FDG-PET to T1 Weighted MRI Translation with 3D Elicit Generative Adversarial Network (E-GAN)
Objective: With the strengths of deep learning, computer-aided diagnosis (CAD) is a hot topic for researchers in medical image analysis. One of the main requirements for training a deep learning model is providing enough data for the network. However, in medical images, due to the difficulties of da...
Saved in:
| Published in | Sensors (Basel, Switzerland) Vol. 22; no. 12; p. 4640 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
20.06.2022
MDPI |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1424-8220 1424-8220 |
| DOI | 10.3390/s22124640 |
Cover
| Abstract | Objective: With the strengths of deep learning, computer-aided diagnosis (CAD) is a hot topic for researchers in medical image analysis. One of the main requirements for training a deep learning model is providing enough data for the network. However, in medical images, due to the difficulties of data collection and data privacy, finding an appropriate dataset (balanced, enough samples, etc.) is quite a challenge. Although image synthesis could be beneficial to overcome this issue, synthesizing 3D images is a hard task. The main objective of this paper is to generate 3D T1 weighted MRI corresponding to FDG-PET. In this study, we propose a separable convolution-based Elicit generative adversarial network (E-GAN). The proposed architecture can reconstruct 3D T1 weighted MRI from 2D high-level features and geometrical information retrieved from a Sobel filter. Experimental results on the ADNI datasets for healthy subjects show that the proposed model improves the quality of images compared with the state of the art. In addition, the evaluation of E-GAN and the state of art methods gives a better result on the structural information (13.73% improvement for PSNR and 22.95% for SSIM compared to Pix2Pix GAN) and textural information (6.9% improvements for homogeneity error in Haralick features compared to Pix2Pix GAN). |
|---|---|
| AbstractList | Objective: With the strengths of deep learning, computer-aided diagnosis (CAD) is a hot topic for researchers in medical image analysis. One of the main requirements for training a deep learning model is providing enough data for the network. However, in medical images, due to the difficulties of data collection and data privacy, finding an appropriate dataset (balanced, enough samples, etc.) is quite a challenge. Although image synthesis could be beneficial to overcome this issue, synthesizing 3D images is a hard task. The main objective of this paper is to generate 3D T1 weighted MRI corresponding to FDG-PET. In this study, we propose a separable convolution-based Elicit generative adversarial network (E-GAN). The proposed architecture can reconstruct 3D T1 weighted MRI from 2D high-level features and geometrical information retrieved from a Sobel filter. Experimental results on the ADNI datasets for healthy subjects show that the proposed model improves the quality of images compared with the state of the art. In addition, the evaluation of E-GAN and the state of art methods gives a better result on the structural information (13.73% improvement for PSNR and 22.95% for SSIM compared to Pix2Pix GAN) and textural information (6.9% improvements for homogeneity error in Haralick features compared to Pix2Pix GAN). With the strengths of deep learning, computer-aided diagnosis (CAD) is a hot topic for researchers in medical image analysis. One of the main requirements for training a deep learning model is providing enough data for the network. However, in medical images, due to the difficulties of data collection and data privacy, finding an appropriate dataset (balanced, enough samples, etc.) is quite a challenge. Although image synthesis could be beneficial to overcome this issue, synthesizing 3D images is a hard task. The main objective of this paper is to generate 3D T1 weighted MRI corresponding to FDG-PET. In this study, we propose a separable convolution-based Elicit generative adversarial network (E-GAN). The proposed architecture can reconstruct 3D T1 weighted MRI from 2D high-level features and geometrical information retrieved from a Sobel filter. Experimental results on the ADNI datasets for healthy subjects show that the proposed model improves the quality of images compared with the state of the art. In addition, the evaluation of E-GAN and the state of art methods gives a better result on the structural information (13.73% improvement for PSNR and 22.95% for SSIM compared to Pix2Pix GAN) and textural information (6.9% improvements for homogeneity error in Haralick features compared to Pix2Pix GAN).OBJECTIVEWith the strengths of deep learning, computer-aided diagnosis (CAD) is a hot topic for researchers in medical image analysis. One of the main requirements for training a deep learning model is providing enough data for the network. However, in medical images, due to the difficulties of data collection and data privacy, finding an appropriate dataset (balanced, enough samples, etc.) is quite a challenge. Although image synthesis could be beneficial to overcome this issue, synthesizing 3D images is a hard task. The main objective of this paper is to generate 3D T1 weighted MRI corresponding to FDG-PET. In this study, we propose a separable convolution-based Elicit generative adversarial network (E-GAN). The proposed architecture can reconstruct 3D T1 weighted MRI from 2D high-level features and geometrical information retrieved from a Sobel filter. Experimental results on the ADNI datasets for healthy subjects show that the proposed model improves the quality of images compared with the state of the art. In addition, the evaluation of E-GAN and the state of art methods gives a better result on the structural information (13.73% improvement for PSNR and 22.95% for SSIM compared to Pix2Pix GAN) and textural information (6.9% improvements for homogeneity error in Haralick features compared to Pix2Pix GAN). |
| Author | Richard, Frédéric J. P. Ghattas, Badih Guedj, Eric Bazangani, Farideh |
| AuthorAffiliation | 1 Department of Mathematics and Computer Science, CNRS, Aix Marseilles University, UMR, 7249 Marseille, France; farideh.bazangani@fresnel.fr (F.B.); badih.ghattas@univ-amu.fr (B.G.) 2 Molecular Neuroimaging, Marseille Public University Hospital System, 13005 Marseille, France; eric.guedj@fresnel.fr |
| AuthorAffiliation_xml | – name: 2 Molecular Neuroimaging, Marseille Public University Hospital System, 13005 Marseille, France; eric.guedj@fresnel.fr – name: 1 Department of Mathematics and Computer Science, CNRS, Aix Marseilles University, UMR, 7249 Marseille, France; farideh.bazangani@fresnel.fr (F.B.); badih.ghattas@univ-amu.fr (B.G.) |
| Author_xml | – sequence: 1 givenname: Farideh orcidid: 0000-0003-2844-4132 surname: Bazangani fullname: Bazangani, Farideh – sequence: 2 givenname: Frédéric J. P. surname: Richard fullname: Richard, Frédéric J. P. – sequence: 3 givenname: Badih surname: Ghattas fullname: Ghattas, Badih – sequence: 4 givenname: Eric surname: Guedj fullname: Guedj, Eric |
| BackLink | https://hal.science/hal-03922259$$DView record in HAL |
| BookMark | eNp1kU1rGzEQhpeS0ny0h_4DQS9xYRt9rXd1KZjEcQxuWopLLwUhaWdtufIqkdY2-feVsyE0pj1pmHnm1cw7p9lR61vIsvcEf2JM4ItIKaF8yPGr7IRwyvOKUnz0V3ycnca4wpgyxqo32TEryoRTepL9ur6a5N_Gc9R5NCfoJ9jFsoMaffk-RfOg2uhUZ32LdrZbInaFxs4a26EJtBBSZQtoVG8hRBWscugWup0Pv9H5OJ-Mbgdvs9eNchHePb1n2Y_r8fzyJp99nUwvR7Pc8Ap3udCcQ6kVNWVZGVxSJUghGqyx0qCGusSUpIjpCkxjOBSVYU3Z6NpATXVa6iyb9rq1Vyt5F-xahQfplZWPCR8WUoXOGgeScC0wbYAUteBEQNUIYUhdazLUBXCdtD72Wpv2Tj3slHPPggTLvd3y2e4Ef-7hu41eQ5qn7YJyLyZ4WWntUi78VgpKy15g0AssD9puRjO5z2GWUFqILUns-dNnwd9vIHZybaMB51QLfhMlHVYEs5IVLKEfDtCV34Q23SBRpag4rqq9bRc9ZYKPMUAj02kfz51mte6f-w4OOv7vzR9flMuZ |
| CitedBy_id | crossref_primary_10_1016_j_imavis_2024_105017 crossref_primary_10_1016_j_media_2023_103072 crossref_primary_10_3390_s22249628 crossref_primary_10_1016_j_spinee_2023_06_399 crossref_primary_10_3934_mbe_2024073 crossref_primary_10_1007_s10439_023_03304_z |
| Cites_doi | 10.1109/TMI.2018.2884053 10.1016/j.neuroimage.2018.03.045 10.3389/fnins.2021.646013 10.1007/978-3-319-24574-4_28 10.1118/1.4928400 10.1109/TMI.2020.2975344 10.1109/TMI.2019.2901750 10.1007/978-3-642-33266-1_8 10.1002/mrm.28819 10.1088/0031-9155/61/2/791 10.1007/978-3-030-00536-8_9 10.1109/TMI.2020.3022591 10.1109/TMI.2019.2895894 10.1109/ISBI.2018.8363653 10.1109/CVPR.2017.632 10.1016/j.compmedimag.2020.101800 10.1007/978-3-319-68127-6_1 10.1109/IJCNN48605.2020.9207181 10.1007/978-3-319-46630-9_13 10.1016/j.media.2020.101944 10.1007/978-3-030-00536-8_1 10.1109/ICCV.2017.304 |
| ContentType | Journal Article |
| Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Distributed under a Creative Commons Attribution 4.0 International License 2022 by the authors. 2022 |
| Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Distributed under a Creative Commons Attribution 4.0 International License – notice: 2022 by the authors. 2022 |
| DBID | AAYXX CITATION 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 1XC VOOES 5PM ADTOC UNPAY DOA |
| DOI | 10.3390/s22124640 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni Edition) Medical Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database (Proquest) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1424-8220 |
| ExternalDocumentID | oai_doaj_org_article_14b902fe15d9419e8f99c1ddb16b5e4b 10.3390/s22124640 PMC9227640 oai:HAL:hal-03922259v1 10_3390_s22124640 |
| GroupedDBID | --- 123 2WC 53G 5VS 7X7 88E 8FE 8FG 8FI 8FJ AADQD AAHBH AAYXX ABDBF ABUWG ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BENPR BPHCQ BVXVI CCPQU CITATION CS3 D1I DU5 E3Z EBD ESX F5P FYUFA GROUPED_DOAJ GX1 HH5 HMCUK HYE IAO ITC KQ8 L6V M1P M48 MODMG M~E OK1 OVT P2P P62 PHGZM PHGZT PIMPY PJZUB PPXIY PQQKQ PROAC PSQYO RNS RPM TUS UKHRP XSB ~8M 3V. 7XB 8FK AZQEC DWQXO K9. PKEHL PQEST PQUKI PRINS 7X8 PUEGO 1XC ADRAZ IPNFZ RIG VOOES 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c480t-9b44e7ba2c778c072a9159f0b0abea6b7021abe3b8ecfc4e58c3f7fbdced2b023 |
| IEDL.DBID | M48 |
| ISSN | 1424-8220 |
| IngestDate | Tue Oct 14 18:56:18 EDT 2025 Sun Oct 26 03:12:12 EDT 2025 Tue Sep 30 15:50:55 EDT 2025 Tue Oct 14 20:41:36 EDT 2025 Thu Sep 04 18:53:32 EDT 2025 Tue Oct 07 07:16:14 EDT 2025 Thu Oct 16 04:37:34 EDT 2025 Thu Apr 24 23:07:37 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Keywords | generative adversarial network deep learning medical image synthesis |
| Language | English |
| License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c480t-9b44e7ba2c778c072a9159f0b0abea6b7021abe3b8ecfc4e58c3f7fbdced2b023 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 The members of the Alzheimer’s Disease Neuroimaging Initiative are indicated in Acknowledgments. |
| ORCID | 0000-0003-2844-4132 0000-0001-5146-9894 |
| OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s22124640 |
| PMID | 35746422 |
| PQID | 2679840882 |
| PQPubID | 2032333 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_14b902fe15d9419e8f99c1ddb16b5e4b unpaywall_primary_10_3390_s22124640 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9227640 hal_primary_oai_HAL_hal_03922259v1 proquest_miscellaneous_2681037353 proquest_journals_2679840882 crossref_citationtrail_10_3390_s22124640 crossref_primary_10_3390_s22124640 |
| PublicationCentury | 2000 |
| PublicationDate | 20220620 |
| PublicationDateYYYYMMDD | 2022-06-20 |
| PublicationDate_xml | – month: 6 year: 2022 text: 20220620 day: 20 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Sensors (Basel, Switzerland) |
| PublicationYear | 2022 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Wang (ref_13) 2018; 38 Tu (ref_2) 2009; 32 ref_14 Nageswara (ref_36) 2013; 2 Dar (ref_9) 2019; 38 ref_35 Zhou (ref_11) 2020; 39 ref_34 Lin (ref_3) 2021; 15 ref_33 ref_32 ref_31 Hossain (ref_29) 2016; 975 Pan (ref_26) 2020; 40 ref_18 ref_17 ref_16 Wang (ref_4) 2016; 61 Wang (ref_19) 2018; 174 Toga (ref_22) 2021; 86 Yu (ref_15) 2019; 38 Ma (ref_12) 2020; 86 ref_25 ref_24 ref_23 Yurt (ref_10) 2021; 70 ref_21 ref_20 ref_1 Kang (ref_5) 2015; 42 ref_28 ref_27 Vairalkar (ref_30) 2012; 2 ref_8 ref_7 ref_6 |
