High power density superconducting rotating machines-development status and technology roadmap
Superconducting technology applications in electric machines have long been pursued due to their significant advantages of higher efficiency and power density over conventional technology. However, in spite of many successful technology demonstrations, commercial adoption has been slow, presumably b...
Saved in:
| Published in | Superconductor science & technology Vol. 30; no. 12; pp. 123002 - 123042 |
|---|---|
| Main Authors | , , , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
IOP Publishing
17.11.2017
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0953-2048 1361-6668 1361-6668 |
| DOI | 10.1088/1361-6668/aa833e |
Cover
| Abstract | Superconducting technology applications in electric machines have long been pursued due to their significant advantages of higher efficiency and power density over conventional technology. However, in spite of many successful technology demonstrations, commercial adoption has been slow, presumably because the threshold for value versus cost and technology risk has not yet been crossed. One likely path for disruptive superconducting technology in commercial products could be in applications where its advantages become key enablers for systems which are not practical with conventional technology. To help systems engineers assess the viability of such future solutions, we present a technology roadmap for superconducting machines. The timeline considered was ten years to attain a Technology Readiness Level of 6+, with systems demonstrated in a relevant environment. Future projections, by definition, are based on the judgment of specialists, and can be subjective. Attempts have been made to obtain input from a broad set of organizations for an inclusive opinion. This document was generated through a series of teleconferences and in-person meetings, including meetings at the 2015 IEEE PES General meeting in Denver, CO, the 2015 ECCE in Montreal, Canada, and a final workshop in April 2016 at the University of Illinois, Urbana-Champaign that brought together a broad group of technical experts spanning the industry, government and academia. |
|---|---|
| AbstractList | Superconducting technology applications in electric machines have long been pursued due to their significant advantages of higher efficiency and power density over conventional technology. However, in spite of many successful technology demonstrations, commercial adoption has been slow, presumably because the threshold for value versus cost and technology risk has not yet been crossed. One likely path for disruptive superconducting technology in commercial products could be in applications where its advantages become key enablers for systems which are not practical with conventional technology. To help systems engineers assess the viability of such future solutions, we present a technology roadmap for superconducting machines. The timeline considered was ten years to attain a Technology Readiness Level of 6+, with systems demonstrated in a relevant environment. Future projections, by definition, are based on the judgment of specialists, and can be subjective. Attempts have been made to obtain input from a broad set of organizations for an inclusive opinion. This document was generated through a series of teleconferences and in-person meetings, including meetings at the 2015 IEEE PES General meeting in Denver, CO, the 2015 ECCE in Montreal, Canada, and a final workshop in April 2016 at the University of Illinois, Urbana-Champaign that brought together a broad group of technical experts spanning the industry, government and academia. |
| Author | Buckley, Bob Masson, Philippe Bray, James W Badcock, Rod Haugan, Timothy Izumi, Mitsuru Karmaker, Haran Stautner, Ernst Wolfgang Kalsi, Swarn Loder, David Haran, Kiruba S Arndt, Tabea |
| Author_xml | – sequence: 1 givenname: Kiruba S surname: Haran fullname: Haran, Kiruba S email: kharan@illinois.edu organization: University of Illinois at Urbana-Champaign , 306 N. Wright Street, Urbana, IL 61801, United States of America – sequence: 2 givenname: Swarn surname: Kalsi fullname: Kalsi, Swarn organization: Kalsi Green Power Systems, 46 Renfield Dr, Princeton, NJ 08540, United States of America – sequence: 3 givenname: Tabea surname: Arndt fullname: Arndt, Tabea organization: Siemens Corporate Technology, Guenther-Scharowsky-Str. 1, D-91058 Erlangen, Germany – sequence: 4 givenname: Haran surname: Karmaker fullname: Karmaker, Haran organization: TECO-Westinghouse Motor Company, Round Rock, TX 78681, United States of America – sequence: 5 givenname: Rod orcidid: 0000-0003-0219-9570 surname: Badcock fullname: Badcock, Rod organization: Victoria University of Wellington , 69 Gracefield Road, Lower Hutt 5010, New Zealand – sequence: 6 givenname: Bob surname: Buckley fullname: Buckley, Bob organization: Victoria University of Wellington , 69 Gracefield Road, Lower Hutt 5010, New Zealand – sequence: 7 givenname: Timothy surname: Haugan fullname: Haugan, Timothy organization: The Air Force Research Laboratory, Aerospace Systems Directorate, 1950 Fifth St. Bldg 18, Wright-Patterson AFB, OH 45433, United States of America – sequence: 8 givenname: Mitsuru surname: Izumi fullname: Izumi, Mitsuru organization: Tokyo University of Marine Science and Technology , 2-1-6, Etchu-jima, Koto-ku, Tokyo 135-8533, Japan – sequence: 9 givenname: David surname: Loder fullname: Loder, David organization: Rolls-Royce North American Technologies, Inc.-Liberty Works, Indianapolis, IN, United States of America – sequence: 10 givenname: James W surname: Bray fullname: Bray, James W organization: General Electric-Global Research Center, One Research Circle, Niskayuna, NY 12309, United States of America – sequence: 11 givenname: Philippe surname: Masson fullname: Masson, Philippe organization: University of Houston , Department of Mechanical Engineering and Texas Center for Superconductivity, W204 Engineering Building 1, Houston,TX 77204, United States of America – sequence: 12 givenname: Ernst Wolfgang surname: Stautner fullname: Stautner, Ernst Wolfgang organization: General Electric-Global Research Center, One Research Circle, Niskayuna, NY 12309, United States of America |
| BookMark | eNqNkFFLwzAQgINMcJu--9hXwbqkabP2UYY6YeCLvhpuyXXraJOStI7-e1srPogM4SDH5b675JuRibEGCblm9I7RNF0wLlgohEgXACnneEamP6UJmdIs4WFE4_SCzLw_UMpYyqMpeV8Xu31Q2yO6QKPxRdMFvq3RKWt0q5rC7AJnG_hKKlD7wqAPNX5gaesKTRP4_rL1ARgdNKj2xpZ21_UM6ArqS3KeQ-nx6vuck7fHh9fVOty8PD2v7jehilPahMttwpVAobYIGcRMiP69GrM4TxBUjKhz0Ms41lRFCVWKRVpnSRanGfQVHvE5YePc1tTQHaEsZe2KClwnGZWDIDnYkIMNOQrqGTEyylnvHeZSFcNHrWkcFOUpkP4C_7HrdkQKW8uDbZ3pbZxqv_mj3be-kbxnoj44pZGsdc4_AZOam08 |
| CODEN | SUSTEF |
| CitedBy_id | crossref_primary_10_1088_1361_6668_acb856 crossref_primary_10_1109_TASC_2020_2974827 crossref_primary_10_1109_TASC_2024_3385737 crossref_primary_10_1109_TTE_2022_3174362 crossref_primary_10_1109_TIE_2023_3306416 crossref_primary_10_1038_s44287_024_00112_y crossref_primary_10_1063_5_0248745 crossref_primary_10_1021_acsami_0c18014 crossref_primary_10_17816_transsyst660871 crossref_primary_10_1016_j_physc_2019_03_017 crossref_primary_10_3390_app11062741 crossref_primary_10_3390_en16197015 crossref_primary_10_1088_1361_6668_ac56ff crossref_primary_10_1109_TASC_2020_2971436 crossref_primary_10_1142_S0217979223502442 crossref_primary_10_1088_2399_6528_ab4437 crossref_primary_10_1109_TASC_2024_3354670 crossref_primary_10_1134_S1810232821040019 crossref_primary_10_1088_1361_6668_abd5f2 crossref_primary_10_1088_1742_6596_1559_1_012137 crossref_primary_10_1063_5_0088076 crossref_primary_10_1088_1361_6668_ad9b54 crossref_primary_10_1016_j_cryogenics_2020_103171 crossref_primary_10_1088_2631_8695_abfd0e crossref_primary_10_1109_TASC_2018_2821718 crossref_primary_10_3390_condmat8040094 crossref_primary_10_1109_TASC_2019_2963396 crossref_primary_10_1088_1361_6668_ad7644 crossref_primary_10_3390_ma14154295 crossref_primary_10_1109_TASC_2021_3135487 crossref_primary_10_1109_MELE_2020_2985482 crossref_primary_10_1109_TASC_2021_3113574 crossref_primary_10_1038_s41598_022_20625_6 crossref_primary_10_1016_j_physc_2024_1354552 crossref_primary_10_1088_1361_6668_ab6022 crossref_primary_10_1109_TASC_2019_2902427 crossref_primary_10_1109_TASC_2023_3264201 crossref_primary_10_1109_TASC_2024_3524485 crossref_primary_10_1088_1361_6668_ad4a34 crossref_primary_10_1109_TASC_2021_3104983 crossref_primary_10_1088_1361_6668_ab3f50 crossref_primary_10_1109_TASC_2023_3248536 crossref_primary_10_1109_TEC_2022_3183939 crossref_primary_10_1109_TASC_2020_2980844 crossref_primary_10_1109_TASC_2020_2982903 crossref_primary_10_1109_MELE_2022_3165952 crossref_primary_10_1109_TASC_2023_3260762 crossref_primary_10_1007_s42835_021_00708_6 crossref_primary_10_1109_TASC_2020_2967286 crossref_primary_10_1088_1402_4896_acc9e9 crossref_primary_10_1134_S1810232823020017 crossref_primary_10_1038_s42254_023_00663_3 crossref_primary_10_1109_TASC_2022_3193782 crossref_primary_10_1088_1361_6668_abe4b6 crossref_primary_10_3390_en14185658 crossref_primary_10_1088_1361_6668_ac80d8 crossref_primary_10_1109_TASC_2023_3248545 crossref_primary_10_1063_1_5134925 crossref_primary_10_1109_TASC_2020_3037057 crossref_primary_10_1109_TASC_2023_3264470 crossref_primary_10_1109_TTE_2021_3050269 crossref_primary_10_1109_TASC_2022_3147427 crossref_primary_10_1109_TASC_2019_2902692 crossref_primary_10_1109_TASC_2021_3089111 crossref_primary_10_1109_TASC_2023_3245039 crossref_primary_10_1109_TASC_2024_3520099 crossref_primary_10_1051_epjap_2020200027 crossref_primary_10_1088_1361_6668_ad4a2f crossref_primary_10_1109_MELE_2022_3165721 crossref_primary_10_1109_TASC_2025_3527951 crossref_primary_10_3390_en17174366 crossref_primary_10_1088_1361_6668_adaaa7 crossref_primary_10_3390_en12010086 crossref_primary_10_3390_aerospace7040044 crossref_primary_10_1038_s41598_022_10728_5 crossref_primary_10_1088_1757_899X_581_1_012012 crossref_primary_10_1109_TASC_2021_3064526 crossref_primary_10_1109_TASC_2020_2987015 crossref_primary_10_1109_TASC_2023_3267055 crossref_primary_10_1109_TASC_2023_3296277 crossref_primary_10_1088_1757_899X_1302_1_012017 crossref_primary_10_1109_TASC_2023_3268142 crossref_primary_10_1007_s12206_021_0913_5 crossref_primary_10_1038_s41598_023_45770_4 crossref_primary_10_1109_TASC_2018_2801323 