FDG-PET to T1 Weighted MRI Translation with 3D Elicit Generative Adversarial Network (E-GAN)

Objective: With the strengths of deep learning, computer-aided diagnosis (CAD) is a hot topic for researchers in medical image analysis. One of the main requirements for training a deep learning model is providing enough data for the network. However, in medical images, due to the difficulties of da...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 22; no. 12; p. 4640
Main Authors Bazangani, Farideh, Richard, Frédéric J. P., Ghattas, Badih, Guedj, Eric
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 20.06.2022
MDPI
Subjects
Online AccessGet full text
ISSN1424-8220
1424-8220
DOI10.3390/s22124640

Cover

Abstract Objective: With the strengths of deep learning, computer-aided diagnosis (CAD) is a hot topic for researchers in medical image analysis. One of the main requirements for training a deep learning model is providing enough data for the network. However, in medical images, due to the difficulties of data collection and data privacy, finding an appropriate dataset (balanced, enough samples, etc.) is quite a challenge. Although image synthesis could be beneficial to overcome this issue, synthesizing 3D images is a hard task. The main objective of this paper is to generate 3D T1 weighted MRI corresponding to FDG-PET. In this study, we propose a separable convolution-based Elicit generative adversarial network (E-GAN). The proposed architecture can reconstruct 3D T1 weighted MRI from 2D high-level features and geometrical information retrieved from a Sobel filter. Experimental results on the ADNI datasets for healthy subjects show that the proposed model improves the quality of images compared with the state of the art. In addition, the evaluation of E-GAN and the state of art methods gives a better result on the structural information (13.73% improvement for PSNR and 22.95% for SSIM compared to Pix2Pix GAN) and textural information (6.9% improvements for homogeneity error in Haralick features compared to Pix2Pix GAN).
AbstractList Objective: With the strengths of deep learning, computer-aided diagnosis (CAD) is a hot topic for researchers in medical image analysis. One of the main requirements for training a deep learning model is providing enough data for the network. However, in medical images, due to the difficulties of data collection and data privacy, finding an appropriate dataset (balanced, enough samples, etc.) is quite a challenge. Although image synthesis could be beneficial to overcome this issue, synthesizing 3D images is a hard task. The main objective of this paper is to generate 3D T1 weighted MRI corresponding to FDG-PET. In this study, we propose a separable convolution-based Elicit generative adversarial network (E-GAN). The proposed architecture can reconstruct 3D T1 weighted MRI from 2D high-level features and geometrical information retrieved from a Sobel filter. Experimental results on the ADNI datasets for healthy subjects show that the proposed model improves the quality of images compared with the state of the art. In addition, the evaluation of E-GAN and the state of art methods gives a better result on the structural information (13.73% improvement for PSNR and 22.95% for SSIM compared to Pix2Pix GAN) and textural information (6.9% improvements for homogeneity error in Haralick features compared to Pix2Pix GAN).
With the strengths of deep learning, computer-aided diagnosis (CAD) is a hot topic for researchers in medical image analysis. One of the main requirements for training a deep learning model is providing enough data for the network. However, in medical images, due to the difficulties of data collection and data privacy, finding an appropriate dataset (balanced, enough samples, etc.) is quite a challenge. Although image synthesis could be beneficial to overcome this issue, synthesizing 3D images is a hard task. The main objective of this paper is to generate 3D T1 weighted MRI corresponding to FDG-PET. In this study, we propose a separable convolution-based Elicit generative adversarial network (E-GAN). The proposed architecture can reconstruct 3D T1 weighted MRI from 2D high-level features and geometrical information retrieved from a Sobel filter. Experimental results on the ADNI datasets for healthy subjects show that the proposed model improves the quality of images compared with the state of the art. In addition, the evaluation of E-GAN and the state of art methods gives a better result on the structural information (13.73% improvement for PSNR and 22.95% for SSIM compared to Pix2Pix GAN) and textural information (6.9% improvements for homogeneity error in Haralick features compared to Pix2Pix GAN).OBJECTIVEWith the strengths of deep learning, computer-aided diagnosis (CAD) is a hot topic for researchers in medical image analysis. One of the main requirements for training a deep learning model is providing enough data for the network. However, in medical images, due to the difficulties of data collection and data privacy, finding an appropriate dataset (balanced, enough samples, etc.) is quite a challenge. Although image synthesis could be beneficial to overcome this issue, synthesizing 3D images is a hard task. The main objective of this paper is to generate 3D T1 weighted MRI corresponding to FDG-PET. In this study, we propose a separable convolution-based Elicit generative adversarial network (E-GAN). The proposed architecture can reconstruct 3D T1 weighted MRI from 2D high-level features and geometrical information retrieved from a Sobel filter. Experimental results on the ADNI datasets for healthy subjects show that the proposed model improves the quality of images compared with the state of the art. In addition, the evaluation of E-GAN and the state of art methods gives a better result on the structural information (13.73% improvement for PSNR and 22.95% for SSIM compared to Pix2Pix GAN) and textural information (6.9% improvements for homogeneity error in Haralick features compared to Pix2Pix GAN).
Author Richard, Frédéric J. P.
Ghattas, Badih
Guedj, Eric
Bazangani, Farideh
AuthorAffiliation 1 Department of Mathematics and Computer Science, CNRS, Aix Marseilles University, UMR, 7249 Marseille, France; farideh.bazangani@fresnel.fr (F.B.); badih.ghattas@univ-amu.fr (B.G.)
2 Molecular Neuroimaging, Marseille Public University Hospital System, 13005 Marseille, France; eric.guedj@fresnel.fr
AuthorAffiliation_xml – name: 2 Molecular Neuroimaging, Marseille Public University Hospital System, 13005 Marseille, France; eric.guedj@fresnel.fr
– name: 1 Department of Mathematics and Computer Science, CNRS, Aix Marseilles University, UMR, 7249 Marseille, France; farideh.bazangani@fresnel.fr (F.B.); badih.ghattas@univ-amu.fr (B.G.)