| References_xml | – ident: ref_7 – volume: 38 start-page: 1328 year: 2018 ident: ref_13 article-title: 3D auto-context-based locality adaptive multi-modality GANs for PET synthesis publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2018.2884053 – ident: ref_28 – volume: 174 start-page: 550 year: 2018 ident: ref_19 article-title: 3D conditional generative adversarial networks for high-quality PET image estimation at low dose publication-title: Neuroimage doi: 10.1016/j.neuroimage.2018.03.045 – volume: 15 start-page: 646013 year: 2021 ident: ref_3 article-title: Bidirectional Mapping of Brain MRI and PET With 3D Reversible GAN for the Diagnosis of Alzheimer’s Disease publication-title: Front. Neurosci. doi: 10.3389/fnins.2021.646013 – ident: ref_32 – ident: ref_20 doi: 10.1007/978-3-319-24574-4_28 – ident: ref_24 – ident: ref_34 – volume: 42 start-page: 5301 year: 2015 ident: ref_5 article-title: Prediction of standard-dose brain PET image by using MRI and low-dose brain [18F] FDG PET images publication-title: Med. Phys. doi: 10.1118/1.4928400 – volume: 39 start-page: 2772 year: 2020 ident: ref_11 article-title: Hi-net: Hybrid-fusion network for multi-modal MR image synthesis publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2020.2975344 – volume: 38 start-page: 2375 year: 2019 ident: ref_9 article-title: Image synthesis in multi-contrast MRI with conditional generative adversarial networks publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2019.2901750 – ident: ref_16 – ident: ref_27 doi: 10.1007/978-3-642-33266-1_8 – volume: 86 start-page: 1718 year: 2021 ident: ref_22 article-title: Three-dimensional self-attention conditional GAN with spectral normalization for multimodal neuroimaging synthesis publication-title: Magn. Reson. Med. doi: 10.1002/mrm.28819 – volume: 2 start-page: 291 year: 2012 ident: ref_30 article-title: Edge detection of images using Sobel operator publication-title: Int. J. Emerg. Technol. Adv. Eng. – ident: ref_1 – volume: 61 start-page: 791 year: 2016 ident: ref_4 article-title: Predicting standard-dose PET image from low-dose PET and multimodal MR images using mapping-based sparse representation publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/61/2/791 – ident: ref_35 – ident: ref_21 doi: 10.1007/978-3-030-00536-8_9 – ident: ref_25 – volume: 40 start-page: 81 year: 2020 ident: ref_26 article-title: Multi-View Separable Pyramid Network for AD Prediction at MCI Stage by 18 F-FDG Brain PET Imaging publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2020.3022591 – ident: ref_33 – volume: 38 start-page: 2772 year: 2019 ident: ref_15 article-title: Ea-GANs: Edge-aware generative adversarial networks for cross-modality MR image synthesis publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2019.2895894 – volume: 32 start-page: 1744 year: 2009 ident: ref_2 article-title: Auto-context and its application to high-level vision tasks and 3d brain image segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – ident: ref_14 doi: 10.1109/ISBI.2018.8363653 – ident: ref_17 doi: 10.1109/CVPR.2017.632 – volume: 86 start-page: 101800 year: 2020 ident: ref_12 article-title: MRI image synthesis with dual discriminator adversarial learning and difficulty-aware attention mechanism for hippocampal subfields segmentation publication-title: Comput. Med. Imaging Graph. doi: 10.1016/j.compmedimag.2020.101800 – ident: ref_8 doi: 10.1007/978-3-319-68127-6_1 – ident: ref_23 doi: 10.1109/IJCNN48605.2020.9207181 – ident: ref_6 doi: 10.1007/978-3-319-46630-9_13 – volume: 70 start-page: 101944 year: 2021 ident: ref_10 article-title: Multi-stream generative adversarial networks for MR image synthesis publication-title: Med. Image Anal. doi: 10.1016/j.media.2020.101944 – ident: ref_18 doi: 10.1007/978-3-030-00536-8_1 – volume: 2 start-page: 4531 year: 2013 ident: ref_36 article-title: HCo-occurrence matrix and its statistical features as an approach for identification of phase transitions of mesogens publication-title: Int. J. Innov. Res. Sci. Eng. Technol. – volume: 975 start-page: 37 year: 2016 ident: ref_29 article-title: Dynamic thresholding based adaptive canny edge detection publication-title: Int. J. Comput. Appl. – ident: ref_31 doi: 10.1109/ICCV.2017.304 |
| SSID | ssj0023338 |
| Score | 2.467667 |
| Snippet | Objective: With the strengths of deep learning, computer-aided diagnosis (CAD) is a hot topic for researchers in medical image analysis. One of the main... With the strengths of deep learning, computer-aided diagnosis (CAD) is a hot topic for researchers in medical image analysis. One of the main requirements for... |
| SourceID | doaj unpaywall pubmedcentral hal proquest crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 4640 |
| SubjectTerms | Accuracy Computer Science Deep learning generative adversarial network Graphics Machine Learning Magnetic resonance imaging medical image synthesis Medical Imaging Methods Three dimensional imaging Tomography |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Nb9MwFLfQLoMD4lNkjMl8HMYhmhM7_jh2rF1BUCHUiR2QItuxtUpVOq3pEP_9np00ShGIC7fIfonj5-f3YT__jNA75SXVBsJUqguZMsd4qolyacV9xSXnNtMxy3fGpxfs02VxObjqK-SEtfDALeNOMmYUyb3LikqxTDnplbJZVZmMm8IxE7QvkWobTHWhFoXIq8URohDUn6xz0NCMhxWOgfWJIP1gU65CCuTAv_w9O3J_U1_rXz_1cjkwPZNH6GHnM-JR-6-P0T1XP0EPBkiCT9GPydl5-nU8x80KzzP8PS54ugp_-fYRR3PUprzhsOyK6RkeLxd20eAWdDpoPBxvZl7rII941uaG4-Nxej6avX-GLibj-Ydp2l2ckFomSZMqw5gTRudWCGmJyLUCr8UTQ7RxmhsBhh2eqJHOestcIS31whvocpUb4N5ztFevavcCYeC-g9cVF9wx58GfYIpoTz0TSrnCJ-h4y9DSdqji4XKLZQnRReB92fM-QW960usWSuNPRKdhVHqCgH4dC0Amyk4myn_JBLQEY7rzjenocxnKCPiDoMLUbZagw-2Ql928XZd52JRiIexI0Ou-GmZc2EbRtVttAo0MhytpQRMkdkRlp8XdmnpxFbG7oXURu_m2F6q_M-PgfzDjJbqfhyMbhINGPER7zc3GvQJHqjFHcc7cAfMPGrs priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELbK9gAcKp5qaEHmcSiHqHk4TnxAaEuzXRBEVbUVPSBFtmPTlVbJ0s2C-PfM5MUuAm6RPYnjsT0Pe_wNIa-ETUKpwE0NZZS4zDDuSk8Yt-C24Ann2pdNlG_Gp5fsw1V0tUOy_i4MhlX2MrER1EWlcY_8OMDjAoYG4dvlNxezRuHpap9CQ3apFYo3DcTYLbIbIDLWiOyepNn5xeCCheCRtfhCITj7x6sAyBjHnY8NrdSA94OuucbQyA2788-oydvrcil__pCLxYZKmtwje50tScft4N8nO6Z8QO5uIAw-JF8mp2fueTqjdUVnPv3cbISagn66eE8bNdWGwlHcjqXhKU0Xcz2vaQtGjZKQNhmbVxLnKc3amHF6lLpn4-z1I3I5SWfvpm6XUMHVLPFqVyjGTKxkoOM40V4cSAHWjPWUJ5WRXMWg8OEpVInRVjMTJTq0sVXQ5SJQwL3HZFRWpdknlClh4HXBY26YsWBnMOFJG1oWC2Ei65CjnqG57tDGMenFIgevA3mfD7x3yIuBdNlCbPyN6ARHZSBAVOymoLr5mneLDNwYJbzAGj8qBPOFSawQ2i8K5XMVGaagJRjTrW9Mxx9zLPPATgTRJr77Djnshzzv1vMq_z37HPJ8qIaViMcrsjTVGmkSvHQZRqFD4q2pstXidk05v24wvaH1uOnmy2FS_ZsZT_7_iwfkToCXNDwOMvCQjOqbtXkKplOtnnXr4RdvhhhM priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELegewAe-EYEBjIfD-Mhi5M4jv2ECmtXEFQTasWQkCLbsVlFlVZrOgR_PWcnrZoJJCTeouQSJ_H57nf23c8IvRSWp1JBmJrKjIfUUBZKIkxYMlsyzpiOpc_yHbPRlL4_zU53qvhdWiWE4jNvpF0VVggejERJEsVJRBkl0bK0ry_auaSYZRkAfk7Tq2iPZYDGe2hvOj7pf_FFRe3dDaFQCtF9tErAVLvHdNyQZ-sH53LmciF3gOblNMlr62opf_6Q8_mODxreQnLz9k3qyffDda0O9a9LxI7_83m30c0WoOJ-o1F30BVT3UU3dmgL76Gvw6Pj8GQwwfUCT2L82c-umhJ__PQOe9_X5NdhN8eL0yM8mM_0rMYNw7Uzr9hvA72STvnxuElExweD8Lg_fnUfTYeDydtR2O7SEGrKSR0KRanJlUx0nnNN8kQKgEiWKCKVkUzlgCLgKFXcaKupybhObW4V_NYyUQAZHqBetajMQ4SpEgZuFyxnhhoL4IUKIm1qaS6EyWyADjadVuiWwtztpDEvIJRx_Vts-zdAz7eiy4a3409Cb1zPbwUc1bY_sTj_VrQjF2IjJUhiTZyVgsbCcCuEjstSxUxlhipoCfSm84xR_0PhzhEAn2AvxUUcoP2NWhWtkVgViVsBoy7GCdCz7WUY3m7NRlZmsXYy3FVyplkaoLyjjp0Wu1eq2ZknCofWc_-ZL7aK-_ef8eifpB6j64krACEM7Os-6tXna_MEYFmtnrYj7zclDi-7 priority: 102 providerName: Unpaywall |
| Title | FDG-PET to T1 Weighted MRI Translation with 3D Elicit Generative Adversarial Network (E-GAN) |
| URI | https://www.proquest.com/docview/2679840882 https://www.proquest.com/docview/2681037353 https://hal.science/hal-03922259 https://pubmed.ncbi.nlm.nih.gov/PMC9227640 https://www.mdpi.com/1424-8220/22/12/4640/pdf?version=1655716843 https://doaj.org/article/14b902fe15d9419e8f99c1ddb16b5e4b |
| UnpaywallVersion | publishedVersion |
| Volume | 22 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: HH5 dateStart: 20010101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20010101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: KQ8 dateStart: 20030101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ABDBF dateStart: 20081201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: ADMLS dateStart: 20081201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 20010101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M~E dateStart: 20010101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central Free customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: RPM dateStart: 20030101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 7X7 dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1424-8220 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: 8FG dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1424-8220 dateEnd: 20250930 omitProxy: true ssIdentifier: ssj0023338 issn: 1424-8220 databaseCode: M48 dateStart: 20030101 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELfG9gA8ID5FtlGZj4fxEMiHY8cPCHUsbUGsqqZWFAkpsh2bVYrS0abA_nvOSRo1aLzxEkX2JZbvbN_97PMdQq-4iUMhAaaGIopdogl1hce1m1GT0ZhS5YvKy3dMRzPyaR7N99A2x2bDwPWN0M7mk5qt8je_f1y_hwn_ziJOgOxv1wGsv4QSQO4HoKC4zeBwTtrDhCAEGFYHFeqSd1RRFbEfFMyl9YfcMTb_dpW8vSmuxPUvkec7emhwH91rDEjcryX-AO3p4iG6uxNW8BH6NjgbupNkisslnvr4S7X7qTN8fvERV7qp9n_Ddg8Wh2c4yRdqUeI6ArVd_nCVpnkt7ODE49pRHJ8k7rA_fv0YzQbJ9MPIbbIouIrEXulySYhmUgSKsVh5LBAcTBjjSU9ILahkoOXhLZSxVkYRHcUqNMxI6HIWSODeE7RfLAv9FGEiuYbPOWVUE23AuCDcEyY0hHGuI-Ogky1DU9WEGLeZLvIUoIblfdry3kEvWtKrOq7GTUSnViotgQ2FXRUsV9_TZmYBdpHcC4z2o4wTn-vYcK78LJM-lZEmEloCmXb-Mep_Tm2ZB8YhrGf8p--g463I0-0YTAN7QkUsBnHQ87Yapp89UxGFXm4sTWxvWoZR6CDWGSqdFrs1xeKyCuQNrbOqmy_bQfVvZhz-D2YcoTuBvb_hUVgej9F-udroZ2BVlbKHbrE5g2c8GPbQwWkynlz0qh2KXjWboGw2nvS__gFPdiZf |
| linkProvider | Scholars Portal |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1Nb9Mw1JrGYXBA40uUDTBf0jhES2LHjg8IFdquZV2FUCd6mBRsx2aVqrSsLdP-FL-RZyfNWgTcdouclzh5ft9-fg-h18KmRCpwU4lM0oAaygIZChPkzOYsZUxH0mf5Dlj3lH4aJaMt9Gt1FsalVa5kohfU-VS7GPlh7LYLqDMI389-BK5rlNtdXbXQKMni2Fxdgss2f9drwfq-ieNOe_ixG1RdBQJN03ARCEWp4UrGmvNUhzyWAlS6DVUolZFMcdB6cEVUarTV1CSpJpZblWuTx8oXOgCRf4sSkCXAP3x07eAR8PfK6kWEiPBwHoNeoMzFVdZ0nm8NAJrs3CVerlm1f-Zk7iyLmby6lJPJmsLr7KK7laWKmyVp3UNbpriP7qzVL3yAzjqto-Bze4gXUzyM8FcfZjU5PvnSw14Jlol22AV7MWnh9mSsxwtclrp2chb7ftBz6bgAD8qMdHzQDo6ag7cP0emNIPYR2i6mhXmMMFXCwOOCcWaosWDFUBFKSyzlQpjENtDBCqGZrmqZu5Yakwx8Gof7rMZ9A72sQWdlAY-_AX1wq1IDuJrbfmB68T2rWBicJCXC2JooyQWNhEmtEDrKcxUxlRiqYCZY0413dJv9zI2FYIWC4BQ_owbaXy15VkmLeXZN2w30or4NfO42b2RhpksHk7ojnSQhDcQ3SGVjxs07xfjcVwyH2bn_zVc1Uf0bGU_-_4nP0U53eNLP-r3B8R66HbvjICEDabuPthcXS_MUjLSFeuY5A6NvN82KvwGQrVE7 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1db9Mw0JqGxMcD4lNkDDBf0niImsSOHT8gVGi7lo1qQp3WB6RgO_ZWqUrL2jLtr_HrODtp1yLgbW9R7MTJfd_5fIfQG2EzIhW4qUSmWUgNZaGMhAkLZguWMaZj6bN8-6x7TD8P0-EW-rU8C-PSKpcy0QvqYqJdjLyRuO0C6gzChq3TIo5anQ_TH6HrIOV2WpftNCoSOTCXF-C-zd73WoDrt0nSaQ8-dcO6w0CoaRbNQ6EoNVzJRHOe6YgnUoB6t5GKpDKSKQ4aEK6Iyoy2mpo008RyqwptikT5ogcg_m9wQoRLJ-TDK2ePgO9XVTKCwagxS0BHUOZiLGv6z7cJAK125pIw1yzcP_Mzby3Kqby8kOPxmvLr3EN3a6sVNysyu4-2TPkA3VmrZfgQfeu09sOj9gDPJ3gQ4xMfcjUF_vK1h71CrJLusAv8YtLC7fFIj-a4KnvtZC72vaFn0nEE7lfZ6XivHe43--8eoeNrAexjtF1OSvMEYaqEgccF48xQY8GioSKSlljKhTCpDdDeEqC5ruuau_Ya4xz8Gwf7fAX7AL1aTZ1WxTz-Numjw8pqgqu_7W9Mzk_zmp3BYVIiSqyJ00LQWJjMCqHjolAxU6mhClYCnG68o9s8zN29CCxSEKLiZxyg3SXK81pyzPIrOg_Qy9Uw8LzbyJGlmSzcnMwd7yQpCRDfIJWNFTdHytGZrx4Oq3P_m69XRPVvYOz8_xNfoJvAhPlhr3_wFN1O3MmQiIHg3UXb8_OFeQb22lw994yB0ffr5sTfUB1Vfg |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwELegewAe-EYEBjIfD-Mhi5M4jv2ECmtXEFQTasWQkCLbsVlFlVZrOgR_PWcnrZoJJCTeouQSJ_H57nf23c8IvRSWp1JBmJrKjIfUUBZKIkxYMlsyzpiOpc_yHbPRlL4_zU53qvhdWiWE4jNvpF0VVggejERJEsVJRBkl0bK0ry_auaSYZRkAfk7Tq2iPZYDGe2hvOj7pf_FFRe3dDaFQCtF9tErAVLvHdNyQZ-sH53LmciF3gOblNMlr62opf_6Q8_mODxreQnLz9k3qyffDda0O9a9LxI7_83m30c0WoOJ-o1F30BVT3UU3dmgL76Gvw6Pj8GQwwfUCT2L82c-umhJ__PQOe9_X5NdhN8eL0yM8mM_0rMYNw7Uzr9hvA72STvnxuElExweD8Lg_fnUfTYeDydtR2O7SEGrKSR0KRanJlUx0nnNN8kQKgEiWKCKVkUzlgCLgKFXcaKupybhObW4V_NYyUQAZHqBetajMQ4SpEgZuFyxnhhoL4IUKIm1qaS6EyWyADjadVuiWwtztpDEvIJRx_Vts-zdAz7eiy4a3409Cb1zPbwUc1bY_sTj_VrQjF2IjJUhiTZyVgsbCcCuEjstSxUxlhipoCfSm84xR_0PhzhEAn2AvxUUcoP2NWhWtkVgViVsBoy7GCdCz7WUY3m7NRlZmsXYy3FVyplkaoLyjjp0Wu1eq2ZknCofWc_-ZL7aK-_ef8eifpB6j64krACEM7Os-6tXna_MEYFmtnrYj7zclDi-7 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FDG-PET+to+T1+Weighted+MRI+Translation+with+3D+Elicit+Generative+Adversarial+Network+%28E-GAN%29&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Farideh+Bazangani&rft.au=Fr%C3%A9d%C3%A9ric+J.+P.+Richard&rft.au=Badih+Ghattas&rft.au=Eric+Guedj&rft.date=2022-06-20&rft.pub=MDPI+AG&rft.eissn=1424-8220&rft.volume=22&rft.issue=12&rft.spage=4640&rft_id=info:doi/10.3390%2Fs22124640&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_14b902fe15d9419e8f99c1ddb16b5e4b |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon |