Active learning for accelerated design of layered materials
Hetero-structures made from vertically stacked monolayers of transition metal dichalcogenides hold great potential for optoelectronic and thermoelectric devices. Discovery of the optimal layered material for specific applications necessitates the estimation of key material properties, such as electr...
Saved in:
| Published in | npj computational materials Vol. 4; no. 1; pp. 1 - 9 |
|---|---|
| Main Authors | , , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
London
Nature Publishing Group UK
10.12.2018
Nature Publishing Group |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2057-3960 2057-3960 |
| DOI | 10.1038/s41524-018-0129-0 |
Cover
| Abstract | Hetero-structures made from vertically stacked monolayers of transition metal dichalcogenides hold great potential for optoelectronic and thermoelectric devices. Discovery of the optimal layered material for specific applications necessitates the estimation of key material properties, such as electronic band structure and thermal transport coefficients. However, screening of material properties via brute force ab initio calculations of the entire material structure space exceeds the limits of current computing resources. Moreover, the functional dependence of material properties on the structures is often complicated, making simplistic statistical procedures for prediction difficult to employ without large amounts of data collection. Here, we present a Gaussian process regression model, which predicts material properties of an input hetero-structure, as well as an active learning model based on Bayesian optimization, which can efficiently discover the optimal hetero-structure using a minimal number of ab initio calculations. The electronic band gap, conduction/valence band dispersions, and thermoelectric performance are used as representative material properties for prediction and optimization. The Materials Project platform is used for electronic structure computation, while the BoltzTraP code is used to compute thermoelectric properties. Bayesian optimization is shown to significantly reduce the computational cost of discovering the optimal structure when compared with finding an optimal structure by building a regression model to predict material properties. The models can be used for predictions with respect to any material property and our software, including data preparation code based on the Python Materials Genomics (PyMatGen) library as well as python-based machine learning code, is available open source.
Materials design: Bayesian optimization
High accuracy predictions of materials properties can be obtained using Bayesian optimization (BO). A team led by Priya Vashishta at University of Southern California developed a Gaussian regression model capable of predicting the band gap value and thermoelectric properties of three-layered van der Waals heterostructures of transition metal dichalcogenides. A BO model further allowed identification of optimal heterostructures using a minimal number of
ab initio
calculations. BO models were computed to find either heterostructures with maximum band gap or heterostructures with a band gap value closest to 1.1 eV, relevant for optoelectronic and thermoelectric applications. BO was found to identify nearly optimal materials configurations with high probability, whilst significantly reducing the computational cost of discovering ideal structures using regression models. |
|---|---|
| AbstractList | Hetero-structures made from vertically stacked monolayers of transition metal dichalcogenides hold great potential for optoelectronic and thermoelectric devices. Discovery of the optimal layered material for specific applications necessitates the estimation of key material properties, such as electronic band structure and thermal transport coefficients. However, screening of material properties via brute force ab initio calculations of the entire material structure space exceeds the limits of current computing resources. Moreover, the functional dependence of material properties on the structures is often complicated, making simplistic statistical procedures for prediction difficult to employ without large amounts of data collection. Here, we present a Gaussian process regression model, which predicts material properties of an input hetero-structure, as well as an active learning model based on Bayesian optimization, which can efficiently discover the optimal hetero-structure using a minimal number of ab initio calculations. The electronic band gap, conduction/valence band dispersions, and thermoelectric performance are used as representative material properties for prediction and optimization. The Materials Project platform is used for electronic structure computation, while the BoltzTraP code is used to compute thermoelectric properties. Bayesian optimization is shown to significantly reduce the computational cost of discovering the optimal structure when compared with finding an optimal structure by building a regression model to predict material properties. The models can be used for predictions with respect to any material property and our software, including data preparation code based on the Python Materials Genomics (PyMatGen) library as well as python-based machine learning code, is available open source.Materials design: Bayesian optimizationHigh accuracy predictions of materials