SciKit-GStat 1.0: a SciPy-flavored geostatistical variogram estimation toolbox written in Python

Geostatistical methods are widely used in almost all geoscientific disciplines, i.e., for interpolation, rescaling, data assimilation or modeling. At its core, geostatistics aims to detect, quantify, describe, analyze and model spatial covariance of observations. The variogram, a tool to describe th...

Full description

Saved in:
Bibliographic Details
Published inGeoscientific Model Development Vol. 15; no. 6; pp. 2505 - 2532
Main Author Mälicke, Mirko
Format Journal Article
LanguageEnglish
Published Katlenburg-Lindau Copernicus GmbH 25.03.2022
Copernicus Publications
Subjects
Online AccessGet full text
ISSN1991-9603
1991-959X
1991-962X
1991-9603
1991-962X
DOI10.5194/gmd-15-2505-2022

Cover

Abstract Geostatistical methods are widely used in almost all geoscientific disciplines, i.e., for interpolation, rescaling, data assimilation or modeling. At its core, geostatistics aims to detect, quantify, describe, analyze and model spatial covariance of observations. The variogram, a tool to describe this spatial covariance in a formalized way, is at the heart of every such method. Unfortunately, many applications of geostatistics focus on the interpolation method or the result rather than the quality of the estimated variogram. Not least because estimating a variogram is commonly left as a task for computers, and some software implementations do not even show a variogram to the user. This is a miss, because the quality of the variogram largely determines whether the application of geostatistics makes sense at all. Furthermore, the Python programming language was missing a mature, well-established and tested package for variogram estimation a couple of years ago. Here I present SciKit-GStat, an open-source Python package for variogram estimation that fits well into established frameworks for scientific computing and puts the focus on the variogram before more sophisticated methods are about to be applied. SciKit-GStat is written in a mutable, object-oriented way that mimics the typical geostatistical analysis workflow. Its main strength is the ease of use and interactivity, and it is therefore usable with only a little or even no knowledge of Python. During the last few years, other libraries covering geostatistics for Python developed along with SciKit-GStat. Today, the most important ones can be interfaced by SciKit-GStat. Additionally, established data structures for scientific computing are reused internally, to keep the user from learning complex data models, just for using SciKit-GStat. Common data structures along with powerful interfaces enable the user to use SciKit-GStat along with other packages in established workflows rather than forcing the user to stick to the author's programming paradigms. SciKit-GStat ships with a large number of predefined procedures, algorithms and models, such as variogram estimators, theoretical spatial models or binning algorithms. Common approaches to estimate variograms are covered and can be used out of the box. At the same time, the base class is very flexible and can be adjusted to less common problems, as well. Last but not least, it was made sure that a user is aided in implementing new procedures or even extending the core functionality as much as possible, to extend SciKit-GStat to uncovered use cases. With broad documentation, a user guide, tutorials and good unit-test coverage, SciKit-GStat enables the user to focus on variogram estimation rather than implementation details.
AbstractList Geostatistical methods are widely used in almost all geoscientific disciplines, i.e., for interpolation, rescaling, data assimilation or modeling. At its core, geostatistics aims to detect, quantify, describe, analyze and model spatial covariance of observations. The variogram, a tool to describe this spatial covariance in a formalized way, is at the heart of every such method. Unfortunately, many applications of geostatistics focus on the interpolation method or the result rather than the quality of the estimated variogram. Not least because estimating a variogram is commonly left as a task for computers, and some software implementations do not even show a variogram to the user. This is a miss, because the quality of the variogram largely determines whether the application of geostatistics makes sense at all. Furthermore, the Python programming language was missing a mature, well-established and tested package for variogram estimation a couple of years ago. Here I present SciKit-GStat, an open-source Python package for variogram estimation that fits well into established frameworks for scientific computing and puts the focus on the variogram before more sophisticated methods are about to be applied. SciKit-GStat is written in a mutable, object-oriented way that mimics the typical geostatistical analysis workflow. Its main strength is the ease of use and interactivity, and it is therefore usable with only a little or even no knowledge of Python. During the last few years, other libraries covering geostatistics for Python developed along with SciKit-GStat. Today, the most important ones can be interfaced by SciKit-GStat. Additionally, established data structures for scientific computing are reused internally, to keep the user from learning complex data models, just for using SciKit-GStat. Common data structures along with powerful interfaces enable the user to use SciKit-GStat along with other packages in established workflows rather than forcing the user to stick to the author's programming paradigms. SciKit-GStat ships with a large number of predefined procedures, algorithms and models, such as variogram estimators, theoretical spatial models or binning algorithms. Common approaches to estimate variograms are covered and can be used out of the box. At the same time, the base class is very flexible and can be adjusted to less common problems, as well. Last but not least, it was made sure that a user is aided in implementing new procedures or even extending the core functionality as much as possible, to extend SciKit-GStat to uncovered use cases. With broad documentation, a user guide, tutorials and good unit-test coverage, SciKit-GStat enables the user to focus on variogram estimation rather than implementation details.
Geostatistical methods are widely used in almost all geoscientific disciplines, i.e., for interpolation, rescaling, data assimilation or modeling. At its core, geostatistics aims to detect, quantify, describe, analyze and model spatial covariance of observations. The variogram, a tool to describe this spatial covariance in a formalized way, is at the heart of every such method. Unfortunately, many applications of geostatistics focus on the interpolation method or the result rather than the quality of the estimated variogram. Not least because estimating a variogram is commonly left as a task for computers, and some software implementations do not even show a variogram to the user. This is a miss, because the quality of the variogram largely determines whether the application of geostatistics makes sense at all. Furthermore, the Python programming language was missing a mature, well-established and tested package for variogram estimation a couple of years ago.
Geostatistical methods are widely used in almost all geoscientific disciplines, i.e., for interpolation, rescaling, data assimilation or modeling. At its core, geostatistics aims to detect, quantify, describe, analyze and model spatial covariance of observations. The variogram, a tool to describe this spatial covariance in a formalized way, is at the heart of every such method. Unfortunately, many applications of geostatistics focus on the interpolation method or the result rather than the quality of the estimated variogram. Not least because estimating a variogram is commonly left as a task for computers, and some software implementations do not even show a variogram to the user. This is a miss, because the quality of the variogram largely determines whether the application of geostatistics makes sense at all. Furthermore, the Python programming language was missing a mature, well-established and tested package for variogram estimation a couple of years ago. Here I present SciKit-GStat, an open-source Python package for variogram estimation that fits well into established frameworks for scientific computing and puts the focus on the variogram before more sophisticated methods are about to be applied. SciKit-GStat is written in a mutable, object-oriented way that mimics the typical geostatistical analysis workflow. Its main strength is the ease of use and interactivity, and it is therefore usable with only a little or even no knowledge of Python. During the last few years, other libraries covering geostatistics for Python developed along with SciKit-GStat. Today, the most important ones can be interfaced by SciKit-GStat. Additionally, established data structures for scientific computing are reused internally, to keep the user from learning complex data models, just for using SciKit-GStat. Common data structures along with powerful interfaces enable the user to use SciKit-GStat along with other packages in established workflows rather than forcing the user to stick to the author's programming paradigms. SciKit-GStat ships with a large number of predefined procedures, algorithms and models, such as variogram estimators, theoretical spatial models or binning algorithms. Common approaches to estimate variograms are covered and can be used out of the box. At the same time, the base class is very flexible and can be adjusted to less common problems, as well. Last but not least, it was made sure that a user is aided in implementing new procedures or even extending the core functionality as much as possible, to extend SciKit-GStat to uncovered use cases. With broad documentation, a user guide, tutorials and good unit-test coverage, SciKit-GStat enables the user to focus on variogram estimation rather than implementation details.
Audience Academic
Author Mälicke, Mirko
Author_xml – sequence: 1
  givenname: Mirko
  orcidid: 0000-0002-0424-2651
  surname: Mälicke
  fullname: Mälicke, Mirko
BookMark eNqNUcFu1DAQjVCRaAt3jpE4cchiO7Edc6sqKCsqUbFwNmPHCV4l8WJ72-7fM9tFqItAQpbs0Zv3nmaez4qTOcyuKF5SsuBUNW-GqasorxgneBHGnhSnVClaKUHqk0f1s-IspTUhQkkhT4tvK-s_-lxdrTLkki7I2xJKxG52VT_CbYiuKwcXEnZ9yt7CWN5C9GGIMJUOkQkbYS5zCKMJ9-Vd9Dm7ufRzebPL38P8vHjaw5jci1_vefH1_bsvlx-q609Xy8uL68o2LcmVgo4Kxw0wo2rD6hoINUIxZ7ikHZbSqb7hVhrRcuuAc0KIlJ0TxhFKoT4vlgffLsBabyIOFnc6gNcPQIiDhogLjE5LLqxVVNUYR9O2TdtAK_uGQtcBNcygFz14becN7O5gHH8bUqL3cWuMW1Ou93HrfdyoeXXQbGL4scVk9Dps44wrayYaJmTNxCPWADiIn_uQI9jJJ6svhGrRrqYtshZ_YeHp3OQt_nvvET8SvD4SICe7-zzANiW9XH0-5pID18aQUnT9_-wm_pBYnx_-Hefy47-FPwHmg8um
CitedBy_id crossref_primary_10_1007_s11242_023_01921_9
crossref_primary_10_1080_22797254_2025_2449940
crossref_primary_10_5194_gmd_17_5249_2024
crossref_primary_10_1016_j_cageo_2024_105665
crossref_primary_10_5194_tc_19_375_2025
crossref_primary_10_1016_j_spasta_2022_100717
crossref_primary_10_1109_JSTARS_2022_3188922
crossref_primary_10_2139_ssrn_4825814
crossref_primary_10_1007_s00190_024_01829_2
crossref_primary_10_5194_essd_16_5405_2024
crossref_primary_10_1016_j_spasta_2023_100737
crossref_primary_10_1109_ACCESS_2024_3393778
crossref_primary_10_3389_frsen_2023_1249521
crossref_primary_10_5194_gmd_15_3161_2022
crossref_primary_10_1038_s41561_024_01636_6
crossref_primary_10_3390_rs16162913
crossref_primary_10_5194_tc_16_3249_2022
crossref_primary_10_1016_j_eswa_2025_127192
crossref_primary_10_1016_j_apgeog_2024_103414
crossref_primary_10_47818_DRArch_2024_v5i2132
crossref_primary_10_5194_gmd_16_3765_2023
crossref_primary_10_1007_s11004_025_10180_x
crossref_primary_10_1016_j_eswa_2024_126167
crossref_primary_10_1109_MCSE_2023_3317773
Cites_doi 10.1029/2007WR006115
10.1029/2008WR006993
10.5194/hess-24-4523-2020
10.1007/BF01025868
10.1029/2008WR006829
10.1007/BF01035243
10.1016/S0022-1694(97)00152-2
10.32614/RJ-2016-014
10.2136/vzj2018.03.0060
10.1016/j.jhydrol.2018.05.001
10.5194/gmd-2021-174
10.1016/j.cageo.2010.03.021
10.1016/S0098-3004(01)00040-1
10.1111/0033-0124.00250
10.1007/s11004-009-9229-1
10.1023/A:1021368723926
10.1007/978-1-4614-7618-4
10.1109/MCSE.2011.37
10.1175/1520-0469(1947)004<0186:MORBR>2.0.CO;2
10.2136/vzj2011.0178
10.1007/978-3-662-03550-4_9
10.1016/j.cageo.2004.03.012
10.32614/CRAN.package.sp
10.1016/S0022-1694(00)00144-X
10.2113/gsecongeo.58.8.1246
10.1007/BFb0067700
10.1002/wics.35
10.1007/BF00890662
10.1002/qj.2522
10.1017/S0001867800000434
10.1177/001316446302300107
10.1137/S1064827595289108
10.1007/978-94-009-3699-7_6
10.1080/00031305.1976.10479172
10.1002/wics.103
10.1002/9781118762387
10.1002/j.1538-7305.1948.tb01338.x
10.1038/s41592-020-0772-5
10.1016/0098-3004(91)90009-3
10.1287/moor.14.2.303
10.1046/j.1365-2389.2000.00345.x
10.1109/MCSE.2007.55
10.5194/hess-24-2633-2020
10.1111/j.1365-2389.1980.tb02084.x
10.1038/s41586-020-2649-2
10.1007/s10589-010-9329-3
10.5194/gmd-2021-301
10.1007/BF02289588
10.1029/2007WR006604
10.1029/2005WR004754
10.1023/A:1021728614555
10.1016/j.jhydrol.2003.09.014
10.5194/essd-12-2289-2020
10.1007/978-94-011-0824-9_11
ContentType Journal Article
Copyright COPYRIGHT 2022 Copernicus GmbH
2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2022 Copernicus GmbH
– notice: 2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ISR
7TG
7TN
7UA
8FD
8FE
8FG
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
H8D
H96
HCIFZ
KL.
L.G
L6V
L7M
M7S
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
ADTOC
UNPAY
DOA
DOI 10.5194/gmd-15-2505-2022
DatabaseName CrossRef
Gale In Context: Science
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Water Resources Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central
ProQuest Central Essentials - QC
ProQuest Central
Continental Europe Database
ProQuest Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Engineering Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest One Sustainability
ProQuest Engineering Collection
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Engineering Database
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Continental Europe Database
ProQuest SciTech Collection
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef


Publicly Available Content Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geology
EISSN 1991-9603
1991-962X
EndPage 2532
ExternalDocumentID oai_doaj_org_article_756cc9193603488484a87f41adda1b2b
10.5194/gmd-15-2505-2022
A698250318
10_5194_gmd_15_2505_2022
GroupedDBID 5VS
8R4
8R5
AAFWJ
AAYXX
ABDBF
ACUHS
ADBBV
AENEX
AFPKN
AHGZY
ALMA_UNASSIGNED_HOLDINGS
BCNDV
CITATION
ESX
GROUPED_DOAJ
H13
IAO
IEA
IEP
ISR
ITC
KQ8
OK1
P2P
Q2X
RKB
RNS
TR2
TUS
7TG
7TN
7UA
8FD
8FE
8FG
8FH
ABJCF
ABUWG
AEUYN
AFKRA
AZQEC
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
BPHCQ
C1K
CCPQU
DWQXO
F1W
H8D
H96
HCIFZ
KL.
L.G
L6V
L7M
LK5
M7R
M7S
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PROAC
PTHSS
ADTOC
C1A
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c480t-9ad16e5ba2b93b233a01b692eb571d1b67e9f45c7b685cea5500077de6be011a3
IEDL.DBID UNPAY
ISSN 1991-9603
1991-959X
1991-962X
IngestDate Fri Oct 03 12:40:36 EDT 2025
Sun Oct 26 04:37:24 EDT 2025
Fri Jul 25 19:04:24 EDT 2025
Mon Oct 20 22:24:09 EDT 2025
Mon Oct 20 16:47:23 EDT 2025
Thu Oct 16 14:28:01 EDT 2025
Tue Jul 01 03:33:09 EDT 2025
Thu Apr 24 22:57:23 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://creativecommons.org/licenses/by/4.0
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c480t-9ad16e5ba2b93b233a01b692eb571d1b67e9f45c7b685cea5500077de6be011a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0424-2651
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.5194/gmd-15-2505-2022
PQID 2642673262
PQPubID 105726
PageCount 28
ParticipantIDs doaj_primary_oai_doaj_org_article_756cc9193603488484a87f41adda1b2b
unpaywall_primary_10_5194_gmd_15_2505_2022
proquest_journals_2642673262
gale_infotracmisc_A698250318
gale_infotracacademiconefile_A698250318
gale_incontextgauss_ISR_A698250318
crossref_primary_10_5194_gmd_15_2505_2022
crossref_citationtrail_10_5194_gmd_15_2505_2022
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-03-25
PublicationDateYYYYMMDD 2022-03-25
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-25
  day: 25
PublicationDecade 2020
PublicationPlace Katlenburg-Lindau
PublicationPlace_xml – name: Katlenburg-Lindau
PublicationTitle Geoscientific Model Development
PublicationYear 2022
Publisher Copernicus GmbH
Copernicus Publications
Publisher_xml – name: Copernicus GmbH
– name: Copernicus Publications
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref67
ref26
ref25
ref20
ref64
ref63
ref22
ref66
ref21
ref65
ref28
ref27
ref29
ref60
ref62
ref61
References_xml – ident: ref4
  doi: 10.1029/2007WR006115
– ident: ref37
– ident: ref29
  doi: 10.1029/2008WR006993
– ident: ref59
  doi: 10.5194/hess-24-4523-2020
– ident: ref21
  doi: 10.1007/BF01025868
– ident: ref62
  doi: 10.1029/2008WR006829
– ident: ref12
  doi: 10.1007/BF01035243
– ident: ref43
– ident: ref3
  doi: 10.1016/S0022-1694(97)00152-2
– ident: ref25
  doi: 10.32614/RJ-2016-014
– ident: ref35
  doi: 10.2136/vzj2018.03.0060
– ident: ref11
– ident: ref34
– ident: ref26
  doi: 10.1016/j.jhydrol.2018.05.001
– ident: ref13
– ident: ref36
– ident: ref45
  doi: 10.5194/gmd-2021-174
– ident: ref6
  doi: 10.1016/j.cageo.2010.03.021
– ident: ref14
  doi: 10.1016/S0098-3004(01)00040-1
– ident: ref1
  doi: 10.1111/0033-0124.00250
– ident: ref7
  doi: 10.1007/s11004-009-9229-1
– ident: ref40
  doi: 10.1023/A:1021368723926
– ident: ref5
  doi: 10.1007/978-1-4614-7618-4
– ident: ref60
  doi: 10.1109/MCSE.2011.37
– ident: ref46
  doi: 10.1175/1520-0469(1947)004<0186:MORBR>2.0.CO;2
– ident: ref61
  doi: 10.2136/vzj2011.0178
– ident: ref64
  doi: 10.1007/978-3-662-03550-4_9
– ident: ref54
  doi: 10.1016/j.cageo.2004.03.012
– ident: ref53
  doi: 10.32614/CRAN.package.sp
– ident: ref24
  doi: 10.1016/S0022-1694(00)00144-X
– ident: ref47
  doi: 10.2113/gsecongeo.58.8.1246
– ident: ref49
  doi: 10.1007/BFb0067700
– ident: ref39
– ident: ref56
  doi: 10.1002/wics.35
– ident: ref52
  doi: 10.1007/BF00890662
– ident: ref32
  doi: 10.1002/qj.2522
– ident: ref41
  doi: 10.1017/S0001867800000434
– ident: ref65
  doi: 10.1177/001316446302300107
– ident: ref8
  doi: 10.1137/S1064827595289108
– ident: ref18
  doi: 10.1007/978-94-009-3699-7_6
– ident: ref51
– ident: ref17
  doi: 10.1080/00031305.1976.10479172
– ident: ref57
  doi: 10.1002/wics.103
– ident: ref48
  doi: 10.1002/9781118762387
– ident: ref58
  doi: 10.1002/j.1538-7305.1948.tb01338.x
– ident: ref63
  doi: 10.1038/s41592-020-0772-5
– ident: ref55
– ident: ref19
  doi: 10.1016/0098-3004(91)90009-3
– ident: ref15
– ident: ref10
  doi: 10.1287/moor.14.2.303
– ident: ref38
  doi: 10.1046/j.1365-2389.2000.00345.x
– ident: ref28
– ident: ref30
  doi: 10.1109/MCSE.2007.55
– ident: ref42
– ident: ref44
  doi: 10.5194/hess-24-2633-2020
– ident: ref9
  doi: 10.1111/j.1365-2389.1980.tb02084.x
– ident: ref27
  doi: 10.1038/s41586-020-2649-2
– ident: ref22
  doi: 10.1007/s10589-010-9329-3
– ident: ref50
  doi: 10.5194/gmd-2021-301
– ident: ref33
  doi: 10.1007/BF02289588
– ident: ref67
  doi: 10.1029/2007WR006604
– ident: ref2
  doi: 10.1029/2005WR004754
– ident: ref23
  doi: 10.1023/A:1021728614555
– ident: ref66
  doi: 10.1016/j.jhydrol.2003.09.014
– ident: ref20
  doi: 10.5194/essd-12-2289-2020
– ident: ref16
  doi: 10.1007/978-94-011-0824-9_11
– ident: ref31
SSID ssj0069767
ssj0069768
Score 2.4617329
Snippet Geostatistical methods are widely used in almost all geoscientific disciplines, i.e., for interpolation, rescaling, data assimilation or modeling. At its core,...
Geostatistical methods are widely used in almost all geoscientific disciplines, i.e., for interpolation, rescaling, data assimilation or modeling. At its core,...
SourceID doaj
unpaywall
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 2505
SubjectTerms Algorithms
Computation
Computers
Covariance
Data assimilation
Data collection
Data structures
Datasets
Earth science
Estimation
Geology
Geostatistics
Heart
Interfaces
Interpolation
Manuals
Methods
Modelling
Procedures
Programming languages
Python
Rescaling
Scaling
Software
Statistical methods
Workflow
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEF-kIOpDsX7g2VoWEURhvWSzH1nfqthWRSlq4d7W3c3mOIhJucu13n_vTJI7egj2xbeQzIXsZD5-k5v9DSEvQhIKqLg00yZCgcKNYA6QL9Pcc8d5HnnATwNfvqrTc_FpIifXRn1hT1hPD9wrbqylCsEAzFBJBsYmcuFyXYoU_NKlnnuMvklu1sVUH4MVJNlurAr29RhpJv0flIBWxHj6q2CpZJj6wUQ430pIHW__39H5HrmzrC_c6spV1bX0c3yf7A64kR71z7tHbsX6Abl90s3lXT0kP8FHP89adoLgkaZvkrfUUTh3tmJl5S6beSzoNDa4fahjZoZbXUKV3PVmUSTa6Hcw0rZpKt_8plfzWQtoms5qerZCeoFH5Pz4w4_3p2wYnsCCyJOWGVekKkrvuDeZ51nmktQrw6OXOi3gUEdTChm0V7kM0UmcjKB1EZWP4PMue0x26qaOTwj1SMEOyCg3iouOQY1DRouZ4EXiijIbkfFagzYMzOI44KKyUGGgzi3o3KbSos4t6nxEXm1-cdGzavxD9h2-lI0c8mF3J8BK7GAl9iYrGZHn-EotMl7U2FIzdcvFwn78_s0eKQNVMsa2EXk5CJUNPH9www4F0AKSZG1JHmxJgkuG7ctry7FDSFhYQJ5caUDLsKLXG2u6cflP_8fy98ldvBf2znF5QHba-TI-AzDV-sPOb_4AltcU4A
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1ti9NAEF7OHqJ-EF8xesoigiisTTbZ3UQQuZN7UbGU04N-29vdbEqhJrVN7-y_dyZN6hXh_Nam05BMZmee2cw8Q8grF7ocMi7FVOYhQeFZwgwgX6a45Ybz1HOHWwPfBvLkLPkyEqMdMuh6YbCssvOJjaPOK4d75H0I3FwqABv84-wXw6lR-Ha1G6Fh2tEK-YeGYuwG2eXIjNUjuweHg-Fp55slBF919UvTKYfFP5nko_VbTIA0SX_8M2eRYIgPwI4434paDbn_vy78Drm1LGdmdWmm0ysx6ugeuduCS7q_tob7ZMeXD8jN42Z47-ohOYeF_HVSs2NEmDR6F76nhsKx4YoVU3NRzX1Ox77CHqOGvhlOdQGpdFPARZGNY93mSOuqmtrqN72cT2qA3HRS0uEKOQgekbOjwx-fTlg7YYG5JA1rlpk8kl5Yw20WWx7HJoyszLi3QkU5fFQ-KxLhlJWpcN4IHJ-gVO6l9eAYTPyY9Mqq9E8ItcjTDvApBU0mDc0ah7Dn44TnocmLOCD9ToPatfTjOAVjqiENQZ1r0LmOhEada9R5QN5s_jFbU29cI3uAD2Ujh6TZzYFqPtbtGtRKSOcyQKwyjMFvJWliUlUkEbh4E1luA_ISH6lGWowS627GZrlY6M_fT_W-zCCVRgcYkNetUFHB9TvTtjGAFpBJa0tyb0sS1q3b_rmzHN36jYX-a-UBebuxpv_e_tPrz_WM3EYpLJ3jYo_06vnSPwcsVdsX7QL5A4ZuFkg
  priority: 102
  providerName: ProQuest
Title SciKit-GStat 1.0: a SciPy-flavored geostatistical variogram estimation toolbox written in Python
URI https://www.proquest.com/docview/2642673262
https://doi.org/10.5194/gmd-15-2505-2022
https://doaj.org/article/756cc9193603488484a87f41adda1b2b
UnpaywallVersion publishedVersion
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1991-9603
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0069767
  issn: 1991-9603
  databaseCode: KQ8
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1991-9603
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0069768
  issn: 1991-9603
  databaseCode: KQ8
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1991-9603
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0069767
  issn: 1991-9603
  databaseCode: DOA
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1991-9603
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0069767
  issn: 1991-9603
  databaseCode: ABDBF
  dateStart: 20090701
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVPQU
  databaseName: Continental Europe Database
  customDbUrl:
  eissn: 1991-9603
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0069768
  issn: 1991-9603
  databaseCode: BFMQW
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/conteurope
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1991-9603
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0069768
  issn: 1991-9603
  databaseCode: BENPR
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1991-9603
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0069768
  issn: 1991-9603
  databaseCode: 8FG
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELegFQIe-EYURmUhJARSusSJ7Zi3FtYOEFU1qDSejO24VUVJpjbdKH89d2lWrYD4eIrlXKz4fD7_zh8_E_LUhS6DiEsGUnkIUJhKAgPIN5DMMsNY6pnDqYH3Q3E4Tt4e8-N6vgPPwlxYvwdskexPv2ZBxAMcqKFBGTjbpuCAuhukOR6Oup-qRWMVBYqr421ahPFmRfK3ReyMQBVR_6_u-Dq5uspPzPrMzOcXxpv-zQ350bKiKcRtJl86q9J23PefSBz_pSq3yI0adNLuxkpuk0s-v0OuDKpLfdd3yWfo4O9mZTBA5EmjTviSGgp5o3UwmZvTYuEzOvUFnj2qaJ2hqFMIsauNXRRZOjbHH2lZFHNbfKNni1kJUJzOcjpaIzfBPTLuH3x8dRjUNy8ELknDMlAmi4Tn1jCrYsvi2ISRFYp5y2WUQVJ6NUm4k1ak3HnD8VoFKTMvrAeHYeL7pJEXuX9AqEX-doBVqRIsqejXGAyHPk5YFppsErfI_nlraFfTkuPtGHMN4QnqTYPedMQ16k2j3lrk-faLkw0lxx9ke9jAWzkk064yoGF03Te15MI5BUgW7Ab8WZImJpWTJALXbyLLbIs8QfPQSJeR436cqVktl_rNhyPdFQpCbHSMLfKsFpoU8P_O1McbQAvIsLUjubcjCf3Z7b4-t0Jd-5OlBtjKhASoDTV6sbXMv1b_4f8IPyLX8IEb7BjfI41ysfKPAXGVtk0up_1BmzS7vde9Pjx7B8PRUbuav2jXHfEHWEoi7g
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELbGJjR4QPwUhQEWAiGQQhPHiROkCW2wraVbVY1N6ptnO05VqSSlTVf6z_G3cZcmZRXSeNpbkl6s9GzffZfcfUfIG-OaBCIu4YjYQoDCYu4oQL6OYJopxiLLDL4aOOmGrXP-rR_0N8jvuhYG0yprm1ga6iQ3-I68CY6bhQLABvs8_ulg1yj8ulq30FBVa4Vkt6QYqwo7OnYxhxBuutv-CvP9lrHDg7MvLafqMuAYHrmFE6vEC22gFdOxr5nvK9fTYcysDoSXwKGwccoDI3QYBcaqAFsICJHYUFvYHMqHcW-RLe7zGIK_rf2Dbu-09gUhOHtx9aSszMNkozhk_eVXU4BQvDn4kThe4CAegXXL2JqXLJsJ_Osy7pLtWTZWi7kaja74xMP75F4FZunecvU9IBs2e0huH5XNghePyAUYjs6wcI4Q0VLvo_uJKgrXegsnHanLfGITOrA51jSVdNEw1CWE7mXCGEX2j2VZJS3yfKTzX3Q-GRYA8ekwo70Fch48Juc3ousnZDPLM_uUUI288ADXItAkL2ndGLhZ63OWuCpJ_QZp1hqUpqI7x64bIwlhD-pcgs6lF0jUuUSdN8j71R3jJdXHNbL7OCkrOSTpLi_kk4Gs9rwUQWhMDAg5dH2wkzziKhIp98ClKE8z3SCvcUol0nBkmOczULPpVLa_n8q9MIbQHQ1ug7yrhNIcnt-oqmwCtIDMXWuSO2uSYCfM-s_1ypGVnZrKv7uqQT6sVtN___6z68d6RbZbZyfH8rjd7Twnd_AOTNtjwQ7ZLCYz-wJwXKFfVpuFkoub3p9_ANG5Uzo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3bbtNAEF2VVNweuCMCBVYIhEByYq8vayMh1FLShtAqBSrytt1dr6OIEIfEaQifxq_wM8z4EhqQylMfeEuc8SbenLnZM2cIeaxtHUPGxS0eGUhQWORZEiJfizPFJGOhYRpvDeztB7uH3tue31sjP6peGCyrrGxibqjjVOM98iY4bhZwCDZYMynLIrrbrVfjrxZOkMInrdU4jQIiHbOYQ_o2fdnehv_6CWOtNx9f71rlhAFLe6GdWZGMncD4SjIVuYq5rrQdFUTMKJ87MbzkJko8X3MVhL420sfxAZzHJlAGFEO6sO45sh4iCVqNrG-19g4-VX4gAEfPT77Ju_Kw0CgKWK94Ygrhk9fsf4ktx7cwFgHMMrbiIfNBAn-7i8vk4mw0lou5HA5P-MPWVfKz2smiDOZzY5aphv7-B8nk_7nV18iVMkynm4VeXSdrZnSDnN_JxyAvbpIjMImdQWbtYKxOnYb9gkoKx7oLKxnK43RiYto3KXZr5UTYsNSxnAzyUjiKvCZFwyjN0nSo0m90PhlkkLzQwYh2F8jmcIscnsnl3Sa1UToydwhVyHgPgWgIOPFywjoGAYRxPRbbMk7cOmlW-BC6JHLHeSJDAQkdIkoAooTjC0SUQETVybPlGeOCxOQU2S2E3FIO6cfzA-mkL0prJrgfaB1B7B_YLngAL_RkyBPPAWcpHcVUnTxCwAokGBkhfvpyNp2K9of3YjOIQvgycCV18rQUSlL4_VqWDSGwC8hJtiK5sSIJFlCvflzhWJQWeCp-g7hOni915Z-Xf_f0tR6SC6AK4l17v3OPXMITsB6R-Ruklk1m5j4EqJl6UFoCSo7OWiN-AYWNmcQ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdQJwQ88I0oDGQhJASSu8SJ7Zi3gtgGiKkCKpUnYztOVRGSqU03yl_PXZpVKyA-nmI5Fys-n8-_88fPhDz2kc8h4lJM6QABCtcps4B8meKOW86zwD1ODbw7kofj9M1ETLr5DjwLc279HrBFujf9mrNYMByooUE5ONsdKQB198jO-Gg0_NQuGuuYaaEnm7SMkvWK5G-L2BqBWqL-X93xFXJpWR3b1akty3Pjzf61NfnRoqUpxG0mXwbLxg38959IHP-lKtfJ1Q500uHaSm6QC6G6SS4etJf6rm6Rz9DB384adoDIk8aD6Dm1FPJGK1aU9qSeh5xOQ41nj1paZyjqBELsdmMXRZaO9fFH2tR16epv9HQ-awCK01lFRyvkJrhNxvuvPr48ZN3NC8ynWdQwbfNYBuEsdzpxPElsFDupeXBCxTkkVdBFKrxyMhM-WIHXKiiVB-kCOAyb3CG9qq7CXUId8rcDrMq05GlLv8ZhOAxJyvPI5kXSJ3tnrWF8R0uOt2OUBsIT1JsBvZlYGNSbQb31ydPNF8drSo4_yL7ABt7IIZl2mwENY7q-aZSQ3mtAsmA34M_SLLWZKtIYXL-NHXd98gjNwyBdRoX7caZ2uViY1x_em6HUEGKjY-yTJ51QUcP_e9sdbwAtIMPWluTuliT0Z7_9-swKTedPFgZgK5cKoDbU6NnGMv9a_Xv_I3yfXMYHbrDjYpf0mvkyPADE1biHXWf7AdbXHgc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SciKit-GStat+1.0%3A+a+SciPy-flavored+geostatistical+variogram+estimation+toolbox+written+in+Python&rft.jtitle=Geoscientific+Model+Development&rft.au=M%C3%A4licke%2C+Mirko&rft.date=2022-03-25&rft.pub=Copernicus+GmbH&rft.issn=1991-962X&rft.eissn=1991-962X&rft.volume=15&rft.issue=6&rft.spage=2505&rft.epage=2532&rft_id=info:doi/10.5194%2Fgmd-15-2505-2022&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1991-9603&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1991-9603&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1991-9603&client=summon