High power density superconducting rotating machines-development status and technology roadmap

Superconducting technology applications in electric machines have long been pursued due to their significant advantages of higher efficiency and power density over conventional technology. However, in spite of many successful technology demonstrations, commercial adoption has been slow, presumably b...

Full description

Saved in:
Bibliographic Details
Published inSuperconductor science & technology Vol. 30; no. 12; pp. 123002 - 123042
Main Authors Haran, Kiruba S, Kalsi, Swarn, Arndt, Tabea, Karmaker, Haran, Badcock, Rod, Buckley, Bob, Haugan, Timothy, Izumi, Mitsuru, Loder, David, Bray, James W, Masson, Philippe, Stautner, Ernst Wolfgang
Format Journal Article
LanguageEnglish
Published IOP Publishing 17.11.2017
Subjects
Online AccessGet full text
ISSN0953-2048
1361-6668
1361-6668
DOI10.1088/1361-6668/aa833e

Cover

Abstract Superconducting technology applications in electric machines have long been pursued due to their significant advantages of higher efficiency and power density over conventional technology. However, in spite of many successful technology demonstrations, commercial adoption has been slow, presumably because the threshold for value versus cost and technology risk has not yet been crossed. One likely path for disruptive superconducting technology in commercial products could be in applications where its advantages become key enablers for systems which are not practical with conventional technology. To help systems engineers assess the viability of such future solutions, we present a technology roadmap for superconducting machines. The timeline considered was ten years to attain a Technology Readiness Level of 6+, with systems demonstrated in a relevant environment. Future projections, by definition, are based on the judgment of specialists, and can be subjective. Attempts have been made to obtain input from a broad set of organizations for an inclusive opinion. This document was generated through a series of teleconferences and in-person meetings, including meetings at the 2015 IEEE PES General meeting in Denver, CO, the 2015 ECCE in Montreal, Canada, and a final workshop in April 2016 at the University of Illinois, Urbana-Champaign that brought together a broad group of technical experts spanning the industry, government and academia.
AbstractList Superconducting technology applications in electric machines have long been pursued due to their significant advantages of higher efficiency and power density over conventional technology. However, in spite of many successful technology demonstrations, commercial adoption has been slow, presumably because the threshold for value versus cost and technology risk has not yet been crossed. One likely path for disruptive superconducting technology in commercial products could be in applications where its advantages become key enablers for systems which are not practical with conventional technology. To help systems engineers assess the viability of such future solutions, we present a technology roadmap for superconducting machines. The timeline considered was ten years to attain a Technology Readiness Level of 6+, with systems demonstrated in a relevant environment. Future projections, by definition, are based on the judgment of specialists, and can be subjective. Attempts have been made to obtain input from a broad set of organizations for an inclusive opinion. This document was generated through a series of teleconferences and in-person meetings, including meetings at the 2015 IEEE PES General meeting in Denver, CO, the 2015 ECCE in Montreal, Canada, and a final workshop in April 2016 at the University of Illinois, Urbana-Champaign that brought together a broad group of technical experts spanning the industry, government and academia.
Author Buckley, Bob
Masson, Philippe
Bray, James W
Badcock, Rod
Haugan, Timothy
Izumi, Mitsuru
Karmaker, Haran
Stautner, Ernst Wolfgang
Kalsi, Swarn
Loder, David
Haran, Kiruba S
Arndt, Tabea
Author_xml – sequence: 1
  givenname: Kiruba S
  surname: Haran
  fullname: Haran, Kiruba S
  email: kharan@illinois.edu
  organization: University of Illinois at Urbana-Champaign , 306 N. Wright Street, Urbana, IL 61801, United States of America
– sequence: 2
  givenname: Swarn
  surname: Kalsi
  fullname: Kalsi, Swarn
  organization: Kalsi Green Power Systems, 46 Renfield Dr, Princeton, NJ 08540, United States of America
– sequence: 3
  givenname: Tabea
  surname: Arndt
  fullname: Arndt, Tabea
  organization: Siemens Corporate Technology, Guenther-Scharowsky-Str. 1, D-91058 Erlangen, Germany
– sequence: 4
  givenname: Haran
  surname: Karmaker
  fullname: Karmaker, Haran
  organization: TECO-Westinghouse Motor Company, Round Rock, TX 78681, United States of America
– sequence: 5
  givenname: Rod
  orcidid: 0000-0003-0219-9570
  surname: Badcock
  fullname: Badcock, Rod
  organization: Victoria University of Wellington , 69 Gracefield Road, Lower Hutt 5010, New Zealand
– sequence: 6
  givenname: Bob
  surname: Buckley
  fullname: Buckley, Bob
  organization: Victoria University of Wellington , 69 Gracefield Road, Lower Hutt 5010, New Zealand
– sequence: 7
  givenname: Timothy
  surname: Haugan
  fullname: Haugan, Timothy
  organization: The Air Force Research Laboratory, Aerospace Systems Directorate, 1950 Fifth St. Bldg 18, Wright-Patterson AFB, OH 45433, United States of America
– sequence: 8
  givenname: Mitsuru
  surname: Izumi
  fullname: Izumi, Mitsuru
  organization: Tokyo University of Marine Science and Technology , 2-1-6, Etchu-jima, Koto-ku, Tokyo 135-8533, Japan
– sequence: 9
  givenname: David
  surname: Loder
  fullname: Loder, David
  organization: Rolls-Royce North American Technologies, Inc.-Liberty Works, Indianapolis, IN, United States of America
– sequence: 10
  givenname: James W
  surname: Bray
  fullname: Bray, James W
  organization: General Electric-Global Research Center, One Research Circle, Niskayuna, NY 12309, United States of America
– sequence: 11
  givenname: Philippe
  surname: Masson
  fullname: Masson, Philippe
  organization: University of Houston , Department of Mechanical Engineering and Texas Center for Superconductivity, W204 Engineering Building 1, Houston,TX 77204, United States of America
– sequence: 12
  givenname: Ernst Wolfgang
  surname: Stautner
  fullname: Stautner, Ernst Wolfgang
  organization: General Electric-Global Research Center, One Research Circle, Niskayuna, NY 12309, United States of America
BookMark eNqNkFFLwzAQgINMcJu--9hXwbqkabP2UYY6YeCLvhpuyXXraJOStI7-e1srPogM4SDH5b675JuRibEGCblm9I7RNF0wLlgohEgXACnneEamP6UJmdIs4WFE4_SCzLw_UMpYyqMpeV8Xu31Q2yO6QKPxRdMFvq3RKWt0q5rC7AJnG_hKKlD7wqAPNX5gaesKTRP4_rL1ARgdNKj2xpZ21_UM6ArqS3KeQ-nx6vuck7fHh9fVOty8PD2v7jehilPahMttwpVAobYIGcRMiP69GrM4TxBUjKhz0Ms41lRFCVWKRVpnSRanGfQVHvE5YePc1tTQHaEsZe2KClwnGZWDIDnYkIMNOQrqGTEyylnvHeZSFcNHrWkcFOUpkP4C_7HrdkQKW8uDbZ3pbZxqv_mj3be-kbxnoj44pZGsdc4_AZOam08
CODEN SUSTEF
CitedBy_id crossref_primary_10_1088_1361_6668_acb856
crossref_primary_10_1109_TASC_2020_2974827
crossref_primary_10_1109_TASC_2024_3385737
crossref_primary_10_1109_TTE_2022_3174362
crossref_primary_10_1109_TIE_2023_3306416
crossref_primary_10_1038_s44287_024_00112_y
crossref_primary_10_1063_5_0248745
crossref_primary_10_1021_acsami_0c18014
crossref_primary_10_17816_transsyst660871
crossref_primary_10_1016_j_physc_2019_03_017
crossref_primary_10_3390_app11062741
crossref_primary_10_3390_en16197015
crossref_primary_10_1088_1361_6668_ac56ff
crossref_primary_10_1109_TASC_2020_2971436
crossref_primary_10_1142_S0217979223502442
crossref_primary_10_1088_2399_6528_ab4437
crossref_primary_10_1109_TASC_2024_3354670
crossref_primary_10_1134_S1810232821040019
crossref_primary_10_1088_1361_6668_abd5f2
crossref_primary_10_1088_1742_6596_1559_1_012137
crossref_primary_10_1063_5_0088076
crossref_primary_10_1088_1361_6668_ad9b54
crossref_primary_10_1016_j_cryogenics_2020_103171
crossref_primary_10_1088_2631_8695_abfd0e
crossref_primary_10_1109_TASC_2018_2821718
crossref_primary_10_3390_condmat8040094
crossref_primary_10_1109_TASC_2019_2963396
crossref_primary_10_1088_1361_6668_ad7644
crossref_primary_10_3390_ma14154295
crossref_primary_10_1109_TASC_2021_3135487
crossref_primary_10_1109_MELE_2020_2985482
crossref_primary_10_1109_TASC_2021_3113574
crossref_primary_10_1038_s41598_022_20625_6
crossref_primary_10_1016_j_physc_2024_1354552
crossref_primary_10_1088_1361_6668_ab6022
crossref_primary_10_1109_TASC_2019_2902427
crossref_primary_10_1109_TASC_2023_3264201
crossref_primary_10_1109_TASC_2024_3524485
crossref_primary_10_1088_1361_6668_ad4a34
crossref_primary_10_1109_TASC_2021_3104983
crossref_primary_10_1088_1361_6668_ab3f50
crossref_primary_10_1109_TASC_2023_3248536
crossref_primary_10_1109_TEC_2022_3183939
crossref_primary_10_1109_TASC_2020_2980844
crossref_primary_10_1109_TASC_2020_2982903
crossref_primary_10_1109_MELE_2022_3165952
crossref_primary_10_1109_TASC_2023_3260762
crossref_primary_10_1007_s42835_021_00708_6
crossref_primary_10_1109_TASC_2020_2967286
crossref_primary_10_1088_1402_4896_acc9e9
crossref_primary_10_1134_S1810232823020017
crossref_primary_10_1038_s42254_023_00663_3
crossref_primary_10_1109_TASC_2022_3193782
crossref_primary_10_1088_1361_6668_abe4b6
crossref_primary_10_3390_en14185658
crossref_primary_10_1088_1361_6668_ac80d8
crossref_primary_10_1109_TASC_2023_3248545
crossref_primary_10_1063_1_5134925
crossref_primary_10_1109_TASC_2020_3037057
crossref_primary_10_1109_TASC_2023_3264470
crossref_primary_10_1109_TTE_2021_3050269
crossref_primary_10_1109_TASC_2022_3147427
crossref_primary_10_1109_TASC_2019_2902692
crossref_primary_10_1109_TASC_2021_3089111
crossref_primary_10_1109_TASC_2023_3245039
crossref_primary_10_1109_TASC_2024_3520099
crossref_primary_10_1051_epjap_2020200027
crossref_primary_10_1088_1361_6668_ad4a2f
crossref_primary_10_1109_MELE_2022_3165721
crossref_primary_10_1109_TASC_2025_3527951
crossref_primary_10_3390_en17174366
crossref_primary_10_1088_1361_6668_adaaa7
crossref_primary_10_3390_en12010086
crossref_primary_10_3390_aerospace7040044
crossref_primary_10_1038_s41598_022_10728_5
crossref_primary_10_1088_1757_899X_581_1_012012
crossref_primary_10_1109_TASC_2021_3064526
crossref_primary_10_1109_TASC_2020_2987015
crossref_primary_10_1109_TASC_2023_3267055
crossref_primary_10_1109_TASC_2023_3296277
crossref_primary_10_1088_1757_899X_1302_1_012017
crossref_primary_10_1109_TASC_2023_3268142
crossref_primary_10_1007_s12206_021_0913_5
crossref_primary_10_1038_s41598_023_45770_4
crossref_primary_10_1109_TASC_2018_2801323
crossref_primary_10_1109_TASC_2021_3054721
crossref_primary_10_1109_TASC_2023_3265436
crossref_primary_10_1109_TASC_2019_2908548
crossref_primary_10_1109_TEC_2021_3098966
crossref_primary_10_1109_TASC_2018_2815712
crossref_primary_10_1088_1361_6668_ac3b62
crossref_primary_10_1063_5_0147920
crossref_primary_10_1016_j_ceramint_2020_06_188
crossref_primary_10_1109_TASC_2025_3540783
crossref_primary_10_1038_s43246_022_00266_y
crossref_primary_10_1088_1361_6668_ad7173
crossref_primary_10_1109_JLT_2023_3294468
crossref_primary_10_1109_TASC_2019_2906159
crossref_primary_10_1109_TTE_2024_3446597
crossref_primary_10_1109_TASC_2021_3128347
crossref_primary_10_1109_TASC_2022_3143088
crossref_primary_10_35848_1347_4065_acb38f
crossref_primary_10_1088_1361_6668_ac19f4
crossref_primary_10_1109_TASC_2021_3070565
crossref_primary_10_1109_TMAG_2022_3150786
crossref_primary_10_1016_j_egyr_2022_11_173
crossref_primary_10_1109_TASC_2024_3356427
crossref_primary_10_1088_1361_6668_ac6a52
crossref_primary_10_1109_TASC_2017_2754270
crossref_primary_10_1051_epjap_2020200031
crossref_primary_10_1109_TASC_2024_3431232
crossref_primary_10_1088_1361_6668_acbb34
crossref_primary_10_1109_TASC_2020_3020025
crossref_primary_10_1109_TASC_2021_3133827
crossref_primary_10_1016_j_ijthermalsci_2019_04_030
crossref_primary_10_1109_TASC_2020_2992588
crossref_primary_10_1109_TASC_2022_3166751
crossref_primary_10_3390_su15031806
crossref_primary_10_1109_TASC_2024_3355349
crossref_primary_10_1007_s10854_022_08009_y
crossref_primary_10_1109_TASC_2019_2917150
crossref_primary_10_1063_1_5038040
crossref_primary_10_1109_TASC_2024_3356436
crossref_primary_10_1007_s10948_022_06154_3
crossref_primary_10_1109_TASC_2022_3160685
crossref_primary_10_1088_1361_6668_ab695a
crossref_primary_10_1109_TASC_2023_3280710
crossref_primary_10_1109_TPEL_2020_2989329
crossref_primary_10_1109_TASC_2020_2971453
crossref_primary_10_1088_1361_6668_ac7ae2
crossref_primary_10_1063_5_0219918
crossref_primary_10_1016_j_cryogenics_2020_103070
crossref_primary_10_1109_TASC_2024_3522074
crossref_primary_10_1109_TASC_2023_3316192
crossref_primary_10_1109_TASC_2024_3360940
crossref_primary_10_1088_1757_899X_756_1_012029
crossref_primary_10_1109_TASC_2023_3345289
crossref_primary_10_1109_TIA_2024_3397784
crossref_primary_10_1088_1361_6668_aad7ce
crossref_primary_10_1109_TASC_2024_3352521
crossref_primary_10_3390_aerospace11040317
crossref_primary_10_1016_j_physc_2023_1354395
crossref_primary_10_1109_TASC_2023_3345291
crossref_primary_10_1109_TASC_2021_3055178
crossref_primary_10_1088_1361_6668_ace5e7
crossref_primary_10_1108_AEAT_07_2022_0185
crossref_primary_10_1109_TASC_2022_3228704
crossref_primary_10_1109_TASC_2024_3378210
crossref_primary_10_1007_s11431_024_2773_1
crossref_primary_10_1109_TTE_2022_3194027
crossref_primary_10_1109_TASC_2025_3537948
crossref_primary_10_1109_TASC_2022_3145290
crossref_primary_10_1088_1361_6668_aaf2f5
crossref_primary_10_1109_TASC_2020_2968950
crossref_primary_10_1007_s42835_023_01472_5
crossref_primary_10_1016_j_supcon_2025_100157
crossref_primary_10_1109_TASC_2021_3058596
crossref_primary_10_1109_TEC_2019_2927307
crossref_primary_10_1007_s10948_019_05226_1
crossref_primary_10_1109_TASC_2020_2976603
crossref_primary_10_1109_TDEI_2022_3146608
crossref_primary_10_1109_TASC_2019_2923537
crossref_primary_10_1016_j_cryogenics_2022_103573
crossref_primary_10_1109_TASC_2020_2969071
crossref_primary_10_1088_1361_6668_ac68a7
crossref_primary_10_1088_1361_6668_ac68a5
crossref_primary_10_1088_1361_6668_abb63c
crossref_primary_10_1007_s42835_021_00852_z
crossref_primary_10_1088_2053_1591_ab945a
crossref_primary_10_1109_TASC_2023_3346352
crossref_primary_10_1109_TASC_2024_3517669
crossref_primary_10_1515_tjeng_2020_0041
crossref_primary_10_1021_acsami_2c11414
crossref_primary_10_1088_1361_6668_acf1d4
crossref_primary_10_1007_s10948_021_05946_3
crossref_primary_10_1088_1742_6596_1559_1_012082
crossref_primary_10_1109_TASC_2019_2927587
crossref_primary_10_1109_TASC_2021_3101754
crossref_primary_10_1109_TTE_2024_3409777
crossref_primary_10_1109_TASC_2024_3371960
crossref_primary_10_3390_en16165955
crossref_primary_10_1063_5_0229155
crossref_primary_10_1109_ACCESS_2021_3062278
crossref_primary_10_1109_TMAG_2021_3108632
crossref_primary_10_1088_1757_899X_1241_1_012019
crossref_primary_10_2221_jcsj_57_79
crossref_primary_10_1109_TMAG_2019_2935696
crossref_primary_10_1038_s41578_021_00290_3
crossref_primary_10_1109_TASC_2022_3196770
crossref_primary_10_1088_1361_6668_ab6fe9
crossref_primary_10_1088_1361_6668_ab87ac
crossref_primary_10_1109_TASC_2020_3042829
crossref_primary_10_1088_1361_6668_abe8b3
crossref_primary_10_1088_1361_6668_acbba5
crossref_primary_10_1109_TASC_2023_3346362
crossref_primary_10_1016_j_cryogenics_2022_103466
crossref_primary_10_1016_j_paerosci_2023_100924
crossref_primary_10_1088_1361_6668_ad44e7
crossref_primary_10_1109_TASC_2025_3544568
crossref_primary_10_1109_TASC_2020_2990377
crossref_primary_10_1088_1361_6668_abceb2
crossref_primary_10_1002_adfm_202100680
crossref_primary_10_1088_1361_6668_ad8dff
crossref_primary_10_1109_TASC_2021_3094425
crossref_primary_10_1088_1361_6668_abac1e
crossref_primary_10_1109_TASC_2021_3056996
crossref_primary_10_1109_TASC_2025_3545412
crossref_primary_10_3103_S1068371222100054
crossref_primary_10_1088_1361_6668_ad1aeb
crossref_primary_10_3390_ma14112847
crossref_primary_10_1109_TASC_2020_2982879
crossref_primary_10_1109_TASC_2023_3262213
crossref_primary_10_1109_TASC_2024_3512514
crossref_primary_10_2478_amns_2024_2564
crossref_primary_10_3390_en14216861
crossref_primary_10_1109_TASC_2022_3221157
crossref_primary_10_1088_1361_6668_ac908f
crossref_primary_10_1109_JSEN_2024_3481298
crossref_primary_10_1109_TASC_2022_3188461
crossref_primary_10_1088_1361_6668_aac294
crossref_primary_10_3390_app10051564
crossref_primary_10_3390_en12234579
crossref_primary_10_3390_en11040792
crossref_primary_10_1109_TASC_2018_2810302
crossref_primary_10_1103_PhysRevApplied_14_024012
crossref_primary_10_1109_TASC_2023_3257772
crossref_primary_10_1088_1361_6668_aafeea
crossref_primary_10_1109_TASC_2020_2982884
crossref_primary_10_3390_en14082234
crossref_primary_10_1088_1361_6668_abda5b
crossref_primary_10_1109_JPROC_2021_3073291
crossref_primary_10_1016_j_supcon_2023_100072
crossref_primary_10_1109_ACCESS_2020_3007791
crossref_primary_10_1088_1742_6596_2776_1_012004
crossref_primary_10_1109_ACCESS_2020_3038058
crossref_primary_10_1016_j_jallcom_2022_167873
crossref_primary_10_1063_1_5138191
crossref_primary_10_3390_electronics11121901
crossref_primary_10_1080_19397038_2021_1988187
crossref_primary_10_1088_1361_6668_ad1f7c
crossref_primary_10_1007_s00502_025_01312_6
crossref_primary_10_1088_1757_899X_1241_1_012048
crossref_primary_10_1016_j_jmmm_2020_167543
crossref_primary_10_1016_j_physc_2021_1353973
crossref_primary_10_1109_TASC_2022_3180309
crossref_primary_10_1109_TASC_2019_2899148
crossref_primary_10_1109_TASC_2024_3366189
crossref_primary_10_1109_TASC_2025_3540818
crossref_primary_10_1109_TASC_2019_2901891
crossref_primary_10_1016_j_supcon_2023_100063
crossref_primary_10_1038_s41560_018_0294_x
crossref_primary_10_1109_ACCESS_2021_3073071
crossref_primary_10_3390_ma17184516
crossref_primary_10_1049_iet_epa_2017_0639
crossref_primary_10_1109_TASC_2023_3242629
crossref_primary_10_1109_TIA_2022_3204239
crossref_primary_10_1088_1361_6668_ab24ad
crossref_primary_10_1088_1361_6668_ac0ccb
crossref_primary_10_1088_1361_6668_ace3fb
crossref_primary_10_1088_1361_6668_ace3fd
crossref_primary_10_3390_app13074323
crossref_primary_10_1016_j_tsep_2022_101222
crossref_primary_10_1088_1742_6596_1590_1_012052
crossref_primary_10_1109_TASC_2019_2898505
crossref_primary_10_1088_1361_6668_ad36eb
crossref_primary_10_1016_j_supcon_2024_100130
crossref_primary_10_1109_TASC_2025_3540723
crossref_primary_10_1007_s11051_020_05076_2
crossref_primary_10_1016_j_actaastro_2021_10_027
crossref_primary_10_1088_1361_6668_ab48d6
crossref_primary_10_1088_1361_6668_acfcdf
crossref_primary_10_1088_1757_899X_1241_1_012035
crossref_primary_10_1088_1757_899X_1241_1_012034
crossref_primary_10_1109_TASC_2019_2914041
crossref_primary_10_1109_TTE_2021_3089605
crossref_primary_10_1541_ieejpes_140_162
crossref_primary_10_1088_1361_6668_aba547
crossref_primary_10_1109_TASC_2022_3145321
crossref_primary_10_1109_TASC_2021_3091082
crossref_primary_10_1007_s00502_023_01127_3
crossref_primary_10_1016_j_ijrefrig_2022_05_003
crossref_primary_10_1109_TASC_2020_3005503
crossref_primary_10_1002_jnm_3284
crossref_primary_10_1109_MIE_2022_3174332
crossref_primary_10_3390_nano11051082
crossref_primary_10_1088_1742_6596_1559_1_012030
crossref_primary_10_3390_en15103751
crossref_primary_10_1088_1361_6668_ad8315
crossref_primary_10_1109_TASC_2024_3380591
crossref_primary_10_1109_TASC_2021_3065814
crossref_primary_10_1515_tjj_2020_0041
crossref_primary_10_1109_TASC_2023_3255826
crossref_primary_10_1109_TASC_2024_3517573
crossref_primary_10_1109_TASC_2025_3542339
crossref_primary_10_1088_1742_6596_1975_1_012033
crossref_primary_10_1109_TPEL_2024_3491037
crossref_primary_10_1109_TASC_2019_2914053
crossref_primary_10_35848_1347_4065_ac38fa
crossref_primary_10_1109_TASC_2024_3519072
crossref_primary_10_1088_1742_6596_1975_1_012036
crossref_primary_10_1088_1757_899X_1241_1_012040
crossref_primary_10_1109_TEC_2019_2958613
crossref_primary_10_1038_s41598_020_76221_z
crossref_primary_10_1088_2399_6528_abe036
crossref_primary_10_1088_1361_6668_ab9ace
crossref_primary_10_1088_1361_6668_ace385
crossref_primary_10_1088_1742_6596_1559_1_012149
crossref_primary_10_1109_TASC_2018_2815918
crossref_primary_10_2514_1_B39405
crossref_primary_10_1088_1742_6596_1559_1_012140
crossref_primary_10_1088_1742_6596_1559_1_012143
crossref_primary_10_1007_s10948_022_06404_4
crossref_primary_10_1109_TEC_2019_2960255
crossref_primary_10_3390_nano13233029
crossref_primary_10_1109_TASC_2022_3159963
crossref_primary_10_1088_1361_6668_ab9027
crossref_primary_10_1088_1742_6596_1559_1_012146
Cites_doi 10.1049/iet-est.2015.0020
10.1016/0011-2275(95)90887-L
10.1088/0953-2048/29/8/083002
10.1109/TMAG.1983.1062537
10.1088/0953-8984/21/16/164219
10.1109/TASC.2014.2384731
10.1109/TIA.2014.2352257
10.1016/j.cryogenics.2005.09.001
10.1063/1.4902139
10.1002/9780470877890
10.1063/1.4879263
10.1088/0953-2048/18/2/026
10.1088/0953-2048/26/3/035006
10.1063/1.1774763
10.1016/j.physc.2012.04.019
10.1109/TPAS.1985.319162
10.1109/IEMDC.2015.7409294
10.1109/TASC.2007.899206
10.1088/0953-2048/27/8/082001
10.1016/0921-4534(94)91249-1
10.1016/S0011-2275(97)00102-1
10.1109/JPROC.2004.833676
10.1109/IEMDC.2009.5075246
10.1109/TASC.2009.2019021
10.1088/0953-2048/19/7/S19
10.1088/1742-6596/234/3/032040
10.1109/TMAG.1983.1062508
10.1016/j.physc.2012.04.021
10.1088/1742-6596/234/3/032008
10.1016/S0921-4534(02)01069-9
10.1109/PESS.2002.1043229
10.1109/TASC.2005.849613
10.1016/j.physc.2012.01.025
10.1016/j.physc.2012.02.020
10.2514/6.2016-1027
10.1063/1.2202611
10.1109/JPROC.2015.2495134
10.1038/srep04744
10.1109/TASC.2009.2017831
10.1109/TPAS.1966.291667
10.1063/1.4795016
10.2514/6.2009-1132
10.1088/1742-6596/507/2/022005
10.1016/j.physc.2003.12.082
10.1109/ICElMach.2012.6349962
10.1109/TASC.2009.2017758
10.1016/S0011-2275(02)00027-9
10.1109/20.133665
10.1109/TASC.2014.2381000
10.2514/6.2011-225
10.1109/TASC.2009.2018156
10.1109/TASC.2014.2372873
10.1109/TASC.2016.2542270
10.1109/TASC.2007.899996
10.1088/0953-2048/29/4/044005
10.1109/TASC.2016.2543838
10.1109/TASC.2016.2519409
10.1103/PhysRevB.75.174515
10.6084/m9.figshare.c.2861821.v6
10.1049/et.2014.1012
10.2514/3.62570
10.1109/TASC.2005.849617
10.1109/TASC.2010.2100341
10.1088/0953-2048/27/6/065008
10.1142/9925
10.1088/1742-6596/234/3/032060
10.1016/S0964-1807(98)00106-9
10.1088/0953-2048/25/7/075014
10.1109/TASC.2014.2375872
10.1109/TASC.2013.2291275
10.1109/TASC.2015.2389716
10.1088/0953-2048/29/12/125004
10.1109/PES.2007.386069
10.1201/b11312
10.1038/nature01350
10.1109/TASC.2013.2239471
10.1088/0953-2048/28/12/124001
10.1109/TASC.2014.2366722
10.1109/TASC.2010.2092745
10.1016/S0011-2275(02)00143-1
10.1109/77.783517
10.1088/0953-2048/29/3/034009
10.1016/j.phpro.2012.06.037
10.1109/PESW.2002.985030
ContentType Journal Article
Copyright 2017 IOP Publishing Ltd
Copyright_xml – notice: 2017 IOP Publishing Ltd
DBID O3W
TSCCA
AAYXX
CITATION
ADTOC
UNPAY
DOI 10.1088/1361-6668/aa833e
DatabaseName Institute of Physics Open Access Journal Titles
IOPscience (Open Access)
CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: O3W
  name: Institute of Physics Open Access Journal Titles
  url: http://iopscience.iop.org/
  sourceTypes:
    Enrichment Source
    Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Physics
DocumentTitleAlternate High power density superconducting rotating machines-development status and technology roadmap
EISSN 1361-6668
ExternalDocumentID 10.1088/1361-6668/aa833e
10_1088_1361_6668_aa833e
sustaa833e
GroupedDBID -~X
.DC
123
1JI
4.4
5B3
5PX
5VS
5ZH
7.M
7.Q
AAGCD
AAGID
AAJIO
AAJKP
AATNI
ABCXL
ABHWH
ABJNI
ABQJV
ABVAM
ACAFW
ACBEA
ACGFO
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EJD
EMSAF
EPQRW
EQZZN
HAK
IHE
IJHAN
IOP
IZVLO
KOT
LAP
M45
N5L
N9A
NT-
NT.
O3W
P2P
PJBAE
R4D
RIN
RNS
RO9
ROL
RPA
SY9
TAE
TN5
TSCCA
W28
XPP
XSW
ZMT
AAYXX
ADEQX
AEINN
CITATION
02O
1WK
29Q
5ZI
9BW
AAGCF
AALHV
ACARI
ACWPO
ADTOC
AERVB
AETNG
AGQPQ
AHSEE
ARNYC
BBWZM
FEDTE
HVGLF
JCGBZ
Q02
RKQ
S3P
T37
UNPAY
ZY4
ID FETCH-LOGICAL-c480t-7b53c6e6cbea9a4166095de94f5eac4eedfad744d0c250cc12dd959489a0c2323
IEDL.DBID UNPAY
ISSN 0953-2048
1361-6668
IngestDate Sun Sep 07 11:25:33 EDT 2025
Wed Oct 01 03:56:46 EDT 2025
Thu Apr 24 23:08:14 EDT 2025
Wed Aug 21 03:33:12 EDT 2024
Thu Jan 07 13:53:39 EST 2021
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License Original content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c480t-7b53c6e6cbea9a4166095de94f5eac4eedfad744d0c250cc12dd959489a0c2323
Notes SUST-102165.R2
ORCID 0000-0003-0219-9570
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1088/1361-6668/aa833e
PageCount 41
ParticipantIDs crossref_citationtrail_10_1088_1361_6668_aa833e
crossref_primary_10_1088_1361_6668_aa833e
unpaywall_primary_10_1088_1361_6668_aa833e
iop_journals_10_1088_1361_6668_aa833e
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-11-17
PublicationDateYYYYMMDD 2017-11-17
PublicationDate_xml – month: 11
  year: 2017
  text: 2017-11-17
  day: 17
PublicationDecade 2010
PublicationTitle Superconductor science & technology
PublicationTitleAbbrev SUST
PublicationTitleAlternate Supercond. Sci. Technol
PublicationYear 2017
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References 88
89
Lewis C (116) 2007; 24–28 June 2007
Keim T A (86) 1985; 104
Gromoll B (70) 2004; 49
110
111
112
114
Haran K (142) 2016
115
90
Buck J (16) 2007
91
92
119
93
Karmaker H (30) 2015
94
97
Felder J L (1) 2011
10
Iwasa Y (36) 2009
98
99
Buck J (101) 2007
12
Ida T (48) 2016; 695
13
14
15
Grilli F (130) 2016; 29
17
18
19
Nick W (104) 2010; 234
Zhou D (44) 2012; 25
Jacobsen R T (77) 1997
Izumi M (127) 2014
National Academies Press (5) 2016
122
2
123
3
124
4
125
6
7
128
8
20
Matias V (85)
22
24
Fair R (117) 2012
26
van der Laan D C (131) 2015; 28
27
28
29
Fair R (25) 2010; 234
Rogalla H (129) 2011
Ida T (49) 2016; 29
Fleshler T S (59) 2014; 507
Ainslie M D (46) 2016; 29
Miki M (126) 2014
132
133
Selvamanickam V (61) 2015; 28
134
Ainslie M D (43) 2014; 27
Kalsi S S (100)
135
136
Karmaker H (121) 2015
139
Fogarty J M (143)
32
33
34
Nariki S (38) 2005; 18
35
Murphy J (141) 2016
Bradshaw D (21) 2004
37
Campbell A (147) 2017; 30
Juvé L (138) 2016
Karmaker H (120) 2012
140
General Electric Company (83) 2013
144
145
146
149
Long L J (113) 2010
42
45
Zhou D (40) 2012; 25
Arndt T (67) 2014
Arndt T (68)
Westinghouse Superconducting Generator Design (87) 1977
Miki M (53) 2010; 12
Wei Yong L (107) 2013
150
Umemoto K (106) 2010; 234
151
Iwasa Y (137) 2009
Yanagisawa Y (65) 2012; 25
50
51
52
Ida T (47) 2008; 97
57
58
Jun Z (23) 2012
Appleton A D (11)
Zhang Y (55) 2016; 29
Westinghouse Electric Corporation (9) 1977
Kichhannagari S (80) 2004
60
62
63
64
66
Selvamanickam V (31) 2013; 26
69
Stautner W ed Atrey M (72) 2017
Felder J (73) 2011
Fair R (109) 2010; 234
Durrell J H (39) 2014; 27
Shi Y-H (41) 2015; 28
Li Z (56) 2017; 30
Urbahn J A (95) 2004; 710
74
Fagnard J F (148) 2016; 29
75
78
Jacobs R B (79) 1962; 8
Kalsi S S ed Sato K (118) 2016
Moon H (108) 2016; 29
Neumüller H-W (96) 2006; 19
Ohtani I (54) 2006; 19
Stautner W (76) 2014; 82
102
103
105
Radebaugh R (71) 2009; 21
81
82
84
References_xml – ident: 75
  doi: 10.1049/iet-est.2015.0020
– start-page: 2058
  year: 2004
  ident: 21
  publication-title: IEEE Power Engineering Society General Meeting
– ident: 82
  doi: 10.1016/0011-2275(95)90887-L
– volume: 29
  issn: 0953-2048
  year: 2016
  ident: 130
  publication-title: Supercond. Sci. Technol.
  doi: 10.1088/0953-2048/29/8/083002
– ident: 90
  doi: 10.1109/TMAG.1983.1062537
– volume: 21
  issn: 0953-8984
  year: 2009
  ident: 71
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/21/16/164219
– year: 2014
  ident: 126
  publication-title: Appl. Supercond. Conf., ASC2014
– ident: 74
  doi: 10.1109/TASC.2014.2384731
– ident: 122
  doi: 10.1109/TIA.2014.2352257
– ident: 19
  doi: 10.1016/j.cryogenics.2005.09.001
– volume: 28
  issn: 0953-2048
  year: 2015
  ident: 41
  publication-title: Supercond. Sci. Technol.
– volume: 82
  start-page: 1573
  issn: 0094-243X
  year: 2014
  ident: 76
  publication-title: AIP Conf. Proc.
– start-page: 4613
  year: 2016
  ident: 138
  publication-title: In 52nd AIAA/SAE/ASEE Joint Propulsion Conf.
– year: 2009
  ident: 36
  publication-title: Case Studies in Superconducting Magnets—Design and Operational Issues
– ident: 58
  doi: 10.1063/1.4902139
– start-page: 2011
  year: 2011
  ident: 73
  publication-title: AIAA ISABE
– ident: 13
  doi: 10.1002/9780470877890
– volume: 25
  issn: 0953-2048
  year: 2012
  ident: 44
  publication-title: Supercond. Sci. Technol.
– ident: 150
  doi: 10.1063/1.4879263
– volume: 18
  start-page: S126
  issn: 0953-2048
  year: 2005
  ident: 38
  publication-title: Supercond. Sci. Technol.
  doi: 10.1088/0953-2048/18/2/026
– volume: 26
  issn: 0953-2048
  year: 2013
  ident: 31
  publication-title: Supercond. Sci. Technol.
  doi: 10.1088/0953-2048/26/3/035006
– year: 2017
  ident: 72
  publication-title: Cryocoolers—Theory and Applications
– volume: 710
  start-page: 849
  year: 2004
  ident: 95
  publication-title: Advances in Cryogenic Engineering: Trans. Cryogenic Engineering Conference-CEC
  doi: 10.1063/1.1774763
– ident: 105
  doi: 10.1016/j.physc.2012.04.019
– ident: 10
  doi: 10.1109/TPAS.1985.319162
– ident: 84
  doi: 10.1109/IEMDC.2015.7409294
– ident: 18
  doi: 10.1109/TASC.2007.899206
– volume: 27
  issn: 0953-2048
  year: 2014
  ident: 39
  publication-title: Supercond. Sci. Technol.
  doi: 10.1088/0953-2048/27/8/082001
– ident: 50
  doi: 10.1016/0921-4534(94)91249-1
– ident: 81
  doi: 10.1016/S0011-2275(97)00102-1
– ident: 134
– ident: 14
  doi: 10.1109/JPROC.2004.833676
– ident: 124
  doi: 10.1109/IEMDC.2009.5075246
– ident: 103
  doi: 10.1109/TASC.2009.2019021
– volume: 19
  start-page: S521
  issn: 0953-2048
  year: 2006
  ident: 54
  publication-title: Supercond. Sci. Technol.
  doi: 10.1088/0953-2048/19/7/S19
– volume: 234
  start-page: 986
  issn: 1742-6596
  year: 2010
  ident: 104
  publication-title: J. Phys.: Conf. Ser.
  doi: 10.1088/1742-6596/234/3/032040
– ident: 89
  doi: 10.1109/TMAG.1983.1062508
– ident: 64
  doi: 10.1016/j.physc.2012.04.021
– year: 1977
  ident: 87
– volume: 234
  start-page: 1
  issn: 1742-6596
  year: 2010
  ident: 109
  publication-title: J. Phys.: Conf. Ser.
  doi: 10.1088/1742-6596/234/3/032008
– ident: 133
– ident: 94
  doi: 10.1016/S0921-4534(02)01069-9
– year: 2012
  ident: 117
– ident: 11
– ident: 12
  doi: 10.1109/PESS.2002.1043229
– volume: 29
  issn: 0953-2048
  year: 2016
  ident: 46
  publication-title: Supercond. Sci. Technol.
– ident: 98
  doi: 10.1109/TASC.2005.849613
– ident: 66
  doi: 10.1016/j.physc.2012.01.025
– year: 2013
  ident: 107
  publication-title: IEEE Conf. on Applied Superconductivity and Electromagnetic Devices
– ident: 7
– ident: 114
  doi: 10.1016/j.cryogenics.2005.09.001
– ident: 145
  doi: 10.1016/j.physc.2012.02.020
– ident: 100
– ident: 4
  doi: 10.2514/6.2016-1027
– volume: 25
  issn: 0953-2048
  year: 2012
  ident: 40
  publication-title: Supercond. Sci. Technol.
– ident: 99
  doi: 10.1063/1.2202611
– ident: 110
  doi: 10.1109/JPROC.2015.2495134
– volume: 24–28 June 2007
  start-page: 1
  year: 2007
  ident: 116
  publication-title: IEEE Power Eng. Soc. Gen. Meeting
– year: 2012
  ident: 23
  publication-title: Proc. Applied Superconductivity Conf.
– year: 2010
  ident: 113
  publication-title: 2010 Applied Superconductivity Conf., ASC
– start-page: 769
  year: 2012
  ident: 120
  publication-title: Proc. of the Int. Conf. on Electrical Machines
– volume: 30
  issn: 0953-2048
  year: 2017
  ident: 147
  publication-title: Supercond. Sci. Technol.
– ident: 85
– ident: 63
  doi: 10.1038/srep04744
– start-page: 22
  year: 2015
  ident: 121
  publication-title: Proc. of the EPEC
– ident: 136
  doi: 10.1109/TASC.2009.2017831
– ident: 139
– volume: 30
  issn: 0953-2048
  year: 2017
  ident: 56
  publication-title: Supercond. Sci. Technol.
– ident: 8
  doi: 10.1109/TPAS.1966.291667
– ident: 149
  doi: 10.1063/1.4795016
– year: 2009
  ident: 137
  publication-title: Case Studies in Superconducting Magnets: Design and Operational Issues
– ident: 2
  doi: 10.2514/6.2009-1132
– volume: 507
  issn: 1742-6596
  year: 2014
  ident: 59
  publication-title: J. Phys.: Conf. Ser.
  doi: 10.1088/1742-6596/507/2/022005
– year: 2016
  ident: 5
– ident: 51
  doi: 10.1016/j.physc.2003.12.082
– ident: 28
  doi: 10.1109/ICElMach.2012.6349962
– ident: 17
  doi: 10.1109/TASC.2009.2017758
– volume: 28
  issn: 0953-2048
  year: 2015
  ident: 61
  publication-title: Supercond. Sci. Technol.
– ident: 128
  doi: 10.1016/S0011-2275(02)00027-9
– ident: 91
  doi: 10.1109/20.133665
– ident: 24
  doi: 10.1109/TASC.2014.2381000
– ident: 3
  doi: 10.2514/6.2011-225
– ident: 34
  doi: 10.1109/TASC.2009.2018156
– volume: 19
  start-page: 1114
  issn: 0953-2048
  year: 2006
  ident: 96
  publication-title: Supercond. Sci. Technol.
– year: 2014
  ident: 127
  publication-title: EP 3125415 A1
– ident: 135
– ident: 78
– volume: 97
  issn: 1742-6596
  year: 2008
  ident: 47
  publication-title: J. Phys.: Conf. Ser.
– year: 2016
  ident: 118
  publication-title: Chapter 3.19: Ship Propulsion Motor Employing Bi-2223 and MgB
– ident: 151
  doi: 10.1109/TASC.2014.2372873
– ident: 60
  doi: 10.1109/TASC.2016.2542270
– ident: 97
  doi: 10.1109/TASC.2007.899996
– year: 2007
  ident: 16
  publication-title: ASNE Day Symp.
– volume: 29
  start-page: 44005
  issn: 0953-2048
  year: 2016
  ident: 55
  publication-title: Supercond. Sci. Technol.
  doi: 10.1088/0953-2048/29/4/044005
– ident: 123
  doi: 10.1109/TASC.2016.2543838
– ident: 62
  doi: 10.1109/TASC.2016.2519409
– year: 1997
  ident: 77
  publication-title: The International Cryogenics Monograph Series
– ident: 146
  doi: 10.1103/PhysRevB.75.174515
– ident: 57
  doi: 10.6084/m9.figshare.c.2861821.v6
– year: 2016
  ident: 141
  publication-title: Applied Superconductivity Conf.
– ident: 140
  doi: 10.1049/et.2014.1012
– volume: 695
  issn: 1742-6596
  year: 2016
  ident: 48
  publication-title: J. Phys.: Conf. Ser.
– year: 2014
  ident: 67
  publication-title: Int. Workshop on Coated Conductors for Applications
– start-page: 22
  year: 2015
  ident: 30
  publication-title: IEEE EPEC
– ident: 88
  doi: 10.2514/3.62570
– volume: 8
  start-page: 529
  year: 1962
  ident: 79
  publication-title: Adv. Cryo. Eng.
– ident: 52
  doi: 10.1109/TASC.2005.849617
– ident: 119
  doi: 10.1109/TASC.2010.2100341
– volume: 234
  start-page: 1
  issn: 1742-6596
  year: 2010
  ident: 25
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/234/3/032008
– ident: 22
  doi: 10.1109/TIA.2014.2352257
– volume: 27
  issn: 0953-2048
  year: 2014
  ident: 43
  publication-title: Supercond. Sci. Technol.
  doi: 10.1088/0953-2048/27/6/065008
– ident: 111
  doi: 10.1142/9925
– volume: 234
  issn: 1742-6596
  year: 2010
  ident: 106
  publication-title: J. Phys.: Conf. Ser.
  doi: 10.1088/1742-6596/234/3/032060
– ident: 42
  doi: 10.1016/S0964-1807(98)00106-9
– volume: 25
  issn: 0953-2048
  year: 2012
  ident: 65
  publication-title: Supercond. Sci. Technol.
  doi: 10.1088/0953-2048/25/7/075014
– ident: 112
  doi: 10.1109/TASC.2014.2381000
– ident: 29
  doi: 10.1109/TASC.2014.2375872
– ident: 33
– year: 2013
  ident: 83
  publication-title: US Patent
– year: 2007
  ident: 101
  publication-title: ASNE Day Symp.
– ident: 15
  doi: 10.1109/TASC.2013.2291275
– ident: 32
  doi: 10.1109/TASC.2015.2389716
– ident: 143
– ident: 20
  doi: 10.1109/TASC.2007.899996
– ident: 68
– ident: 102
  doi: 10.1109/TASC.2009.2017758
– year: 2016
  ident: 142
– volume: 29
  issn: 0953-2048
  year: 2016
  ident: 148
  publication-title: Supercond. Sci. Technol.
  doi: 10.1088/0953-2048/29/12/125004
– ident: 26
  doi: 10.1109/PES.2007.386069
– year: 2011
  ident: 129
  publication-title: 100 years of Superconductivity
  doi: 10.1201/b11312
– ident: 37
  doi: 10.1038/nature01350
– ident: 35
  doi: 10.1109/TASC.2013.2239471
– volume: 28
  issn: 0953-2048
  year: 2015
  ident: 131
  publication-title: Supercond. Sci. Technol.
  doi: 10.1088/0953-2048/28/12/124001
– ident: 132
– ident: 27
  doi: 10.1109/TASC.2010.2100341
– ident: 45
  doi: 10.1109/TASC.2014.2366722
– volume: 12
  year: 2010
  ident: 53
  publication-title: Supercond. Sci. Technol.
– ident: 125
  doi: 10.1109/TASC.2010.2092745
– ident: 69
  doi: 10.1016/S0011-2275(02)00143-1
– volume: 49
  start-page: 710
  year: 2004
  ident: 70
  publication-title: Adv. in Cryo. Eng., Trans. of the Cryogenic Engineering Conf.
– ident: 92
  doi: 10.1109/77.783517
– volume: 29
  issn: 0953-2048
  year: 2016
  ident: 49
  publication-title: Supercond. Sci. Technol.
– volume: 29
  issn: 0953-2048
  year: 2016
  ident: 108
  publication-title: Supercond. Sci. Technol.
  doi: 10.1088/0953-2048/29/3/034009
– year: 1977
  ident: 9
– year: 2004
  ident: 80
– ident: 144
  doi: 10.1016/j.phpro.2012.06.037
– year: 2011
  ident: 1
  publication-title: Proc. 20th Int. Society for Airbreathing Engines
– ident: 6
– ident: 115
  doi: 10.1109/TASC.2016.2519409
– volume: 104
  start-page: 1475
  issn: 0018-9510
  year: 1985
  ident: 86
  publication-title: IEEE Trans. Power Appar. Syst.
– ident: 93
  doi: 10.1109/PESW.2002.985030
SSID ssj0011832
Score 2.6400952
SecondaryResourceType review_article
Snippet Superconducting technology applications in electric machines have long been pursued due to their significant advantages of higher efficiency and power density...
SourceID unpaywall
crossref
iop
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 123002
SubjectTerms electric propulsion
generators
high power density
motors
superconducting machines
SummonAdditionalLinks – databaseName: Institute of Physics (IOP) - journals
  dbid: IOP
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB_aitQ--HG2eFplEX1QyN0lu0k2-FSKpfigPljogxhmP_LSay5cEqT-9c4kudiKVBGSsITZbDL7MbOZ3_4W4JUJI2uSxAVKLZAuaAJjkbq7TXVsvA6969g-PyanZ-rDeXy-Be_GtTCrahj6Z5TsiYJ7FQ6AOD0PZRIG5HXrOaKW0m_DHanJMebVe58-jyEEbqs90Z4MmJ12iFH-6Qk3bNI2lbsHu21Z4dV3XC6vmZuTB_B186I9yuRi1jZmZn_8xuH4n1_yEO4Pbqg46kUfwZYvJ7B7vNn9bQJ714gKJ3C3A4ra-jF8Y2CIqHhvNeEY_N5cibqt_Jrm1UwdS-JiveL4PiUuO6SmrwP3C5okeAlTWwssnWjG__qUB90lVvtwdvL-y_FpMOzREFilF02QmljaxCfWeMyQvDsmsHM-U0VMQ7oiC1ygS5VyC0vOlrVh5FzGFDEZ0h0ZyQPYKVelfwIikqnNYkNnWKhCorYpTZ-Z3sdiguliCvNNLeV2IDDnfTSWeRdI1zpnfeasz7zX5xTejDmqnrzjFtnXVE350IPrW-Re3pCr27rJJQlHdEiyL3nliim8HdvPX0t--o8lP4N7EfsUjEFMD2GnWbf-OXlEjXnRtfyfPC4D5A
  priority: 102
  providerName: IOP Publishing
Title High power density superconducting rotating machines-development status and technology roadmap
URI https://iopscience.iop.org/article/10.1088/1361-6668/aa833e
https://doi.org/10.1088/1361-6668/aa833e
UnpaywallVersion publishedVersion
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIOP
  databaseName: Institute of Physics (IOP) - journals
  customDbUrl:
  eissn: 1361-6668
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011832
  issn: 1361-6668
  databaseCode: IOP
  dateStart: 19880601
  isFulltext: true
  titleUrlDefault: https://iopscience.iop.org/
  providerName: IOP Publishing
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB6RVKj0wCOASCnVCsEBJLexd_06VlWrwqHtgYhyMrMPSxWpY8W2UDnxI_iF_JLO2G5oECog2SvL-ta29uGZ3Zn5BuCV9gOjo8h6Sk2QCtSeNkjT3cRJqF3iO9uyfR5HR1P1_iw86_c7OBZmxX5PizNfRr5HKnayi5hI6QawFoWkdQ9hbXp8uvepo9KTHvPPdiFWHby3SP7pESsSaHA-LzdgvSlKvPyKs9kN4XL4oGM6qlpOQvYp-bLT1HrHfPuNsfFfvvsh3O81TLHXDYlHcMcVI1jfv07sNoKNGxyEI7jb-oCa6jF8Zp8PUXLaNGHZr72-FFVTugUtmZkVluBiMWfTPV1ctE6Yrvr5_Yf95XckOD6pqQQWVtTLTXuqhfYCyycwPTz4sH_k9QkYPKOSSe3FOpQmcpHRDlMk1Y3Z6axLVR7S_1qReM3RxkrZiSFNyhg_sDZl_pcU6Y4M5FMYFvPCPQMRyNikoabTz1UuMTExrY2Zu8dghPFkDLvXnZKZnp2ck2TMstZKniQZt2jGLZp1LTqGN8saZcfMcQv2NfVz1k_P6hbcyxVc1VR1Jgkc0CFJeGSlzcfwdjlc_vrmzf8BP4d7AWsN7GUYb8GwXjTuBek8td6GwbuTUypP5MftfuhfAbEp-zw
linkProvider Unpaywall
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB71IWh7KLBQdaGAheAAUnY3sZM4R1RYlYdKD1TqCdevXNhmo02iqvx6ZpLs0iJUkJCSyIrGcTJ-zDj-_A3ASxNG1iSJC4SYaLxoExirsbvbVMbGy9C7lu3zODk6FR_P4rM-zmm7F2Ze9kP_CJMdUXCnwh4QJ8chT8IAvW451lpy7sely9dhs-UpoR18X05WywjUXjuyPR4QQ22_Tvmnp9ywS-tY9g5sNUWpry71bHbN5EzvwfnyZTukyfdRU5uR_fEbj-N_fM192O3dUfa2E38Aa74YwNbhMgrcAHauERYO4E4LGLXVQ_hGABFWUow15ggEX1-xqin9AufXRCGL4mwxp3V-TFy0iE1fBe4XRInRVqamYrpwrF7938c82l3o8hGcTt9_PTwK-lgNgRVyUgepiblNfGKN15lGL4-I7JzPRB7j0C7QEufapUK4iUWny9owci4jqphM4x0e8T3YKOaF3wcW8dRmscEzzEXOtbQpTqOJ5sfqRKeTIYyXNaVsT2RO8TRmql1Ql1KRThXpVHU6HcLrVY6yI_G4RfYVVpXqe3J1i9yLG3JVU9WKo3CEB0c7o7Aih_Bm1Yb-WvLjfyz5Odw9eTdVnz8cf3oC2xG5GQRLTA9go140_ik6SbV51naEn-ykCUU
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS9xAFD7oSrE-1HZr6Votg7QPLUQ3mcntUaQifZA-uGCf0jOXgLhmwyah2Kf-iP7C_hLPSeLqlmIrJCGELxfmkvPNnDPfAXin_cDoKLKeUmOkA2pPG6TubuIk1C7xnW3VPk-jk4n6fB6e9_MdvBZmyX9PgzNfRr5HFDs5QEykdKuwFoXEugewNjn9cvi1k9KTHuvPdkusOnjvkfzbI5Ys0OrFrNyA9aYo8fo7Tqf3jMvxZqd0VLWahBxTcrnf1Hrf_PhDsfF_vvs5POsZpjjsmsQLWHHFENaPbhO7DWHjngbhEJ60MaCmegnfOOZDlJw2TViOa6-vRdWUbk5DZlaFJbiYz9h1TydXbRCmq37__GXv4o4Er09qKoGFFfVi0p7uQnuF5RZMjj-dHZ14fQIGz6hkXHuxDqWJXGS0wxSJurE6nXWpykP6XysyrznaWCk7NsSkjPEDa1PWf0mRrshAvoJBMSvcaxCBjE0aatr9XOUSExPT2Ji1ewxGGI9HcHBbKZnp1ck5ScY0a73kSZJxiWZcollXoiP4sLij7JQ5HsC-p3rO-u5ZPYDbW8JVTVVnksABbZKMR1bafAQfF83ln2_efgz4DTwNmDVwlGG8A4N63rhd4jy1fts39xv6yPk5
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High+power+density+superconducting+rotating+machines%E2%80%94development+status+and+technology+roadmap&rft.jtitle=Superconductor+science+%26+technology&rft.au=Haran%2C+Kiruba+S&rft.au=Kalsi%2C+Swarn&rft.au=Arndt%2C+Tabea&rft.au=Karmaker%2C+Haran&rft.date=2017-11-17&rft.issn=0953-2048&rft.eissn=1361-6668&rft.volume=30&rft.issue=12&rft.spage=123002&rft_id=info:doi/10.1088%2F1361-6668%2Faa833e&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1361_6668_aa833e
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0953-2048&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0953-2048&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0953-2048&client=summon