An asynchronous metamodel-assisted memetic algorithm for CFD-based shape optimization

This article presents an asynchronous metamodel-assisted memetic algorithm for the solution of CFD-based optimization problems. This algorithm is appropriate for use on multiprocessor platforms and may solve computationally expensive optimization problems in reduced wall-clock time, compared to conv...

Full description

Saved in:
Bibliographic Details
Published inEngineering optimization Vol. 44; no. 2; pp. 157 - 173
Main Authors Kontoleontos, Evgenia A., Asouti, Varvara G., Giannakoglou, Kyriakos C.
Format Journal Article
LanguageEnglish
Published Abingdon Taylor & Francis 01.02.2012
Taylor & Francis Ltd
Subjects
Online AccessGet full text
ISSN0305-215X
1026-745X
1029-0273
1029-0273
DOI10.1080/0305215X.2011.570758

Cover

Abstract This article presents an asynchronous metamodel-assisted memetic algorithm for the solution of CFD-based optimization problems. This algorithm is appropriate for use on multiprocessor platforms and may solve computationally expensive optimization problems in reduced wall-clock time, compared to conventional evolutionary or memetic algorithms. It is, in fact, a hybridization of non-generation-based (asynchronous) evolutionary algorithms, assisted by surrogate evaluation models, a local search method and the Lamarckian learning process. For the objective function gradient computation, in CFD applications, the adjoint method is used. Issues concerning the 'smart' implementation of local search in multi-objective problems are discussed. In this respect, an algorithmic scheme for reducing the number of calls to the adjoint equations to just one, irrespective of the number of objectives, is proposed. The algorithm is applied to the CFD-based shape optimization of the tubes of a heat exchanger and of a turbomachinery cascade.
AbstractList This article presents an asynchronous metamodel-assisted memetic algorithm for the solution of CFD-based optimization problems. This algorithm is appropriate for use on multiprocessor platforms and may solve computationally expensive optimization problems in reduced wall-clock time, compared to conventional evolutionary or memetic algorithms. It is, in fact, a hybridization of non-generation-based (asynchronous) evolutionary algorithms, assisted by surrogate evaluation models, a local search method and the Lamarckian learning process. For the objective function gradient computation, in CFD applications, the adjoint method is used. Issues concerning the 'smart' implementation of local search in multi-objective problems are discussed. In this respect, an algorithmic scheme for reducing the number of calls to the adjoint equations to just one, irrespective of the number of objectives, is proposed. The algorithm is applied to the CFD-based shape optimization of the tubes of a heat exchanger and of a turbomachinery cascade. [PUBLICATION ABSTRACT]
This paper presents an asynchronous metamodel-assisted memetic algorithm for the solution of CFD-based optimization problems. This algorithm is appropriate for use on multiprocessor platforms and may solve computationally expensive optimization problems in reduced wall-clock time, compared to conventional evolutionary or memetic algorithms. It is, in fact, a hybridization of non-generation-based (asynchronous) evolutionary algorithms, assisted by surrogate evaluation models, a local search method and the Lamarckian learning process. For the objective functions gradient computation, in CFD applications, the adjoint method is used. Issues concerning the 'smart' implementation of local search in multi-objective problems are discussed. In this respect, an algorithmic scheme for reducing the number of calls to the adjoint equations to just one, irrespective of the number of objectives, is proposed. The algorithm is applied to CFD-based shape optimization of the tubes of a heat exchanger and of a turbomachinery cascade.
This article presents an asynchronous metamodel-assisted memetic algorithm for the solution of CFD-based optimization problems. This algorithm is appropriate for use on multiprocessor platforms and may solve computationally expensive optimization problems in reduced wall-clock time, compared to conventional evolutionary or memetic algorithms. It is, in fact, a hybridization of non-generation-based (asynchronous) evolutionary algorithms, assisted by surrogate evaluation models, a local search method and the Lamarckian learning process. For the objective function gradient computation, in CFD applications, the adjoint method is used. Issues concerning the 'smart' implementation of local search in multi-objective problems are discussed. In this respect, an algorithmic scheme for reducing the number of calls to the adjoint equations to just one, irrespective of the number of objectives, is proposed. The algorithm is applied to the CFD-based shape optimization of the tubes of a heat exchanger and of a turbomachinery cascade.
Author Giannakoglou, Kyriakos C.
Kontoleontos, Evgenia A.
Asouti, Varvara G.
Author_xml – sequence: 1
  givenname: Evgenia A.
  surname: Kontoleontos
  fullname: Kontoleontos, Evgenia A.
  organization: Parallel CFD & Optimization Unit, School of Mechanical Engineering , National Technical University of Athens
– sequence: 2
  givenname: Varvara G.
  surname: Asouti
  fullname: Asouti, Varvara G.
  organization: Parallel CFD & Optimization Unit, School of Mechanical Engineering , National Technical University of Athens
– sequence: 3
  givenname: Kyriakos C.
  surname: Giannakoglou
  fullname: Giannakoglou, Kyriakos C.
  email: kgianna@central.ntua.gr
  organization: Parallel CFD & Optimization Unit, School of Mechanical Engineering , National Technical University of Athens
BackLink https://hal.science/hal-00712365$$DView record in HAL
BookMark eNqFkUFv1DAQhS1UJLaFf8Ah4gSHLGM7jh0uaLVQWmklLlTqzXISh3Xl2MH2UpZfj0MqIa1UerL0_L2nmTfn6Mx5pxF6jWGNQcB7oMAIZrdrAhivGQfOxDO0wkCaEginZ2g1I-XMvEDnMd4BYAogVuhm4woVj67bB-_8IRajTmr0vbalitHEpPssZdF0hbLffTBpPxaDD8X28lPZqpj_415NuvBTMqP5rZLx7iV6Pigb9auH9wLdXH7-tr0qd1-_XG83u7KrBKSS97zjomqxoqzlLdN9nl_XjSC4rjvOGk54w6gQbGjrXoiKcmg5qVvNe1wLTS8QW3IPblLHe2WtnIIZVThKDHLuRj5080vO3cilm-x7t_j26p_DKyOvNjs5awAcE1qznzizbxd2Cv7HQcckRxM7ba1yOhcmMeci00vsEygQ0gAVMKNvTtA7fwgulyUb3FR5WNFkqFqgLvgYgx4e2-72ZLsPJ7bOpL93SUEZ-5T542I2Ll95VPc-2F4mdbQ-DEG5zkRJ_5vwB8iUw6o
CitedBy_id crossref_primary_10_3390_app7050469
crossref_primary_10_1016_j_asoc_2018_09_002
crossref_primary_10_1007_s11831_014_9141_9
crossref_primary_10_1080_0305215X_2018_1547717
crossref_primary_10_1155_2013_695172
crossref_primary_10_1016_j_cam_2018_02_017
crossref_primary_10_1016_j_asoc_2022_109333
Cites_doi 10.1016/j.cma.2008.01.015
10.1016/j.jpdc.2005.11.006
10.1109/TSMCB.2005.856143
10.1162/106365600568202
10.1007/s00500-006-0145-8
10.1002/fld.289
10.1017/S0022112074002023
10.1080/03052150902866577
10.1016/j.ijheatmasstransfer.2005.12.015
10.1016/j.parco.2006.06.004
10.1109/TEVC.2005.850260
10.1016/S0167-739X(99)00129-6
10.1007/s005000050055
10.1109/TEVC.2003.819944
10.1007/s10710-009-9090-5
10.2514/6.1997-643
10.1016/j.compfluid.2005.11.006
10.1016/j.compfluid.2008.12.006
10.1109/CEC.2000.870313
10.2514/6.1995-1740
10.1080/03052150600848000
10.1016/j.compfluid.2008.12.007
10.1080/03052150802415665
10.1007/3-540-45356-3_86
10.1007/BF01061285
10.1016/j.asoc.2009.12.024
10.1002/fld.1288
10.1080/03052150902890072
10.1109/TSMCB.2006.889612
10.1016/j.future.2008.03.004
10.1080/174159701088027771
10.1016/j.future.2006.10.008
10.2514/6.1996-1941
10.2514/6.1997-1850
10.1016/S0045-7825(99)00394-1
10.1108/EUM0000000004086
10.1007/s11831-008-9025-y
10.1115/1.2841318
ContentType Journal Article
Copyright Copyright Taylor & Francis Group, LLC 2012
Copyright Taylor & Francis Ltd. 2012
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Copyright Taylor & Francis Group, LLC 2012
– notice: Copyright Taylor & Francis Ltd. 2012
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
1XC
VOOES
ADTOC
UNPAY
DOI 10.1080/0305215X.2011.570758
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts

Civil Engineering Abstracts
Civil Engineering Abstracts

Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1029-0273
EndPage 173
ExternalDocumentID oai:dspace.lib.ntua.gr:123456789/29594
oai:HAL:hal-00712365v1
2576422101
10_1080_0305215X_2011_570758
570758
Genre Feature
GroupedDBID -~X
.7F
.QJ
0BK
0R~
29G
2DF
30N
4.4
5GY
5VS
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACGOD
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
EBS
EJD
E~A
E~B
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
M4Z
NA5
NX~
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEN
TFL
TFT
TFW
TN5
TNC
TTHFI
TUROJ
TWF
UT5
UU3
ZGOLN
~S~
07I
1TA
4B5
AAYLN
AAYXX
ACTTO
ADUMR
ADXEU
AEHZU
AEZBV
AFBWG
AFFNX
AFION
AGBKS
AGBLW
AGVKY
AGWUF
AGYFW
AKHJE
AKMBP
ALRRR
ALXIB
ARCSS
BGSSV
BWMZZ
C0-
C5H
CAG
CITATION
COF
CYRSC
DAOYK
DEXXA
FETWF
IFELN
L8C
LJTGL
NUSFT
OPCYK
TAJZE
TAP
UB6
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
1XC
VOOES
ADTOC
UNPAY
ID FETCH-LOGICAL-c480t-7d7c784b1a35b7b5ed011e6982166c759727953885fb6d884370b726be7d168e3
IEDL.DBID UNPAY
ISSN 0305-215X
1026-745X
1029-0273
IngestDate Sun Oct 26 04:07:25 EDT 2025
Tue Oct 14 20:08:47 EDT 2025
Fri Sep 05 09:34:57 EDT 2025
Wed Oct 01 14:10:55 EDT 2025
Wed Aug 13 08:49:11 EDT 2025
Wed Oct 01 06:47:13 EDT 2025
Thu Apr 24 22:54:46 EDT 2025
Mon Oct 20 23:46:29 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Physical Sciences
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
other-oa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c480t-7d7c784b1a35b7b5ed011e6982166c759727953885fb6d884370b726be7d168e3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-2
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
OpenAccessLink https://proxy.k.utb.cz/login?url=http://doi.org/10.1080/0305215X.2011.570758
PQID 919420189
PQPubID 23500
PageCount 17
ParticipantIDs proquest_miscellaneous_1022903808
crossref_primary_10_1080_0305215X_2011_570758
informaworld_taylorfrancis_310_1080_0305215X_2011_570758
unpaywall_primary_10_1080_0305215x_2011_570758
crossref_citationtrail_10_1080_0305215X_2011_570758
proquest_journals_919420189
hal_primary_oai_HAL_hal_00712365v1
proquest_miscellaneous_1778071758
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-02-00
PublicationDateYYYYMMDD 2012-02-01
PublicationDate_xml – month: 02
  year: 2012
  text: 2012-02-00
PublicationDecade 2010
PublicationPlace Abingdon
PublicationPlace_xml – name: Abingdon
PublicationTitle Engineering optimization
PublicationYear 2012
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References CIT0030
CIT0010
CIT0032
CIT0031
CIT0012
CIT0034
CIT0011
Haykin S. (CIT0017) 1999
CIT0014
CIT0036
CIT0013
CIT0035
CIT0038
CIT0015
CIT0037
CIT0018
CIT0039
CIT0019
Cantú-Paz E. (CIT0007) 1998; 10
Hart W. (CIT0016) 1994
CIT0040
CIT0021
CIT0043
CIT0020
CIT0042
CIT0001
CIT0023
CIT0045
CIT0022
CIT0044
Ong Y. (CIT0033) 2006; 36
Dawkins R. (CIT0008) 1976
Spalart P. (CIT0041) 1994; 1
CIT0003
CIT0025
CIT0047
CIT0002
CIT0024
CIT0046
CIT0005
CIT0027
CIT0004
CIT0026
CIT0029
CIT0006
CIT0028
CIT0009
References_xml – ident: CIT0020
  doi: 10.1016/j.cma.2008.01.015
– volume: 10
  start-page: 141
  year: 1998
  ident: CIT0007
  publication-title: Calculateurs Paralléles, Réseaux Systémes Répartis
– ident: CIT0030
  doi: 10.1016/j.jpdc.2005.11.006
– volume: 36
  start-page: 141
  year: 2006
  ident: CIT0033
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics – Part B: Cybernetics
  doi: 10.1109/TSMCB.2005.856143
– volume-title: The selfish gene
  year: 1976
  ident: CIT0008
– ident: CIT0045
  doi: 10.1162/106365600568202
– ident: CIT0011
– ident: CIT0043
  doi: 10.1007/s00500-006-0145-8
– ident: CIT0010
  doi: 10.1002/fld.289
– ident: CIT0038
  doi: 10.1017/S0022112074002023
– ident: CIT0009
– ident: CIT0046
– ident: CIT0013
  doi: 10.1080/03052150902866577
– ident: CIT0018
  doi: 10.1016/j.ijheatmasstransfer.2005.12.015
– ident: CIT0029
  doi: 10.1016/j.parco.2006.06.004
– ident: CIT0026
  doi: 10.1109/TEVC.2005.850260
– ident: CIT0001
  doi: 10.1016/S0167-739X(99)00129-6
– ident: CIT0006
  doi: 10.1007/s005000050055
– ident: CIT0031
– ident: CIT0032
  doi: 10.1109/TEVC.2003.819944
– ident: CIT0005
  doi: 10.1007/s10710-009-9090-5
– ident: CIT0003
  doi: 10.2514/6.1997-643
– volume-title: Adaptive global optimization with local search
  year: 1994
  ident: CIT0016
– ident: CIT0034
  doi: 10.1016/j.compfluid.2005.11.006
– ident: CIT0047
  doi: 10.1016/j.compfluid.2008.12.006
– ident: CIT0025
  doi: 10.1109/CEC.2000.870313
– ident: CIT0002
  doi: 10.2514/6.1995-1740
– volume-title: Neural networks: a comprehensive foundation
  year: 1999
  ident: CIT0017
– ident: CIT0023
  doi: 10.1080/03052150600848000
– ident: CIT0036
  doi: 10.1016/j.compfluid.2008.12.007
– ident: CIT0004
  doi: 10.1080/03052150802415665
– ident: CIT0040
  doi: 10.1007/3-540-45356-3_86
– ident: CIT0019
  doi: 10.1007/BF01061285
– ident: CIT0022
  doi: 10.1016/j.asoc.2009.12.024
– ident: CIT0024
  doi: 10.1002/fld.1288
– ident: CIT0021
  doi: 10.1080/03052150902890072
– ident: CIT0044
  doi: 10.1109/TSMCB.2006.889612
– ident: CIT0027
  doi: 10.1016/j.future.2008.03.004
– volume: 1
  start-page: 5
  year: 1994
  ident: CIT0041
  publication-title: La Recherche Aérospatiale
– ident: CIT0014
  doi: 10.1080/174159701088027771
– ident: CIT0028
  doi: 10.1016/j.future.2006.10.008
– ident: CIT0012
  doi: 10.2514/6.1996-1941
– ident: CIT0015
  doi: 10.2514/6.1997-1850
– ident: CIT0039
  doi: 10.1016/S0045-7825(99)00394-1
– ident: CIT0042
  doi: 10.1108/EUM0000000004086
– ident: CIT0035
  doi: 10.1007/s11831-008-9025-y
– ident: CIT0037
  doi: 10.1115/1.2841318
SSID ssj0013008
Score 1.9701924
Snippet This article presents an asynchronous metamodel-assisted memetic algorithm for the solution of CFD-based optimization problems. This algorithm is appropriate...
This paper presents an asynchronous metamodel-assisted memetic algorithm for the solution of CFD-based optimization problems. This algorithm is appropriate for...
SourceID unpaywall
hal
proquest
crossref
informaworld
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 157
SubjectTerms adjoint method
Adjoints
Algorithms
asynchronous metamodel-assisted evolutionary algorithm
Computation
computational fluid dynamics
Engineering Sciences
Evolutionary algorithms
Fluid dynamics
Machinery
Mathematical analysis
Mathematical models
memetic algorithm
Optimization
Optimization algorithms
Shape optimization
Title An asynchronous metamodel-assisted memetic algorithm for CFD-based shape optimization
URI https://www.tandfonline.com/doi/abs/10.1080/0305215X.2011.570758
https://www.proquest.com/docview/919420189
https://www.proquest.com/docview/1022903808
https://www.proquest.com/docview/1778071758
https://hal.science/hal-00712365
http://doi.org/10.1080/0305215X.2011.570758
UnpaywallVersion submittedVersion
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: aylor and Francis Online
  customDbUrl:
  mediaType: online
  eissn: 1029-0273
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0013008
  issn: 1029-0273
  databaseCode: AHDZW
  dateStart: 19970501
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAWR
  databaseName: Taylor & Francis Science and Technology Library-DRAA
  customDbUrl:
  eissn: 1029-0273
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0013008
  issn: 1029-0273
  databaseCode: 30N
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.tandfonline.com/page/title-lists
  providerName: Taylor & Francis
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELbY9gAceCPKwiogrq6S-H2MdqkqBCsOVBQulp04FNGm1SbdB78eTx7dVIgFbnmMHT_GnpmM5xuE3qichs4YhbmKICQnF1jlhuAI4i79duglNhiKH075dEbfzdn8Gmd7z30PENgEgkvZvMHaZMILOHmAhpx5xXuAhrPTj8mXxk_AMNDVvs2YY0G7awVeStIFzV1Xedmvck8oHSzqI5F94NI99fP2ttiYqwuzXPYk0eR-E-Jd1gCGcADlx3hb2XH683d4x3_p5AN0r9VIg6RhoYfoliseobs9nMLHaJYUgSmvihSQdNfbMli5ytQ5dLDXvYFRMv9oBfGQgVl-W599rxarwHcsOJ6cYBCUWVAuzMYFa79DrdrQzydoNnn76XiK23wMOKUyrLDIRCoktZEhzArLXObb67iSccR5KrxpEgvlN1DJcsszKSkRoRUxt05kEZeOPEWDYl24ZygQOQOgQBLnilBJqbEiVJZx583HLA3ZCJFuQnTagpVDzoyljjpM03bQNAyabgZthPCu1KYB6_gL_Ws_1ztSQNqeJu81PAPVKyacnUcjJPusoKv6T0repD3R5Ob6Dzu20e3WUGoVKepppBqhV7u3fk2Do8YUzk-iBitchUSG8gYaISTY4vCV8Y4j_9Tty36znv9vgUN0x9_FzWH1F2hQnW3dS6-LVfYIDZPpydfPR-1a_AUghR5y