properties can be obtained using Bayesian optimization (BO). A team led by Priya Vashishta at University of Southern California developed a Gaussian regression model capable of predicting the band gap value and thermoelectric properties of three-layered van der Waals heterostructures of transition metal dichalcogenides. A BO model further allowed identification of optimal heterostructures using a minimal number of ab initio calculations. BO models were computed to find either heterostructures with maximum band gap or heterostructures with a band gap value closest to 1.1 eV, relevant for optoelectronic and thermoelectric applications. BO was found to identify nearly optimal materials configurations with high probability, whilst significantly reducing the computational cost of discovering ideal structures using regression models. Hetero-structures made from vertically stacked monolayers of transition metal dichalcogenides hold great potential for optoelectronic and thermoelectric devices. Discovery of the optimal layered material for specific applications necessitates the estimation of key material properties, such as electronic band structure and thermal transport coefficients. However, screening of material properties via brute force ab initio calculations of the entire material structure space exceeds the limits of current computing resources. Moreover, the functional dependence of material properties on the structures is often complicated, making simplistic statistical procedures for prediction difficult to employ without large amounts of data collection. Here, we present a Gaussian process regression model, which predicts material properties of an input hetero-structure, as well as an active learning model based on Bayesian optimization, which can efficiently discover the optimal hetero-structure using a minimal number of ab initio calculations. The electronic band gap, conduction/valence band dispersions, and thermoelectric performance are used as representative material properties for prediction and optimization. The Materials Project platform is used for electronic structure computation, while the BoltzTraP code is used to compute thermoelectric properties. Bayesian optimization is shown to significantly reduce the computational cost of discovering the optimal structure when compared with finding an optimal structure by building a regression model to predict material properties. The models can be used for predictions with respect to any material property and our software, including data preparation code based on the Python Materials Genomics (PyMatGen) library as well as python-based machine learning code, is available open source. Hetero-structures made from vertically stacked monolayers of transition metal dichalcogenides hold great potential for optoelectronic and thermoelectric devices. Discovery of the optimal layered material for specific applications necessitates the estimation of key material properties, such as electronic band structure and thermal transport coefficients. However, screening of material properties via brute force ab initio calculations of the entire material structure space exceeds the limits of current computing resources. Moreover, the functional dependence of material properties on the structures is often complicated, making simplistic statistical procedures for prediction difficult to employ without large amounts of data collection. Here, we present a Gaussian process regression model, which predicts material properties of an input hetero-structure, as well as an active learning model based on Bayesian optimization, which can efficiently discover the optimal hetero-structure using a minimal number of ab initio calculations. The electronic band gap, conduction/valence band dispersions, and thermoelectric performance are used as representative material properties for prediction and optimization. The Materials Project platform is used for electronic structure computation, while the BoltzTraP code is used to compute thermoelectric properties. Bayesian optimization is shown to significantly reduce the computational cost of discovering the optimal structure when compared with finding an optimal structure by building a regression model to predict material properties. The models can be used for predictions with respect to any material property and our software, including data preparation code based on the Python Materials Genomics (PyMatGen) library as well as python-based machine learning code, is available open source. Materials design: Bayesian optimization High accuracy predictions of materials properties can be obtained using Bayesian optimization (BO). A team led by Priya Vashishta at University of Southern California developed a Gaussian regression model capable of predicting the band gap value and thermoelectric properties of three-layered van der Waals heterostructures of transition metal dichalcogenides. A BO model further allowed identification of optimal heterostructures using a minimal number of ab initio calculations. BO models were computed to find either heterostructures with maximum band gap or heterostructures with a band gap value closest to 1.1 eV, relevant for optoelectronic and thermoelectric applications. BO was found to identify nearly optimal materials configurations with high probability, whilst significantly reducing the computational cost of discovering ideal structures using regression models. |
