MICRU: an effective cloud fraction algorithm designed for UV–vis satellite instruments with large viewing angles
Clouds impact the radiative transfer of the Earth's atmosphere and strongly influence satellite measurements in the ultraviolet–visible (UV–vis) and infrared (IR) spectral ranges. For satellite measurements of trace gases absorbing in the UV–vis spectral range, particularly clouds ultimately de...
Saved in:
| Published in | Atmospheric measurement techniques Vol. 14; no. 6; pp. 3989 - 4031 |
|---|---|
| Main Authors | , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Katlenburg-Lindau
Copernicus GmbH
02.06.2021
Copernicus Publications |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1867-8548 1867-1381 1867-8548 |
| DOI | 10.5194/amt-14-3989-2021 |
Cover
| Abstract | Clouds impact the radiative transfer of the Earth's atmosphere and strongly influence satellite measurements in the ultraviolet–visible (UV–vis) and infrared (IR) spectral ranges. For satellite measurements of trace gases absorbing in the UV–vis spectral range, particularly clouds ultimately determine the vertical sensitivity profile, mainly by reducing the sensitivity for trace-gas columns below the cloud. The Mainz iterative cloud retrieval utilities (MICRU) algorithm is specifically designed to reduce the error budget of trace-gas retrievals, such as those for nitrogen dioxide (NO2), which strongly depends on the accuracy of small cloud fractions (CFs) in particular. The accuracy of MICRU is governed by an empirical parameterisation of the viewing-geometry-dependent background surface reflectivity taking instrumental and physical effects into account. Instrumental effects are mainly degradation and polarisation effects; physical effects are due to the anisotropy of the surface reflectivity, e.g. shadowing of plants and sun glitter. MICRU is applied to main science channel (MSC) and polarisation measurement device (PMD) data collected between April 2007 and June 2013 by the Global Ozone Monitoring Experiment 2A (GOME-2A) instrument aboard the MetOp-A satellite. CFs are retrieved at different spectral bands between 374 and 758 nm. The MICRU results for MSC and PMD at different wavelengths are intercompared to study CF precision and accuracy, which depend on wavelength and spatial correlation. Furthermore, MICRU results are compared to FRESCO (fast retrieval scheme for clouds from the oxygen A band) and OCRA (optical cloud recognition algorithm) operational cloud products. We show that MICRU retrieves small CFs with an accuracy of 0.04 or better for the entire 1920 km wide swath with a potential bias between −0.01 and −0.03. CFs retrieved at shorter wavelengths are less affected by adverse surface heterogeneities. The comparison to the operational CF algorithms shows that MICRU significantly reduces the dependence on viewing angle, time, and sun glitter. Systematic effects along coasts are particularly small for MICRU due to its dedicated treatment of land and ocean surfaces. The MICRU algorithm is designed for spectroscopic instruments ranging from the GOME to Sentinel-5P/Tropospheric Monitoring Instrument (TROPOMI) but is also applicable to UV–vis imagers like the Advanced Very High Resolution Radiometer (AVHRR), the Moderate Resolution Imaging Spectroradiometer (MODIS), the Visible Infrared Imaging Radiometer Suite (VIIRS), and Sentinel-2. |
|---|---|
| AbstractList | Clouds impact the radiative transfer of the Earth's atmosphere and strongly influence satellite measurements in the ultraviolet-visible (UV-vis) and infrared (IR) spectral ranges. For satellite measurements of trace gases absorbing in the UV-vis spectral range, particularly clouds ultimately determine the vertical sensitivity profile, mainly by reducing the sensitivity for trace-gas columns below the cloud. Clouds impact the radiative transfer of the Earth's atmosphere and strongly influence satellite measurements in the ultraviolet-visible (UV-vis) and infrared (IR) spectral ranges. For satellite measurements of trace gases absorbing in the UV-vis spectral range, particularly clouds ultimately determine the vertical sensitivity profile, mainly by reducing the sensitivity for trace-gas columns below the cloud. The Mainz iterative cloud retrieval utilities (MICRU) algorithm is specifically designed to reduce the error budget of trace-gas retrievals, such as those for nitrogen dioxide (NO.sub.2 ), which strongly depends on the accuracy of small cloud fractions (CFs) in particular. The accuracy of MICRU is governed by an empirical parameterisation of the viewing-geometry-dependent background surface reflectivity taking instrumental and physical effects into account. Instrumental effects are mainly degradation and polarisation effects; physical effects are due to the anisotropy of the surface reflectivity, e.g. shadowing of plants and sun glitter. MICRU is applied to main science channel (MSC) and polarisation measurement device (PMD) data collected between April 2007 and June 2013 by the Global Ozone Monitoring Experiment 2A (GOME-2A) instrument aboard the MetOp-A satellite. CFs are retrieved at different spectral bands between 374 and 758 nm. The MICRU results for MSC and PMD at different wavelengths are intercompared to study CF precision and accuracy, which depend on wavelength and spatial correlation. Furthermore, MICRU results are compared to FRESCO (fast retrieval scheme for clouds from the oxygen A band) and OCRA (optical cloud recognition algorithm) operational cloud products. We show that MICRU retrieves small CFs with an accuracy of 0.04 or better for the entire 1920 km wide swath with a potential bias between -0.01 and -0.03. CFs retrieved at shorter wavelengths are less affected by adverse surface heterogeneities. The comparison to the operational CF algorithms shows that MICRU significantly reduces the dependence on viewing angle, time, and sun glitter. Systematic effects along coasts are particularly small for MICRU due to its dedicated treatment of land and ocean surfaces. The MICRU algorithm is designed for spectroscopic instruments ranging from the GOME to Sentinel-5P/Tropospheric Monitoring Instrument (TROPOMI) but is also applicable to UV-vis imagers like the Advanced Very High Resolution Radiometer (AVHRR), the Moderate Resolution Imaging Spectroradiometer (MODIS), the Visible Infrared Imaging Radiometer Suite (VIIRS), and Sentinel-2. Clouds impact the radiative transfer of the Earth's atmosphere and strongly influence satellite measurements in the ultraviolet–visible (UV–vis) and infrared (IR) spectral ranges. For satellite measurements of trace gases absorbing in the UV–vis spectral range, particularly clouds ultimately determine the vertical sensitivity profile, mainly by reducing the sensitivity for trace-gas columns below the cloud. The Mainz iterative cloud retrieval utilities (MICRU) algorithm is specifically designed to reduce the error budget of trace-gas retrievals, such as those for nitrogen dioxide (NO2), which strongly depends on the accuracy of small cloud fractions (CFs) in particular. The accuracy of MICRU is governed by an empirical parameterisation of the viewing-geometry-dependent background surface reflectivity taking instrumental and physical effects into account. Instrumental effects are mainly degradation and polarisation effects; physical effects are due to the anisotropy of the surface reflectivity, e.g. shadowing of plants and sun glitter. MICRU is applied to main science channel (MSC) and polarisation measurement device (PMD) data collected between April 2007 and June 2013 by the Global Ozone Monitoring Experiment 2A (GOME-2A) instrument aboard the MetOp-A satellite. CFs are retrieved at different spectral bands between 374 and 758 nm. The MICRU results for MSC and PMD at different wavelengths are intercompared to study CF precision and accuracy, which depend on wavelength and spatial correlation. Furthermore, MICRU results are compared to FRESCO (fast retrieval scheme for clouds from the oxygen A band) and OCRA (optical cloud recognition algorithm) operational cloud products. We show that MICRU retrieves small CFs with an accuracy of 0.04 or better for the entire 1920 km wide swath with a potential bias between −0.01 and −0.03. CFs retrieved at shorter wavelengths are less affected by adverse surface heterogeneities. The comparison to the operational CF algorithms shows that MICRU significantly reduces the dependence on viewing angle, time, and sun glitter. Systematic effects along coasts are particularly small for MICRU due to its dedicated treatment of land and ocean surfaces. The MICRU algorithm is designed for spectroscopic instruments ranging from the GOME to Sentinel-5P/Tropospheric Monitoring Instrument (TROPOMI) but is also applicable to UV–vis imagers like the Advanced Very High Resolution Radiometer (AVHRR), the Moderate Resolution Imaging Spectroradiometer (MODIS), the Visible Infrared Imaging Radiometer Suite (VIIRS), and Sentinel-2. Clouds impact the radiative transfer of the Earth's atmosphere and strongly influence satellite measurements in the ultraviolet–visible (UV–vis) and infrared (IR) spectral ranges. For satellite measurements of trace gases absorbing in the UV–vis spectral range, particularly clouds ultimately determine the vertical sensitivity profile, mainly by reducing the sensitivity for trace-gas columns below the cloud. The Mainz iterative cloud retrieval utilities (MICRU) algorithm is specifically designed to reduce the error budget of trace-gas retrievals, such as those for nitrogen dioxide ( NO2 ), which strongly depends on the accuracy of small cloud fractions (CFs) in particular. The accuracy of MICRU is governed by an empirical parameterisation of the viewing-geometry-dependent background surface reflectivity taking instrumental and physical effects into account. Instrumental effects are mainly degradation and polarisation effects; physical effects are due to the anisotropy of the surface reflectivity, e.g. shadowing of plants and sun glitter. MICRU is applied to main science channel (MSC) and polarisation measurement device (PMD) data collected between April 2007 and June 2013 by the Global Ozone Monitoring Experiment 2A (GOME-2A) instrument aboard the MetOp-A satellite. CFs are retrieved at different spectral bands between 374 and 758 nm. The MICRU results for MSC and PMD at different wavelengths are intercompared to study CF precision and accuracy, which depend on wavelength and spatial correlation. Furthermore, MICRU results are compared to FRESCO (fast retrieval scheme for clouds from the oxygen A band) and OCRA (optical cloud recognition algorithm) operational cloud products. We show that MICRU retrieves small CFs with an accuracy of 0.04 or better for the entire 1920 km wide swath with a potential bias between − 0.01 and − 0.03. CFs retrieved at shorter wavelengths are less affected by adverse surface heterogeneities. The comparison to the operational CF algorithms shows that MICRU significantly reduces the dependence on viewing angle, time, and sun glitter. Systematic effects along coasts are particularly small for MICRU due to its dedicated treatment of land and ocean surfaces. The MICRU algorithm is designed for spectroscopic instruments ranging from the GOME to Sentinel-5P/Tropospheric Monitoring Instrument (TROPOMI) but is also applicable to UV–vis imagers like the Advanced Very High Resolution Radiometer (AVHRR), the Moderate Resolution Imaging Spectroradiometer (MODIS), the Visible Infrared Imaging Radiometer Suite (VIIRS), and Sentinel-2. Clouds impact the radiative transfer of the Earth's atmosphere and strongly influence satellite measurements in the ultraviolet–visible (UV–vis) and infrared (IR) spectral ranges. For satellite measurements of trace gases absorbing in the UV–vis spectral range, particularly clouds ultimately determine the vertical sensitivity profile, mainly by reducing the sensitivity for trace-gas columns below the cloud.The Mainz iterative cloud retrieval utilities (MICRU) algorithm is specifically designed to reduce the error budget of trace-gas retrievals, such as those for nitrogen dioxide (NO2), which strongly depends on the accuracy of small cloud fractions (CFs) in particular. The accuracy of MICRU is governed by an empirical parameterisation of the viewing-geometry-dependent background surface reflectivity taking instrumental and physical effects into account. Instrumental effects are mainly degradation and polarisation effects; physical effects are due to the anisotropy of the surface reflectivity, e.g. shadowing of plants and sun glitter.MICRU is applied to main science channel (MSC) and polarisation measurement device (PMD) data collected between April 2007 and June 2013 by the Global Ozone Monitoring Experiment 2A (GOME-2A) instrument aboard the MetOp-A satellite. CFs are retrieved at different spectral bands between 374 and 758 nm. The MICRU results for MSC and PMD at different wavelengths are intercompared to study CF precision and accuracy, which depend on wavelength and spatial correlation. Furthermore, MICRU results are compared to FRESCO (fast retrieval scheme for clouds from the oxygen A band) and OCRA (optical cloud recognition algorithm) operational cloud products.We show that MICRU retrieves small CFs with an accuracy of 0.04 or better for the entire 1920 km wide swath with a potential bias between -0.01 and -0.03. CFs retrieved at shorter wavelengths are less affected by adverse surface heterogeneities. The comparison to the operational CF algorithms shows that MICRU significantly reduces the dependence on viewing angle, time, and sun glitter. Systematic effects along coasts are particularly small for MICRU due to its dedicated treatment of land and ocean surfaces.The MICRU algorithm is designed for spectroscopic instruments ranging from the GOME to Sentinel-5P/Tropospheric Monitoring Instrument (TROPOMI) but is also applicable to UV–vis imagers like the Advanced Very High Resolution Radiometer (AVHRR), the Moderate Resolution Imaging Spectroradiometer (MODIS), the Visible Infrared Imaging Radiometer Suite (VIIRS), and Sentinel-2. |
| Audience | Academic |
| Author | Wagner, Thomas Borger, Christian Hörmann, Christoph Warnach, Simon Dörner, Steffen Beirle, Steffen Sihler, Holger Gutenstein-Penning de Vries, Marloes |
| Author_xml | – sequence: 1 givenname: Holger orcidid: 0000-0001-9492-8499 surname: Sihler fullname: Sihler, Holger – sequence: 2 givenname: Steffen orcidid: 0000-0002-7196-0901 surname: Beirle fullname: Beirle, Steffen – sequence: 3 givenname: Steffen orcidid: 0000-0002-5049-5692 surname: Dörner fullname: Dörner, Steffen – sequence: 4 givenname: Marloes orcidid: 0000-0002-2257-1037 surname: Gutenstein-Penning de Vries fullname: Gutenstein-Penning de Vries, Marloes – sequence: 5 givenname: Christoph surname: Hörmann fullname: Hörmann, Christoph – sequence: 6 givenname: Christian orcidid: 0000-0002-1128-3718 surname: Borger fullname: Borger, Christian – sequence: 7 givenname: Simon surname: Warnach fullname: Warnach, Simon – sequence: 8 givenname: Thomas surname: Wagner fullname: Wagner, Thomas |
| BookMark | eNqFUsGOFCEQ7Zg1cXf17pHEk4deoRsa8LbZuDrJGpPV8UpqaGiZdMMI9Ix78x_8Q79ExjHqGKPhAFW894qqx1l14oM3VfWY4AtGJH0GU64JrVspZN3ghtyrTonoeC0YFSe_nR9UZymtMe4o4c1pFV8vrm6XzxF4ZKw1OrutQXoMc49shBIGj2AcQnT5w4R6k9zgTbkLES3ff_38ZesSSpDNOLpskPMpx3kyPie0Kww0QhwM2jqzc34oRYbRpIfVfQtjMo9-7OfV8vrFu6tX9c2bl4ury5taU4FzDZIQapuGSw4ttL22PRPAMG17smqElmxFSQe6k5hgCRx6C0JYRhjFWFDRnleLg24fYK020U0Q71QAp74nQhwUxOz0aJSWlFNhisyK0RW3kjRkVWJrOkmw5kWLHLRmv4G7HYzjT0GC1d4AVQxQhKq9AWpvQOE8OXA2MXycTcpqHeboS8uqYS3jnDSM_0INUB7ivA25zH1ySavLrmuLZa3ca138BVVWbyany0-wruSPCE-PCAWTzac8wJySWry9PcZ2B6yOIaVorNIuw976UsSN_-oQ_0H871C-Ab_-06w |
| CitedBy_id | crossref_primary_10_5194_amt_16_5537_2023 crossref_primary_10_5194_amt_15_6257_2022 |
| Cites_doi | 10.1029/JC084iC08p05047 10.1029/2000JD900657 10.1016/j.rse.2011.09.027 10.1029/2003JD003962 10.1016/0022-4073(95)00085-Y 10.1117/12.453451 10.5194/acp-6-163-2006 10.1029/2011JD016957 10.3390/rs8010037 10.5194/amt-12-2485-2019 10.1016/j.jqsrt.2009.10.001 10.5194/acp-7-2881-2007 10.5067/8GQ8LZQVL0VL 10.5194/acp-4-255-2004 10.1002/qj.828 10.1109/TGRS.2007.901043 10.1029/2011JD016827 10.1109/IGARSS.1998.699514 10.5194/amt-10-881-2017 10.1029/2010JD014675 10.1364/JOSA.44.000838 10.5194/egusphere-egu2020-8380 10.1029/97JD02074 10.1029/2012JC008221 10.1029/2008JD010290 10.1029/94JD01152 10.1016/j.jqsrt.2013.07.004 10.1016/j.asr.2012.02.012 10.1080/01431160902842326 10.5194/acp-11-6083-2011 10.1175/1520-0469(1999)056<0127:SMOAMM>2.0.CO;2 10.5194/amt-9-6035-2016 10.5194/amt-11-409-2018 10.5194/amt-9-1279-2016 10.1029/93JD00465 10.5194/acp-6-4461-2006 10.1029/2001JD001027 10.5194/amt-9-2357-2016 10.1029/JD092iD07p08311 10.5194/acp-8-4947-2008 10.5194/amt-10-333-2017 10.5194/amt-7-3497-2014 10.1016/j.jqsrt.2010.12.009 10.1029/2007JD008820 10.1029/91JD01361 10.1029/95JD02371 10.5194/amt-12-6749-2019 10.1175/1520-0469(1999)056<0151:TGOMEG>2.0.CO;2 10.5194/amt-11-4509-2018 10.1029/2005JD006912 10.1029/96JB00104 10.5194/acp-8-5477-2008 10.1002/2016JD025940 10.1109/36.134078 10.1109/TGRS.2006.872333 10.1029/2002JD002429 10.5194/amt-4-463-2011 10.1023/A:1021213331788 10.5194/amt-10-759-2017 10.5194/acp-8-6565-2008 10.1029/2003JD003395 10.1109/36.701075 10.5194/acp-3-651-2003 10.1137/0806023 10.5194/amt-9-3607-2016 10.1038/193762a0 10.5194/amt-13-985-2020 10.5194/amt-3-751-2010 10.5194/amt-11-4093-2018 10.1007/BF01582221 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2021 Copernicus GmbH 2021. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2021 Copernicus GmbH – notice: 2021. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ISR 7QH 7TG 7TN 7UA 8FD 8FE 8FG ABUWG AEUYN AFKRA ARAPS AZQEC BENPR BFMQW BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W H8D H96 HCIFZ KL. L.G L7M P5Z P62 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI ADTOC UNPAY DOA |
| DOI | 10.5194/amt-14-3989-2021 |
| DatabaseName | CrossRef Gale In Context: Science Aqualine Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Water Resources Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Continental Europe Database Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Earth, Atmospheric & Aquatic Science Database Proquest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences Aerospace Database ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Natural Science Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Continental Europe Database ProQuest SciTech Collection Aqualine Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Meteorology & Climatology |
| EISSN | 1867-8548 |
| EndPage | 4031 |
| ExternalDocumentID | oai_doaj_org_article_c94748e09ab54b7f9121b8e0fe6910c7 10.5194/amt-14-3989-2021 A663854391 10_5194_amt_14_3989_2021 |
| GroupedDBID | 23N 5VS 8FE 8FG 8FH 8R4 8R5 AAFWJ AAYXX ABDBF ABUWG ACGFO ACUHS ADBBV AEGXH AENEX AEUYN AFKRA AFPKN AFRAH AHGZY AIAGR ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BFMQW BGLVJ BHPHI BKSAR BPHCQ CCPQU CITATION D1K E3Z ESX GROUPED_DOAJ H13 HCIFZ IAO IEA ISR ITC K6- KQ8 LK5 M7R OK1 P2P P62 PCBAR PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PUEGO Q2X RKB RNS TR2 TUS 7QH 7TG 7TN 7UA 8FD AZQEC C1K DWQXO F1W H8D H96 KL. L.G L7M PKEHL PQEST PQUKI ADTOC C1A IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c480t-a9114f22797a3a3dcfd58a5043d1b28c95b416ac690109a7adfa88f5154008483 |
| IEDL.DBID | UNPAY |
| ISSN | 1867-8548 1867-1381 |
| IngestDate | Fri Oct 03 12:53:00 EDT 2025 Sun Oct 26 02:37:00 EDT 2025 Sun Jul 13 03:40:42 EDT 2025 Mon Oct 20 22:33:08 EDT 2025 Mon Oct 20 16:38:06 EDT 2025 Thu Oct 16 14:36:59 EDT 2025 Wed Oct 01 03:51:28 EDT 2025 Thu Apr 24 22:52:17 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0 cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c480t-a9114f22797a3a3dcfd58a5043d1b28c95b416ac690109a7adfa88f5154008483 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-2257-1037 0000-0002-5049-5692 0000-0001-9492-8499 0000-0002-1128-3718 0000-0002-7196-0901 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://amt.copernicus.org/articles/14/3989/2021/amt-14-3989-2021.pdf |
| PQID | 2535771257 |
| PQPubID | 105742 |
| PageCount | 43 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_c94748e09ab54b7f9121b8e0fe6910c7 unpaywall_primary_10_5194_amt_14_3989_2021 proquest_journals_2535771257 gale_infotracmisc_A663854391 gale_infotracacademiconefile_A663854391 gale_incontextgauss_ISR_A663854391 crossref_citationtrail_10_5194_amt_14_3989_2021 crossref_primary_10_5194_amt_14_3989_2021 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2021-06-02 |
| PublicationDateYYYYMMDD | 2021-06-02 |
| PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-02 day: 02 |
| PublicationDecade | 2020 |
| PublicationPlace | Katlenburg-Lindau |
| PublicationPlace_xml | – name: Katlenburg-Lindau |
| PublicationTitle | Atmospheric measurement techniques |
| PublicationYear | 2021 |
| Publisher | Copernicus GmbH Copernicus Publications |
| Publisher_xml | – name: Copernicus GmbH – name: Copernicus Publications |
| References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref92 ref51 ref50 ref91 ref90 ref46 ref45 ref89 ref48 ref47 ref42 ref86 ref41 ref85 ref44 ref88 ref43 ref87 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref82 ref81 ref40 ref84 ref83 ref80 ref35 ref79 ref34 ref78 ref37 ref36 ref31 ref75 ref30 ref74 ref33 ref77 ref32 ref76 ref2 ref1 ref39 ref38 ref71 ref70 ref73 ref72 ref24 ref68 ref23 ref67 ref26 ref25 ref69 ref20 ref64 ref63 ref22 ref66 ref21 ref65 ref28 ref27 ref29 ref60 ref62 ref61 |
| References_xml | – ident: ref37 – ident: ref62 – ident: ref64 doi: 10.1029/JC084iC08p05047 – ident: ref38 doi: 10.1029/2000JD900657 – ident: ref85 doi: 10.1016/j.rse.2011.09.027 – ident: ref1 – ident: ref89 – ident: ref6 doi: 10.1029/2003JD003962 – ident: ref69 doi: 10.1016/0022-4073(95)00085-Y – ident: ref81 – ident: ref43 – ident: ref70 doi: 10.1117/12.453451 – ident: ref27 doi: 10.5194/acp-6-163-2006 – ident: ref76 doi: 10.1029/2011JD016957 – ident: ref24 – ident: ref55 doi: 10.3390/rs8010037 – ident: ref20 doi: 10.5194/amt-12-2485-2019 – ident: ref9 – ident: ref92 doi: 10.1016/j.jqsrt.2009.10.001 – ident: ref41 doi: 10.5194/acp-7-2881-2007 – ident: ref34 – ident: ref11 doi: 10.5067/8GQ8LZQVL0VL – ident: ref79 doi: 10.5194/acp-4-255-2004 – ident: ref17 doi: 10.1002/qj.828 – ident: ref50 doi: 10.1109/TGRS.2007.901043 – ident: ref61 – ident: ref2 – ident: ref4 doi: 10.1029/2011JD016827 – ident: ref49 doi: 10.1109/IGARSS.1998.699514 – ident: ref72 doi: 10.5194/amt-10-881-2017 – ident: ref51 doi: 10.1029/2010JD014675 – ident: ref14 doi: 10.1364/JOSA.44.000838 – ident: ref71 doi: 10.5194/egusphere-egu2020-8380 – ident: ref33 doi: 10.1029/97JD02074 – ident: ref23 – ident: ref32 doi: 10.1029/2012JC008221 – ident: ref36 doi: 10.1029/2008JD010290 – ident: ref42 doi: 10.1029/94JD01152 – ident: ref75 – ident: ref68 doi: 10.1016/j.jqsrt.2013.07.004 – ident: ref5 doi: 10.1016/j.asr.2012.02.012 – ident: ref40 doi: 10.1080/01431160902842326 – ident: ref46 doi: 10.5194/acp-11-6083-2011 – ident: ref7 doi: 10.1175/1520-0469(1999)056<0127:SMOAMM>2.0.CO;2 – ident: ref86 doi: 10.5194/amt-9-6035-2016 – ident: ref52 doi: 10.5194/amt-11-409-2018 – ident: ref60 doi: 10.5194/amt-9-1279-2016 – ident: ref65 doi: 10.1029/93JD00465 – ident: ref16 – ident: ref30 doi: 10.5194/acp-6-4461-2006 – ident: ref56 doi: 10.1029/2001JD001027 – ident: ref58 – ident: ref54 doi: 10.5194/amt-9-2357-2016 – ident: ref73 doi: 10.1029/JD092iD07p08311 – ident: ref19 doi: 10.5194/acp-8-4947-2008 – ident: ref83 doi: 10.5194/amt-10-333-2017 – ident: ref29 – ident: ref63 doi: 10.5194/amt-7-3497-2014 – ident: ref21 doi: 10.1016/j.jqsrt.2010.12.009 – ident: ref74 doi: 10.1029/2007JD008820 – ident: ref25 – ident: ref57 doi: 10.1029/91JD01361 – ident: ref90 doi: 10.1029/95JD02371 – ident: ref26 doi: 10.5194/amt-12-6749-2019 – ident: ref8 doi: 10.1175/1520-0469(1999)056<0151:TGOMEG>2.0.CO;2 – ident: ref48 doi: 10.5194/amt-11-4509-2018 – ident: ref15 – ident: ref82 doi: 10.1029/2005JD006912 – ident: ref91 doi: 10.1029/96JB00104 – ident: ref10 doi: 10.5194/acp-8-5477-2008 – ident: ref78 doi: 10.1002/2016JD025940 – ident: ref59 – ident: ref45 doi: 10.1109/36.134078 – ident: ref44 doi: 10.1109/TGRS.2006.872333 – ident: ref39 doi: 10.1029/2002JD002429 – ident: ref66 doi: 10.5194/amt-4-463-2011 – ident: ref80 – ident: ref22 doi: 10.1023/A:1021213331788 – ident: ref47 doi: 10.5194/amt-10-759-2017 – ident: ref88 doi: 10.5194/acp-8-6565-2008 – ident: ref3 doi: 10.1029/2003JD003395 – ident: ref35 doi: 10.1109/36.701075 – ident: ref87 doi: 10.5194/acp-3-651-2003 – ident: ref13 doi: 10.1137/0806023 – ident: ref18 doi: 10.5194/amt-9-3607-2016 – ident: ref77 – ident: ref28 doi: 10.1038/193762a0 – ident: ref53 doi: 10.5194/amt-13-985-2020 – ident: ref67 doi: 10.5194/amt-3-751-2010 – ident: ref84 doi: 10.5194/amt-11-4093-2018 – ident: ref12 doi: 10.1007/BF01582221 – ident: ref31 |
| SSID | ssj0064172 |
| Score | 2.2796066 |
| Snippet | Clouds impact the radiative transfer of the Earth's atmosphere and strongly influence satellite measurements in the ultraviolet–visible (UV–vis) and infrared... Clouds impact the radiative transfer of the Earth's atmosphere and strongly influence satellite measurements in the ultraviolet-visible (UV-vis) and infrared... |
| SourceID | doaj unpaywall proquest gale crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 3989 |
| SubjectTerms | Accuracy Advanced Very High Resolution Radiometer Algorithms Angles (geometry) Anisotropy Atmosphere Clouds Coastal effects Earth atmosphere Error reduction Gases Geometry Glitter Global ozone Global ozone monitoring experiment Imaging radiometers Imaging techniques Infrared imaging Infrared radiometers Instruments Meteorological satellites Monitoring instruments Nitrogen dioxide Nitrogen oxide Oxygen Ozone Ozone monitoring Parameterization Physiological aspects Polarization Radiative transfer Radiometers Radiometry Reflectance Remote sensing Resolution Retrieval Satellite instruments Satellite-borne instruments Satellites Sensitivity Sensors Spectra Spectral bands Spectroradiometers Ultraviolet radiation Utilities Viewing Wavelength Wavelengths |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwELZQL8ABQQERKMhCCARStOvYWSfcStWqIMGhsKg3a-w425XSpEqyIG68Q9-wT8KMk111hUQvHJOME9szmZ9k5hvGXlm0OsJpjFStTWOVexnbmbAxRsypm3rllAsJsl9mx3P16TQ9vdbqi3LCBnjgYeMmLldaZX6ag02V1WUuEmHxuPQztHQu1JFPs3wdTA06eKZEaNtEaG2EsieGH5ToragJnPexULGkXCGM_MWWQQq4_X9r57vs9qq-gF8_oaqumZ-j--ze6Dfy_WG-D9gtX--y6DO6vE0bvozz1_ygWqL_GY4eshb392T-nkPNh5wNVGvcVc2q4GU7VDNwqBZNu-zPznkREjk8XmtaPv9-9fvyx7LjHQS8zt7zZQCaDeVwnD7d8ooyyDn9V0Dbhw9ZVL57xOZHh98OjuOxwULsVDbtY0BNp0rCENQgQRauLNIMCNOsEDbJXJ5a9NfAUdMqZICGooQsK9EFUgGHXz5mO3VT-yeMKxzoS5ASba7SUlkJiUZ1YhUk3kmI2GS9y8aN6OPUBKMyGIUQXwzyBeMQQ3wxxJeIvd2MuBiQN_5B-4EYt6EjzOxwAiXJjJJkbpKkiL0kthtCxagp7WYBq64zH7-emH30y7KUipQj9mYkKhucv4OxigF3gYC0tij3tijxtXXbl9fSZUa10ZkklanW6HPiZN5tJO7G5T_9H8t_xu7QvUIaXLLHdlCq_HN0uHr7IrxbfwCSsSWW priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1fb9MwELdG9wA8TPzVwgayEAKBFLWJnTpFQmibNg0kKlQo2pt1dpxSKUtKk4J44zvwDfkk3LlJoUIaj2kube073_3s3P2OsScGo05kFe5UjUlCOXIiNMPIhLhjTuzASSutT5AdD8-n8u1FcrHDxl0tDKVVdj7RO-qssnRG3o8TkSiF4Vi9XnwJqWsUvV3tWmhA21ohe-Upxq6x3ZiYsXps9_h0_H7S-eahjHw7J2JxI_a9aP3iElGM7MNlE0YyFJRDFA_iaCtQeT7_f732TXZ9VS7g-zcoir_C0tktttfiSX60NoDbbMeVd1jwDqFwtfQn5vwpPynmiEv91V22xHmfTF9yKPk6lwPdHbdFtcp4vlxXOXAoZjj05vMlz3yCh8N71ZJPP_368fPrvOY1eB7PxvG5J6D1ZXKcjnR5QZnlnOYSYyL-yKxw9T02PTv9eHIeto0XQivTQRMCekCZE7egAgEis3mWpEBcZ1lk4tSOEoM4Diw1sxqMQEGWQ5rmCI2k5-cX91mvrEq3z7jEB10OQmAslkpIIyBW6GaMhNhZAQHrd7OsbctKTs0xCo27E9KLRr3g_kSTXjTpJWDPN08s1owcV8gek-I2csSl7T-oljPdLk1tR1LJ1OFATCKNykdoOQavczdELGVVwB6T2jWxZZSUjjODVV3rNx8m-gjxWppQ8XLAnrVCeYX_30Jb3YCzQARbW5KHW5K4nO327c66dOtOav3H-AP2YmNx_x3-g6u_64DdICmf-BYfsh7ai3uIEKsxj9p18xsj6CPN priority: 102 providerName: ProQuest |
| Title | MICRU: an effective cloud fraction algorithm designed for UV–vis satellite instruments with large viewing angles |
| URI | https://www.proquest.com/docview/2535771257 https://amt.copernicus.org/articles/14/3989/2021/amt-14-3989-2021.pdf https://doaj.org/article/c94748e09ab54b7f9121b8e0fe6910c7 |
| UnpaywallVersion | publishedVersion |
| Volume | 14 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1867-8548 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0064172 issn: 1867-1381 databaseCode: KQ8 dateStart: 20080101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1867-8548 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0064172 issn: 1867-1381 databaseCode: DOA dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1867-8548 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0064172 issn: 1867-1381 databaseCode: ABDBF dateStart: 20100501 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVPQU databaseName: Continental Europe Database customDbUrl: eissn: 1867-8548 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0064172 issn: 1867-1381 databaseCode: BFMQW dateStart: 20100501 isFulltext: true titleUrlDefault: https://search.proquest.com/conteurope providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1867-8548 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0064172 issn: 1867-1381 databaseCode: BENPR dateStart: 20100501 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1867-8548 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0064172 issn: 1867-1381 databaseCode: 8FG dateStart: 20100501 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NjtMwELZ22wNw4B_RZakshEAgpW1ip0m4dVctCxLVqlC0nCzbcUq02aRKWhCceAfekCdhxkkrykogxCmNM25iezLzjTP-TMhjBV7H1QFEqkr5Do8Mc9TQVQ5EzL4eGK65tgmy0-HJnL8-88_2yHizFkZeQMBZLE2Zp3pd1UTBTYZY3-V9FoURxusuCjoud7DAwYLeMk72SXvoAyRvkfZ8ejr6gMFWCIbAZXazUvs7BIhef64E7MIv_c2Oe7Is_pdt9TVyZZ0v5ZfPMst-cUaTG3XSSGU5DDEH5by3Xqme_vobw-N_t_Mmud7AVTqqK90ieya_TTpvAGkXpZ2Qp0_ocZYC7LVnd0gJwzqbv6Ayp3WqCFhTqrNiHdOkrBdRUJktijJdfbygsc0fMXCtKOn8_Y9v3z-lFa2kpQldGZpaflu7Co_ijDHNMHGd4ucMcLlwkwW05C6ZT8bvjk-cZl8HR_NwsHIkGFieIHVhIJlksU5iP5RIpRa7ygt15CuAiVLjXlmDSAYyTmQYJoC8uKX_Z_dIKy9yc59QDhVNIhkDV88DxhWTXgBWTHHpGc1kh_Q3wyl0Q3qOe29kAoIfVAAB_Qvhj8D-Fdi_HfJsW2NZE378QfYINWQrh1TdtgCGUzTDKXTEAx4aaIjyuQqSyPVcBeeJGQJU00GHPEL9EkjGkWO2z0Kuq0q8ejsTI4CDoK8sgjs9bYSSAp5fy2bxBPQC8nftSB7uSIK10LuXN2osGmtVCc9nfhAA1IWHeb5V7b82_-BfhB-Qq3iwWXbeIWmB9piHgOdWqkv2w8nLLmkfjaens66dFek2b_BPfsRHIw |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbG9jB4QFxFYICFuAikqE3s1AnShLaxqWVbhcY67c3YjlMqZUlpWqa98R_4P_wYfgnnuEmhQhpPe0xi5-LPPhfnnO8Q8lyD1gmMAE9V68jniWW-7gTaB485Mm3LDTcuQLbf6Q74h9PodIX8bHJhMKyykYlOUKelwT3yVhixSAhQx-Ld-KuPVaPw72pTQkPVpRXSTUcxVid27NuLc3Dhqs3ee8D7RRju7R7vdP26yoBveNye-gqWO8-QSE8oplhqsjSKFRJ7pYEOY5NEGowWZbByUztRQqWZiuMM7ADuyOgZ3PcaWeOMJ-D8rW3v9j8eNbqgwwNXPgpZ45DtL5j_KAWribfU2dQPuM8wZilsh8GSYnT1A_7VEjfI-qwYq4tzled_qcG9W-Rmbb_SrfmEu01WbHGHeIdgepcTt0NPX9KdfAR2sDu6SyaA89HgLVUFnceOgHilJi9nKc0m86wKqvIhDPX0yxlNXUCJhWvlhA5Ofn3_8W1U0Uo53tCppSNHeOvS8ihuIdMcI9kpYgc6GB4yzG11jwyuBIL7ZLUoC_uAUA4dbaYYA93PBeOaqVCAWNNchdYw5ZFWM8rS1CzoWIwjl-ANIS4ScAF_SCIuEnHxyOtFj_GcAeSSttsI3KIdcne7E-VkKGtRIE3CBY8tfIiOuBZZEoSBhuPMdsB2M8IjzxB2iewcBYb_DNWsqmTv05HcAvswjjBZ2iOv6kZZCe9vVJ1NAaOAhF5LLTeWWoL4MMuXm9kla_FVyT-LzSNvFjPuv5__8PJ7PSXr3ePDA3nQ6-8_Itexhwu6CzfIKswd-xjMu6l-Uq8hSj5f9bL9DaB5X1s |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFLZGJ3F54I4IDLAQF4GUtUmcOkVCaBeqjbEJBoW9GdtxSkWWlCZlGk_8B_4Nf4U3fgnnOEmhII2nPfCYxk5r9zu3-JzvEHJHgdXxNIdIVanQZT0TuKrrKRci5lB3DNNM2wTZne7GgD3bC_cWyLemFgbTKhudaBV1nGt8R972wyDkHMwxbyd1WsSL9f6T8UcXO0jhSWvTTqOCyJY5PIDwrXi8uQ7_9V3f7z99vbbh1h0GXM2iTulKEHWWIIkel4EMYp3EYSSR1Cv2lB_pXqjAYZEauzZ1epLLOJFRlIAPwCwRfQDPPUEWIyRBa5HF1f72y7eNHegyz7aOQsY4ZPrzqkNS8JhYW-6XrsfcAPOV_I7vzRlF2zvgbwtxhpyaZmN5eCDT9DcT2D9HvjebV2W-fFielmpZf_6DV_L_3N3z5GztmdOVSpQukAWTXSTONgQV-cSePdB7dC0dgYdvry6RCSB4d_CIyoxWWTFgOKhO82lMk0lVL0JlOoSlle_3aWxTZQzcyyd08ObHl6-fRgUtpGVELQ0dWSpfW3BI8eU4TTFHn-K-gXcBXzJMTXGZDI5lC66QVpZn5iqhDCaaRAYBeDWMB0wF0uegsBWTvtGBdEi7wZDQNb87thlJBcR5iDoBqINITyDqBKLOIQ9mM8YVt8kRY1cRlrNxyEpuP8gnQ1ErOaF7jLPIwEJUyBRPep7vKbhOTBe8Us0dchtBLZB3JEOMDeW0KMTmq12xAp5vFGIZuEPu14OSHH6_lnWdCOwCUpXNjVyaGwmKUc_fbrAuasVciF9Ad8jDmTz9c_nXjn7WLXISxEU839zZuk5O4wSbTegvkRZAx9wAv7VUN2sFQcm745aanzf1pTc |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwELbK9gAcym_FloIshEAgZXcTO5uE21K1KkhUqLConCzbsZeINFnlBwQn3oE35EmYcbIrlkogxCmJM05iezLzTTL-TMhDBV7H1xFEqkqFHk8M89TUVx5EzKGeGK65dgmyJ9PjOX95Fp5tkcPVXBh5DgFnuTRVkem27oiC-wyxsc_HLIkTjNd9FPR87mGBhwWjZWovke1pCJB8QLbnJ69n7zHYisEQ-MwtVur2Y4Do3e9KwC78wmU23JNj8b9oq6-Sy22xlF8-yzz_xRkdXeuSRmrHYYg5KB9HbaNG-utvDI__3c7rZKeHq3TWVbpBtkxxkwxfAdIuK_dBnj6iB3kGsNcd3SIVDOvp_BmVBe1SRcCaUp2XbUpt1U2ioDJflFXWfDinqcsfMXCurOj83Y9v3z9lNa2lowltDM0cv62bhUfxizHNMXGd4u8McLlwkwW05DaZHx2-PTj2-nUdPM3jSeNJMLDcInVhJJlkqbZpGEukUkt9FcQ6CRXARKlxraxJIiOZWhnHFpAXd_T_bJcMirIwdwjlUNFYyRi4eh4xrpgMIrBiisvAaCaHZLwaTqF70nNceyMXEPygAgjoXwh_BPavwP4dkifrGsuO8OMPss9RQ9ZySNXtCmA4RT-cQic84rGBhqiQq8gmfuArOLZmClBNR0PyAPVLIBlHgdk-C9nWtXjx5lTMAA6CvrIE7vS4F7IlPL-W_eQJ6AXk79qQ3N-QBGuhN0-v1Fj01qoWQcjCKAKoCw_zdK3af23-3r8I3yVXcOOy7IJ9MgDtMfcAzzXqfv-2_gQa20Ou |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MICRU%3A+an+effective+cloud+fraction+algorithm+designed+for+UV-vis+satellite+instruments+with+large+viewing+angles&rft.jtitle=Atmospheric+measurement+techniques&rft.au=Sihler%2C+Holger&rft.au=Beirle%2C+Steffen&rft.au=D%C3%B6rner%2C+Steffen&rft.au=Gutenstein-Penning+de+Vries%2C+Marloes&rft.date=2021-06-02&rft.pub=Copernicus+GmbH&rft.issn=1867-1381&rft.volume=14&rft.issue=6&rft.spage=3989&rft_id=info:doi/10.5194%2Famt-14-3989-2021&rft.externalDocID=A663854391 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1867-8548&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1867-8548&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1867-8548&client=summon |