Functional Implications and Ubiquitin-Dependent Degradation of the Peptide Transporter Ptr2 in Saccharomyces cerevisiae

The peptide transporter Ptr2 plays a central role in di- or tripeptide import in Saccharomyces cerevisiae . Although PTR2 transcription has been extensively analyzed in terms of upregulation by the Ubr1-Cup9 circuit, the structural and functional information for this transporter is limited. Here we...

Full description

Saved in:
Bibliographic Details
Published inEukaryotic cell Vol. 13; no. 11; pp. 1380 - 1392
Main Authors Kawai, Ken, Moriya, Atsuto, Uemura, Satoshi, Abe, Fumiyoshi
Format Journal Article
LanguageEnglish
Published United States American Society for Microbiology 01.11.2014
Subjects
Online AccessGet full text
ISSN1535-9778
1535-9786
1535-9786
DOI10.1128/EC.00094-14

Cover

Abstract The peptide transporter Ptr2 plays a central role in di- or tripeptide import in Saccharomyces cerevisiae . Although PTR2 transcription has been extensively analyzed in terms of upregulation by the Ubr1-Cup9 circuit, the structural and functional information for this transporter is limited. Here we identified 14 amino acid residues required for peptide import through Ptr2 based on the crystallographic information of Streptococcus thermophilus peptide transporter PepT st and based on the conservation of primary sequences among the proton-dependent oligopeptide transporters (POTs). Expression of Ptr2 carrying one of the 14 mutations of which the corresponding residues of PepT st are involved in peptide recognition, salt bridge interaction, or peptide translocation failed to enable ptr2 Δ trp1 cell growth in alanyl-tryptophan (Ala-Trp) medium. We observed that Ptr2 underwent rapid degradation after cycloheximide treatment (half-life, approximately 1 h), and this degradation depended on Rsp5 ubiquitin ligase. The ubiquitination of Ptr2 most likely occurs at the N-terminal lysines 16, 27, and 34. Simultaneous substitution of arginine for the three lysines fully prevented Ptr2 degradation. Ptr2 mutants of the presumed peptide-binding site (E92Q, R93K, K205R, W362L, and E480D) exhibited severe defects in peptide import and were subjected to Rsp5-dependent degradation when cells were moved to Ala-Trp medium, whereas, similar to what occurs in the wild-type Ptr2, mutant proteins of the intracellular gate were upregulated. These results suggest that Ptr2 undergoes quality control and the defects in peptide binding and the concomitant conformational change render Ptr2 subject to efficient ubiquitination and subsequent degradation.
AbstractList The peptide transporter Ptr2 plays a central role in di- or tripeptide import in Saccharomyces cerevisiae. Although PTR2 transcription has been extensively analyzed in terms of upregulation by the Ubr1-Cup9 circuit, the structural and functional information for this transporter is limited. Here we identified 14 amino acid residues required for peptide import through Ptr2 based on the crystallographic information of Streptococcus thermophilus peptide transporter PepTst and based on the conservation of primary sequences among the proton-dependent oligopeptide transporters (POTs). Expression of Ptr2 carrying one of the 14 mutations of which the corresponding residues of PepTst are involved in peptide recognition, salt bridge interaction, or peptide translocation failed to enable ptr2Δtrp1 cell growth in alanyl-tryptophan (Ala-Trp) medium. We observed that Ptr2 underwent rapid degradation after cycloheximide treatment (half-life, approximately 1 h), and this degradation depended on Rsp5 ubiquitin ligase. The ubiquitination of Ptr2 most likely occurs at the N-terminal lysines 16, 27, and 34. Simultaneous substitution of arginine for the three lysines fully prevented Ptr2 degradation. Ptr2 mutants of the presumed peptide-binding site (E92Q, R93K, K205R, W362L, and E480D) exhibited severe defects in peptide import and were subjected to Rsp5-dependent degradation when cells were moved to Ala-Trp medium, whereas, similar to what occurs in the wild-type Ptr2, mutant proteins of the intracellular gate were upregulated. These results suggest that Ptr2 undergoes quality control and the defects in peptide binding and the concomitant conformational change render Ptr2 subject to efficient ubiquitination and subsequent degradation.