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEF7RcigceCNCeRjEdYPt9b6OUSEKkObUSL2tdu01QSROVDst5dcz40dwkVokuNqztmc9O4_dmW8IeafzJPTWaip0hCU5uaQ6t4xGWHcJ6hAsNgaKxzMxmSefT3mXTVi2aZUYQ-cNUEStq3Fx42Z0lxL3HoUUTNVpg8DJJZg9tUduc_D1sYkBC2e_DxLCuikdjqA4pKueu-YpV6zT3qLOjewjmF7xQw-2xcZeXtjlsmeSxveJ65hpMlG-D7eVG6Y__8B5_C9uH5B7rcMajBoJe0hu-eIRuduDMXxM5qMisOVlkSLQ7npbBitf2brFDgXXHOUog0srLJcM7PLr-uxbtVgFwG5wNP5A0Y5mQbmwGx-sQYGt2srQJ2Q-_nhyNKFtuwaaJiqsqMxkKlXiIsu4k477DL7XC63iSIhUQuQSSw36VfHciUyphMnQyVg4L7NIKM-ekv1iXfhnJJA5RxxBFueaJSpJrJOhdlx4iC6zNOQDwrrfZNIWyxxbaixN1EGetpNmcNJMM2kDQnejNg2Wx1_o34IE7EgRiHsymhq8hp5ZzAQ_jwZE9QXEVPVGS950RTHs5ucfdsJkWs1RGh3pBGiUHpA3u7uw5PEcxxYefqLBIF2HTIXqBhopFYbq-JbhTk6vY_tH_7Oe_ztHr8nB5OR4aqafZl8OyR24EzcZ7i_IfnW29S_Bgavcq3qJ_gIWqzIH
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLbYkGA8jLtWNsAgXl2SOL49VtuqAqPigUp9s-zEpog2rdYUGL9-PrmUDGlDgtf4khz7-Fzic76D0Bvl08gZowhXMaTkeEGUN5TEkHcZxGHQ2OAofhzz0SR9P2XTThY_hFWCD-1roIhKVsPhXuW-jYh7CzwaNNW0BuBkImg9uYNuc7gUgySOaPz7HiGqatLBCAJD2uS5a2a5opx2ZlVoZBfA9IoZendTrMzFDzOfdzTS8D4yLS11IMq3_qa0_ezXHzCP_0PsA7TfmKt4UPPXQ3TLFY_QvQ6I4WM0GRTYrC-KDGB2l5s1XrjSVAV2SDDMgYvy8GgByZLYzL8sz7-WswUO1OLj4QkBLZrj9cysHF4G8bVo8kKfoMnw9PPxiDTFGkiWyqgkIheZkKmNDWVWWOby8L2OK5nEnGci-C2JUEG6SuYtz6VMqYisSLh1Io-5dPQp2i2WhTtAWHgGKII08YqmMk2NFZGyjLvgW-ZZxHqItrukswbJHApqzHXcAp42i6Zh0XS9aD1EtqNWNZLHX_q_Dgyw7Qow3KPBmYZnYJcllLPvcQ_JLn_osvrN4uuaKJrePP9hy0u6kRtrrWKVhj5S9dCrbWs48HCLYwoXNlGDi64iKiN5Qx8hJDjq8Jb-lk2vI_tn97Oe_TtFL9GdTydDffZu_OEQ7YWGpA5vP0K75fnGPQ_WW2lfVAf0EhM1MKs
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELbY7gE4sLxWWxaQQVxdJfH7WC1UFYIVByqVk2UnDkW0abVJYZdfjyePbqoVC9zyGDt-jD0zGc83CL3ROYu8tZoIHUNITi6Jzi0lMcRdhu0wSGwwFD-ei-mMvZ_z-TXO9p77HiCwKQSX8nmDtcllEHDqAB0KHhTvATqcnX8af2n8BJwAXe3bTASRrLvW4KWkXdDcdZWX_Sr3hNLBoj4S2Qcu3VM_726Ljb36aZfLniSaHDUh3mUNYAgHUL6PtpUbpb9uwjv-SycfogetRorHDQs9Qnd88Rjd7-EUPkGzcYFteVWkgKS73pZ45Stb59AhQfcGRsnCoxXEQ2K7_Lq--FYtVjh0DJ9N3hIQlBkuF3bj8TrsUKs29PMpmk3efT6bkjYfA0mZiioiM5lKxVxsKXfScZ-F9nqhVRILkcpgmiRShw1U8dyJTClGZeRkIpyXWSyUp8doUKwLf4KwzDkABdIk15QpxqyTkXZc-GA-ZmnEh4h2E2LSFqwccmYsTdxhmraDZmDQTDNoQ0R2pTYNWMdf6F-Hud6RAtL2dPzBwDNQvRIq-I94iFSfFUxV_0nJm7Qnht5e_2nHNqbdGkqjY80CjdJD9Gr3NqxpcNTYwodJNGCF64iqSN1CI6UCWxy-Mtpx5J-6fdlv1rP_LXCK7oW7pDms_hwNqoutfxF0scq9bNfgbzUcHNE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+asynchronous+metamodel-assisted+memetic+algorithm+for+CFD-based+shape+optimization&rft.jtitle=Engineering+optimization&rft.au=Kontoleontos%2C+Evgenia+A.&rft.au=Asouti%2C+Varvara+G.&rft.au=Giannakoglou%2C+Kyriakos+C.&rft.date=2012-02-01&rft.issn=0305-215X&rft.eissn=1029-0273&rft.volume=44&rft.issue=2&rft.spage=157&rft.epage=173&rft_id=info:doi/10.1080%2F0305215X.2011.570758&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_0305215X_2011_570758
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-215X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-215X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-215X&client=summon