Author_xml – sequence: 1
  givenname: Farideh
  orcidid: 0000-0003-2844-4132
  surname: Bazangani
  fullname: Bazangani, Farideh
– sequence: 2
  givenname: Frédéric J. P.
  surname: Richard
  fullname: Richard, Frédéric J. P.
– sequence: 3
  givenname: Badih
  surname: Ghattas
  fullname: Ghattas, Badih
– sequence: 4
  givenname: Eric
  surname: Guedj
  fullname: Guedj, Eric
BackLink https://hal.science/hal-03922259$$DView record in HAL
BookMark eNp1kU1rGzEQhpeS0ny0h_4DQS9xYRt9rXd1KZjEcQxuWopLLwUhaWdtufIqkdY2-feVsyE0pj1pmHnm1cw7p9lR61vIsvcEf2JM4ItIKaF8yPGr7IRwyvOKUnz0V3ycnca4wpgyxqo32TEryoRTepL9ur6a5N_Gc9R5NCfoJ9jFsoMaffk-RfOg2uhUZ32LdrZbInaFxs4a26EJtBBSZQtoVG8hRBWscugWup0Pv9H5OJ-Mbgdvs9eNchHePb1n2Y_r8fzyJp99nUwvR7Pc8Ap3udCcQ6kVNWVZGVxSJUghGqyx0qCGusSUpIjpCkxjOBSVYU3Z6NpATXVa6iyb9rq1Vyt5F-xahQfplZWPCR8WUoXOGgeScC0wbYAUteBEQNUIYUhdazLUBXCdtD72Wpv2Tj3slHPPggTLvd3y2e4Ef-7hu41eQ5qn7YJyLyZ4WWntUi78VgpKy15g0AssD9puRjO5z2GWUFqILUns-dNnwd9vIHZybaMB51QLfhMlHVYEs5IVLKEfDtCV34Q23SBRpag4rqq9bRc9ZYKPMUAj02kfz51mte6f-w4OOv7vzR9flMuZ
CitedBy_id crossref_primary_10_1016_j_imavis_2024_105017
crossref_primary_10_1016_j_media_2023_103072
crossref_primary_10_3390_s22249628
crossref_primary_10_1016_j_spinee_2023_06_399
crossref_primary_10_3934_mbe_2024073
crossref_primary_10_1007_s10439_023_03304_z
Cites_doi 10.1109/TMI.2018.2884053
10.1016/j.neuroimage.2018.03.045
10.3389/fnins.2021.646013
10.1007/978-3-319-24574-4_28
10.1118/1.4928400
10.1109/TMI.2020.2975344
10.1109/TMI.2019.2901750
10.1007/978-3-642-33266-1_8
10.1002/mrm.28819
10.1088/0031-9155/61/2/791
10.1007/978-3-030-00536-8_9
10.1109/TMI.2020.3022591
10.1109/TMI.2019.2895894
10.1109/ISBI.2018.8363653
10.1109/CVPR.2017.632
10.1016/j.compmedimag.2020.101800
10.1007/978-3-319-68127-6_1
10.1109/IJCNN48605.2020.9207181
10.1007/978-3-319-46630-9_13
10.1016/j.media.2020.101944
10.1007/978-3-030-00536-8_1
10.1109/ICCV.2017.304
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Distributed under a Creative Commons Attribution 4.0 International License
2022 by the authors. 2022
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
1XC
VOOES
5PM
ADTOC
UNPAY
DOA
DOI 10.3390/s22124640
DatabaseName CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database


CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_14b902fe15d9419e8f99c1ddb16b5e4b
10.3390/s22124640
PMC9227640
oai:HAL:hal-03922259v1
10_3390_s22124640
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
7XB
8FK
AZQEC
DWQXO
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
1XC
ADRAZ
IPNFZ
RIG
VOOES
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c480t-9b44e7ba2c778c072a9159f0b0abea6b7021abe3b8ecfc4e58c3f7fbdced2b023
IEDL.DBID M48
ISSN 1424-8220
IngestDate Tue Oct 14 18:56:18 EDT 2025
Sun Oct 26 03:12:12 EDT 2025
Tue Sep 30 15:50:55 EDT 2025
Tue Oct 14 20:41:36 EDT 2025
Thu Sep 04 18:53:32 EDT 2025
Tue Oct 07 07:16:14 EDT 2025
Thu Oct 16 04:37:34 EDT 2025
Thu Apr 24 23:07:37 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords generative adversarial network
deep learning
medical image synthesis
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c480t-9b44e7ba2c778c072a9159f0b0abea6b7021abe3b8ecfc4e58c3f7fbdced2b023
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
The members of the Alzheimer’s Disease Neuroimaging Initiative are indicated in Acknowledgments.
ORCID 0000-0003-2844-4132
0000-0001-5146-9894
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s22124640
PMID 35746422
PQID 2679840882
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_14b902fe15d9419e8f99c1ddb16b5e4b
unpaywall_primary_10_3390_s22124640
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9227640
hal_primary_oai_HAL_hal_03922259v1
proquest_miscellaneous_2681037353
proquest_journals_2679840882
crossref_citationtrail_10_3390_s22124640
crossref_primary_10_3390_s22124640
PublicationCentury 2000
PublicationDate 20220620
PublicationDateYYYYMMDD 2022-06-20
PublicationDate_xml – month: 6
  year: 2022
  text: 20220620
  day: 20
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Wang (ref_13) 2018; 38
Tu (ref_2) 2009; 32
ref_14
Nageswara (ref_36) 2013; 2
Dar (ref_9) 2019; 38
ref_35
Zhou (ref_11) 2020; 39
ref_34
Lin (ref_3) 2021; 15
ref_33
ref_32
ref_31
Hossain (ref_29) 2016; 975
Pan (ref_26) 2020; 40
ref_18
ref_17
ref_16
Wang (ref_4) 2016; 61
Wang (ref_19) 2018; 174
Toga (ref_22) 2021; 86
Yu (ref_15) 2019; 38
Ma (ref_12) 2020; 86
ref_25
ref_24
ref_23
Yurt (ref_10) 2021; 70
ref_21
ref_20
ref_1
Kang (ref_5) 2015; 42
ref_28
ref_27
Vairalkar (ref_30) 2012; 2
ref_8
ref_7
ref_6
References_xml – ident: ref_7
– volume: 38
  start-page: 1328
  year: 2018
  ident: ref_13
  article-title: 3D auto-context-based locality adaptive multi-modality GANs for PET synthesis
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2018.2884053
– ident: ref_28
– volume: 174
  start-page: 550
  year: 2018
  ident: ref_19
  article-title: 3D conditional generative adversarial networks for high-quality PET image estimation at low dose
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2018.03.045
– volume: 15
  start-page: 646013
  year: 2021
  ident: ref_3
  article-title: Bidirectional Mapping of Brain MRI and PET With 3D Reversible GAN for the Diagnosis of Alzheimer’s Disease
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2021.646013
– ident: ref_32
– ident: ref_20
  doi: 10.1007/978-3-319-24574-4_28
– ident: ref_24
– ident: ref_34
– volume: 42
  start-page: 5301
  year: 2015
  ident: ref_5
  article-title: Prediction of standard-dose brain PET image by using MRI and low-dose brain [18F] FDG PET images
  publication-title: Med. Phys.
  doi: 10.1118/1.4928400
– volume: 39
  start-page: 2772
  year: 2020
  ident: ref_11
  article-title: Hi-net: Hybrid-fusion network for multi-modal MR image synthesis
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2020.2975344
– volume: 38
  start-page: 2375
  year: 2019
  ident: ref_9
  article-title: Image synthesis in multi-contrast MRI with conditional generative adversarial networks
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2019.2901750
– ident: ref_16
– ident: ref_27
  doi: 10.1007/978-3-642-33266-1_8
– volume: 86
  start-page: 1718
  year: 2021
  ident: ref_22
  article-title: Three-dimensional self-attention conditional GAN with spectral normalization for multimodal neuroimaging synthesis
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.28819
– volume: 2
  start-page: 291
  year: 2012
  ident: ref_30
  article-title: Edge detection of images using Sobel operator
  publication-title: Int. J. Emerg. Technol. Adv. Eng.
– ident: ref_1
– volume: 61
  start-page: 791
  year: 2016
  ident: ref_4
  article-title: Predicting standard-dose PET image from low-dose PET and multimodal MR images using mapping-based sparse representation
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/61/2/791
– ident: ref_35
– ident: ref_21
  doi: 10.1007/978-3-030-00536-8_9
– ident: ref_25
– volume: 40
  start-page: 81
  year: 2020
  ident: ref_26
  article-title: Multi-View Separable Pyramid Network for AD Prediction at MCI Stage by 18 F-FDG Brain PET Imaging
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2020.3022591
– ident: ref_33
– volume: 38
  start-page: 2772
  year: 2019
  ident: ref_15
  article-title: Ea-GANs: Edge-aware generative adversarial networks for cross-modality MR image synthesis
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2019.2895894
– volume: 32
  start-page: 1744
  year: 2009
  ident: ref_2
  article-title: Auto-context and its application to high-level vision tasks and 3d brain image segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– ident: ref_14
  doi: 10.1109/ISBI.2018.8363653
– ident: ref_17
  doi: 10.1109/CVPR.2017.632
– volume: 86
  start-page: 101800
  year: 2020
  ident: ref_12
  article-title: MRI image synthesis with dual discriminator adversarial learning and difficulty-aware attention mechanism for hippocampal subfields segmentation
  publication-title: Comput. Med. Imaging Graph.
  doi: 10.1016/j.compmedimag.2020.101800
– ident: ref_8
  doi: 10.1007/978-3-319-68127-6_1
– ident: ref_23
  doi: 10.1109/IJCNN48605.2020.9207181
– ident: ref_6
  doi: 10.1007/978-3-319-46630-9_13
– volume: 70
  start-page: 101944
  year: 2021
  ident: ref_10
  article-title: Multi-stream generative adversarial networks for MR image synthesis
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2020.101944
– ident: ref_18
  doi: 10.1007/978-3-030-00536-8_1
– volume: 2
  start-page: 4531
  year: 2013
  ident: ref_36
  article-title: HCo-occurrence matrix and its statistical features as an approach for identification of phase transitions of mesogens
  publication-title: Int. J. Innov. Res. Sci. Eng. Technol.
– volume: 975
  start-page: 37
  year: 2016
  ident: ref_29
  article-title: Dynamic thresholding based adaptive canny edge detection
  publication-title: Int. J. Comput. Appl.
– ident: ref_31
  doi: 10.1109/ICCV.2017.304
SSID ssj0023338
Score 2.467667
Snippet Objective: With the strengths of deep learning, computer-aided diagnosis (CAD) is a hot topic for researchers in medical image analysis. One of the main...
With the strengths of deep learning, computer-aided diagnosis (CAD) is a hot topic for researchers in medical image analysis. One of the main requirements for...
SourceID doaj
unpaywall
pubmedcentral
hal
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 4640
SubjectTerms Accuracy
Computer Science
Deep learning
generative adversarial network
Graphics
Machine Learning
Magnetic resonance imaging
medical image synthesis
Medical Imaging
Methods
Three dimensional imaging
Tomography
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELbQXoAD4ikKCzKPw3KI1omd2D4Wtt2C2AqhrtgDUuSntlKVrmi6K_49M0kapQjEhZtlW3E8Hs_DnvlMyNvCRiExM9fZGBKRuzRRhYIS9zoWxjuWYb7z2byYnYtPF_nF4KkvjAlr4YFbwh2nwmqWxZDmXotUBxW1dqn3Ni1sHoRF6cuU3jlTnavFwfNqcYQ4OPXHmwwktCjwhGOgfRqQftAplxgCObAvf4-OvL2trszPG7NaDVTP9D6519mMdNz-6wNyK1QPyd0BkuAj8n16cpp8mSxovaaLlH5rDjyDp2dfP9JGHbUhbxSPXSk_oZPV0i1r2oJOo8SjzcvMG4P8SOdtbDg9miSn4_m7x-R8Oll8mCXdwwmJE4rVibZCBGlN5qRUjsnMaLBaIrPM2GAKK0GxQ4lbFVx0IuTK8SijhSn7zAL1npCDal2Fp4RqHp2EdTRKcJErZn1IA_M-LaLKlWEjcrQjaOk6VHF83GJVgneBtC972o_I677rVQul8adO73FV-g6Ift1UAE-UHU-U_-IJGAnWdO8bs_HnEusY2IMgwvR1OiKHuyUvu327KTO8lBLodozIq74Zdhxeo5gqrLfYR2FyJc_5iMg9Vtkbcb-lWl422N0wumym-aZnqr8T49n_IMZzcifDlA1WgEQ8JAf1j214AYZUbV82e-YX_VIbfw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEF6V9AAcEE8RWtDyOJSD1bW9tncPCKXUaUDUqqpU9IBk7ZNGipy0SUD8e2ZsxyQIuFn2yGvP7M5jd-YbQt6k2vMMK3ON9i7giQkDkQq4iq30qbKGRVjvfFqkowv-6TK53CHFuhYG0yrXOrFW1HZmcI_8MMLjAo4O4fv5dYBdo_B0dd1CQ7WtFey7GmLsFtmNEBmrR3aP8uLsvAvBYojIGnyhGIL9w0UEZDzFnY8Nq1SD94OtucLUyA2_88-syduraq5-_lDT6YZJGt4n91pfkg4a4T8gO656SO5uIAw-Il-HxyfBWT6myxkdh_RLvRHqLD09_0hrM9WkwlHcjqXxMc2nEzNZ0gaMGjUhrTs2LxTOU1o0OeP0IA9OBsXbx-RimI8_jIK2oUJguGDLQGrOXaZVZLJMGJZFSoI345lmSjuV6gwMPlzFWjjjDXeJMLHPvIZftpEG7j0hvWpWuaeEytibDOSrBI95Ipi2LnTM2jD1IhGK9cnBmqGladHGsenFtISoA3lfdrzvk1cd6byB2Pgb0RFKpSNAVOz6xuzmW9kuMghjtGSRd2FiJQ-lE15KE1qrw1QnjmsYCWS69Y7R4HOJ9xj4iaDa5PewT_bXIi_b9bwof8--PnnZPYaViMcrqnKzFdIILLqMk7hPsq2psjXi9pNqclVjesPoWf2br7tJ9W9mPPv_J-6ROxEWabAUdOA-6S1vVu45uE5L_aJdD78AZsEZEA
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELegewAe-EYUBjIfD-Mhq53YjvOECmtXEKsm1IpNQor8uVWr0mpNh-Cv55ykVTuBhMRblFziOD7f_c65-xmht0J7lobKXKO9ixg3NJJCwlFiMy-UNSQO9c5HQzEYs88n_GSjij-kVUIoPqmMdKjCisCDkU4cd2jcYYKRztz691fNWhIVnAPglyy5iXYEBzTeQjvj4XH3tCoqau6uCYUSiO47ixhMdXjMlhuq2PrBuZyHXMgNoHk9TfLWspirnz_UdLrhg_r3kFq9fZ16crG_LPW--XWN2PF_uncf3W0AKu7WGvUA3XDFQ3Rng7bwEfrePziMjnsjXM7wiOJv1eqqs_jo6ydc-b46vw6HNV6cHODedGImJa4ZroN5xdU20AsVlB8P60R0vNeLDrvDd4_RuN8bfRxEzS4NkWGSlFGmGXOpVrFJU2lIGqsMIJInmijtlNApoAg4SrR0xhvmuDSJT72Gz2pjDZDhCWoVs8I9RThLvElBaRT0mHFJtHXUEWup8JJLRdpobzVouWkozMNOGtMcQpkwvvl6fNvo9Vp0XvN2_EnoQxj5tUCg2q5OzC7P8mbmQmykMxJ7R7nNGM2c9FlmqLWaCs0d09AS6M3WMwbdL3k4RwB8gr3Mrmgb7a7UKm-MxCKPwx8wFmKcNnq1vgzTO_yzUYWbLYOMDJWcCU_aKN1Sx60Wt68Uk_OKKBxaT6tuvlkr7t8_xrN_knqObsehAIQIsK-7qFVeLt0LgGWlftnMvN8_3DB_
  priority: 102
  providerName: Unpaywall
Title FDG-PET to T1 Weighted MRI Translation with 3D Elicit Generative Adversarial Network (E-GAN)
URI https://www.proquest.com/docview/2679840882
https://www.proquest.com/docview/2681037353
https://hal.science/hal-03922259
https://pubmed.ncbi.nlm.nih.gov/PMC9227640
https://www.mdpi.com/1424-8220/22/12/4640/pdf?version=1655716843
https://doaj.org/article/14b902fe15d9419e8f99c1ddb16b5e4b
UnpaywallVersion publishedVersion
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: HH5
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: KQ8