| ArticleNumber | 74 |
| Author | Sun, Jifeng Rajak, Pankaj Sha, Fei Persson, Kristin Aykol, Muratahan Singh, David J. Bassman Oftelie, Lindsay Nakano, Aiichiro Kalia, Rajiv K. Vashishta, Priya Huck, Patrick |
| Author_xml | – sequence: 1 givenname: Lindsay surname: Bassman Oftelie fullname: Bassman Oftelie, Lindsay organization: Collaboratory for Advanced Computing and Simulations, University of Southern California, Department of Physics and Astronomy, University of Southern California – sequence: 2 givenname: Pankaj orcidid: 0000-0002-6344-6056 surname: Rajak fullname: Rajak, Pankaj organization: Collaboratory for Advanced Computing and Simulations, University of Southern California, Department of Chemical Engineering and Material Science, University of Southern California – sequence: 3 givenname: Rajiv K. surname: Kalia fullname: Kalia, Rajiv K. organization: Collaboratory for Advanced Computing and Simulations, University of Southern California, Department of Physics and Astronomy, University of Southern California, Department of Chemical Engineering and Material Science, University of Southern California, Department of Computer Science, University of Southern California – sequence: 4 givenname: Aiichiro orcidid: 0000-0003-3228-3896 surname: Nakano fullname: Nakano, Aiichiro email: anakano@usc.edu organization: Collaboratory for Advanced Computing and Simulations, University of Southern California, Department of Physics and Astronomy, University of Southern California, Department of Chemical Engineering and Material Science, University of Southern California, Department of Computer Science, University of Southern California, Department of Biological Sciences, University of Southern California – sequence: 5 givenname: Fei surname: Sha fullname: Sha, Fei organization: Department of Computer Science, University of Southern California, Department of Biological Sciences, University of Southern California – sequence: 6 givenname: Jifeng surname: Sun fullname: Sun, Jifeng organization: Department of Physics and Astronomy, University of Missouri – sequence: 7 givenname: David J. orcidid: 0000-0001-7750-1485 surname: Singh fullname: Singh, David J. organization: Department of Physics and Astronomy, University of Missouri – sequence: 8 givenname: Muratahan surname: Aykol fullname: Aykol, Muratahan organization: Lawrence Berkeley National Laboratory – sequence: 9 givenname: Patrick surname: Huck fullname: Huck, Patrick organization: Lawrence Berkeley National Laboratory – sequence: 10 givenname: Kristin surname: Persson fullname: Persson, Kristin organization: Lawrence Berkeley National Laboratory – sequence: 11 givenname: Priya surname: Vashishta fullname: Vashishta, Priya organization: Collaboratory for Advanced Computing and Simulations, University of Southern California, Department of Physics and Astronomy, University of Southern California, Department of Chemical Engineering and Material Science, University of Southern California, Department of Computer Science, University of Southern California |
| BackLink | https://www.osti.gov/servlets/purl/1494091$$D View this record in Osti.gov |
| BookMark | eNqNkE1LAzEQhoMoWGt_gLdFz6uTbLKbxVMRv0DwoueQprM1ZZvUJFX6742soAgWD2HC8LzJzHNE9p13SMgJhXMKlbyInArGS6AyH9aWsEdGDERTVm0N-z_uh2QS4xIAaMsk4zAil1OT7BsWPergrFsUnQ-FNgZ7DDrhvJhjtAtX-K7o9RZD7qxyP1jdx2Ny0OWCk686Js83109Xd-XD4-391fShNFxCKhsJRpq27Zp6BnomGkopVh12QhjkNXLoqKg0RyNlg5qimc8ZgOFYMayZrMaEDe9u3Fpv33Xfq3WwKx22ioL6NKAGAyobUJ8GFOTQ6RDyMVkVjU1oXox3Dk1SlLccWpqhswFaB_-6wZjU0m-Cy8so1rCqFoLWcidFBWe84S3LVDNQJvgYA3Yq_6mT9S4Fbfudo9Jfyf-s9-UkZtYtMHzP9HfoA1e9o_g |
| CitedBy_id | crossref_primary_10_1038_s41598_021_92278_w crossref_primary_10_1016_j_engstruct_2023_117412 crossref_primary_10_1038_s41524_021_00656_9 crossref_primary_10_1016_j_mtcomm_2022_103440 crossref_primary_10_1021_acsami_3c14610 crossref_primary_10_1038_s41524_025_01531_7 crossref_primary_10_1021_acs_jpcc_0c00545 crossref_primary_10_1016_j_jallcom_2024_177403 crossref_primary_10_1021_acs_jctc_9b01297 crossref_primary_10_1088_1674_1056_ad01a4 crossref_primary_10_1039_D1SC02087K crossref_primary_10_1021_acsami_1c04583 crossref_primary_10_1038_s41524_020_00431_2 crossref_primary_10_1016_j_isci_2022_105192 crossref_primary_10_1016_j_actamat_2023_119063 crossref_primary_10_1088_2516_1083_ad7220 crossref_primary_10_1063_5_0229834 crossref_primary_10_1063_5_0012405 crossref_primary_10_1021_acsami_4c16614 crossref_primary_10_1021_acscombsci_0c00057 crossref_primary_10_1021_acscatal_9b05248 crossref_primary_10_1016_j_nanoen_2022_107218 crossref_primary_10_1016_j_commatsci_2020_110074 crossref_primary_10_1021_acs_chemmater_0c01894 crossref_primary_10_1038_s41524_022_00787_7 crossref_primary_10_1002_batt_202200309 crossref_primary_10_1080_14786435_2025_2467873 crossref_primary_10_1103_PhysRevB_105_L121201 crossref_primary_10_1002_smtd_202100987 crossref_primary_10_1039_D3TA01361H crossref_primary_10_1016_j_eng_2023_02_019 crossref_primary_10_1007_s40843_023_2800_x crossref_primary_10_1016_j_fuel_2023_129948 crossref_primary_10_1016_j_jmat_2021_11_010 crossref_primary_10_1080_27660400_2023_2261834 crossref_primary_10_3390_ma17081810 crossref_primary_10_1038_s41524_020_00417_0 crossref_primary_10_1016_j_egyai_2021_100049 crossref_primary_10_1021_acs_jcim_9b00781 crossref_primary_10_1557_mrs_2020_163 crossref_primary_10_1021_acsami_9b04933 crossref_primary_10_1039_D3SC07012C crossref_primary_10_3389_fmats_2022_861817 