crossref_primary_10_1109_TASC_2021_3054721 crossref_primary_10_1109_TASC_2023_3265436 crossref_primary_10_1109_TASC_2019_2908548 crossref_primary_10_1109_TEC_2021_3098966 crossref_primary_10_1109_TASC_2018_2815712 crossref_primary_10_1088_1361_6668_ac3b62 crossref_primary_10_1063_5_0147920 crossref_primary_10_1016_j_ceramint_2020_06_188 crossref_primary_10_1109_TASC_2025_3540783 crossref_primary_10_1038_s43246_022_00266_y crossref_primary_10_1088_1361_6668_ad7173 crossref_primary_10_1109_JLT_2023_3294468 crossref_primary_10_1109_TASC_2019_2906159 crossref_primary_10_1109_TTE_2024_3446597 crossref_primary_10_1109_TASC_2021_3128347 crossref_primary_10_1109_TASC_2022_3143088 crossref_primary_10_35848_1347_4065_acb38f crossref_primary_10_1088_1361_6668_ac19f4 crossref_primary_10_1109_TASC_2021_3070565 crossref_primary_10_1109_TMAG_2022_3150786 crossref_primary_10_1016_j_egyr_2022_11_173 crossref_primary_10_1109_TASC_2024_3356427 crossref_primary_10_1088_1361_6668_ac6a52 crossref_primary_10_1109_TASC_2017_2754270 crossref_primary_10_1051_epjap_2020200031 crossref_primary_10_1109_TASC_2024_3431232 crossref_primary_10_1088_1361_6668_acbb34 crossref_primary_10_1109_TASC_2020_3020025 crossref_primary_10_1109_TASC_2021_3133827 crossref_primary_10_1016_j_ijthermalsci_2019_04_030 crossref_primary_10_1109_TASC_2020_2992588 crossref_primary_10_1109_TASC_2022_3166751 crossref_primary_10_3390_su15031806 crossref_primary_10_1109_TASC_2024_3355349 crossref_primary_10_1007_s10854_022_08009_y crossref_primary_10_1109_TASC_2019_2917150 crossref_primary_10_1063_1_5038040 crossref_primary_10_1109_TASC_2024_3356436 crossref_primary_10_1007_s10948_022_06154_3 crossref_primary_10_1109_TASC_2022_3160685 crossref_primary_10_1088_1361_6668_ab695a crossref_primary_10_1109_TASC_2023_3280710 crossref_primary_10_1109_TPEL_2020_2989329 crossref_primary_10_1109_TASC_2020_2971453 crossref_primary_10_1088_1361_6668_ac7ae2 crossref_primary_10_1063_5_0219918 crossref_primary_10_1016_j_cryogenics_2020_103070 crossref_primary_10_1109_TASC_2024_3522074 crossref_primary_10_1109_TASC_2023_3316192 crossref_primary_10_1109_TASC_2024_3360940 crossref_primary_10_1088_1757_899X_756_1_012029 crossref_primary_10_1109_TASC_2023_3345289 crossref_primary_10_1109_TIA_2024_3397784 crossref_primary_10_1088_1361_6668_aad7ce crossref_primary_10_1109_TASC_2024_3352521 crossref_primary_10_3390_aerospace11040317 crossref_primary_10_1016_j_physc_2023_1354395 crossref_primary_10_1109_TASC_2023_3345291 crossref_primary_10_1109_TASC_2021_3055178 crossref_primary_10_1088_1361_6668_ace5e7 crossref_primary_10_1108_AEAT_07_2022_0185 crossref_primary_10_1109_TASC_2022_3228704 crossref_primary_10_1109_TASC_2024_3378210 crossref_primary_10_1007_s11431_024_2773_1 crossref_primary_10_1109_TTE_2022_3194027 crossref_primary_10_1109_TASC_2025_3537948 crossref_primary_10_1109_TASC_2022_3145290 crossref_primary_10_1088_1361_6668_aaf2f5 crossref_primary_10_1109_TASC_2020_2968950 crossref_primary_10_1007_s42835_023_01472_5 crossref_primary_10_1016_j_supcon_2025_100157 crossref_primary_10_1109_TASC_2021_3058596 crossref_primary_10_1109_TEC_2019_2927307 crossref_primary_10_1007_s10948_019_05226_1 crossref_primary_10_1109_TASC_2020_2976603 crossref_primary_10_1109_TDEI_2022_3146608 crossref_primary_10_1109_TASC_2019_2923537 crossref_primary_10_1016_j_cryogenics_2022_103573 crossref_primary_10_1109_TASC_2020_2969071 crossref_primary_10_1088_1361_6668_ac68a7 crossref_primary_10_1088_1361_6668_ac68a5 crossref_primary_10_1088_1361_6668_abb63c crossref_primary_10_1007_s42835_021_00852_z crossref_primary_10_1088_2053_1591_ab945a crossref_primary_10_1109_TASC_2023_3346352 crossref_primary_10_1109_TASC_2024_3517669 crossref_primary_10_1515_tjeng_2020_0041 crossref_primary_10_1021_acsami_2c11414 crossref_primary_10_1088_1361_6668_acf1d4 crossref_primary_10_1007_s10948_021_05946_3 crossref_primary_10_1088_1742_6596_1559_1_012082 crossref_primary_10_1109_TASC_2019_2927587 crossref_primary_10_1109_TASC_2021_3101754 crossref_primary_10_1109_TTE_2024_3409777 crossref_primary_10_1109_TASC_2024_3371960 crossref_primary_10_3390_en16165955 crossref_primary_10_1063_5_0229155 crossref_primary_10_1109_ACCESS_2021_3062278 crossref_primary_10_1109_TMAG_2021_3108632 crossref_primary_10_1088_1757_899X_1241_1_012019 crossref_primary_10_2221_jcsj_57_79 crossref_primary_10_1109_TMAG_2019_2935696 crossref_primary_10_1038_s41578_021_00290_3 crossref_primary_10_1109_TASC_2022_3196770 crossref_primary_10_1088_1361_6668_ab6fe9 crossref_primary_10_1088_1361_6668_ab87ac crossref_primary_10_1109_TASC_2020_3042829 crossref_primary_10_1088_1361_6668_abe8b3 crossref_primary_10_1088_1361_6668_acbba5 crossref_primary_10_1109_TASC_2023_3346362 crossref_primary_10_1016_j_cryogenics_2022_103466 crossref_primary_10_1016_j_paerosci_2023_100924 crossref_primary_10_1088_1361_6668_ad44e7 crossref_primary_10_1109_TASC_2025_3544568 crossref_primary_10_1109_TASC_2020_2990377 crossref_primary_10_1088_1361_6668_abceb2 crossref_primary_10_1002_adfm_202100680 crossref_primary_10_1088_1361_6668_ad8dff crossref_primary_10_1109_TASC_2021_3094425 crossref_primary_10_1088_1361_6668_abac1e crossref_primary_10_1109_TASC_2021_3056996 crossref_primary_10_1109_TASC_2025_3545412 crossref_primary_10_3103_S1068371222100054 crossref_primary_10_1088_1361_6668_ad1aeb crossref_primary_10_3390_ma14112847 crossref_primary_10_1109_TASC_2020_2982879 crossref_primary_10_1109_TASC_2023_3262213 crossref_primary_10_1109_TASC_2024_3512514 crossref_primary_10_2478_amns_2024_2564 crossref_primary_10_3390_en14216861 crossref_primary_10_1109_TASC_2022_3221157 crossref_primary_10_1088_1361_6668_ac908f crossref_primary_10_1109_JSEN_2024_3481298 crossref_primary_10_1109_TASC_2022_3188461 crossref_primary_10_1088_1361_6668_aac294 crossref_primary_10_3390_app10051564 crossref_primary_10_3390_en12234579 crossref_primary_10_3390_en11040792 crossref_primary_10_1109_TASC_2018_2810302 crossref_primary_10_1103_PhysRevApplied_14_024012 crossref_primary_10_1109_TASC_2023_3257772 crossref_primary_10_1088_1361_6668_aafeea crossref_primary_10_1109_TASC_2020_2982884 crossref_primary_10_3390_en14082234 crossref_primary_10_1088_1361_6668_abda5b crossref_primary_10_1109_JPROC_2021_3073291 crossref_primary_10_1016_j_supcon_2023_100072 crossref_primary_10_1109_ACCESS_2020_3007791 crossref_primary_10_1088_1742_6596_2776_1_012004 crossref_primary_10_1109_ACCESS_2020_3038058 crossref_primary_10_1016_j_jallcom_2022_167873 crossref_primary_10_1063_1_5138191 crossref_primary_10_3390_electronics11121901 crossref_primary_10_1080_19397038_2021_1988187 crossref_primary_10_1088_1361_6668_ad1f7c crossref_primary_10_1007_s00502_025_01312_6 crossref_primary_10_1088_1757_899X_1241_1_012048 crossref_primary_10_1016_j_jmmm_2020_167543 crossref_primary_10_1016_j_physc_2021_1353973 crossref_primary_10_1109_TASC_2022_3180309 crossref_primary_10_1109_TASC_2019_2899148 crossref_primary_10_1109_TASC_2024_3366189 crossref_primary_10_1109_TASC_2025_3540818 crossref_primary_10_1109_TASC_2019_2901891 crossref_primary_10_1016_j_supcon_2023_100063 crossref_primary_10_1038_s41560_018_0294_x crossref_primary_10_1109_ACCESS_2021_3073071 crossref_primary_10_3390_ma17184516 crossref_primary_10_1049_iet_epa_2017_0639 crossref_primary_10_1109_TASC_2023_3242629 crossref_primary_10_1109_TIA_2022_3204239 crossref_primary_10_1088_1361_6668_ab24ad crossref_primary_10_1088_1361_6668_ac0ccb crossref_primary_10_1088_1361_6668_ace3fb crossref_primary_10_1088_1361_6668_ace3fd crossref_primary_10_3390_app13074323 crossref_primary_10_1016_j_tsep_2022_101222 crossref_primary_10_1088_1742_6596_1590_1_012052 crossref_primary_10_1109_TASC_2019_2898505 crossref_primary_10_1088_1361_6668_ad36eb crossref_primary_10_1016_j_supcon_2024_100130 crossref_primary_10_1109_TASC_2025_3540723 crossref_primary_10_1007_s11051_020_05076_2 crossref_primary_10_1016_j_actaastro_2021_10_027 crossref_primary_10_1088_1361_6668_ab48d6 crossref_primary_10_1088_1361_6668_acfcdf crossref_primary_10_1088_1757_899X_1241_1_012035 crossref_primary_10_1088_1757_899X_1241_1_012034 crossref_primary_10_1109_TASC_2019_2914041 crossref_primary_10_1109_TTE_2021_3089605 crossref_primary_10_1541_ieejpes_140_162 crossref_primary_10_1088_1361_6668_aba547 crossref_primary_10_1109_TASC_2022_3145321 crossref_primary_10_1109_TASC_2021_3091082 crossref_primary_10_1007_s00502_023_01127_3 crossref_primary_10_1016_j_ijrefrig_2022_05_003 crossref_primary_10_1109_TASC_2020_3005503 crossref_primary_10_1002_jnm_3284 crossref_primary_10_1109_MIE_2022_3174332 crossref_primary_10_3390_nano11051082 crossref_primary_10_1088_1742_6596_1559_1_012030 crossref_primary_10_3390_en15103751 crossref_primary_10_1088_1361_6668_ad8315 crossref_primary_10_1109_TASC_2024_3380591 crossref_primary_10_1109_TASC_2021_3065814 crossref_primary_10_1515_tjj_2020_0041 crossref_primary_10_1109_TASC_2023_3255826 crossref_primary_10_1109_TASC_2024_3517573 crossref_primary_10_1109_TASC_2025_3542339 crossref_primary_10_1088_1742_6596_1975_1_012033 crossref_primary_10_1109_TPEL_2024_3491037 crossref_primary_10_1109_TASC_2019_2914053 crossref_primary_10_35848_1347_4065_ac38fa crossref_primary_10_1109_TASC_2024_3519072 crossref_primary_10_1088_1742_6596_1975_1_012036 crossref_primary_10_1088_1757_899X_1241_1_012040 crossref_primary_10_1109_TEC_2019_2958613 crossref_primary_10_1038_s41598_020_76221_z crossref_primary_10_1088_2399_6528_abe036 crossref_primary_10_1088_1361_6668_ab9ace crossref_primary_10_1088_1361_6668_ace385 crossref_primary_10_1088_1742_6596_1559_1_012149 crossref_primary_10_1109_TASC_2018_2815918 crossref_primary_10_2514_1_B39405 crossref_primary_10_1088_1742_6596_1559_1_012140 crossref_primary_10_1088_1742_6596_1559_1_012143 crossref_primary_10_1007_s10948_022_06404_4 crossref_primary_10_1109_TEC_2019_2960255 crossref_primary_10_3390_nano13233029 crossref_primary_10_1109_TASC_2022_3159963 crossref_primary_10_1088_1361_6668_ab9027 crossref_primary_10_1088_1742_6596_1559_1_012146 |
| Cites_doi | 10.1049/iet-est.2015.0020 10.1016/0011-2275(95)90887-L 10.1088/0953-2048/29/8/083002 10.1109/TMAG.1983.1062537 10.1088/0953-8984/21/16/164219 10.1109/TASC.2014.2384731 10.1109/TIA.2014.2352257 10.1016/j.cryogenics.2005.09.001 10.1063/1.4902139 10.1002/9780470877890 10.1063/1.4879263 10.1088/0953-2048/18/2/026 10.1088/0953-2048/26/3/035006 10.1063/1.1774763 10.1016/j.physc.2012.04.019 10.1109/TPAS.1985.319162 10.1109/IEMDC.2015.7409294 10.1109/TASC.2007.899206 10.1088/0953-2048/27/8/082001 10.1016/0921-4534(94)91249-1 10.1016/S0011-2275(97)00102-1 10.1109/JPROC.2004.833676 10.1109/IEMDC.2009.5075246 10.1109/TASC.2009.2019021 10.1088/0953-2048/19/7/S19 10.1088/1742-6596/234/3/032040 10.1109/TMAG.1983.1062508 10.1016/j.physc.2012.04.021 10.1088/1742-6596/234/3/032008 10.1016/S0921-4534(02)01069-9 10.1109/PESS.2002.1043229 10.1109/TASC.2005.849613 10.1016/j.physc.2012.01.025 10.1016/j.physc.2012.02.020 10.2514/6.2016-1027 10.1063/1.2202611 10.1109/JPROC.2015.2495134 10.1038/srep04744 10.1109/TASC.2009.2017831 10.1109/TPAS.1966.291667 10.1063/1.4795016 10.2514/6.2009-1132 10.1088/1742-6596/507/2/022005 10.1016/j.physc.2003.12.082 10.1109/ICElMach.2012.6349962 10.1109/TASC.2009.2017758 10.1016/S0011-2275(02)00027-9 10.1109/20.133665 10.1109/TASC.2014.2381000 10.2514/6.2011-225 10.1109/TASC.2009.2018156 10.1109/TASC.2014.2372873 10.1109/TASC.2016.2542270 10.1109/TASC.2007.899996 10.1088/0953-2048/29/4/044005 10.1109/TASC.2016.2543838 10.1109/TASC.2016.2519409 10.1103/PhysRevB.75.174515 10.6084/m9.figshare.c.2861821.v6 10.1049/et.2014.1012 10.2514/3.62570 10.1109/TASC.2005.849617 10.1109/TASC.2010.2100341 10.1088/0953-2048/27/6/065008 10.1142/9925 10.1088/1742-6596/234/3/032060 10.1016/S0964-1807(98)00106-9 10.1088/0953-2048/25/7/075014 10.1109/TASC.2014.2375872 10.1109/TASC.2013.2291275 10.1109/TASC.2015.2389716 10.1088/0953-2048/29/12/125004 10.1109/PES.2007.386069 10.1201/b11312 10.1038/nature01350 10.1109/TASC.2013.2239471 10.1088/0953-2048/28/12/124001 10.1109/TASC.2014.2366722 10.1109/TASC.2010.2092745 10.1016/S0011-2275(02)00143-1 10.1109/77.783517 10.1088/0953-2048/29/3/034009 10.1016/j.phpro.2012.06.037 10.1109/PESW.2002.985030 |
| ContentType | Journal Article |
| Copyright | 2017 IOP Publishing Ltd |
| Copyright_xml | – notice: 2017 IOP Publishing Ltd |
| DBID | O3W TSCCA AAYXX CITATION ADTOC UNPAY |
| DOI | 10.1088/1361-6668/aa833e |
| DatabaseName | Institute of Physics Open Access Journal Titles IOPscience (Open Access) CrossRef Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: O3W name: Institute of Physics Open Access Journal Titles url: http://iopscience.iop.org/ sourceTypes: Enrichment Source Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Chemistry Physics |
| DocumentTitleAlternate | High power density superconducting rotating machines-development status and technology roadmap |
| EISSN | 1361-6668 |
| ExternalDocumentID | 10.1088/1361-6668/aa833e 10_1088_1361_6668_aa833e sustaa833e |
| GroupedDBID | -~X .DC 123 1JI 4.4 5B3 5PX 5VS 5ZH 7.M 7.Q AAGCD AAGID AAJIO AAJKP AATNI ABCXL ABHWH ABJNI ABQJV ABVAM ACAFW ACBEA ACGFO ACGFS ACHIP AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CBCFC CEBXE CJUJL CRLBU CS3 DU5 EBS EDWGO EJD EMSAF EPQRW EQZZN HAK IHE IJHAN IOP IZVLO KOT LAP M45 N5L N9A NT- NT. O3W P2P PJBAE R4D RIN RNS RO9 ROL RPA SY9 TAE TN5 TSCCA W28 XPP XSW ZMT AAYXX ADEQX AEINN CITATION 02O 1WK 29Q 5ZI 9BW AAGCF AALHV ACARI ACWPO ADTOC AERVB AETNG AGQPQ AHSEE ARNYC BBWZM FEDTE HVGLF JCGBZ Q02 RKQ S3P T37 UNPAY ZY4 |
| ID | FETCH-LOGICAL-c480t-7b53c6e6cbea9a4166095de94f5eac4eedfad744d0c250cc12dd959489a0c2323 |
| IEDL.DBID | UNPAY |
| ISSN | 0953-2048 1361-6668 |
| IngestDate | Sun Sep 07 11:25:33 EDT 2025 Wed Oct 01 03:56:46 EDT 2025 Thu Apr 24 23:08:14 EDT 2025 Wed Aug 21 03:33:12 EDT 2024 Thu Jan 07 13:53:39 EST 2021 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Language | English |
| License | Original content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c480t-7b53c6e6cbea9a4166095de94f5eac4eedfad744d0c250cc12dd959489a0c2323 |
| Notes | SUST-102165.R2 |
| ORCID | 0000-0003-0219-9570 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1088/1361-6668/aa833e |
| PageCount | 41 |
| ParticipantIDs | crossref_citationtrail_10_1088_1361_6668_aa833e crossref_primary_10_1088_1361_6668_aa833e unpaywall_primary_10_1088_1361_6668_aa833e iop_journals_10_1088_1361_6668_aa833e |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2017-11-17 |
| PublicationDateYYYYMMDD | 2017-11-17 |
| PublicationDate_xml | – month: 11 year: 2017 text: 2017-11-17 day: 17 |
| PublicationDecade | 2010 |
| PublicationTitle | Superconductor science & technology |
| PublicationTitleAbbrev | SUST |
| PublicationTitleAlternate | Supercond. Sci. Technol |
| PublicationYear | 2017 |
| Publisher | IOP Publishing |
| Publisher_xml | – name: IOP Publishing |
| References | 88 89 Lewis C (116) 2007; 24–28 June 2007 Keim T A (86) 1985; 104 Gromoll B (70) 2004; 49 110 111 112 114 Haran K (142) 2016 115 90 Buck J (16) 2007 91 92 119 93 Karmaker H (30) 2015 94 97 Felder J L (1) 2011 10 Iwasa Y (36) 2009 98 99 Buck J (101) 2007 12 Ida T (48) 2016; 695 13 14 15 Grilli F (130) 2016; 29 17 18 19 Nick W (104) 2010; 234 Zhou D (44) 2012; 25 Jacobsen R T (77) 1997 Izumi M (127) 2014 National Academies Press (5) 2016 122 2 123 3 124 4 125 6 7 128 8 20 Matias V (85) 22 24 Fair R (117) 2012 26 van der Laan D C (131) 2015; 28 27 28 29 Fair R (25) 2010; 234 Rogalla H (129) 2011 Ida T (49) 2016; 29 Fleshler T S (59) 2014; 507 Ainslie M D (46) 2016; 29 Miki M (126) 2014 132 133 Selvamanickam V (61) 2015; 28 134 Ainslie M D (43) 2014; 27 Kalsi S S (100) 135 136 Karmaker H (121) 2015 139 Fogarty J M (143) 32 33 34 Nariki S (38) 2005; 18 35 Murphy J (141) 2016 Bradshaw D (21) 2004 37 Campbell A (147) 2017; 30 Juvé L (138) 2016 Karmaker H (120) 2012 140 General Electric Company (83) 2013 144 145 146 149 Long L J (113) 2010 42 45 Zhou D (40) 2012; 25 Arndt T (67) 2014 Arndt T (68) Westinghouse Superconducting Generator Design (87) 1977 Miki M (53) 2010; 12 Wei Yong L (107) 2013 150 Umemoto K (106) 2010; 234 151 Iwasa Y (137) 2009 Yanagisawa Y (65) 2012; 25 50 51 52 Ida T (47) 2008; 97 57 58 Jun Z (23) 2012 Appleton A D (11) Zhang Y (55) 2016; 29 Westinghouse Electric Corporation (9) 1977 Kichhannagari S (80) 2004 60 62 63 64 66 Selvamanickam V (31) 2013; 26 69 Stautner W ed Atrey M (72) 2017 Felder J (73) 2011 Fair R (109) 2010; 234 Durrell J H (39) 2014; 27 Shi Y-H (41) 2015; 28 Li Z (56) 2017; 30 Urbahn J A (95) 2004; 710 74 Fagnard J F (148) 2016; 29 75 78 Jacobs R B (79) 1962; 8 Kalsi S S ed Sato K (118) 2016 Moon H (108) 2016; 29 Neumüller H-W (96) 2006; 19 Ohtani I (54) 2006; 19 Stautner W (76) 2014; 82 102 103 105 Radebaugh R (71) 2009; 21 81 82 84 |
| References_xml | – ident: 75 doi: 10.1049/iet-est.2015.0020 – start-page: 2058 year: 2004 ident: 21 publication-title: IEEE Power Engineering Society General Meeting – ident: 82 doi: 10.1016/0011-2275(95)90887-L – volume: 29 issn: 0953-2048 year: 2016 ident: 130 publication-title: Supercond. Sci. Technol. doi: 10.1088/0953-2048/29/8/083002 – ident: 90 doi: 10.1109/TMAG.1983.1062537 – volume: 21 issn: 0953-8984 year: 2009 ident: 71 publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/21/16/164219 – year: 2014 ident: 126 publication-title: Appl. Supercond. Conf., ASC2014 – ident: 74 doi: 10.1109/TASC.2014.2384731 – ident: 122 doi: 10.1109/TIA.2014.2352257 – ident: 19 doi: 10.1016/j.cryogenics.2005.09.001 – volume: 28 issn: 0953-2048 year: 2015 ident: 41 publication-title: Supercond. Sci. Technol. – volume: 82 start-page: 1573 issn: 0094-243X year: 2014 ident: 76 publication-title: AIP Conf. Proc. – start-page: 4613 year: 2016 ident: 138 publication-title: In 52nd AIAA/SAE/ASEE Joint Propulsion Conf. – year: 2009 ident: 36 publication-title: Case Studies in Superconducting Magnets—Design and Operational Issues – ident: 58 doi: 10.1063/1.4902139 – start-page: 2011 year: 2011 ident: 73 publication-title: AIAA ISABE – ident: 13 doi: 10.1002/9780470877890 – volume: 25 issn: 0953-2048 year: 2012 ident: 44 publication-title: Supercond. Sci. Technol. – ident: 150 doi: 10.1063/1.4879263 – volume: 18 start-page: S126 issn: 0953-2048 year: 2005 ident: 38 publication-title: Supercond. Sci. Technol. doi: 10.1088/0953-2048/18/2/026 – volume: 26 issn: 0953-2048 year: 2013 ident: 31 publication-title: Supercond. Sci. Technol. doi: 10.1088/0953-2048/26/3/035006 – year: 2017 ident: 72 publication-title: Cryocoolers—Theory and Applications – volume: 710 start-page: 849 year: 2004 ident: 95 publication-title: Advances in Cryogenic Engineering: Trans. Cryogenic Engineering Conference-CEC doi: 10.1063/1.1774763 – ident: 105 doi: 10.1016/j.physc.2012.04.019 – ident: 10 doi: 10.1109/TPAS.1985.319162 – ident: 84 doi: 10.1109/IEMDC.2015.7409294 – ident: 18 doi: 10.1109/TASC.2007.899206 – volume: 27 issn: 0953-2048 year: 2014 ident: 39 publication-title: Supercond. Sci. Technol. doi: 10.1088/0953-2048/27/8/082001 – ident: 50 doi: 10.1016/0921-4534(94)91249-1 – ident: 81 doi: 10.1016/S0011-2275(97)00102-1 – ident: 134 – ident: 14 doi: 10.1109/JPROC.2004.833676 – ident: 124 doi: 10.1109/IEMDC.2009.5075246 – ident: 103 doi: 10.1109/TASC.2009.2019021 – volume: 19 start-page: S521 issn: 0953-2048 year: 2006 ident: 54 publication-title: Supercond. Sci. Technol. doi: 10.1088/0953-2048/19/7/S19 – volume: 234 start-page: 986 issn: 1742-6596 year: 2010 ident: 104 publication-title: J. Phys.: Conf. Ser. doi: 10.1088/1742-6596/234/3/032040 – ident: 89 doi: 10.1109/TMAG.1983.1062508 – ident: 64 doi: 10.1016/j.physc.2012.04.021 – year: 1977 ident: 87 – volume: 234 start-page: 1 issn: 1742-6596 year: 2010 ident: 109 publication-title: J. Phys.: Conf. Ser. doi: 10.1088/1742-6596/234/3/032008 – ident: 133 – ident: 94 doi: 10.1016/S0921-4534(02)01069-9 – year: 2012 ident: 117 – ident: 11 – ident: 12 doi: 10.1109/PESS.2002.1043229 – volume: 29 issn: 0953-2048 year: 2016 ident: 46 publication-title: Supercond. Sci. Technol. – ident: 98 doi: 10.1109/TASC.2005.849613 – ident: 66 doi: 10.1016/j.physc.2012.01.025 – year: 2013 ident: 107 publication-title: IEEE Conf. on Applied Superconductivity and Electromagnetic Devices – ident: 7 – ident: 114 doi: 10.1016/j.cryogenics.2005.09.001 – ident: 145 doi: 10.1016/j.physc.2012.02.020 – ident: 100 – ident: 4 doi: 10.2514/6.2016-1027 – volume: 25 issn: 0953-2048 year: 2012 ident: 40 publication-title: Supercond. Sci. Technol. – ident: 99 doi: 10.1063/1.2202611 – ident: 110 doi: 10.1109/JPROC.2015.2495134 – volume: 24–28 June 2007 start-page: 1 year: 2007 ident: 116 publication-title: IEEE Power Eng. Soc. Gen. Meeting – year: 2012 ident: 23 publication-title: Proc. Applied Superconductivity Conf. – year: 2010 ident: 113 publication-title: 2010 Applied Superconductivity Conf., ASC – start-page: 769 year: 2012 ident: 120 publication-title: Proc. of the Int. Conf. on Electrical Machines – volume: 30 issn: 0953-2048 year: 2017 ident: 147 publication-title: Supercond. Sci. Technol. – ident: 85 – ident: 63 doi: 10.1038/srep04744 – start-page: 22 year: 2015 ident: 121 publication-title: Proc. of the EPEC – ident: 136 doi: 10.1109/TASC.2009.2017831 – ident: 139 – volume: 30 issn: 0953-2048 year: 2017 ident: 56 publication-title: Supercond. Sci. Technol. – ident: 8 doi: 10.1109/TPAS.1966.291667 – ident: 149 doi: 10.1063/1.4795016 – year: 2009 ident: 137 publication-title: Case Studies in Superconducting Magnets: Design and Operational Issues – ident: 2 doi: 10.2514/6.2009-1132 – volume: 507 issn: 1742-6596 year: 2014 ident: 59 publication-title: J. Phys.: Conf. Ser. doi: 10.1088/1742-6596/507/2/022005 – year: 2016 ident: 5 – ident: 51 doi: 10.1016/j.physc.2003.12.082 – ident: 28 doi: 10.1109/ICElMach.2012.6349962 – ident: 17 doi: 10.1109/TASC.2009.2017758 – volume: 28 issn: 0953-2048 year: 2015 ident: 61 publication-title: Supercond. Sci. Technol. – ident: 128 doi: 10.1016/S0011-2275(02)00027-9 – ident: 91 doi: 10.1109/20.133665 – ident: 24 doi: 10.1109/TASC.2014.2381000 – ident: 3 doi: 10.2514/6.2011-225 – ident: 34 doi: 10.1109/TASC.2009.2018156 – volume: 19 start-page: 1114 issn: 0953-2048 year: 2006 ident: 96 publication-title: Supercond. Sci. Technol. – year: 2014 ident: 127 publication-title: EP 3125415 A1 – ident: 135 – ident: 78 – volume: 97 issn: 1742-6596 year: 2008 ident: 47 publication-title: J. Phys.: Conf. Ser. – year: 2016 ident: 118 publication-title: Chapter 3.19: Ship Propulsion Motor Employing Bi-2223 and MgB – ident: 151 doi: 10.1109/TASC.2014.2372873 – ident: 60 doi: 10.1109/TASC.2016.2542270 – ident: 97 doi: 10.1109/TASC.2007.899996 – year: 2007 ident: 16 publication-title: ASNE Day Symp. – volume: 29 start-page: 44005 issn: 0953-2048 year: 2016 ident: 55 publication-title: Supercond. Sci. Technol. doi: 10.1088/0953-2048/29/4/044005 – ident: 123 doi: 10.1109/TASC.2016.2543838 – ident: 62 doi: 10.1109/TASC.2016.2519409 – year: 1997 ident: 77 publication-title: The International Cryogenics Monograph Series – ident: 146 doi: 10.1103/PhysRevB.75.174515 – ident: 57 doi: 10.6084/m9.figshare.c.2861821.v6 – year: 2016 ident: 141 publication-title: Applied Superconductivity Conf. – ident: 140 doi: 10.1049/et.2014.1012 – volume: 695 issn: 1742-6596 year: 2016 ident: 48 publication-title: J. Phys.: Conf. Ser. – year: 2014 ident: 67 publication-title: Int. Workshop on Coated Conductors for Applications – start-page: 22 year: 2015 ident: 30 publication-title: IEEE EPEC – ident: 88 doi: 10.2514/3.62570 – volume: 8 start-page: 529 year: 1962 ident: 79 publication-title: Adv. Cryo. Eng. – ident: 52 doi: 10.1109/TASC.2005.849617 – ident: 119 doi: 10.1109/TASC.2010.2100341 – volume: 234 start-page: 1 issn: 1742-6596 year: 2010 ident: 25 publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/234/3/032008 – ident: 22 doi: 10.1109/TIA.2014.2352257 – volume: 27 issn: 0953-2048 year: 2014 ident: 43 publication-title: Supercond. Sci. Technol. doi: 10.1088/0953-2048/27/6/065008 – ident: 111 doi: 10.1142/9925 – volume: 234 issn: 1742-6596 year: 2010 ident: 106 publication-title: J. Phys.: Conf. Ser. doi: 10.1088/1742-6596/234/3/032060 – ident: 42 doi: 10.1016/S0964-1807(98)00106-9 – volume: 25 issn: 0953-2048 year: 2012 ident: 65 publication-title: Supercond. Sci. Technol. doi: 10.1088/0953-2048/25/7/075014 – ident: 112 doi: 10.1109/TASC.2014.2381000 – ident: 29 doi: 10.1109/TASC.2014.2375872 – ident: 33 – year: 2013 ident: 83 publication-title: US Patent – year: 2007 ident: 101 publication-title: ASNE Day Symp. – ident: 15 doi: 10.1109/TASC.2013.2291275 – ident: 32 doi: 10.1109/TASC.2015.2389716 – ident: 143 – ident: 20 doi: 10.1109/TASC.2007.899996 – ident: 68 – ident: 102 doi: 10.1109/TASC.2009.2017758 – year: 2016 ident: 142 – volume: 29 issn: 0953-2048 year: 2016 ident: 148 publication-title: Supercond. Sci. Technol. doi: 10.1088/0953-2048/29/12/125004 – ident: 26 doi: 10.1109/PES.2007.386069 – year: 2011 ident: 129 publication-title: 100 years of Superconductivity doi: 10.1201/b11312 – ident: 37 doi: 10.1038/nature01350 – ident: 35 doi: 10.1109/TASC.2013.2239471 – volume: 28 issn: 0953-2048 year: 2015 ident: 131 publication-title: Supercond. Sci. Technol. doi: 10.1088/0953-2048/28/12/124001 – ident: 132 – ident: 27 doi: 10.1109/TASC.2010.2100341 – ident: 45 doi: 10.1109/TASC.2014.2366722 – volume: 12 year: 2010 ident: 53 publication-title: Supercond. Sci. Technol. – ident: 125 doi: 10.1109/TASC.2010.2092745 – ident: 69 doi: 10.1016/S0011-2275(02)00143-1 – volume: 49 start-page: 710 year: 2004 ident: 70 publication-title: Adv. in Cryo. Eng., Trans. of the Cryogenic Engineering Conf. – ident: 92 doi: 10.1109/77.783517 – volume: 29 issn: 0953-2048 year: 2016 ident: 49 publication-title: Supercond. Sci. Technol. – volume: 29 issn: 0953-2048 year: 2016 ident: 108 publication-title: Supercond. Sci. Technol. doi: 10.1088/0953-2048/29/3/034009 – year: 1977 ident: 9 – year: 2004 ident: 80 – ident: 144 doi: 10.1016/j.phpro.2012.06.037 – year: 2011 ident: 1 publication-title: Proc. 20th Int. Society for Airbreathing Engines – ident: 6 – ident: 115 doi: 10.1109/TASC.2016.2519409 – volume: 104 start-page: 1475 issn: 0018-9510 year: 1985 ident: 86 publication-title: IEEE Trans. Power Appar. Syst. – ident: 93 doi: 10.1109/PESW.2002.985030 |
| SSID | ssj0011832 |
| Score | 2.6400952 |
| SecondaryResourceType | review_article |
| Snippet | Superconducting technology applications in electric machines have long been pursued due to their significant advantages of higher efficiency and power density... |
| SourceID | unpaywall crossref iop |
| SourceType | Open Access Repository Enrichment Source Index Database Publisher |
| StartPage | 123002 |
| SubjectTerms | electric propulsion generators high power density motors superconducting machines |
| SummonAdditionalLinks | – databaseName: Institute of Physics (IOP) - journals dbid: IOP link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB_aitQ--HG2eFplEX1QyN0lu0k2-FSKpfigPljogxhmP_LSay5cEqT-9c4kudiKVBGSsITZbDL7MbOZ3_4W4JUJI2uSxAVKLZAuaAJjkbq7TXVsvA6969g-PyanZ-rDeXy-Be_GtTCrahj6Z5TsiYJ7FQ6AOD0PZRIG5HXrOaKW0m_DHanJMebVe58-jyEEbqs90Z4MmJ12iFH-6Qk3bNI2lbsHu21Z4dV3XC6vmZuTB_B186I9yuRi1jZmZn_8xuH4n1_yEO4Pbqg46kUfwZYvJ7B7vNn9bQJ714gKJ3C3A4ra-jF8Y2CIqHhvNeEY_N5cibqt_Jrm1UwdS-JiveL4PiUuO6SmrwP3C5okeAlTWwssnWjG__qUB90lVvtwdvL-y_FpMOzREFilF02QmljaxCfWeMyQvDsmsHM-U0VMQ7oiC1ygS5VyC0vOlrVh5FzGFDEZ0h0ZyQPYKVelfwIikqnNYkNnWKhCorYpTZ-Z3sdiguliCvNNLeV2IDDnfTSWeRdI1zpnfeasz7zX5xTejDmqnrzjFtnXVE350IPrW-Re3pCr27rJJQlHdEiyL3nliim8HdvPX0t--o8lP4N7EfsUjEFMD2GnWbf-OXlEjXnRtfyfPC4D5A priority: 102 providerName: IOP Publishing |
| Title | High power density superconducting rotating machines-development status and technology roadmap |
| URI | https://iopscience.iop.org/article/10.1088/1361-6668/aa833e https://doi.org/10.1088/1361-6668/aa833e |
| UnpaywallVersion | publishedVersion |
| Volume | 30 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIOP databaseName: Institute of Physics (IOP) - journals customDbUrl: eissn: 1361-6668 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011832 issn: 1361-6668 databaseCode: IOP dateStart: 19880601 isFulltext: true titleUrlDefault: https://iopscience.iop.org/ providerName: IOP Publishing |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB6RVKj0wCOASCnVCsEBJLexd_06VlWrwqHtgYhyMrMPSxWpY8W2UDnxI_iF_JLO2G5oECog2SvL-ta29uGZ3Zn5BuCV9gOjo8h6Sk2QCtSeNkjT3cRJqF3iO9uyfR5HR1P1_iw86_c7OBZmxX5PizNfRr5HKnayi5hI6QawFoWkdQ9hbXp8uvepo9KTHvPPdiFWHby3SP7pESsSaHA-LzdgvSlKvPyKs9kN4XL4oGM6qlpOQvYp-bLT1HrHfPuNsfFfvvsh3O81TLHXDYlHcMcVI1jfv07sNoKNGxyEI7jb-oCa6jF8Zp8PUXLaNGHZr72-FFVTugUtmZkVluBiMWfTPV1ctE6Yrvr5_Yf95XckOD6pqQQWVtTLTXuqhfYCyycwPTz4sH_k9QkYPKOSSe3FOpQmcpHRDlMk1Y3Z6axLVR7S_1qReM3RxkrZiSFNyhg_sDZl_pcU6Y4M5FMYFvPCPQMRyNikoabTz1UuMTExrY2Zu8dghPFkDLvXnZKZnp2ck2TMstZKniQZt2jGLZp1LTqGN8saZcfMcQv2NfVz1k_P6hbcyxVc1VR1Jgkc0CFJeGSlzcfwdjlc_vrmzf8BP4d7AWsN7GUYb8GwXjTuBek8td6GwbuTUypP5MftfuhfAbEp-zw |
| linkProvider | Unpaywall |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB71IWh7KLBQdaGAheAAUnY3sZM4R1RYlYdKD1TqCdevXNhmo02iqvx6ZpLs0iJUkJCSyIrGcTJ-zDj-_A3ASxNG1iSJC4SYaLxoExirsbvbVMbGy9C7lu3zODk6FR_P4rM-zmm7F2Ze9kP_CJMdUXCnwh4QJ8chT8IAvW451lpy7sely9dhs-UpoR18X05WywjUXjuyPR4QQ22_Tvmnp9ywS-tY9g5sNUWpry71bHbN5EzvwfnyZTukyfdRU5uR_fEbj-N_fM192O3dUfa2E38Aa74YwNbhMgrcAHauERYO4E4LGLXVQ_hGABFWUow15ggEX1-xqin9AufXRCGL4mwxp3V-TFy0iE1fBe4XRInRVqamYrpwrF7938c82l3o8hGcTt9_PTwK-lgNgRVyUgepiblNfGKN15lGL4-I7JzPRB7j0C7QEufapUK4iUWny9owci4jqphM4x0e8T3YKOaF3wcW8dRmscEzzEXOtbQpTqOJ5sfqRKeTIYyXNaVsT2RO8TRmql1Ql1KRThXpVHU6HcLrVY6yI_G4RfYVVpXqe3J1i9yLG3JVU9WKo3CEB0c7o7Aih_Bm1Yb-WvLjfyz5Odw9eTdVnz8cf3oC2xG5GQRLTA9go140_ik6SbV51naEn-ykCUU |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS9xAFD7oSrE-1HZr6Votg7QPLUQ3mcntUaQifZA-uGCf0jOXgLhmwyah2Kf-iP7C_hLPSeLqlmIrJCGELxfmkvPNnDPfAXin_cDoKLKeUmOkA2pPG6TubuIk1C7xnW3VPk-jk4n6fB6e9_MdvBZmyX9PgzNfRr5HFDs5QEykdKuwFoXEugewNjn9cvi1k9KTHuvPdkusOnjvkfzbI5Ys0OrFrNyA9aYo8fo7Tqf3jMvxZqd0VLWahBxTcrnf1Hrf_PhDsfF_vvs5POsZpjjsmsQLWHHFENaPbhO7DWHjngbhEJ60MaCmegnfOOZDlJw2TViOa6-vRdWUbk5DZlaFJbiYz9h1TydXbRCmq37__GXv4o4Er09qKoGFFfVi0p7uQnuF5RZMjj-dHZ14fQIGz6hkXHuxDqWJXGS0wxSJurE6nXWpykP6XysyrznaWCk7NsSkjPEDa1PWf0mRrshAvoJBMSvcaxCBjE0aatr9XOUSExPT2Ji1ewxGGI9HcHBbKZnp1ck5ScY0a73kSZJxiWZcollXoiP4sLij7JQ5HsC-p3rO-u5ZPYDbW8JVTVVnksABbZKMR1bafAQfF83ln2_efgz4DTwNmDVwlGG8A4N63rhd4jy1fts39xv6yPk5 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High+power+density+superconducting+rotating+machines%E2%80%94development+status+and+technology+roadmap&rft.jtitle=Superconductor+science+%26+technology&rft.au=Haran%2C+Kiruba+S&rft.au=Kalsi%2C+Swarn&rft.au=Arndt%2C+Tabea&rft.au=Karmaker%2C+Haran&rft.date=2017-11-17&rft.issn=0953-2048&rft.eissn=1361-6668&rft.volume=30&rft.issue=12&rft.spage=123002&rft_id=info:doi/10.1088%2F1361-6668%2Faa833e&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1361_6668_aa833e |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0953-2048&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0953-2048&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0953-2048&client=summon |