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: KQ8
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: ABDBF
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: ADMLS
  dateStart: 20081201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: GX1
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M~E
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: RPM
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 7X7
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: 8FG
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1424-8220
  dateEnd: 20250930
  omitProxy: true
  ssIdentifier: ssj0023338
  issn: 1424-8220
  databaseCode: M48
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrR3LjtMw0Fp2D8AB8RSBpTKPw3IIOIkT2weEumzagmhVrVpRJKTIdmy2UpUufQD794yTNGrQcuMSWfYolmfGnhl7Hgi9SpSlzEXmamWNT2Md-Dzh0IpyYROZaxK6eOfhKBlM6adZPDtAuxqbNQLX15p2rp7UdLV48_vH1XvY8O-cxQkm-9t1COcvTShY7kcgoISr4DCkzWNCGIEZViUVaoO3RFGZsR8EzIXzh9xTNv92lby5LS7l1S-5WOzJod5ddKdWIHG3ovg9dGCK--j2XlrBB-hb76zvj9MJ3izxJMBfyttPk-Ph-UdcyqbK_w27O1gcneF0MdfzDa4yULvjD5dlmtfSMSceVY7i-CT1-93R64do2ksnHwZ-XUXB15STjS8UpYYpGWrGuCYslAJUGEsUkcrIRDGQ8tCKFDfaampiriPLrIIl56EC7D1Ch8WyMI8RFpHVDIgqOY1ozInKTWBIngeJ5TGXxEMnO4Rmuk4x7ipdLDIwNRzuswb3HnrRgF5WeTWuAzp1VGkAXCrssmO5-p7VOwtsFyVIaE0Q54IGwnArhA7yXAWJig1VMBPQtPWPQfdz5voIKIdwnomfgYeOdyTPdjyYhe6FijobxEPPm2HYfu5NRRZmuXUw3EVaRnHkIdZildaM7ZFiflEm8obZWbnMlw1T_RsZT_4HMp6iW6GL3yAJHI_H6HCz2ppnoFVtVAfdYDMGX97rd9DRaToan3fKG4pOuZugbzoad7_-AXhgJyM
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1Lb9Mw2JrGYXBAPEVhgHlJ4xDNiZ3YPiBUaLuWtRVCnehhUvCTVarSsrZM-1P8Rj4nbdci4LZbZFtx8vl7-3sg9DrTnvGQmWu0dxFLTRyJTMATtdJnyhqShHznXj9rn7BPw3S4g36tcmFCWOWKJ5aM2k5M8JEfJuG6gAWF8P30RxS6RoXb1VULjQotjt3lBZhss3edBpzvmyRpNQcf29Gyq0BkmCDzSGrGHNcqMZwLQ3iiJIh0TzRR2qlMc5B68ES1cMYb5lJhqOdeW-NsostCB8DybzAKvATohw-vDDwK9l5VvYhSSQ5nCcgFlgW_yobMK1sDgCQ7C4GXG1rtnzGZe4tiqi4v1Hi8IfBad9DtpaaK6xVq3UU7rriHbm3UL7yPTluNo-hzc4DnEzyI8dfSzeos7n3p4FIIVoF2ODh7MW3g5nhkRnNclboOfBaX_aBnKlAB7lcR6figGR3V-28foJNrAexDtFtMCvcIYUm94YA9SjDKUkG0dbEj1saZF6lQpIYOVgDNzbKWeWipMc7Bpgmwz9ewr6GX66XTqoDH3xZ9CKeyXhBqbpcDk_Pv-ZKEwUjSkiTexamVLJZOeClNbK2OM506pmEnONOtd7Tr3TyMEdBCgXHKn3EN7a-OPF9yi1l-hds19GI9DXQeLm9U4SaLsEaElE6a0hriW6iyteP2TDE6KyuGw-68_M1Xa6T6NzAe__8Tn6O99qDXzbud_vETdDMJ6SAkA267j3bn5wv3FJS0uX5WUgZG366bFH8D_MZR_w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3bbtMw1JqGxOUBcRWFAeYmjYeoTuLEzgNChbZb2VZNqBN9QAq-skpVWtaWab_G13FOknYtAt72FtlWnByfu8-FkNep9lxgZq7R3gU8MWEgUwlPsc18qqxhEeY7H_XT_RP-aZgMt8ivZS4MhlUueWLJqO3EoI-8GeF1AUeFsOnrsIjjdvf99EeAHaTwpnXZTqNCkQN3cQ7m2-xdrw1n_SaKup3Bx_2g7jAQGC7ZPMg0505oFRkhpGEiUhmId880U9qpVAuQgPAUa-mMN9wl0sReeG2Ns5Euix4A-78m4jjDcEIxvDT2YrD9qkpGMMmaswhkBE_Rx7Im_8o2ASDVTjEIc03D_TM-88aimKqLczUerwm_7h1yu9ZaaatCs7tkyxX3yK21Wob3ydduey847gzofEIHIf1SulydpUefe7QUiFXQHUXHL43btDMemdGcVmWvkefSsjf0TCFF0H4VnU53O8Feq__2ATm5EsA-JNvFpHCPCM1ibwRgkpI85olk2rrQMWvD1MtEKtYgu0uA5qaua47tNcY52DcI-3wF-wZ5uVo6rYp5_G3RBzyV1QKsv10OTM6-5zU5g8GkMxZ5FyY242HmpM8yE1qrw1QnjmvYCc504x37rcMcxxhopMBEs59hg-wsjzyvOccsv8TzBnmxmgaax4scVbjJAtdITO-Mk7hBxAaqbOy4OVOMTsvq4bC7KH_z1Qqp_g2Mx___xOfkOhBhftjrHzwhNyPMDGEpMN4dsj0_W7inoK_N9bOSMCj5dtWU-Bu_tlZC
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELegewAe-EYUBjIfD-Mhq53YjvOECmtXEKsm1IpNQor8uVWr0mpNh-Cv55ykVTuBhMRblFziOD7f_c65-xmht0J7lobKXKO9ixg3NJJCwlFiMy-UNSQO9c5HQzEYs88n_GSjij-kVUIoPqmMdKjCisCDkU4cd2jcYYKRztz691fNWhIVnAPglyy5iXYEBzTeQjvj4XH3tCoqau6uCYUSiO47ixhMdXjMlhuq2PrBuZyHXMgNoHk9TfLWspirnz_UdLrhg_r3kFq9fZ16crG_LPW--XWN2PF_uncf3W0AKu7WGvUA3XDFQ3Rng7bwEfrePziMjnsjXM7wiOJv1eqqs_jo6ydc-b46vw6HNV6cHODedGImJa4ZroN5xdU20AsVlB8P60R0vNeLDrvDd4_RuN8bfRxEzS4NkWGSlFGmGXOpVrFJU2lIGqsMIJInmijtlNApoAg4SrR0xhvmuDSJT72Gz2pjDZDhCWoVs8I9RThLvElBaRT0mHFJtHXUEWup8JJLRdpobzVouWkozMNOGtMcQpkwvvl6fNvo9Vp0XvN2_EnoQxj5tUCg2q5OzC7P8mbmQmykMxJ7R7nNGM2c9FlmqLWaCs0d09AS6M3WMwbdL3k4RwB8gr3Mrmgb7a7UKm-MxCKPwx8wFmKcNnq1vgzTO_yzUYWbLYOMDJWcCU_aKN1Sx60Wt68Uk_OKKBxaT6tuvlkr7t8_xrN_knqObsehAIQIsK-7qFVeLt0LgGWlftnMvN8_3DB_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FDG-PET+to+T1+Weighted+MRI+Translation+with+3D+Elicit+Generative+Adversarial+Network+%28E-GAN%29&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Farideh+Bazangani&rft.au=Fr%C3%A9d%C3%A9ric+J.+P.+Richard&rft.au=Badih+Ghattas&rft.au=Eric+Guedj&rft.date=2022-06-20&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=22&rft.issue=12&rft.spage=4640&rft_id=info:doi/10.3390%2Fs22124640&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_14b902fe15d9419e8f99c1ddb16b5e4b
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon