microbiology |
Publisher_xml | – name: American Society for Microbiology |
References | e_1_3_2_26_2 e_1_3_2_49_2 e_1_3_2_28_2 e_1_3_2_41_2 e_1_3_2_20_2 e_1_3_2_43_2 e_1_3_2_22_2 DeLano W (e_1_3_2_37_2) 2002 e_1_3_2_45_2 e_1_3_2_24_2 e_1_3_2_47_2 e_1_3_2_9_2 e_1_3_2_16_2 e_1_3_2_7_2 e_1_3_2_18_2 e_1_3_2_39_2 e_1_3_2_54_2 e_1_3_2_10_2 e_1_3_2_31_2 e_1_3_2_52_2 e_1_3_2_5_2 e_1_3_2_12_2 e_1_3_2_33_2 e_1_3_2_3_2 e_1_3_2_14_2 e_1_3_2_35_2 e_1_3_2_50_2 e_1_3_2_27_2 e_1_3_2_48_2 e_1_3_2_29_2 e_1_3_2_40_2 e_1_3_2_21_2 e_1_3_2_42_2 e_1_3_2_23_2 e_1_3_2_44_2 e_1_3_2_25_2 e_1_3_2_46_2 e_1_3_2_15_2 e_1_3_2_38_2 e_1_3_2_8_2 e_1_3_2_17_2 e_1_3_2_6_2 e_1_3_2_19_2 e_1_3_2_30_2 e_1_3_2_53_2 e_1_3_2_32_2 e_1_3_2_51_2 e_1_3_2_11_2 e_1_3_2_34_2 e_1_3_2_4_2 e_1_3_2_13_2 e_1_3_2_36_2 e_1_3_2_55_2 e_1_3_2_2_2 11679080 - Mol Microbiol. 2001 Oct;42(1):215-28 12217917 - Bioinformatics. 2002 Sep;18(9):1250-6 9379359 - J Pharm Pharmacol. 1997 Aug;49(8):796-801 2220072 - Yeast. 1990 Sep-Oct;6(5):363-6 22659829 - EMBO J. 2012 Aug 15;31(16):3411-21 16885415 - Mol Biol Cell. 2006 Oct;17(10):4411-9 10850718 - Nature. 2000 Jun 1;405(6786):579-83 11587526 - Biochem Biophys Res Commun. 2001 Oct 12;287(5):1045-50 9701822 - Mol Microbiol. 1998 Jul;29(1):297-310 9106362 - Microbiol Mol Biol Rev. 1997 Mar;61(1):17-32 17005992 - Microbiology. 2006 Oct;152(Pt 10):3133-45 9610386 - Biochem Biophys Res Commun. 1998 May 19;246(2):470-5 23506874 - Mol Aspects Med. 2013 Apr-Jun;34(2-3):323-36 16565475 - Physiology (Bethesda). 2006 Apr;21:93-102 8680738 - Br J Pharmacol. 1995 Dec;116(7):3021-7 3073106 - Gene. 1988 Dec 30;74(2):527-34 15980472 - Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W289-94 21471002 - Mol Biol Cell. 2011 Jun 1;22(11):1919-29 11154269 - Mol Cell Biol. 2001 Feb;21(3):814-26 16096264 - Mol Membr Biol. 2005 May-Jun;22(3):215-27 12816347 - Curr Drug Targets. 2003 Jul;4(5):373-88 1782673 - Curr Genet. 1991 Dec;20(6):457-63 21936814 - Biochem Soc Trans. 2011 Oct;39(5):1353-8 10491387 - J Cell Biol. 1999 Sep 20;146(6):1227-38 21103987 - Appl Microbiol Biotechnol. 2011 Mar;89(6):1971-7 9529885 - Microbiol Mol Biol Rev. 1998 Mar;62(1):1-34 23305501 - Traffic. 2013 Apr;14(4):412-27 11396605 - Mol Membr Biol. 2001 Jan-Mar;18(1):105-12 17505771 - Appl Microbiol Biotechnol. 2007 Jun;75(3):533-7 11454748 - Genetics. 2001 Jul;158(3):973-88 22226946 - Eukaryot Cell. 2012 Mar;11(3):302-10 11272848 - Biosci Biotechnol Biochem. 2001 Jan;65(1):72-8 12681509 - FEBS Lett. 2003 Apr 10;540(1-3):206-10 24060756 - Nat Commun. 2013;4:2502 14560004 - Mol Cell Biol. 2003 Nov;23(21):7566-84 12728986 - Biosci Biotechnol Biochem. 2003 Feb;67(2):278-83 24916388 - EMBO Rep. 2014 Aug;15(8):886-93 18708352 - J Biol Chem. 2008 Oct 24;283(43):28958-68 9811478 - J Pharm Sci. 1998 Nov;87(11):1286-91 21131908 - EMBO J. 2011 Jan 19;30(2):417-26 15832502 - Mol Pharm. 2004 Jan 12;1(1):67-76 17693598 - Eukaryot Cell. 2007 Oct;6(10):1805-13 23798427 - Proc Natl Acad Sci U S A. 2013 Jul 9;110(28):11343-8 11500494 - J Biol Chem. 2001 Nov 23;276(47):43949-57 23768406 - Biochemistry. 2013 Jun 25;52(25):4296-307 23403214 - Trends Biochem Sci. 2013 Mar;38(3):151-9 19033468 - Proc Natl Acad Sci U S A. 2008 Dec 9;105(49):19188-93 9427760 - EMBO J. 1998 Jan 2;17(1):269-77 18499052 - J Biosci Bioeng. 2008 Apr;105(4):360-6 8254673 - J Mol Biol. 1993 Dec 5;234(3):779-815 23666621 - Eukaryot Cell. 2013 Jul;12(7):990-7 8264579 - Mol Cell Biol. 1994 Jan;14(1):104-15 7476181 - Mol Microbiol. 1995 Jun;16(5):825-34 |
References_xml | – ident: e_1_3_2_51_2 doi: 10.1128/mmbr.61.1.17-32.1997 – ident: e_1_3_2_12_2 doi: 10.1007/s00253-010-3001-9 – ident: e_1_3_2_53_2 doi: 10.1091/mbc.E06-06-0506 – ident: e_1_3_2_35_2 doi: 10.1006/jmbi.1993.1626 – ident: e_1_3_2_54_2 doi: 10.1091/mbc.E10-10-0800 – ident: e_1_3_2_5_2 doi: 10.1128/MMBR.62.1.1-34.1998 – ident: e_1_3_2_15_2 doi: 10.1111/j.2042-7158.1997.tb06115.x – ident: e_1_3_2_9_2 doi: 10.1016/S0014-5793(03)00265-5 – ident: e_1_3_2_10_2 doi: 10.1263/jbb.105.360 – ident: e_1_3_2_23_2 doi: 10.1093/genetics/158.3.973 – ident: e_1_3_2_31_2 doi: 10.1002/yea.320060502 – ident: e_1_3_2_43_2 doi: 10.1083/jcb.146.6.1227 – ident: e_1_3_2_50_2 doi: 10.1007/BF00334772 – ident: e_1_3_2_32_2 doi: 10.1016/0378-1119(88)90185-0 – ident: e_1_3_2_8_2 doi: 10.1271/bbb.67.278 – ident: e_1_3_2_45_2 doi: 10.15252/embr.201338403 – ident: e_1_3_2_26_2 doi: 10.1038/35014629 – ident: e_1_3_2_11_2 doi: 10.1007/s00253-007-0855-6 – ident: e_1_3_2_33_2 doi: 10.1128/MCB.23.21.7566-7584.2003 – ident: e_1_3_2_16_2 doi: 10.1006/bbrc.1998.8628 – ident: e_1_3_2_52_2 doi: 10.1111/tra.12039 – ident: e_1_3_2_46_2 doi: 10.1128/EC.00257-06 – ident: e_1_3_2_21_2 doi: 10.1046/j.1365-2958.1998.00931.x – ident: e_1_3_2_41_2 doi: 10.1074/jbc.M102945200 – ident: e_1_3_2_20_2 doi: 10.1080/713816114 – ident: e_1_3_2_4_2 doi: 10.1042/BST0391353 – ident: e_1_3_2_17_2 doi: 10.1021/mp034001k – ident: e_1_3_2_34_2 doi: 10.1021/bi4004638 – ident: e_1_3_2_7_2 doi: 10.1271/bbb.65.72 – ident: e_1_3_2_2_2 doi: 10.1111/j.1365-2958.1995.tb02310.x – ident: e_1_3_2_13_2 doi: 10.2174/1389450033491028 – ident: e_1_3_2_49_2 doi: 10.1128/EC.05253-11 – ident: e_1_3_2_29_2 doi: 10.1038/emboj.2012.157 – ident: e_1_3_2_3_2 doi: 10.1152/physiol.00054.2005 – ident: e_1_3_2_27_2 doi: 10.1080/09687860500093248 – ident: e_1_3_2_39_2 doi: 10.1038/ncomms3502 – ident: e_1_3_2_42_2 doi: 10.1128/EC.00049-13 – ident: e_1_3_2_18_2 doi: 10.1016/j.mam.2012.11.003 – ident: e_1_3_2_28_2 doi: 10.1038/emboj.2010.309 – ident: e_1_3_2_22_2 doi: 10.1046/j.1365-2958.2001.02627.x – ident: e_1_3_2_30_2 doi: 10.1073/pnas.1301079110 – ident: e_1_3_2_44_2 doi: 10.1006/bbrc.2001.5697 – ident: e_1_3_2_38_2 doi: 10.1021/js980090u – ident: e_1_3_2_14_2 doi: 10.1111/j.1476-5381.1995.tb15958.x – ident: e_1_3_2_36_2 doi: 10.1093/bioinformatics/18.9.1250 – ident: e_1_3_2_40_2 doi: 10.1099/mic.0.29055-0 – ident: e_1_3_2_48_2 doi: 10.1073/pnas.0808891105 – ident: e_1_3_2_24_2 doi: 10.1128/MCB.21.3.814-826.2001 – ident: e_1_3_2_47_2 doi: 10.1074/jbc.M803980200 – ident: e_1_3_2_19_2 doi: 10.1128/mcb.14.1.104-115.1994 – ident: e_1_3_2_55_2 doi: 10.1093/nar/gki390 – ident: e_1_3_2_6_2 doi: 10.1016/j.tibs.2013.01.003 – volume-title: The PyMOL user's manual year: 2002 ident: e_1_3_2_37_2 – ident: e_1_3_2_25_2 doi: 10.1093/emboj/17.1.269 – reference: 16565475 - Physiology (Bethesda). 2006 Apr;21:93-102 – reference: 8264579 - Mol Cell Biol. 1994 Jan;14(1):104-15 – reference: 11454748 - Genetics. 2001 Jul;158(3):973-88 – reference: 8254673 - J Mol Biol. 1993 Dec 5;234(3):779-815 – reference: 11272848 - Biosci Biotechnol Biochem. 2001 Jan;65(1):72-8 – reference: 22226946 - Eukaryot Cell. 2012 Mar;11(3):302-10 – reference: 23666621 - Eukaryot Cell. 2013 Jul;12(7):990-7 – reference: 23403214 - Trends Biochem Sci. 2013 Mar;38(3):151-9 – reference: 24916388 - EMBO Rep. 2014 Aug;15(8):886-93 – reference: 11679080 - Mol Microbiol. 2001 Oct;42(1):215-28 – reference: 21103987 - Appl Microbiol Biotechnol. 2011 Mar;89(6):1971-7 – reference: 21131908 - EMBO J. 2011 Jan 19;30(2):417-26 – reference: 22659829 - EMBO J. 2012 Aug 15;31(16):3411-21 – reference: 16096264 - Mol Membr Biol. 2005 May-Jun;22(3):215-27 – reference: 9106362 - Microbiol Mol Biol Rev. 1997 Mar;61(1):17-32 – reference: 11396605 - Mol Membr Biol. 2001 Jan-Mar;18(1):105-12 – reference: 12816347 - Curr Drug Targets. 2003 Jul;4(5):373-88 – reference: 10850718 - Nature. 2000 Jun 1;405(6786):579-83 – reference: 9427760 - EMBO J. 1998 Jan 2;17(1):269-77 – reference: 9811478 - J Pharm Sci. 1998 Nov;87(11):1286-91 – reference: 17693598 - Eukaryot Cell. 2007 Oct;6(10):1805-13 – reference: 21936814 - Biochem Soc Trans. 2011 Oct;39(5):1353-8 – reference: 15980472 - Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W289-94 – reference: 3073106 - Gene. 1988 Dec 30;74(2):527-34 – reference: 23506874 - Mol Aspects Med. 2013 Apr-Jun;34(2-3):323-36 – reference: 16885415 - Mol Biol Cell. 2006 Oct;17(10):4411-9 – reference: 9701822 - Mol Microbiol. 1998 Jul;29(1):297-310 – reference: 19033468 - Proc Natl Acad Sci U S A. 2008 Dec 9;105(49):19188-93 – reference: 9379359 - J Pharm Pharmacol. 1997 Aug;49(8):796-801 – reference: 23798427 - Proc Natl Acad Sci U S A. 2013 Jul 9;110(28):11343-8 – reference: 24060756 - Nat Commun. 2013;4:2502 – reference: 11587526 - Biochem Biophys Res Commun. 2001 Oct 12;287(5):1045-50 – reference: 11154269 - Mol Cell Biol. 2001 Feb;21(3):814-26 – reference: 9529885 - Microbiol Mol Biol Rev. 1998 Mar;62(1):1-34 – reference: 1782673 - Curr Genet. 1991 Dec;20(6):457-63 – reference: 7476181 - Mol Microbiol. 1995 Jun;16(5):825-34 – reference: 12728986 - Biosci Biotechnol Biochem. 2003 Feb;67(2):278-83 – reference: 15832502 - Mol Pharm. 2004 Jan 12;1(1):67-76 – reference: 9610386 - Biochem Biophys Res Commun. 1998 May 19;246(2):470-5 – reference: 18708352 - J Biol Chem. 2008 Oct 24;283(43):28958-68 – reference: 8680738 - Br J Pharmacol. 1995 Dec;116(7):3021-7 – reference: 17505771 - Appl Microbiol Biotechnol. 2007 Jun;75(3):533-7 – reference: 18499052 - J Biosci Bioeng. 2008 Apr;105(4):360-6 – reference: 14560004 - Mol Cell Biol. 2003 Nov;23(21):7566-84 – reference: 23305501 - Traffic. 2013 Apr;14(4):412-27 – reference: 21471002 - Mol Biol Cell. 2011 Jun 1;22(11):1919-29 – reference: 11500494 - J Biol Chem. 2001 Nov 23;276(47):43949-57 – reference: 23768406 - Biochemistry. 2013 Jun 25;52(25):4296-307 – reference: 17005992 - Microbiology. 2006 Oct;152(Pt 10):3133-45 – reference: 12217917 - Bioinformatics. 2002 Sep;18(9):1250-6 – reference: 12681509 - FEBS Lett. 2003 Apr 10;540(1-3):206-10 – reference: 2220072 - Yeast. 1990 Sep-Oct;6(5):363-6 – reference: 10491387 - J Cell Biol. 1999 Sep 20;146(6):1227-38 |
SSID | ssj0015973 |
Score | 2.1919534 |
Snippet | The peptide transporter Ptr2 plays a central role in di- or tripeptide import in
Saccharomyces cerevisiae
. Although
PTR2
transcription has been extensively... The peptide transporter Ptr2 plays a central role in di- or tripeptide import in Saccharomyces cerevisiae. Although PTR2 transcription has been extensively... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1380 |
SubjectTerms | Amino Acid Sequence Binding Sites - genetics Carrier Proteins - genetics Crystallography, X-Ray Cycloheximide - pharmacology Endosomal Sorting Complexes Required for Transport - metabolism Membrane Transport Proteins - genetics Membrane Transport Proteins - metabolism Membrane Transport Proteins - ultrastructure Protein Synthesis Inhibitors - pharmacology Protein Transport - genetics Saccharomyces cerevisiae Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - growth & development Saccharomyces cerevisiae - metabolism Saccharomyces cerevisiae Proteins - genetics Saccharomyces cerevisiae Proteins - metabolism Saccharomyces cerevisiae Proteins - ultrastructure Streptococcus thermophilus Streptococcus thermophilus - genetics Streptococcus thermophilus - metabolism Ubiquitin - metabolism Ubiquitin-Protein Ligase Complexes - metabolism Ubiquitination |
Title | Functional Implications and Ubiquitin-Dependent Degradation of the Peptide Transporter Ptr2 in Saccharomyces cerevisiae |
URI | https://www.ncbi.nlm.nih.gov/pubmed/25172766 https://www.proquest.com/docview/1619316510 https://www.proquest.com/docview/1635024969 https://pubmed.ncbi.nlm.nih.gov/PMC4248705 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1535-9786 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015973 issn: 1535-9778 databaseCode: KQ8 dateStart: 20020201 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1535-9786 dateEnd: 20151231 omitProxy: true ssIdentifier: ssj0015973 issn: 1535-9778 databaseCode: DIK dateStart: 20020101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1535-9786 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015973 issn: 1535-9778 databaseCode: GX1 dateStart: 20020101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1535-9786 dateEnd: 20151231 omitProxy: true ssIdentifier: ssj0015973 issn: 1535-9778 databaseCode: RPM dateStart: 20020101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9QwFA7DiuCLrPfxRoR9Urr2kqbto4yzrMLKgjuw-FKSNHWLTut2Wpb6P_y_njSZTroWWX0pIZNOaM_Xc8u5IHTAicgSwaQD0id0VEE5h7OIOzkPKE1iJtxMuQZOPtHjFfl4Hp7PZr-sqKW24Yfi52Reyf9QFeaAripL9h8oO_wpTMAY6AtXoDBcb0TjIxBKxpf3wY4MV87wFS8u26IpSue96XPbAHP5WrNsUBKVznmqoloyaRU5r9-cNrWv_CCfmVBJWdW6U2Fboo8I3hRsFDy0bL-xuqtU2Vd1BjDwb3Zl-lzvUs1OqrrotBu32bRNtZ1fyXXbdzuCDZtqc1HsjqR07HG7Lrph3ngoPGJS9WymGjqgZ2o-K-05UwZ7y4kDG3GexVe9QPd7MjIa1FZ_mv_7KqdhuTjsQyYdnZ86rrJ9TfoNMYm9NeTH6XKR9jenqj36LT-i1N86gczhFNhggS7Dqx_LpH3CzW-tnceKzh_Wy_UgXEurOdtHd405gt9pbN1DM1neR7d1g9IORl-qfvQAXe2whm2sYcAansAatrCGqxwD1rDBGrawhhXWcFHiEdbwDmsP0epoebY4dkzTDkeQ2G0cHvoZiTkhLExcEWWxdEUQeXkGrycPeUy9nEeJS3PJXEm8SCRJyHMGkoD5JCZJ8AjtlVUpnyCc5TkVsceolAwM8ygWIHzyJAoFpVnMyBy93r7hVJiK9qqxyvd0gpZzdDAs_qELuUwve7UlVQqMVn05rJRVu0nBNEoCj4IM-9uaIFQ1OGkyR481eYfNVG1AhaY5ikaEHxaoQu_jX8rioi_4TuDNRG749GaP8Azd2X2Fz9FeU7fyBWjODX_Z4_g3CfHH4w |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Functional+Implications+and+Ubiquitin-Dependent+Degradation+of+the+Peptide+Transporter+Ptr2+in+Saccharomyces+cerevisiae&rft.jtitle=Eukaryotic+cell&rft.au=Kawai%2C+Ken&rft.au=Moriya%2C+Atsuto&rft.au=Uemura%2C+Satoshi&rft.au=Abe%2C+Fumiyoshi&rft.date=2014-11-01&rft.issn=1535-9778&rft.eissn=1535-9786&rft.volume=13&rft.issue=11&rft.spage=1380&rft.epage=1392&rft_id=info:doi/10.1128%2FEC.00094-14&rft.externalDBID=n%2Fa&rft.externalDocID=10_1128_EC_00094_14 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1535-9778&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1535-9778&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1535-9778&client=summon |