SciKit-GStat 1.0: a SciPy-flavored geostatistical variogram estimation toolbox written in Python
Geostatistical methods are widely used in almost all geoscientific disciplines, i.e., for interpolation, rescaling, data assimilation or modeling. At its core, geostatistics aims to detect, quantify, describe, analyze and model spatial covariance of observations. The variogram, a tool to describe th...
Saved in:
| Published in | Geoscientific Model Development Vol. 15; no. 6; pp. 2505 - 2532 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | English |
| Published |
Katlenburg-Lindau
Copernicus GmbH
25.03.2022
Copernicus Publications |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1991-9603 1991-959X 1991-962X 1991-9603 1991-962X |
| DOI | 10.5194/gmd-15-2505-2022 |
Cover
| Abstract | Geostatistical methods are widely used in almost all geoscientific disciplines, i.e.,
for interpolation, rescaling, data assimilation or modeling.
At its core, geostatistics aims to detect, quantify, describe, analyze and model spatial covariance of observations.
The variogram, a tool to describe this spatial covariance in a formalized way, is at the heart of every such method.
Unfortunately, many applications of geostatistics focus on the interpolation method or the result rather than the quality of the estimated variogram.
Not least because estimating a variogram is commonly left as a task for computers, and some software implementations do not even show a variogram to the user.
This is a miss, because the quality of the variogram largely determines whether the application of geostatistics makes sense at all.
Furthermore, the Python programming language was missing a mature, well-established and tested package for variogram estimation a couple of years ago. Here I present SciKit-GStat, an open-source Python package for variogram estimation that fits well into established frameworks for scientific computing and puts the focus on the variogram before more sophisticated methods are about to be applied.
SciKit-GStat is written in a mutable, object-oriented way that mimics the typical geostatistical analysis workflow.
Its main strength is the ease of use and interactivity, and it is therefore usable with only a little or even no knowledge of Python.
During the last few years, other libraries covering geostatistics for Python developed along with SciKit-GStat.
Today, the most important ones can be interfaced by SciKit-GStat.
Additionally, established data structures for scientific computing are reused internally, to keep the user from learning complex data models, just for using SciKit-GStat.
Common data structures along with powerful interfaces enable the user to use SciKit-GStat along with other packages in established workflows rather than forcing the user to stick to the author's programming paradigms. SciKit-GStat ships with a large number of predefined procedures, algorithms and models, such as variogram estimators, theoretical spatial models or binning algorithms.
Common approaches to estimate variograms are covered and can be used out of the box.
At the same time, the base class is very flexible and can be adjusted to less common problems, as well.
Last but not least, it was made sure that a user is aided in implementing new procedures or even extending the core functionality as much as possible, to extend SciKit-GStat to uncovered use cases.
With broad documentation, a user guide, tutorials and good unit-test coverage, SciKit-GStat enables the user to focus on variogram estimation rather than implementation details. |
|---|---|
| AbstractList | Geostatistical methods are widely used in almost all geoscientific disciplines, i.e.,
for interpolation, rescaling, data assimilation or modeling.
At its core, geostatistics aims to detect, quantify, describe, analyze and model spatial covariance of observations.
The variogram, a tool to describe this spatial covariance in a formalized way, is at the heart of every such method.
Unfortunately, many applications of geostatistics focus on the interpolation method or the result rather than the quality of the estimated variogram.
Not least because estimating a variogram is commonly left as a task for computers, and some software implementations do not even show a variogram to the user.
This is a miss, because the quality of the variogram largely determines whether the application of geostatistics makes sense at all.
Furthermore, the Python programming language was missing a mature, well-established and tested package for variogram estimation a couple of years ago. Here I present SciKit-GStat, an open-source Python package for variogram estimation that fits well into established frameworks for scientific computing and puts the focus on the variogram before more sophisticated methods are about to be applied.
SciKit-GStat is written in a mutable, object-oriented way that mimics the typical geostatistical analysis workflow.
Its main strength is the ease of use and interactivity, and it is therefore usable with only a little or even no knowledge of Python.
During the last few years, other libraries covering geostatistics for Python developed along with SciKit-GStat.
Today, the most important ones can be interfaced by SciKit-GStat.
Additionally, established data structures for scientific computing are reused internally, to keep the user from learning complex data models, just for using SciKit-GStat.
Common data structures along with powerful interfaces enable the user to use SciKit-GStat along with other packages in established workflows rather than forcing the user to stick to the author's programming paradigms. SciKit-GStat ships with a large number of predefined procedures, algorithms and models, such as variogram estimators, theoretical spatial models or binning algorithms.
Common approaches to estimate variograms are covered and can be used out of the box.
At the same time, the base class is very flexible and can be adjusted to less common problems, as well.
Last but not least, it was made sure that a user is aided in implementing new procedures or even extending the core functionality as much as possible, to extend SciKit-GStat to uncovered use cases.
With broad documentation, a user guide, tutorials and good unit-test coverage, SciKit-GStat enables the user to focus on variogram estimation rather than implementation details. Geostatistical methods are widely used in almost all geoscientific disciplines, i.e., for interpolation, rescaling, data assimilation or modeling. At its core, geostatistics aims to detect, quantify, describe, analyze and model spatial covariance of observations. The variogram, a tool to describe this spatial covariance in a formalized way, is at the heart of every such method. Unfortunately, many applications of geostatistics focus on the interpolation method or the result rather than the quality of the estimated variogram. Not least because estimating a variogram is commonly left as a task for computers, and some software implementations do not even show a variogram to the user. This is a miss, because the quality of the variogram largely determines whether the application of geostatistics makes sense at all. Furthermore, the Python programming language was missing a mature, well-established and tested package for variogram estimation a couple of years ago. Geostatistical methods are widely used in almost all geoscientific disciplines, i.e., for interpolation, rescaling, data assimilation or modeling. At its core, geostatistics aims to detect, quantify, describe, analyze and model spatial covariance of observations. The variogram, a tool to describe this spatial covariance in a formalized way, is at the heart of every such method. Unfortunately, many applications of geostatistics focus on the interpolation method or the result rather than the quality of the estimated variogram. Not least because estimating a variogram is commonly left as a task for computers, and some software implementations do not even show a variogram to the user. This is a miss, because the quality of the variogram largely determines whether the application of geostatistics makes sense at all. Furthermore, the Python programming language was missing a mature, well-established and tested package for variogram estimation a couple of years ago. Here I present SciKit-GStat, an open-source Python package for variogram estimation that fits well into established frameworks for scientific computing and puts the focus on the variogram before more sophisticated methods are about to be applied. SciKit-GStat is written in a mutable, object-oriented way that mimics the typical geostatistical analysis workflow. Its main strength is the ease of use and interactivity, and it is therefore usable with only a little or even no knowledge of Python. During the last few years, other libraries covering geostatistics for Python developed along with SciKit-GStat. Today, the most important ones can be interfaced by SciKit-GStat. Additionally, established data structures for scientific computing are reused internally, to keep the user from learning complex data models, just for using SciKit-GStat. Common data structures along with powerful interfaces enable the user to use SciKit-GStat along with other packages in established workflows rather than forcing the user to stick to the author's programming paradigms. SciKit-GStat ships with a large number of predefined procedures, algorithms and models, such as variogram estimators, theoretical spatial models or binning algorithms. Common approaches to estimate variograms are covered and can be used out of the box. At the same time, the base class is very flexible and can be adjusted to less common problems, as well. Last but not least, it was made sure that a user is aided in implementing new procedures or even extending the core functionality as much as possible, to extend SciKit-GStat to uncovered use cases. With broad documentation, a user guide, tutorials and good unit-test coverage, SciKit-GStat enables the user to focus on variogram estimation rather than implementation details. |
| Audience | Academic |
| Author | Mälicke, Mirko |
| Author_xml | – sequence: 1 givenname: Mirko orcidid: 0000-0002-0424-2651 surname: Mälicke fullname: Mälicke, Mirko |
| BookMark | eNqNUcFu1DAQjVCRaAt3jpE4cchiO7Edc6sqKCsqUbFwNmPHCV4l8WJ72-7fM9tFqItAQpbs0Zv3nmaez4qTOcyuKF5SsuBUNW-GqasorxgneBHGnhSnVClaKUHqk0f1s-IspTUhQkkhT4tvK-s_-lxdrTLkki7I2xJKxG52VT_CbYiuKwcXEnZ9yt7CWN5C9GGIMJUOkQkbYS5zCKMJ9-Vd9Dm7ufRzebPL38P8vHjaw5jci1_vefH1_bsvlx-q609Xy8uL68o2LcmVgo4Kxw0wo2rD6hoINUIxZ7ikHZbSqb7hVhrRcuuAc0KIlJ0TxhFKoT4vlgffLsBabyIOFnc6gNcPQIiDhogLjE5LLqxVVNUYR9O2TdtAK_uGQtcBNcygFz14becN7O5gHH8bUqL3cWuMW1Ou93HrfdyoeXXQbGL4scVk9Dps44wrayYaJmTNxCPWADiIn_uQI9jJJ6svhGrRrqYtshZ_YeHp3OQt_nvvET8SvD4SICe7-zzANiW9XH0-5pID18aQUnT9_-wm_pBYnx_-Hefy47-FPwHmg8um |
| CitedBy_id | crossref_primary_10_1007_s11242_023_01921_9 crossref_primary_10_1080_22797254_2025_2449940 crossref_primary_10_5194_gmd_17_5249_2024 crossref_primary_10_1016_j_cageo_2024_105665 crossref_primary_10_5194_tc_19_375_2025 crossref_primary_10_1016_j_spasta_2022_100717 crossref_primary_10_1109_JSTARS_2022_3188922 crossref_primary_10_2139_ssrn_4825814 crossref_primary_10_1007_s00190_024_01829_2 crossref_primary_10_5194_essd_16_5405_2024 crossref_primary_10_1016_j_spasta_2023_100737 crossref_primary_10_1109_ACCESS_2024_3393778 crossref_primary_10_3389_frsen_2023_1249521 crossref_primary_10_5194_gmd_15_3161_2022 crossref_primary_10_1038_s41561_024_01636_6 crossref_primary_10_3390_rs16162913 crossref_primary_10_5194_tc_16_3249_2022 crossref_primary_10_1016_j_eswa_2025_127192 crossref_primary_10_1016_j_apgeog_2024_103414 crossref_primary_10_47818_DRArch_2024_v5i2132 crossref_primary_10_5194_gmd_16_3765_2023 crossref_primary_10_1007_s11004_025_10180_x crossref_primary_10_1016_j_eswa_2024_126167 crossref_primary_10_1109_MCSE_2023_3317773 |
| Cites_doi | 10.1029/2007WR006115 10.1029/2008WR006993 10.5194/hess-24-4523-2020 10.1007/BF01025868 10.1029/2008WR006829 10.1007/BF01035243 10.1016/S0022-1694(97)00152-2 10.32614/RJ-2016-014 10.2136/vzj2018.03.0060 10.1016/j.jhydrol.2018.05.001 10.5194/gmd-2021-174 10.1016/j.cageo.2010.03.021 10.1016/S0098-3004(01)00040-1 10.1111/0033-0124.00250 10.1007/s11004-009-9229-1 10.1023/A:1021368723926 10.1007/978-1-4614-7618-4 10.1109/MCSE.2011.37 10.1175/1520-0469(1947)004<0186:MORBR>2.0.CO;2 10.2136/vzj2011.0178 10.1007/978-3-662-03550-4_9 10.1016/j.cageo.2004.03.012 10.32614/CRAN.package.sp 10.1016/S0022-1694(00)00144-X 10.2113/gsecongeo.58.8.1246 10.1007/BFb0067700 10.1002/wics.35 10.1007/BF00890662 10.1002/qj.2522 10.1017/S0001867800000434 10.1177/001316446302300107 10.1137/S1064827595289108 10.1007/978-94-009-3699-7_6 10.1080/00031305.1976.10479172 10.1002/wics.103 10.1002/9781118762387 10.1002/j.1538-7305.1948.tb01338.x 10.1038/s41592-020-0772-5 10.1016/0098-3004(91)90009-3 10.1287/moor.14.2.303 10.1046/j.1365-2389.2000.00345.x 10.1109/MCSE.2007.55 10.5194/hess-24-2633-2020 10.1111/j.1365-2389.1980.tb02084.x 10.1038/s41586-020-2649-2 10.1007/s10589-010-9329-3 10.5194/gmd-2021-301 10.1007/BF02289588 10.1029/2007WR006604 10.1029/2005WR004754 10.1023/A:1021728614555 10.1016/j.jhydrol.2003.09.014 10.5194/essd-12-2289-2020 10.1007/978-94-011-0824-9_11 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2022 Copernicus GmbH 2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2022 Copernicus GmbH – notice: 2022. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ISR 7TG 7TN 7UA 8FD 8FE 8FG ABJCF ABUWG AEUYN AFKRA AZQEC BENPR BFMQW BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W H8D H96 HCIFZ KL. L.G L6V L7M M7S PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS ADTOC UNPAY DOA |
| DOI | 10.5194/gmd-15-2505-2022 |
| DatabaseName | CrossRef Gale In Context: Science Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Water Resources Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central ProQuest Central Essentials - QC ProQuest Central Continental Europe Database ProQuest Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Advanced Technologies Database with Aerospace Engineering Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences Aerospace Database ProQuest One Sustainability ProQuest Engineering Collection Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Natural Science Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Engineering Database ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Continental Europe Database ProQuest SciTech Collection Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geology |
| EISSN | 1991-9603 1991-962X |
| EndPage | 2532 |
| ExternalDocumentID | oai_doaj_org_article_756cc9193603488484a87f41adda1b2b 10.5194/gmd-15-2505-2022 A698250318 10_5194_gmd_15_2505_2022 |
| GroupedDBID | 5VS 8R4 8R5 AAFWJ AAYXX ABDBF ACUHS ADBBV AENEX AFPKN AHGZY ALMA_UNASSIGNED_HOLDINGS BCNDV CITATION ESX GROUPED_DOAJ H13 IAO IEA IEP ISR ITC KQ8 OK1 P2P Q2X RKB RNS TR2 TUS 7TG 7TN 7UA 8FD 8FE 8FG 8FH ABJCF ABUWG AEUYN AFKRA AZQEC BENPR BFMQW BGLVJ BHPHI BKSAR BPHCQ C1K CCPQU DWQXO F1W H8D H96 HCIFZ KL. L.G L6V L7M LK5 M7R M7S PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PROAC PTHSS ADTOC C1A IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c480t-9ad16e5ba2b93b233a01b692eb571d1b67e9f45c7b685cea5500077de6be011a3 |
| IEDL.DBID | UNPAY |
| ISSN | 1991-9603 1991-959X 1991-962X |
| IngestDate | Fri Oct 03 12:40:36 EDT 2025 Sun Oct 26 04:37:24 EDT 2025 Fri Jul 25 19:04:24 EDT 2025 Mon Oct 20 22:24:09 EDT 2025 Mon Oct 20 16:47:23 EDT 2025 Thu Oct 16 14:28:01 EDT 2025 Tue Jul 01 03:33:09 EDT 2025 Thu Apr 24 22:57:23 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0 cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c480t-9ad16e5ba2b93b233a01b692eb571d1b67e9f45c7b685cea5500077de6be011a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-0424-2651 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.5194/gmd-15-2505-2022 |
| PQID | 2642673262 |
| PQPubID | 105726 |
| PageCount | 28 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_756cc9193603488484a87f41adda1b2b unpaywall_primary_10_5194_gmd_15_2505_2022 proquest_journals_2642673262 gale_infotracmisc_A698250318 gale_infotracacademiconefile_A698250318 gale_incontextgauss_ISR_A698250318 crossref_primary_10_5194_gmd_15_2505_2022 crossref_citationtrail_10_5194_gmd_15_2505_2022 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2022-03-25 |
| PublicationDateYYYYMMDD | 2022-03-25 |
| PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-25 day: 25 |
| PublicationDecade | 2020 |
| PublicationPlace | Katlenburg-Lindau |
| PublicationPlace_xml | – name: Katlenburg-Lindau |
| PublicationTitle | Geoscientific Model Development |
| PublicationYear | 2022 |
| Publisher | Copernicus GmbH Copernicus Publications |
| Publisher_xml | – name: Copernicus GmbH – name: Copernicus Publications |
| References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref67 ref26 ref25 ref20 ref64 ref63 ref22 ref66 ref21 ref65 ref28 ref27 ref29 ref60 ref62 ref61 |
| References_xml | – ident: ref4 doi: 10.1029/2007WR006115 – ident: ref37 – ident: ref29 doi: 10.1029/2008WR006993 – ident: ref59 doi: 10.5194/hess-24-4523-2020 – ident: ref21 doi: 10.1007/BF01025868 – ident: ref62 doi: 10.1029/2008WR006829 – ident: ref12 doi: 10.1007/BF01035243 – ident: ref43 – ident: ref3 doi: 10.1016/S0022-1694(97)00152-2 – ident: ref25 doi: 10.32614/RJ-2016-014 – ident: ref35 doi: 10.2136/vzj2018.03.0060 – ident: ref11 – ident: ref34 – ident: ref26 doi: 10.1016/j.jhydrol.2018.05.001 – ident: ref13 – ident: ref36 – ident: ref45 doi: 10.5194/gmd-2021-174 – ident: ref6 doi: 10.1016/j.cageo.2010.03.021 – ident: ref14 doi: 10.1016/S0098-3004(01)00040-1 – ident: ref1 doi: 10.1111/0033-0124.00250 – ident: ref7 doi: 10.1007/s11004-009-9229-1 – ident: ref40 doi: 10.1023/A:1021368723926 – ident: ref5 doi: 10.1007/978-1-4614-7618-4 – ident: ref60 doi: 10.1109/MCSE.2011.37 – ident: ref46 doi: 10.1175/1520-0469(1947)004<0186:MORBR>2.0.CO;2 – ident: ref61 doi: 10.2136/vzj2011.0178 – ident: ref64 doi: 10.1007/978-3-662-03550-4_9 – ident: ref54 doi: 10.1016/j.cageo.2004.03.012 – ident: ref53 doi: 10.32614/CRAN.package.sp – ident: ref24 doi: 10.1016/S0022-1694(00)00144-X – ident: ref47 doi: 10.2113/gsecongeo.58.8.1246 – ident: ref49 doi: 10.1007/BFb0067700 – ident: ref39 – ident: ref56 doi: 10.1002/wics.35 – ident: ref52 doi: 10.1007/BF00890662 – ident: ref32 doi: 10.1002/qj.2522 – ident: ref41 doi: 10.1017/S0001867800000434 – ident: ref65 doi: 10.1177/001316446302300107 – ident: ref8 doi: 10.1137/S1064827595289108 – ident: ref18 doi: 10.1007/978-94-009-3699-7_6 – ident: ref51 – ident: ref17 doi: 10.1080/00031305.1976.10479172 – ident: ref57 doi: 10.1002/wics.103 – ident: ref48 doi: 10.1002/9781118762387 – ident: ref58 doi: 10.1002/j.1538-7305.1948.tb01338.x – ident: ref63 doi: 10.1038/s41592-020-0772-5 – ident: ref55 – ident: ref19 doi: 10.1016/0098-3004(91)90009-3 – ident: ref15 – ident: ref10 doi: 10.1287/moor.14.2.303 – ident: ref38 doi: 10.1046/j.1365-2389.2000.00345.x – ident: ref28 – ident: ref30 doi: 10.1109/MCSE.2007.55 – ident: ref42 – ident: ref44 doi: 10.5194/hess-24-2633-2020 – ident: ref9 doi: 10.1111/j.1365-2389.1980.tb02084.x – ident: ref27 doi: 10.1038/s41586-020-2649-2 – ident: ref22 doi: 10.1007/s10589-010-9329-3 – ident: ref50 doi: 10.5194/gmd-2021-301 – ident: ref33 doi: 10.1007/BF02289588 – ident: ref67 doi: 10.1029/2007WR006604 – ident: ref2 doi: 10.1029/2005WR004754 – ident: ref23 doi: 10.1023/A:1021728614555 – ident: ref66 doi: 10.1016/j.jhydrol.2003.09.014 – ident: ref20 doi: 10.5194/essd-12-2289-2020 – ident: ref16 doi: 10.1007/978-94-011-0824-9_11 – ident: ref31 |
| SSID | ssj0069767 ssj0069768 |
| Score | 2.4617329 |
| Snippet | Geostatistical methods are widely used in almost all geoscientific disciplines, i.e.,
for interpolation, rescaling, data assimilation or modeling.
At its core,... Geostatistical methods are widely used in almost all geoscientific disciplines, i.e., for interpolation, rescaling, data assimilation or modeling. At its core,... |
| SourceID | doaj unpaywall proquest gale crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 2505 |
| SubjectTerms | Algorithms Computation Computers Covariance Data assimilation Data collection Data structures Datasets Earth science Estimation Geology Geostatistics Heart Interfaces Interpolation Manuals Methods Modelling Procedures Programming languages Python Rescaling Scaling Software Statistical methods Workflow |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEF-kIOpDsX7g2VoWEURhvWSzH1nfqthWRSlq4d7W3c3mOIhJucu13n_vTJI7egj2xbeQzIXsZD5-k5v9DSEvQhIKqLg00yZCgcKNYA6QL9Pcc8d5HnnATwNfvqrTc_FpIifXRn1hT1hPD9wrbqylCsEAzFBJBsYmcuFyXYoU_NKlnnuMvklu1sVUH4MVJNlurAr29RhpJv0flIBWxHj6q2CpZJj6wUQ430pIHW__39H5HrmzrC_c6spV1bX0c3yf7A64kR71z7tHbsX6Abl90s3lXT0kP8FHP89adoLgkaZvkrfUUTh3tmJl5S6beSzoNDa4fahjZoZbXUKV3PVmUSTa6Hcw0rZpKt_8plfzWQtoms5qerZCeoFH5Pz4w4_3p2wYnsCCyJOWGVekKkrvuDeZ51nmktQrw6OXOi3gUEdTChm0V7kM0UmcjKB1EZWP4PMue0x26qaOTwj1SMEOyCg3iouOQY1DRouZ4EXiijIbkfFagzYMzOI44KKyUGGgzi3o3KbSos4t6nxEXm1-cdGzavxD9h2-lI0c8mF3J8BK7GAl9iYrGZHn-EotMl7U2FIzdcvFwn78_s0eKQNVMsa2EXk5CJUNPH9www4F0AKSZG1JHmxJgkuG7ctry7FDSFhYQJ5caUDLsKLXG2u6cflP_8fy98ldvBf2znF5QHba-TI-AzDV-sPOb_4AltcU4A priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1ti9NAEF7OHqJ-EF8xesoigiisTTbZ3UQQuZN7UbGU04N-29vdbEqhJrVN7-y_dyZN6hXh_Nam05BMZmee2cw8Q8grF7ocMi7FVOYhQeFZwgwgX6a45Ybz1HOHWwPfBvLkLPkyEqMdMuh6YbCssvOJjaPOK4d75H0I3FwqABv84-wXw6lR-Ha1G6Fh2tEK-YeGYuwG2eXIjNUjuweHg-Fp55slBF919UvTKYfFP5nko_VbTIA0SX_8M2eRYIgPwI4434paDbn_vy78Drm1LGdmdWmm0ysx6ugeuduCS7q_tob7ZMeXD8jN42Z47-ohOYeF_HVSs2NEmDR6F76nhsKx4YoVU3NRzX1Ox77CHqOGvhlOdQGpdFPARZGNY93mSOuqmtrqN72cT2qA3HRS0uEKOQgekbOjwx-fTlg7YYG5JA1rlpk8kl5Yw20WWx7HJoyszLi3QkU5fFQ-KxLhlJWpcN4IHJ-gVO6l9eAYTPyY9Mqq9E8ItcjTDvApBU0mDc0ah7Dn44TnocmLOCD9ToPatfTjOAVjqiENQZ1r0LmOhEada9R5QN5s_jFbU29cI3uAD2Ujh6TZzYFqPtbtGtRKSOcyQKwyjMFvJWliUlUkEbh4E1luA_ISH6lGWowS627GZrlY6M_fT_W-zCCVRgcYkNetUFHB9TvTtjGAFpBJa0tyb0sS1q3b_rmzHN36jYX-a-UBebuxpv_e_tPrz_WM3EYpLJ3jYo_06vnSPwcsVdsX7QL5A4ZuFkg priority: 102 providerName: ProQuest |
| Title | SciKit-GStat 1.0: a SciPy-flavored geostatistical variogram estimation toolbox written in Python |
| URI | https://www.proquest.com/docview/2642673262 https://doi.org/10.5194/gmd-15-2505-2022 https://doaj.org/article/756cc9193603488484a87f41adda1b2b |
| UnpaywallVersion | publishedVersion |