crossref_primary_10_1016_j_ijheatmasstransfer_2024_125296 crossref_primary_10_1021_acscatal_9b04186 crossref_primary_10_1021_acs_nanolett_9b04090 crossref_primary_10_1093_nsr_nwae411 crossref_primary_10_1021_acs_jcim_2c00515 crossref_primary_10_1146_annurev_matsci_070218_010015 crossref_primary_10_1038_s41524_020_0309_6 crossref_primary_10_1557_mrc_2019_78 crossref_primary_10_1103_PhysRevMaterials_5_013802 crossref_primary_10_1103_PhysRevB_100_014108 crossref_primary_10_1103_PhysRevB_100_085202 crossref_primary_10_1039_D3CC01570J crossref_primary_10_46670_JSST_2021_30_1_1 crossref_primary_10_1016_j_ensm_2023_103090 crossref_primary_10_1039_D0TC00985G crossref_primary_10_1039_D0SC01101K crossref_primary_10_1038_s41586_023_06735_9 crossref_primary_10_1016_j_matt_2020_06_011 crossref_primary_10_1088_1361_6595_ac6e04 crossref_primary_10_1002_inf2_12099 crossref_primary_10_1016_j_isci_2021_102781 crossref_primary_10_1088_2053_1583_ab8f62 crossref_primary_10_1088_1674_1056_abf12d crossref_primary_10_1039_D0MA00764A crossref_primary_10_3390_nano13162283 crossref_primary_10_1088_2515_7639_ab0c3d crossref_primary_10_1021_acsmaterialslett_3c01322 crossref_primary_10_1021_acs_jpcc_2c07461 crossref_primary_10_1016_j_colsurfa_2024_136057 crossref_primary_10_1016_j_drudis_2024_103985 crossref_primary_10_1139_cjc_2022_0198 crossref_primary_10_1103_PhysRevMaterials_8_055406 crossref_primary_10_1002_adts_202100411 crossref_primary_10_1021_acs_chemmater_0c00768 crossref_primary_10_1007_s00158_022_03391_x crossref_primary_10_1038_s42256_019_0098_0 crossref_primary_10_1016_j_jmat_2024_07_002 crossref_primary_10_1557_mrc_2019_95 crossref_primary_10_1039_D1NR07747C crossref_primary_10_3390_catal14060388 crossref_primary_10_1039_D4MH01464B crossref_primary_10_1021_acsami_9b14530 crossref_primary_10_1103_PhysRevMaterials_6_043802 crossref_primary_10_1021_acs_jcim_0c00630 crossref_primary_10_1021_acs_jpcc_3c05812 crossref_primary_10_1038_s41598_022_08413_8 crossref_primary_10_1021_acsami_0c17148 crossref_primary_10_1039_D2MA00746K crossref_primary_10_1016_j_mtcomm_2021_102932 crossref_primary_10_1039_D1NR03886A crossref_primary_10_1063_5_0044511 crossref_primary_10_1021_acsaem_1c01223 crossref_primary_10_1007_s11837_020_04389_w crossref_primary_10_1016_j_actamat_2024_120437 crossref_primary_10_1038_s41524_019_0221_0 crossref_primary_10_1021_acs_chemmater_1c02040 crossref_primary_10_1073_pnas_1821674116 crossref_primary_10_1038_s41524_020_0337_2 crossref_primary_10_1063_1_5093220 crossref_primary_10_1007_s00214_021_02766_5 crossref_primary_10_1016_j_jnoncrysol_2019_119643 crossref_primary_10_1039_D4DD00267A crossref_primary_10_1016_j_mtcomm_2020_101538 crossref_primary_10_1021_acs_jcim_0c01393 crossref_primary_10_1088_2515_7639_ab084b crossref_primary_10_1038_s41467_024_47070_5 crossref_primary_10_1038_s41524_021_00572_y crossref_primary_10_1093_nsr_nwad125 crossref_primary_10_1080_27660400_2022_2039573 crossref_primary_10_1016_j_solidstatesciences_2019_106096 crossref_primary_10_1063_5_0161736 crossref_primary_10_1016_j_ijheatmasstransfer_2021_121116 crossref_primary_10_1002_adfm_201906041 crossref_primary_10_1146_annurev_matsci_090319_010954 crossref_primary_10_1063_5_0076324 crossref_primary_10_1021_acsnano_3c01062 |
| Cites_doi | 10.1103/PhysRevLett.77.3865 10.1016/j.tsf.2016.08.068 10.1038/nnano.2012.193 10.1103/PhysRevB.47.12727 10.1103/PhysRevMaterials.1.065405 10.1088/1674-4926/37/5/051001 10.1021/acs.chemmater.5b04109 10.1063/1.4990503 10.1038/npjcompumats.2015.15 10.1038/srep19375 10.1103/PhysRevB.59.1758 10.1016/S0921-5107(98)00157-3 10.1103/PhysRev.140.A1133 10.1103/PhysRev.136.B864 10.1103/PhysRevB.92.014106 10.1038/nature12385 10.1021/ci00038a003 10.1039/C4CS00287C 10.1016/j.commatsci.2013.10.016 10.1103/PhysRevB.47.558 10.1038/nchem.1589 10.1115/1.3653121 10.1103/PhysRevB.93.115104 10.1063/1.1736034 10.1103/PhysRevLett.114.108001 10.1016/j.solidstatesciences.2005.10.011 10.1002/sam.10034 10.1109/JPROC.2015.2494218 10.1016/j.cpc.2006.03.007 10.1016/j.commatsci.2012.10.028 10.1021/acsnano.5b07457 10.1016/0927-0256(96)00008-0 10.1016/j.pmatsci.2015.02.002 10.1063/1.4812323 10.1021/acs.jpcc.6b05068 10.1073/pnas.1405435111 10.1016/j.commatsci.2016.12.004 10.1038/srep20952 10.1021/nl501962c 10.1016/S1369-7021(05)71123-8 10.1103/PhysRevB.50.17953 10.1038/npjcompumats.2016.28 10.1103/PhysRevB.54.11169 10.1021/acs.jpcc.7b12670 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2018. corrected publication 2022 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. The Author(s) 2018. corrected publication 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2018. corrected publication 2022 – notice: 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: The Author(s) 2018. corrected publication 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| CorporateAuthor | Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States) |
| CorporateAuthor_xml | – name: Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States) |
| DBID | C6C AAYXX CITATION 3V. 7X7 7XB 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU D1I DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. KB. LK8 M0S M7P PDBOC PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS OIOZB OTOTI ADTOC UNPAY |
| DOI | 10.1038/s41524-018-0129-0 |
| DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Technology Collection Natural Science Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database ProQuest Biological Science Collection Health & Medical Collection (Alumni) Biological Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China OSTI.GOV - Hybrid OSTI.GOV Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection Materials Science Database ProQuest Central (New) ProQuest Materials Science Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | Publicly Available Content Database CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2057-3960 |
| EndPage | 9 |
| ExternalDocumentID | 10.1038/s41524-018-0129-0 1494091 10_1038_s41524_018_0129_0 |
| GroupedDBID | 0R~ 3V. 5VS 7X7 8FE 8FG 8FH 8FI 8FJ AAJSJ ABJCF ABUWG ACGFS ACSMW ADBBV ADMLS AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS ARCSS BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU D1I EBLON EBS EJD FYUFA GROUPED_DOAJ HCIFZ HMCUK KB. KQ8 LK8 M7P M~E NAO NO~ OK1 PDBOC PIMPY PQQKQ PROAC RNT SNYQT UKHRP AASML AAYXX CITATION PUEGO 7XB 8FK AZQEC DWQXO GNUQQ K9. PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS AAADF AFGXO OIOZB OTOTI ADTOC AFFHD UNPAY |
| ID | FETCH-LOGICAL-c480t-780c8c99f76b0ab57111e3fef55ce46e40f153a4ec887ea1ecdd200c4e32e6283 |
| IEDL.DBID | BENPR |
| ISSN | 2057-3960 |
| IngestDate | Wed Oct 29 12:12:27 EDT 2025 Wed Nov 29 06:12:15 EST 2023 Tue Oct 07 06:33:03 EDT 2025 Tue Oct 07 06:41:44 EDT 2025 Thu Apr 24 23:03:34 EDT 2025 Wed Oct 01 02:23:56 EDT 2025 Fri Feb 21 02:40:23 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c480t-780c8c99f76b0ab57111e3fef55ce46e40f153a4ec887ea1ecdd200c4e32e6283 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 AC02-05CH11231 USDOE Office of Science (SC), Basic Energy Sciences (BES) |
| ORCID | 0000-0003-3228-3896 0000-0001-7750-1485 0000-0002-6344-6056 0000000263446056 0000000177501485 0000000332283896 |
| OpenAccessLink | https://www.proquest.com/docview/2723655168?pq-origsite=%requestingapplication%&accountid=15518 |
| PQID | 2154247492 |
| PQPubID | 2041924 |
| PageCount | 9 |
| ParticipantIDs | unpaywall_primary_10_1038_s41524_018_0129_0 osti_scitechconnect_1494091 proquest_journals_2723655168 proquest_journals_2154247492 crossref_citationtrail_10_1038_s41524_018_0129_0 crossref_primary_10_1038_s41524_018_0129_0 springer_journals_10_1038_s41524_018_0129_0 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2018-12-10 |
| PublicationDateYYYYMMDD | 2018-12-10 |
| PublicationDate_xml | – month: 12 year: 2018 text: 2018-12-10 day: 10 |
| PublicationDecade | 2010 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London – name: United States |
| PublicationTitle | npj computational materials |
| PublicationTitleAbbrev | npj Comput Mater |
| PublicationYear | 2018 |
| Publisher | Nature Publishing Group UK Nature Publishing Group |
| Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
| References | Xing (CR26) 2017; 1 Choi, Zhang, Choi (CR9) 2016; 10 Gu, Lu, Bao, Chen (CR15) 2006; 8 Pilania, Gubernatis, Lookman (CR16) 2017; 129 Kresse, Furthmüller (CR46) 1996; 54 Wang, Yuan, Hong, Li, Cui (CR7) 2015; 44 Mueller, Kusne, Ramprasad (CR13) 2016; 29 McDonnell, Wallace (CR2) 2016; 616 Ward, Agrawal, Choudhary, Wolverton (CR34) 2016; 2 Furchi, Pospischil, Libisch, Burgdörfer, Mueller (CR10) 2014; 14 Cubuk (CR20) 2015; 114 Cubuk, Malone, Onat, Waterland, Kaxiras (CR22) 2017; 147 Hohenberg, Kohn (CR41) 1964; 136 Geim, Grigorieva (CR6) 2013; 499 Kohn, Sham (CR42) 1965; 140 Hicks, Dresselhaus (CR25) 1993; 47 Dey (CR36) 2014; 83 Zhaochun, Ruiwu, Nianyi (CR21) 1998; 54 Kim, Pilania, Ramprasad (CR19) 2016; 120 Ong (CR40) 2013; 68 Shahriari, Swersky, Wang, Adams, de Freitas (CR30) 2016; 104 Shockley, Queisser (CR27) 1961; 32 Blöchl (CR43) 1994; 50 Pilania (CR35) 2016; 6 LeSar (CR12) 2009; 1 CR28 Bergerhoff, Hundt, Sievers, Brown (CR39) 1983; 23 Yang (CR24) 2016; 2 Kresse, Joubert (CR47) 1999; 59 Congxin, Jingbo (CR3) 2016; 37 Madsen, Singh (CR33) 2006; 175 Wang, Kalantar-Zadeh, Kis, Coleman, Strano (CR4) 2012; 7 Mannodi-Kanakkithodi, Pilania, Huan, Lookman, Ramprasad (CR17) 2016; 6 Toyao (CR37) 2018; 122 Gupta, Sakthivel, Seal (CR1) 2015; 73 Kushner (CR31) 1964; 86 Perdew, Burke, Ernzerhof (CR48) 1996; 77 Rajan (CR11) 2005; 8 Jain (CR32) 2013; 1 Kresse, Hafner (CR44) 1993; 47 Kresse, Furthmüller (CR45) 1996; 6 Snoek, Larochelle, Adams (CR29) 2012; 25 Lee, Seko, Shitara, Nakayama, Tanaka (CR14) 2016; 93 Huan, Mannodi-Kanakkithodi, Ramprasad (CR23) 2015; 92 Yanaki, Obolonchik (CR38) 1973; 9 Fang (CR8) 2014; 111 Kim, Pilania, Ramprasad (CR18) 2016; 28 Chhowalla (CR5) 2013; 5 JP Perdew (129_CR48) 1996; 77 X Congxin (129_CR3) 2016; 37 J Lee (129_CR14) 2016; 93 G Kresse (129_CR47) 1999; 59 J Snoek (129_CR29) 2012; 25 G Kresse (129_CR45) 1996; 6 HJ Kushner (129_CR31) 1964; 86 SJ McDonnell (129_CR2) 2016; 616 G Pilania (129_CR35) 2016; 6 J Choi (129_CR9) 2016; 10 K Rajan (129_CR11) 2005; 8 TD Huan (129_CR23) 2015; 92 C Kim (129_CR19) 2016; 120 H Fang (129_CR8) 2014; 111 G Xing (129_CR26) 2017; 1 L Ward (129_CR34) 2016; 2 ED Cubuk (129_CR20) 2015; 114 G Kresse (129_CR44) 1993; 47 T Mueller (129_CR13) 2016; 29 A Jain (129_CR32) 2013; 1 G Bergerhoff (129_CR39) 1983; 23 J Yang (129_CR24) 2016; 2 W Kohn (129_CR42) 1965; 140 H Wang (129_CR7) 2015; 44 Z Zhaochun (129_CR21) 1998; 54 B Shahriari (129_CR30) 2016; 104 R LeSar (129_CR12) 2009; 1 T Toyao (129_CR37) 2018; 122 G Pilania (129_CR16) 2017; 129 M Chhowalla (129_CR5) 2013; 5 P Dey (129_CR36) 2014; 83 A Yanaki (129_CR38) 1973; 9 G Kresse (129_CR46) 1996; 54 PE Blöchl (129_CR43) 1994; 50 129_CR28 ED Cubuk (129_CR22) 2017; 147 A Mannodi-Kanakkithodi (129_CR17) 2016; 6 W Shockley (129_CR27) 1961; 32 MM Furchi (129_CR10) 2014; 14 GK Madsen (129_CR33) 2006; 175 A Gupta (129_CR1) 2015; 73 C Kim (129_CR18) 2016; 28 QH Wang (129_CR4) 2012; 7 T Gu (129_CR15) 2006; 8 L Hicks (129_CR25) 1993; 47 P Hohenberg (129_CR41) 1964; 136 AK Geim (129_CR6) 2013; 499 SP Ong (129_CR40) 2013; 68 |
| References_xml | – volume: 77 start-page: 3865 year: 1996 ident: CR48 article-title: Generalized gradient approximation made simple publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 616 start-page: 482 year: 2016 end-page: 501 ident: CR2 article-title: Atomically-thin layered films for device applications based upon 2D TMDC materials publication-title: Thin Solid Films doi: 10.1016/j.tsf.2016.08.068 – volume: 7 start-page: 699 year: 2012 end-page: 712 ident: CR4 article-title: Electronics and optoelectronics of two-dimensional transition metal dichalcogenides publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2012.193 – volume: 47 start-page: 12727 year: 1993 ident: CR25 article-title: Effect of quantum-well structures on the thermoelectric figure of merit publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.47.12727 – volume: 1 start-page: 065405 year: 2017 ident: CR26 article-title: Electronic fitness function for screening semiconductors as thermoelectric materials publication-title: Phys. Rev. Mater. doi: 10.1103/PhysRevMaterials.1.065405 – volume: 37 start-page: 051001 year: 2016 ident: CR3 article-title: Recent advances in optoelectronic properties and applications of two-dimensional metal chalcogenides publication-title: J. Semicond. doi: 10.1088/1674-4926/37/5/051001 – volume: 28 start-page: 1304 year: 2016 end-page: 1311 ident: CR18 article-title: From organized high-throughput data to phenomenological theory using machine learning: the example of dielectric breakdown publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b04109 – volume: 147 start-page: 024104 year: 2017 ident: CR22 article-title: Representations in neural network based empirical potentials publication-title: J. Chem. Phys. doi: 10.1063/1.4990503 – volume: 2 start-page: 15015 year: 2016 ident: CR24 article-title: On the tuning of electrical and thermal transport in thermoelectrics: an integrated theory–experiment perspective publication-title: NPJ Comput. Mater. doi: 10.1038/npjcompumats.2015.15 – volume: 6 year: 2016 ident: CR35 article-title: Machine learning bandgaps of double perovskites publication-title: Sci. Rep. doi: 10.1038/srep19375 – volume: 59 start-page: 1758 year: 1999 ident: CR47 article-title: From ultrasoft pseudopotentials to the projector augmented-wave method publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.59.1758 – volume: 9 start-page: 1855 year: 1973 end-page: 1858 ident: CR38 article-title: Preparation of transition-metal tellurides by means of hydrogen telluride publication-title: Inorg. Mater. – volume: 54 start-page: 149 year: 1998 end-page: 152 ident: CR21 article-title: Artificial neural network prediction of the band gap and melting point of binary and ternary compound semiconductors publication-title: Mater. Sci. Eng. B doi: 10.1016/S0921-5107(98)00157-3 – volume: 140 start-page: A1133 year: 1965 ident: CR42 article-title: Self-consistent equations including exchange and correlation effects publication-title: Phys. Rev. doi: 10.1103/PhysRev.140.A1133 – volume: 136 start-page: B864 year: 1964 ident: CR41 article-title: Inhomogeneous electron gas publication-title: Phys. Rev. doi: 10.1103/PhysRev.136.B864 – volume: 92 start-page: 014106 year: 2015 ident: CR23 article-title: Accelerated materials property predictions and design using motif-based fingerprints publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.92.014106 – volume: 499 start-page: 419 year: 2013 end-page: 425 ident: CR6 article-title: Van der Waals heterostructures publication-title: Nature doi: 10.1038/nature12385 – volume: 23 start-page: 66 year: 1983 end-page: 69 ident: CR39 article-title: The inorganic crystal structure data base publication-title: J. Chem. Inf. Comp. Sci. doi: 10.1021/ci00038a003 – volume: 44 start-page: 2664 year: 2015 end-page: 2680 ident: CR7 article-title: Physical and chemical tuning of two-dimensional transition metal dichalcogenides publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00287C – volume: 83 start-page: 185 year: 2014 end-page: 195 ident: CR36 article-title: Informatics-aided bandgap engineering for solar materials publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2013.10.016 – volume: 47 start-page: 558 year: 1993 ident: CR44 article-title: Ab initio molecular dynamics for liquid metals publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.47.558 – volume: 5 start-page: 263 year: 2013 end-page: 275 ident: CR5 article-title: The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets publication-title: Nat. Chem. doi: 10.1038/nchem.1589 – volume: 86 start-page: 97 year: 1964 end-page: 106 ident: CR31 article-title: A new method of locating the maximum point of an arbitrary multipeak curve in the presence of noise publication-title: J. Basic Eng. doi: 10.1115/1.3653121 – volume: 93 start-page: 115104 year: 2016 ident: CR14 article-title: Prediction model of band gap for inorganic compounds by combination of density functional theory calculations and machine learning techniques publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.93.115104 – volume: 32 start-page: 510 year: 1961 end-page: 519 ident: CR27 article-title: Detailed balance limit of efficiency of p–n junction solar cells publication-title: J. Appl. Phys. doi: 10.1063/1.1736034 – volume: 114 start-page: 108001 year: 2015 ident: CR20 article-title: Identifying structural flow defects in disordered solids using machine-learning methods publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.114.108001 – volume: 8 start-page: 129 year: 2006 end-page: 136 ident: CR15 article-title: Using support vector regression for the prediction of the band gap and melting point of binary and ternary compound semiconductors publication-title: Solid State Sci. doi: 10.1016/j.solidstatesciences.2005.10.011 – volume: 1 start-page: 372 year: 2009 end-page: 374 ident: CR12 article-title: Materials informatics: an emerging technology for materials development publication-title: Stat. Anal. Data Min. doi: 10.1002/sam.10034 – volume: 104 start-page: 148 year: 2016 end-page: 175 ident: CR30 article-title: Taking the human out of the loop: a review of bayesian optimization publication-title: Proc. IEEE doi: 10.1109/JPROC.2015.2494218 – volume: 175 start-page: 67 year: 2006 end-page: 71 ident: CR33 article-title: BoltzTraP. A code for calculating band-structure dependent quantities publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2006.03.007 – volume: 68 start-page: 314 year: 2013 end-page: 319 ident: CR40 article-title: Python Materials Genomics (pymatgen): a robust, open-source python library for materials analysis publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2012.10.028 – volume: 10 start-page: 1671 year: 2016 end-page: 1680 ident: CR9 article-title: Modulating optoelectronic properties of two-dimensional transition metal dichalcogenide semiconductors by photoinduced charge transfer publication-title: ACS Nano doi: 10.1021/acsnano.5b07457 – volume: 6 start-page: 15 year: 1996 end-page: 50 ident: CR45 article-title: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set publication-title: Comput. Mater. Sci. doi: 10.1016/0927-0256(96)00008-0 – volume: 73 start-page: 44 year: 2015 end-page: 126 ident: CR1 article-title: Recent development in 2D materials beyond graphene publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2015.02.002 – volume: 1 start-page: 011002 year: 2013 ident: CR32 article-title: Commentary: The Materials Project: a materials genome approach to accelerating materials innovation publication-title: APL Mater. doi: 10.1063/1.4812323 – volume: 120 start-page: 14575 year: 2016 end-page: 14580 ident: CR19 article-title: Machine learning assisted predictions of intrinsic dielectric breakdown strength of ABX3 perovskites publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.6b05068 – volume: 111 start-page: 6198 year: 2014 end-page: 6202 ident: CR8 article-title: Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1405435111 – volume: 129 start-page: 156 year: 2017 end-page: 163 ident: CR16 article-title: Multi-fidelity machine learning models for accurate bandgap predictions of solids publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2016.12.004 – volume: 6 year: 2016 ident: CR17 article-title: Machine learning strategy for accelerated design of polymer dielectrics publication-title: Sci. Rep. doi: 10.1038/srep20952 – volume: 14 start-page: 4785 year: 2014 end-page: 4791 ident: CR10 article-title: Photovoltaic effect in an electrically tunable van der Waals heterojunction publication-title: Nano Lett. doi: 10.1021/nl501962c – volume: 25 start-page: 2951 year: 2012 end-page: 2959 ident: CR29 article-title: Practical Bayesian Optimization of Machine Learning Algorithms publication-title: Proc. Neural Inform. Process. Syst – volume: 8 start-page: 38 year: 2005 end-page: 45 ident: CR11 article-title: Materials informatics publication-title: Mater. Today doi: 10.1016/S1369-7021(05)71123-8 – ident: CR28 – volume: 50 start-page: 17953 year: 1994 ident: CR43 article-title: Projector augmented-wave method publication-title: Phy. Rev. B doi: 10.1103/PhysRevB.50.17953 – volume: 2 start-page: 16028 year: 2016 ident: CR34 article-title: A general-purpose machine learning framework for predicting properties of inorganic materials publication-title: NPJ Comput. Mater. doi: 10.1038/npjcompumats.2016.28 – volume: 29 start-page: 186 year: 2016 end-page: 273 ident: CR13 article-title: Machine learning in materials science: recent progress and emerging applications publication-title: Rev. Comput. Chem – volume: 54 start-page: 11169 year: 1996 ident: CR46 article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 – volume: 122 start-page: 8315 year: 2018 end-page: 8326 ident: CR37 article-title: Toward effective utilization of methane: machine learning prediction of adsorption energies on metal alloys publication-title: J. Phys. Chem. C. doi: 10.1021/acs.jpcc.7b12670 – volume: 8 start-page: 38 year: 2005 ident: 129_CR11 publication-title: Mater. Today doi: 10.1016/S1369-7021(05)71123-8 – volume: 54 start-page: 11169 year: 1996 ident: 129_CR46 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 – volume: 93 start-page: 115104 year: 2016 ident: 129_CR14 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.93.115104 – volume: 499 start-page: 419 year: 2013 ident: 129_CR6 publication-title: Nature doi: 10.1038/nature12385 – volume: 29 start-page: 186 year: 2016 ident: 129_CR13 