The peptide transporter Ptr2 plays a central role in di- or tripeptide import in Saccharomyces cerevisiae. Although PTR2 transcription has been extensively analyzed in terms of upregulation by the Ubr1-Cup9 circuit, the structural and functional information for this transporter is limited. Here we identified 14 amino acid residues required for peptide import through Ptr2 based on the crystallographic information of Streptococcus thermophilus peptide transporter PepTst and based on the conservation of primary sequences among the proton-dependent oligopeptide transporters (POTs). Expression of Ptr2 carrying one of the 14 mutations of which the corresponding residues of PepTst are involved in peptide recognition, salt bridge interaction, or peptide translocation failed to enable ptr2Δtrp1 cell growth in alanyl-tryptophan (Ala-Trp) medium. We observed that Ptr2 underwent rapid degradation after cycloheximide treatment (half-life, approximately 1 h), and this degradation depended on Rsp5 ubiquitin ligase. The ubiquitination of Ptr2 most likely occurs at the N-terminal lysines 16, 27, and 34. Simultaneous substitution of arginine for the three lysines fully prevented Ptr2 degradation. Ptr2 mutants of the presumed peptide-binding site (E92Q, R93K, K205R, W362L, and E480D) exhibited severe defects in peptide import and were subjected to Rsp5-dependent degradation when cells were moved to Ala-Trp medium, whereas, similar to what occurs in the wild-type Ptr2, mutant proteins of the intracellular gate were upregulated. These results suggest that Ptr2 undergoes quality control and the defects in peptide binding and the concomitant conformational change render Ptr2 subject to efficient ubiquitination and subsequent degradation.The peptide transporter Ptr2 plays a central role in di- or tripeptide import in Saccharomyces cerevisiae. Although PTR2 transcription has been extensively analyzed in terms of upregulation by the Ubr1-Cup9 circuit, the structural and functional information for this transporter is limited. Here we identified 14 amino acid residues required for peptide import through Ptr2 based on the crystallographic information of Streptococcus thermophilus peptide transporter PepTst and based on the conservation of primary sequences among the proton-dependent oligopeptide transporters (POTs). Expression of Ptr2 carrying one of the 14 mutations of which the corresponding residues of PepTst are involved in peptide recognition, salt bridge interaction, or peptide translocation failed to enable ptr2Δtrp1 cell growth in alanyl-tryptophan (Ala-Trp) medium. We observed that Ptr2 underwent rapid degradation after cycloheximide treatment (half-life, approximately 1 h), and this degradation depended on Rsp5 ubiquitin ligase. The ubiquitination of Ptr2 most likely occurs at the N-terminal lysines 16, 27, and 34. Simultaneous substitution of arginine for the three lysines fully prevented Ptr2 degradation. Ptr2 mutants of the presumed peptide-binding site (E92Q, R93K, K205R, W362L, and E480D) exhibited severe defects in peptide import and were subjected to Rsp5-dependent degradation when cells were moved to Ala-Trp medium, whereas, similar to what occurs in the wild-type Ptr2, mutant proteins of the intracellular gate were upregulated. These results suggest that Ptr2 undergoes quality control and the defects in peptide binding and the concomitant conformational change render Ptr2 subject to efficient ubiquitination and subsequent degradation.
The peptide transporter Ptr2 plays a central role in di- or tripeptide import in Saccharomyces cerevisiae . Although PTR2 transcription has been extensively analyzed in terms of upregulation by the Ubr1-Cup9 circuit, the structural and functional information for this transporter is limited. Here we identified 14 amino acid residues required for peptide import through Ptr2 based on the crystallographic information of Streptococcus thermophilus peptide transporter PepT st and based on the conservation of primary sequences among the proton-dependent oligopeptide transporters (POTs). Expression of Ptr2 carrying one of the 14 mutations of which the corresponding residues of PepT st are involved in peptide recognition, salt bridge interaction, or peptide translocation failed to enable ptr2 Δ trp1 cell growth in alanyl-tryptophan (Ala-Trp) medium. We observed that Ptr2 underwent rapid degradation after cycloheximide treatment (half-life, approximately 1 h), and this degradation depended on Rsp5 ubiquitin ligase. The ubiquitination of Ptr2 most likely occurs at the N-terminal lysines 16, 27, and 34. Simultaneous substitution of arginine for the three lysines fully prevented Ptr2 degradation. Ptr2 mutants of the presumed peptide-binding site (E92Q, R93K, K205R, W362L, and E480D) exhibited severe defects in peptide import and were subjected to Rsp5-dependent degradation when cells were moved to Ala-Trp medium, whereas, similar to what occurs in the wild-type Ptr2, mutant proteins of the intracellular gate were upregulated. These results suggest that Ptr2 undergoes quality control and the defects in peptide binding and the concomitant conformational change render Ptr2 subject to efficient ubiquitination and subsequent degradation.
The peptide transporter Ptr2 plays a central role in di- or tripeptide import in Saccharomyces cerevisiae. Although PTR2 transcription has been extensively analyzed in terms of upregulation by the Ubr1-Cup9 circuit, the structural and functional information for this transporter is limited. Here we identified 14 amino acid residues required for peptide import through Ptr2 based on the crystallographic information of Streptococcus thermophilus peptide transporter PepTst and based on the conservation of primary sequences among the proton-dependent oligopeptide transporters (POTs). Expression of Ptr2 carrying one of the 14 mutations of which the corresponding residues of PepTst are involved in peptide recognition, salt bridge interaction, or peptide translocation failed to enable ptr2 Delta trp1 cell growth in alanyl-tryptophan (Ala-Trp) medium. We observed that Ptr2 underwent rapid degradation after cycloheximide treatment (half-life, approximately 1 h), and this degradation depended on Rsp5 ubiquitin ligase. The ubiquitination of Ptr2 most likely occurs at the N-terminal lysines 16, 27, and 34. Simultaneous substitution of arginine for the three lysines fully prevented Ptr2 degradation. Ptr2 mutants of the presumed peptide-binding site (E92Q, R93K, K205R, W362L, and E480D) exhibited severe defects in peptide import and were subjected to Rsp5-dependent degradation when cells were moved to Ala-Trp medium, whereas, similar to what occurs in the wild-type Ptr2, mutant proteins of the intracellular gate were upregulated. These results suggest that Ptr2 undergoes quality control and the defects in peptide binding and the concomitant conformational change render Ptr2 subject to efficient ubiquitination and subsequent degradation.
Author Uemura, Satoshi
Kawai, Ken
Moriya, Atsuto
Abe, Fumiyoshi
Author_xml – sequence: 1
  givenname: Ken
  surname: Kawai
  fullname: Kawai, Ken
  organization: Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, Sagamihara, Japan
– sequence: 2
  givenname: Atsuto
  surname: Moriya
  fullname: Moriya, Atsuto
  organization: Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, Sagamihara, Japan
– sequence: 3
  givenname: Satoshi
  surname: Uemura
  fullname: Uemura, Satoshi
  organization: Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, Sagamihara, Japan
– sequence: 4
  givenname: Fumiyoshi
  surname: Abe
  fullname: Abe, Fumiyoshi
  organization: Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, Sagamihara, Japan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25172766$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1r3DAQxUVJaT7aU-9Fx0JxqrEly7oUymaTBgINNDkLWR5nVWzJkeSE_Pd1NsnSlh56mhnmN495vEOy54NHQt4DOwYom8_r1TFjTPEC-CtyAKIShZJNvbfrZbNPDlP6yRgIJas3ZL8UIEtZ1wfk_nT2NrvgzUDPx2lw1jxOiRrf0evW3c4uO1-c4IS-Q5_pCd5E020hGnqaN0gvccquQ3oVjU9TiBkjvcyxpM7TH8bajYlhfLCYqMWIdy45g2_J694MCd891yNyfbq-Wn0rLr6fna--XhSWNywXrSg73rScG6GYlV2DzFYS-m4x3ou2qaFvpWJ1j4YhB2mVEm1vKlCm5A1X1RH58qQ7ze2InV0sRDPoKbrRxAcdjNN_brzb6Jtwp_lyL5lYBD4-C8RwO2PKenTJ4jAYj2FOGupKsJKrWv0HCqqCWgBb0A-_v7X75yWYBfj0BNgYUorY7xBg-jF2vV7pbewa-ELDX7R1eZvR4skN_7z5BVt9sTs
CitedBy_id crossref_primary_10_1111_jam_14577
crossref_primary_10_1074_mcp_M116_064923
crossref_primary_10_1111_boc_202000137
crossref_primary_10_1093_bbb_zbab028
crossref_primary_10_1371_journal_pbio_3000512
crossref_primary_10_3390_ijms20030515
crossref_primary_10_1016_j_bbrep_2022_101221
crossref_primary_10_1016_j_bbamcr_2016_11_030
crossref_primary_10_1080_09168451_2018_1433994
crossref_primary_10_3390_ijms23094988
crossref_primary_10_1038_s41467_018_07734_5
crossref_primary_10_1111_gtc_13174
crossref_primary_10_1080_08957959_2018_1556650
crossref_primary_10_1002_yea_3137
crossref_primary_10_1128_mbio_00981_24
crossref_primary_10_1080_08957959_2019_1610747
Cites_doi 10.1128/mmbr.61.1.17-32.1997
10.1007/s00253-010-3001-9
10.1091/mbc.E06-06-0506
10.1006/jmbi.1993.1626
10.1091/mbc.E10-10-0800
10.1128/MMBR.62.1.1-34.1998
10.1111/j.2042-7158.1997.tb06115.x
10.1016/S0014-5793(03)00265-5
10.1263/jbb.105.360
10.1093/genetics/158.3.973
10.1002/yea.320060502
10.1083/jcb.146.6.1227
10.1007/BF00334772
10.1016/0378-1119(88)90185-0
10.1271/bbb.67.278
10.15252/embr.201338403
10.1038/35014629
10.1007/s00253-007-0855-6
10.1128/MCB.23.21.7566-7584.2003
10.1006/bbrc.1998.8628
10.1111/tra.12039
10.1128/EC.00257-06
10.1046/j.1365-2958.1998.00931.x
10.1074/jbc.M102945200
10.1080/713816114
10.1042/BST0391353
10.1021/mp034001k
10.1021/bi4004638
10.1271/bbb.65.72
10.1111/j.1365-2958.1995.tb02310.x
10.2174/1389450033491028
10.1128/EC.05253-11
10.1038/emboj.2012.157
10.1152/physiol.00054.2005
10.1080/09687860500093248
10.1038/ncomms3502
10.1128/EC.00049-13
10.1016/j.mam.2012.11.003
10.1038/emboj.2010.309
10.1046/j.1365-2958.2001.02627.x
10.1073/pnas.1301079110
10.1006/bbrc.2001.5697
10.1021/js980090u
10.1111/j.1476-5381.1995.tb15958.x
10.1093/bioinformatics/18.9.1250
10.1099/mic.0.29055-0
10.1073/pnas.0808891105
10.1128/MCB.21.3.814-826.2001
10.1074/jbc.M803980200
10.1128/mcb.14.1.104-115.1994
10.1093/nar/gki390
10.1016/j.tibs.2013.01.003
10.1093/emboj/17.1.269
ContentType Journal Article
Copyright Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Copyright © 2014, American Society for Microbiology. All Rights Reserved. 2014 American Society for Microbiology
Copyright_xml – notice: Copyright © 2014, American Society for Microbiology. All Rights Reserved.
– notice: Copyright © 2014, American Society for Microbiology. All Rights Reserved. 2014 American Society for Microbiology
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
M7N
5PM
DOI 10.1128/EC.00094-14
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Algology Mycology and Protozoology Abstracts (Microbiology C)
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Algology Mycology and Protozoology Abstracts (Microbiology C)
DatabaseTitleList MEDLINE
MEDLINE - Academic
CrossRef

Algology Mycology and Protozoology Abstracts (Microbiology C)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Zoology
Biology
EISSN 1535-9786
EndPage 1392
ExternalDocumentID PMC4248705
25172766
10_1128_EC_00094_14
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
0R~
18M
29G
2WC
4.4
53G
5GY
5VS
AAFWJ
AAGFI
AAYXX
ACGFO
ADBBV
ADXHL
AENEX
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
C1A
CITATION
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
H13
HYE
HZ~
KQ8
O9-
OK1
P2P
RHI
RNS
RPM
RSF
TR2
W8F
WHG
WOQ
CGR
CUY
CVF
ECM
EIF
NPM
7X8
M7N
5PM
ID FETCH-LOGICAL-c480t-b52d48b44a590c7d8e0c371fd128f5b861fb7906fea0e417c995bfa319a248493
ISSN 1535-9778
1535-9786
IngestDate Thu Aug 21 18:32:43 EDT 2025
Fri Jul 11 06:51:05 EDT 2025
Fri Jul 11 13:37:12 EDT 2025
Thu Apr 03 07:07:38 EDT 2025
Tue Jul 01 01:19:57 EDT 2025
Thu Apr 24 23:01:54 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 11
Language English
License Copyright © 2014, American Society for Microbiology. All Rights Reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c480t-b52d48b44a590c7d8e0c371fd128f5b861fb7906fea0e417c995bfa319a248493
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://ec.asm.org/content/eukcell/13/11/1380.full.pdf
PMID 25172766
PQID 1619316510
PQPubID 23479
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4248705
proquest_miscellaneous_1635024969
proquest_miscellaneous_1619316510
pubmed_primary_25172766
crossref_primary_10_1128_EC_00094_14
crossref_citationtrail_10_1128_EC_00094_14
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-11-00
2014-Nov
20141101
PublicationDateYYYYMMDD 2014-11-01
PublicationDate_xml – month: 11
  year: 2014
  text: 2014-11-00
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: 1752 N St., N.W., Washington, DC
PublicationTitle Eukaryotic cell
PublicationTitleAlternate Eukaryot Cell
PublicationYear 2014
Publisher American Society for Microbiology
Publisher_xml – name: American Society for Microbiology
References e_1_3_2_26_2
e_1_3_2_49_2
e_1_3_2_28_2
e_1_3_2_41_2
e_1_3_2_20_2
e_1_3_2_43_2
e_1_3_2_22_2
DeLano W (e_1_3_2_37_2) 2002
e_1_3_2_45_2
e_1_3_2_24_2
e_1_3_2_47_2
e_1_3_2_9_2
e_1_3_2_16_2
e_1_3_2_7_2
e_1_3_2_18_2
e_1_3_2_39_2
e_1_3_2_54_2
e_1_3_2_10_2
e_1_3_2_31_2
e_1_3_2_52_2
e_1_3_2_5_2
e_1_3_2_12_2
e_1_3_2_33_2
e_1_3_2_3_2
e_1_3_2_14_2
e_1_3_2_35_2
e_1_3_2_50_2
e_1_3_2_27_2
e_1_3_2_48_2
e_1_3_2_29_2
e_1_3_2_40_2
e_1_3_2_21_2
e_1_3_2_42_2
e_1_3_2_23_2
e_1_3_2_44_2
e_1_3_2_25_2
e_1_3_2_46_2
e_1_3_2_15_2
e_1_3_2_38_2
e_1_3_2_8_2
e_1_3_2_17_2
e_1_3_2_6_2
e_1_3_2_19_2
e_1_3_2_30_2
e_1_3_2_53_2
e_1_3_2_32_2
e_1_3_2_51_2
e_1_3_2_11_2
e_1_3_2_34_2
e_1_3_2_4_2
e_1_3_2_13_2
e_1_3_2_36_2
e_1_3_2_55_2
e_1_3_2_2_2
11679080 - Mol Microbiol. 2001 Oct;42(1):215-28
12217917 - Bioinformatics. 2002 Sep;18(9):1250-6
9379359 - J Pharm Pharmacol. 1997 Aug;49(8):796-801
2220072 - Yeast. 1990 Sep-Oct;6(5):363-6
22659829 - EMBO J. 2012 Aug 15;31(16):3411-21
16885415 - Mol Biol Cell. 2006 Oct;17(10):4411-9
10850718 - Nature. 2000 Jun 1;405(6786):579-83
11587526 - Biochem Biophys Res Commun. 2001 Oct 12;287(5):1045-50
9701822 - Mol Microbiol. 1998 Jul;29(1):297-310
9106362 - Microbiol Mol Biol Rev. 1997 Mar;61(1):17-32
17005992 - Microbiology. 2006 Oct;152(Pt 10):3133-45
9610386 - Biochem Biophys Res Commun. 1998 May 19;246(2):470-5
23506874 - Mol Aspects Med. 2013 Apr-Jun;34(2-3):323-36
16565475 - Physiology (Bethesda). 2006 Apr;21:93-102
8680738 - Br J Pharmacol. 1995 Dec;116(7):3021-7
3073106 - Gene. 1988 Dec 30;74(2):527-34
15980472 - Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W289-94
21471002 - Mol Biol Cell. 2011 Jun 1;22(11):1919-29
11154269 - Mol Cell Biol. 2001 Feb;21(3):814-26
16096264 - Mol Membr Biol. 2005 May-Jun;22(3):215-27
12816347 - Curr Drug Targets. 2003 Jul;4(5):373-88
1782673 - Curr Genet. 1991 Dec;20(6):457-63
21936814 - Biochem Soc Trans. 2011 Oct;39(5):1353-8
10491387 - J Cell Biol. 1999 Sep 20;146(6):1227-38
21103987 - Appl Microbiol Biotechnol. 2011 Mar;89(6):1971-7
9529885 - Microbiol Mol Biol Rev. 1998 Mar;62(1):1-34
23305501 - Traffic. 2013 Apr;14(4):412-27
11396605 - Mol Membr Biol. 2001 Jan-Mar;18(1):105-12
17505771 - Appl Microbiol Biotechnol. 2007 Jun;75(3):533-7
11454748 - Genetics. 2001 Jul;158(3):973-88
22226946 - Eukaryot Cell. 2012 Mar;11(3):302-10
11272848 - Biosci Biotechnol Biochem. 2001 Jan;65(1):72-8
12681509 - FEBS Lett. 2003 Apr 10;540(1-3):206-10
24060756 - Nat Commun. 2013;4:2502
14560004 - Mol Cell Biol. 2003 Nov;23(21):7566-84
12728986 - Biosci Biotechnol Biochem. 2003 Feb;67(2):278-83
24916388 - EMBO Rep. 2014 Aug;15(8):886-93
18708352 - J Biol Chem. 2008 Oct 24;283(43):28958-68
9811478 - J Pharm Sci. 1998 Nov;87(11):1286-91
21131908 - EMBO J. 2011 Jan 19;30(2):417-26
15832502 - Mol Pharm. 2004 Jan 12;1(1):67-76
17693598 - Eukaryot Cell. 2007 Oct;6(10):1805-13
23798427 - Proc Natl Acad Sci U S A. 2013 Jul 9;110(28):11343-8
11500494 - J Biol Chem. 2001 Nov 23;276(47):43949-57
23768406 - Biochemistry. 2013 Jun 25;52(25):4296-307
23403214 - Trends Biochem Sci. 2013 Mar;38(3):151-9
19033468 - Proc Natl Acad Sci U S A. 2008 Dec 9;105(49):19188-93
9427760 - EMBO J. 1998 Jan 2;17(1):269-77
18499052 - J Biosci Bioeng. 2008 Apr;105(4):360-6
8254673 - J Mol Biol. 1993 Dec 5;234(3):779-815
23666621 - Eukaryot Cell. 2013 Jul;12(7):990-7
8264579 - Mol Cell Biol. 1994 Jan;14(1):104-15
7476181 - Mol Microbiol. 1995 Jun;16(5):825-34
References_xml – ident: e_1_3_2_51_2
  doi: 10.1128/mmbr.61.1.17-32.1997
– ident: e_1_3_2_12_2
  doi: 10.1007/s00253-010-3001-9
– ident: e_1_3_2_53_2
  doi: 10.1091/mbc.E06-06-0506
– ident: e_1_3_2_35_2
  doi: 10.1006/jmbi.1993.1626
– ident: e_1_3_2_54_2
  doi: 10.1091/mbc.E10-10-0800
– ident: e_1_3_2_5_2
  doi: 10.1128/MMBR.62.1.1-34.1998
– ident: e_1_3_2_15_2
  doi: 10.1111/j.2042-7158.1997.tb06115.x
– ident: e_1_3_2_9_2
  doi: 10.1016/S0014-5793(03)00265-5
– ident: e_1_3_2_10_2
  doi: 10.1263/jbb.105.360
– ident: e_1_3_2_23_2
  doi: 10.1093/genetics/158.3.973
– ident: e_1_3_2_31_2
  doi: 10.1002/yea.320060502
– ident: e_1_3_2_43_2
  doi: 10.1083/jcb.146.6.1227
– ident: e_1_3_2_50_2
  doi: 10.1007/BF00334772
– ident: e_1_3_2_32_2
  doi: 10.1016/0378-1119(88)90185-0
– ident: e_1_3_2_8_2
  doi: 10.1271/bbb.67.278
– ident: e_1_3_2_45_2
  doi: 10.15252/embr.201338403
– ident: e_1_3_2_26_2
  doi: 10.1038/35014629
– ident: e_1_3_2_11_2
  doi: 10.1007/s00253-007-0855-6
– ident: e_1_3_2_33_2
  doi: 10.1128/MCB.23.21.7566-7584.2003
– ident: e_1_3_2_16_2
  doi: 10.1006/bbrc.1998.8628
– ident: e_1_3_2_52_2
  doi: 10.1111/tra.12039
– ident: e_1_3_2_46_2
  doi: 10.1128/EC.00257-06
– ident: e_1_3_2_21_2
  doi: 10.1046/j.1365-2958.1998.00931.x
– ident: e_1_3_2_41_2
  doi: 10.1074/jbc.M102945200
– ident: e_1_3_2_20_2
  doi: 10.1080/713816114
– ident: e_1_3_2_4_2
  doi: 10.1042/BST0391353
– ident: e_1_3_2_17_2
  doi: 10.1021/mp034001k
– ident: e_1_3_2_34_2
  doi: 10.1021/bi4004638
– ident: e_1_3_2_7_2
  doi: 10.1271/bbb.65.72
– ident: e_1_3_2_2_2
  doi: 10.1111/j.1365-2958.1995.tb02310.x
– ident: e_1_3_2_13_2
  doi: 10.2174/1389450033491028
– ident: e_1_3_2_49_2
  doi: 10.1128/EC.05253-11
– ident: e_1_3_2_29_2
  doi: 10.1038/emboj.2012.157
– ident: e_1_3_2_3_2
  doi: 10.1152/physiol.00054.2005
– ident: e_1_3_2_27_2
  doi: 10.1080/09687860500093248
– ident: e_1_3_2_39_2
  doi: 10.1038/ncomms3502
– ident: e_1_3_2_42_2
  doi: 10.1128/EC.00049-13
– ident: e_1_3_2_18_2
  doi: 10.1016/j.mam.2012.11.003
– ident: e_1_3_2_28_2
  doi: 10.1038/emboj.2010.309
– ident: e_1_3_2_22_2
  doi: 10.1046/j.1365-2958.2001.02627.x
– ident: e_1_3_2_30_2
  doi: 10.1073/pnas.1301079110
– ident: e_1_3_2_44_2
  doi: 10.1006/bbrc.2001.5697
– ident: e_1_3_2_38_2
  doi: 10.1021/js980090u
– ident: e_1_3_2_14_2
  doi: 10.1111/j.1476-5381.1995.tb15958.x
– ident: e_1_3_2_36_2
  doi: 10.1093/bioinformatics/18.9.1250
– ident: e_1_3_2_40_2
  doi: 10.1099/mic.0.29055-0
– ident: e_1_3_2_48_2
  doi: 10.1073/pnas.0808891105
– ident: e_1_3_2_24_2
  doi: 10.1128/MCB.21.3.814-826.2001
– ident: e_1_3_2_47_2
  doi: 10.1074/jbc.M803980200
– ident: e_1_3_2_19_2
  doi: 10.1128/mcb.14.1.104-115.1994
– ident: e_1_3_2_55_2
  doi: 10.1093/nar/gki390
– ident: e_1_3_2_6_2
  doi: 10.1016/j.tibs.2013.01.003
– volume-title: The PyMOL user's manual
  year: 2002
  ident: e_1_3_2_37_2
– ident: e_1_3_2_25_2
  doi: 10.1093/emboj/17.1.269
– reference: 16565475 - Physiology (Bethesda). 2006 Apr;21:93-102
– reference: 8264579 - Mol Cell Biol. 1994 Jan;14(1):104-15
– reference: 11454748 - Genetics. 2001 Jul;158(3):973-88
– reference: 8254673 - J Mol Biol. 1993 Dec 5;234(3):779-815
– reference: 11272848 - Biosci Biotechnol Biochem. 2001 Jan;65(1):72-8
– reference: 22226946 - Eukaryot Cell. 2012 Mar;11(3):302-10
– reference: 23666621 - Eukaryot Cell. 2013 Jul;12(7):990-7
– reference: 23403214 - Trends Biochem Sci. 2013 Mar;38(3):151-9
– reference: 24916388 - EMBO Rep. 2014 Aug;15(8):886-93
– reference: 11679080 - Mol Microbiol. 2001 Oct;42(1):215-28
– reference: 21103987 - Appl Microbiol Biotechnol. 2011 Mar;89(6):1971-7
– reference: 21131908 - EMBO J. 2011 Jan 19;30(2):417-26
– reference: 22659829 - EMBO J. 2012 Aug 15;31(16):3411-21
– reference: 16096264 - Mol Membr Biol. 2005 May-Jun;22(3):215-27
– reference: 9106362 - Microbiol Mol Biol Rev. 1997 Mar;61(1):17-32
– reference: 11396605 - Mol Membr Biol. 2001 Jan-Mar;18(1):105-12
– reference: 12816347 - Curr Drug Targets. 2003 Jul;4(5):373-88
– reference: 10850718 - Nature. 2000 Jun 1;405(6786):579-83
– reference: 9427760 - EMBO J. 1998 Jan 2;17(1):269-77
– reference: 9811478 - J Pharm Sci. 1998 Nov;87(11):1286-91
– reference: 17693598 - Eukaryot Cell. 2007 Oct;6(10):1805-13
– reference: 21936814 - Biochem Soc Trans. 2011 Oct;39(5):1353-8
– reference: 15980472 - Nucleic Acids Res. 2005 Jul 1;33(Web Server issue):W289-94
– reference: 3073106 - Gene. 1988 Dec 30;74(2):527-34
– reference: 23506874 - Mol Aspects Med. 2013 Apr-Jun;34(2-3):323-36
– reference: 16885415 - Mol Biol Cell. 2006 Oct;17(10):4411-9
– reference: 9701822 - Mol Microbiol. 1998 Jul;29(1):297-310
– reference: 19033468 - Proc Natl Acad Sci U S A. 2008 Dec 9;105(49):19188-93
– reference: 9379359 - J Pharm Pharmacol. 1997 Aug;49(8):796-801
– reference: 23798427 - Proc Natl Acad Sci U S A. 2013 Jul 9;110(28):11343-8
– reference: 24060756 - Nat Commun. 2013;4:2502
– reference: 11587526 - Biochem Biophys Res Commun. 2001 Oct 12;287(5):1045-50
– reference: 11154269 - Mol Cell Biol. 2001 Feb;21(3):814-26
– reference: 9529885 - Microbiol Mol Biol Rev. 1998 Mar;62(1):1-34
– reference: 1782673 - Curr Genet. 1991 Dec;20(6):457-63
– reference: 7476181 - Mol Microbiol. 1995 Jun;16(5):825-34
– reference: 12728986 - Biosci Biotechnol Biochem. 2003 Feb;67(2):278-83
– reference: 15832502 - Mol Pharm. 2004 Jan 12;1(1):67-76
– reference: 9610386 - Biochem Biophys Res Commun. 1998 May 19;246(2):470-5
– reference: 18708352 - J Biol Chem. 2008 Oct 24;283(43):28958-68
– reference: 8680738 - Br J Pharmacol. 1995 Dec;116(7):3021-7
– reference: 17505771 - Appl Microbiol Biotechnol. 2007 Jun;75(3):533-7
– reference: 18499052 - J Biosci Bioeng. 2008 Apr;105(4):360-6
– reference: 14560004 - Mol Cell Biol. 2003 Nov;23(21):7566-84
– reference: 23305501 - Traffic. 2013 Apr;14(4):412-27
– reference: 21471002 - Mol Biol Cell. 2011 Jun 1;22(11):1919-29
– reference: 11500494 - J Biol Chem. 2001 Nov 23;276(47):43949-57
– reference: 23768406 - Biochemistry. 2013 Jun 25;52(25):4296-307
– reference: 17005992 - Microbiology. 2006 Oct;152(Pt 10):3133-45
– reference: 12217917 - Bioinformatics. 2002 Sep;18(9):1250-6
– reference: 12681509 - FEBS Lett. 2003 Apr 10;540(1-3):206-10
– reference: 2220072 - Yeast. 1990 Sep-Oct;6(5):363-6
– reference: 10491387 - J Cell Biol. 1999 Sep 20;146(6):1227-38
SSID ssj0015973
Score 2.1919534
Snippet The peptide transporter Ptr2 plays a central role in di- or tripeptide import in Saccharomyces cerevisiae . Although PTR2 transcription has been extensively...
The peptide transporter Ptr2 plays a central role in di- or tripeptide import in Saccharomyces cerevisiae. Although PTR2 transcription has been extensively...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1380
SubjectTerms Amino Acid Sequence
Binding Sites - genetics
Carrier Proteins - genetics
Crystallography, X-Ray
Cycloheximide - pharmacology
Endosomal Sorting Complexes Required for Transport - metabolism
Membrane Transport Proteins - genetics
Membrane Transport Proteins - metabolism
Membrane Transport Proteins - ultrastructure
Protein Synthesis Inhibitors - pharmacology
Protein Transport - genetics
Saccharomyces cerevisiae
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - growth & development
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae Proteins - genetics
Saccharomyces cerevisiae Proteins - metabolism
Saccharomyces cerevisiae Proteins - ultrastructure
Streptococcus thermophilus
Streptococcus thermophilus - genetics
Streptococcus thermophilus - metabolism
Ubiquitin - metabolism
Ubiquitin-Protein Ligase Complexes - metabolism
Ubiquitination
Title Functional Implications and Ubiquitin-Dependent Degradation of the Peptide Transporter Ptr2 in Saccharomyces cerevisiae
URI https://www.ncbi.nlm.nih.gov/pubmed/25172766
https://www.proquest.com/docview/1619316510
https://www.proquest.com/docview/1635024969
https://pubmed.ncbi.nlm.nih.gov/PMC4248705
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1535-9786
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015973
  issn: 1535-9778
  databaseCode: KQ8
  dateStart: 20020201
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1535-9786
  dateEnd: 20151231
  omitProxy: true
  ssIdentifier: ssj0015973
  issn: 1535-9778
  databaseCode: DIK
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1535-9786
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015973
  issn: 1535-9778
  databaseCode: GX1
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1535-9786
  dateEnd: 20151231
  omitProxy: true
  ssIdentifier: ssj0015973
  issn: 1535-9778
  databaseCode: RPM
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9QwFA7DiuCLrPfxRoR9Urr2kqbto4yzrMLKgjuw-FKSNHWLTut2Wpb6P_y_njSZTroWWX0pIZNOaM_Xc8u5IHTAicgSwaQD0id0VEE5h7OIOzkPKE1iJtxMuQZOPtHjFfl4Hp7PZr-sqKW24Yfi52Reyf9QFeaAripL9h8oO_wpTMAY6AtXoDBcb0TjIxBKxpf3wY4MV87wFS8u26IpSue96XPbAHP5WrNsUBKVznmqoloyaRU5r9-cNrWv_CCfmVBJWdW6U2Fboo8I3hRsFDy0bL-xuqtU2Vd1BjDwb3Zl-lzvUs1OqrrotBu32bRNtZ1fyXXbdzuCDZtqc1HsjqR07HG7Lrph3ngoPGJS9WymGjqgZ2o-K-05UwZ7y4kDG3GexVe9QPd7MjIa1FZ_mv_7KqdhuTjsQyYdnZ86rrJ9TfoNMYm9NeTH6XKR9jenqj36LT-i1N86gczhFNhggS7Dqx_LpH3CzW-tnceKzh_Wy_UgXEurOdtHd405gt9pbN1DM1neR7d1g9IORl-qfvQAXe2whm2sYcAansAatrCGqxwD1rDBGrawhhXWcFHiEdbwDmsP0epoebY4dkzTDkeQ2G0cHvoZiTkhLExcEWWxdEUQeXkGrycPeUy9nEeJS3PJXEm8SCRJyHMGkoD5JCZJ8AjtlVUpnyCc5TkVsceolAwM8ygWIHzyJAoFpVnMyBy93r7hVJiK9qqxyvd0gpZzdDAs_qELuUwve7UlVQqMVn05rJRVu0nBNEoCj4IM-9uaIFQ1OGkyR481eYfNVG1AhaY5ikaEHxaoQu_jX8rioi_4TuDNRG749GaP8Azd2X2Fz9FeU7fyBWjODX_Z4_g3CfHH4w
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Functional+Implications+and+Ubiquitin-Dependent+Degradation+of+the+Peptide+Transporter+Ptr2+in+Saccharomyces+cerevisiae&rft.jtitle=Eukaryotic+cell&rft.au=Kawai%2C+Ken&rft.au=Moriya%2C+Atsuto&rft.au=Uemura%2C+Satoshi&rft.au=Abe%2C+Fumiyoshi&rft.date=2014-11-01&rft.issn=1535-9778&rft.eissn=1535-9786&rft.volume=13&rft.issue=11&rft.spage=1380&rft.epage=1392&rft_id=info:doi/10.1128%2FEC.00094-14&rft.externalDBID=n%2Fa&rft.externalDocID=10_1128_EC_00094_14
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1535-9778&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1535-9778&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1535-9778&client=summon