| Volume | 15 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1991-9603 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0069767 issn: 1991-9603 databaseCode: KQ8 dateStart: 20080101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1991-9603 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0069768 issn: 1991-9603 databaseCode: KQ8 dateStart: 20080101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1991-9603 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0069767 issn: 1991-9603 databaseCode: DOA dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1991-9603 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0069767 issn: 1991-9603 databaseCode: ABDBF dateStart: 20090701 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVPQU databaseName: Continental Europe Database customDbUrl: eissn: 1991-9603 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0069768 issn: 1991-9603 databaseCode: BFMQW dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.proquest.com/conteurope providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1991-9603 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0069768 issn: 1991-9603 databaseCode: BENPR dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1991-9603 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0069768 issn: 1991-9603 databaseCode: 8FG dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELegFQIe-EYURmUhJARSusSJ7Zi3FtYOEFU1qDSejO24VUVJpjbdKH89d2lWrYD4eIrlXKz4fD7_zh8_E_LUhS6DiEsGUnkIUJhKAgPIN5DMMsNY6pnDqYH3Q3E4Tt4e8-N6vgPPwlxYvwdskexPv2ZBxAMcqKFBGTjbpuCAuhukOR6Oup-qRWMVBYqr421ahPFmRfK3ReyMQBVR_6_u-Dq5uspPzPrMzOcXxpv-zQ350bKiKcRtJl86q9J23PefSBz_pSq3yI0adNLuxkpuk0s-v0OuDKpLfdd3yWfo4O9mZTBA5EmjTviSGgp5o3UwmZvTYuEzOvUFnj2qaJ2hqFMIsauNXRRZOjbHH2lZFHNbfKNni1kJUJzOcjpaIzfBPTLuH3x8dRjUNy8ELknDMlAmi4Tn1jCrYsvi2ISRFYp5y2WUQVJ6NUm4k1ak3HnD8VoFKTMvrAeHYeL7pJEXuX9AqEX-doBVqRIsqejXGAyHPk5YFppsErfI_nlraFfTkuPtGHMN4QnqTYPedMQ16k2j3lrk-faLkw0lxx9ke9jAWzkk064yoGF03Te15MI5BUgW7Ab8WZImJpWTJALXbyLLbIs8QfPQSJeR436cqVktl_rNhyPdFQpCbHSMLfKsFpoU8P_O1McbQAvIsLUjubcjCf3Z7b4-t0Jd-5OlBtjKhASoDTV6sbXMv1b_4f8IPyLX8IEb7BjfI41ysfKPAXGVtk0up_1BmzS7vde9Pjx7B8PRUbuav2jXHfEHWEoi7g |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELbGJjR4QPwUhQEWAiGQQhPHiROkCW2wraVbVY1N6ptnO05VqSSlTVf6z_G3cZcmZRXSeNpbkl6s9GzffZfcfUfIG-OaBCIu4YjYQoDCYu4oQL6OYJopxiLLDL4aOOmGrXP-rR_0N8jvuhYG0yprm1ga6iQ3-I68CY6bhQLABvs8_ulg1yj8ulq30FBVa4Vkt6QYqwo7OnYxhxBuutv-CvP9lrHDg7MvLafqMuAYHrmFE6vEC22gFdOxr5nvK9fTYcysDoSXwKGwccoDI3QYBcaqAFsICJHYUFvYHMqHcW-RLe7zGIK_rf2Dbu-09gUhOHtx9aSszMNkozhk_eVXU4BQvDn4kThe4CAegXXL2JqXLJsJ_Osy7pLtWTZWi7kaja74xMP75F4FZunecvU9IBs2e0huH5XNghePyAUYjs6wcI4Q0VLvo_uJKgrXegsnHanLfGITOrA51jSVdNEw1CWE7mXCGEX2j2VZJS3yfKTzX3Q-GRYA8ekwo70Fch48Juc3ousnZDPLM_uUUI288ADXItAkL2ndGLhZ63OWuCpJ_QZp1hqUpqI7x64bIwlhD-pcgs6lF0jUuUSdN8j71R3jJdXHNbL7OCkrOSTpLi_kk4Gs9rwUQWhMDAg5dH2wkzziKhIp98ClKE8z3SCvcUol0nBkmOczULPpVLa_n8q9MIbQHQ1ug7yrhNIcnt-oqmwCtIDMXWuSO2uSYCfM-s_1ypGVnZrKv7uqQT6sVtN___6z68d6RbZbZyfH8rjd7Twnd_AOTNtjwQ7ZLCYz-wJwXKFfVpuFkoub3p9_ANG5Uzo |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3bbtNAEF2VVNweuCMCBVYIhEByYq8vayMh1FLShtAqBSrytt1dr6OIEIfEaQifxq_wM8z4EhqQylMfeEuc8SbenLnZM2cIeaxtHUPGxS0eGUhQWORZEiJfizPFJGOhYRpvDeztB7uH3tue31sjP6peGCyrrGxibqjjVOM98iY4bhZwCDZYMynLIrrbrVfjrxZOkMInrdU4jQIiHbOYQ_o2fdnehv_6CWOtNx9f71rlhAFLe6GdWZGMncD4SjIVuYq5rrQdFUTMKJ87MbzkJko8X3MVhL420sfxAZzHJlAGFEO6sO45sh4iCVqNrG-19g4-VX4gAEfPT77Ju_Kw0CgKWK94Ygrhk9fsf4ktx7cwFgHMMrbiIfNBAn-7i8vk4mw0lou5HA5P-MPWVfKz2smiDOZzY5aphv7-B8nk_7nV18iVMkynm4VeXSdrZnSDnN_JxyAvbpIjMImdQWbtYKxOnYb9gkoKx7oLKxnK43RiYto3KXZr5UTYsNSxnAzyUjiKvCZFwyjN0nSo0m90PhlkkLzQwYh2F8jmcIscnsnl3Sa1UToydwhVyHgPgWgIOPFywjoGAYRxPRbbMk7cOmlW-BC6JHLHeSJDAQkdIkoAooTjC0SUQETVybPlGeOCxOQU2S2E3FIO6cfzA-mkL0prJrgfaB1B7B_YLngAL_RkyBPPAWcpHcVUnTxCwAokGBkhfvpyNp2K9of3YjOIQvgycCV18rQUSlL4_VqWDSGwC8hJtiK5sSIJFlCvflzhWJQWeCp-g7hOni915Z-Xf_f0tR6SC6AK4l17v3OPXMITsB6R-Ruklk1m5j4EqJl6UFoCSo7OWiN-AYWNmcQ |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdQJwQ88I0oDGQhJASSu8SJ7Zi3gtgGiKkCKpUnYztOVRGSqU03yl_PXZpVKyA-nmI5Fys-n8-_88fPhDz2kc8h4lJM6QABCtcps4B8meKOW86zwD1ODbw7kofj9M1ETLr5DjwLc279HrBFujf9mrNYMByooUE5ONsdKQB198jO-Gg0_NQuGuuYaaEnm7SMkvWK5G-L2BqBWqL-X93xFXJpWR3b1akty3Pjzf61NfnRoqUpxG0mXwbLxg38959IHP-lKtfJ1Q500uHaSm6QC6G6SS4etJf6rm6Rz9DB384adoDIk8aD6Dm1FPJGK1aU9qSeh5xOQ41nj1paZyjqBELsdmMXRZaO9fFH2tR16epv9HQ-awCK01lFRyvkJrhNxvuvPr48ZN3NC8ynWdQwbfNYBuEsdzpxPElsFDupeXBCxTkkVdBFKrxyMhM-WIHXKiiVB-kCOAyb3CG9qq7CXUId8rcDrMq05GlLv8ZhOAxJyvPI5kXSJ3tnrWF8R0uOt2OUBsIT1JsBvZlYGNSbQb31ydPNF8drSo4_yL7ABt7IIZl2mwENY7q-aZSQ3mtAsmA34M_SLLWZKtIYXL-NHXd98gjNwyBdRoX7caZ2uViY1x_em6HUEGKjY-yTJ51QUcP_e9sdbwAtIMPWluTuliT0Z7_9-swKTedPFgZgK5cKoDbU6NnGMv9a_Xv_I3yfXMYHbrDjYpf0mvkyPADE1biHXWf7AdbXHgc |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SciKit-GStat+1.0%3A+a+SciPy-flavored+geostatistical+variogram+estimation+toolbox+written+in+Python&rft.jtitle=Geoscientific+Model+Development&rft.au=M%C3%A4licke%2C+Mirko&rft.date=2022-03-25&rft.pub=Copernicus+GmbH&rft.issn=1991-962X&rft.eissn=1991-962X&rft.volume=15&rft.issue=6&rft.spage=2505&rft.epage=2532&rft_id=info:doi/10.5194%2Fgmd-15-2505-2022&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1991-9603&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1991-9603&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1991-9603&client=summon |