publication-title: Rev. Comput. Chem – volume: 129 start-page: 156 year: 2017 ident: 129_CR16 publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2016.12.004 – volume: 86 start-page: 97 year: 1964 ident: 129_CR31 publication-title: J. Basic Eng. doi: 10.1115/1.3653121 – volume: 120 start-page: 14575 year: 2016 ident: 129_CR19 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.6b05068 – volume: 8 start-page: 129 year: 2006 ident: 129_CR15 publication-title: Solid State Sci. doi: 10.1016/j.solidstatesciences.2005.10.011 – volume: 136 start-page: B864 year: 1964 ident: 129_CR41 publication-title: Phys. Rev. doi: 10.1103/PhysRev.136.B864 – volume: 92 start-page: 014106 year: 2015 ident: 129_CR23 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.92.014106 – volume: 44 start-page: 2664 year: 2015 ident: 129_CR7 publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00287C – volume: 14 start-page: 4785 year: 2014 ident: 129_CR10 publication-title: Nano Lett. doi: 10.1021/nl501962c – volume: 111 start-page: 6198 year: 2014 ident: 129_CR8 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1405435111 – volume: 6 year: 2016 ident: 129_CR17 publication-title: Sci. Rep. doi: 10.1038/srep20952 – volume: 54 start-page: 149 year: 1998 ident: 129_CR21 publication-title: Mater. Sci. Eng. B doi: 10.1016/S0921-5107(98)00157-3 – volume: 37 start-page: 051001 year: 2016 ident: 129_CR3 publication-title: J. Semicond. doi: 10.1088/1674-4926/37/5/051001 – volume: 47 start-page: 12727 year: 1993 ident: 129_CR25 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.47.12727 – volume: 2 start-page: 16028 year: 2016 ident: 129_CR34 publication-title: NPJ Comput. Mater. doi: 10.1038/npjcompumats.2016.28 – volume: 5 start-page: 263 year: 2013 ident: 129_CR5 publication-title: Nat. Chem. doi: 10.1038/nchem.1589 – volume: 6 year: 2016 ident: 129_CR35 publication-title: Sci. Rep. doi: 10.1038/srep19375 – volume: 83 start-page: 185 year: 2014 ident: 129_CR36 publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2013.10.016 – volume: 1 start-page: 372 year: 2009 ident: 129_CR12 publication-title: Stat. Anal. Data Min. doi: 10.1002/sam.10034 – volume: 77 start-page: 3865 year: 1996 ident: 129_CR48 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 9 start-page: 1855 year: 1973 ident: 129_CR38 publication-title: Inorg. Mater. – volume: 47 start-page: 558 year: 1993 ident: 129_CR44 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.47.558 – volume: 68 start-page: 314 year: 2013 ident: 129_CR40 publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2012.10.028 – volume: 114 start-page: 108001 year: 2015 ident: 129_CR20 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.114.108001 – volume: 147 start-page: 024104 year: 2017 ident: 129_CR22 publication-title: J. Chem. Phys. doi: 10.1063/1.4990503 – volume: 6 start-page: 15 year: 1996 ident: 129_CR45 publication-title: Comput. Mater. Sci. doi: 10.1016/0927-0256(96)00008-0 – volume: 2 start-page: 15015 year: 2016 ident: 129_CR24 publication-title: NPJ Comput. Mater. doi: 10.1038/npjcompumats.2015.15 – volume: 32 start-page: 510 year: 1961 ident: 129_CR27 publication-title: J. Appl. Phys. doi: 10.1063/1.1736034 – volume: 1 start-page: 065405 year: 2017 ident: 129_CR26 publication-title: Phys. Rev. Mater. doi: 10.1103/PhysRevMaterials.1.065405 – volume: 50 start-page: 17953 year: 1994 ident: 129_CR43 publication-title: Phy. Rev. B doi: 10.1103/PhysRevB.50.17953 – volume: 104 start-page: 148 year: 2016 ident: 129_CR30 publication-title: Proc. IEEE doi: 10.1109/JPROC.2015.2494218 – volume: 175 start-page: 67 year: 2006 ident: 129_CR33 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2006.03.007 – volume: 140 start-page: A1133 year: 1965 ident: 129_CR42 publication-title: Phys. Rev. doi: 10.1103/PhysRev.140.A1133 – ident: 129_CR28 – volume: 7 start-page: 699 year: 2012 ident: 129_CR4 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2012.193 – volume: 73 start-page: 44 year: 2015 ident: 129_CR1 publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2015.02.002 – volume: 59 start-page: 1758 year: 1999 ident: 129_CR47 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.59.1758 – volume: 616 start-page: 482 year: 2016 ident: 129_CR2 publication-title: Thin Solid Films doi: 10.1016/j.tsf.2016.08.068 – volume: 122 start-page: 8315 year: 2018 ident: 129_CR37 publication-title: J. Phys. Chem. C. doi: 10.1021/acs.jpcc.7b12670 – volume: 25 start-page: 2951 year: 2012 ident: 129_CR29 publication-title: Proc. Neural Inform. Process. Syst – volume: 1 start-page: 011002 year: 2013 ident: 129_CR32 publication-title: APL Mater. doi: 10.1063/1.4812323 – volume: 23 start-page: 66 year: 1983 ident: 129_CR39 publication-title: J. Chem. Inf. Comp. Sci. doi: 10.1021/ci00038a003 – volume: 10 start-page: 1671 year: 2016 ident: 129_CR9 publication-title: ACS Nano doi: 10.1021/acsnano.5b07457 – volume: 28 start-page: 1304 year: 2016 ident: 129_CR18 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.5b04109 |
| SSID | ssj0001928240 |
| Score | 2.4877539 |
| Snippet | Hetero-structures made from vertically stacked monolayers of transition metal dichalcogenides hold great potential for optoelectronic and thermoelectric... |
| SourceID | unpaywall osti proquest crossref springer |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | 639/301/1034/1037 639/638/898 Active learning Bayesian analysis Chalcogenides Characterization and Evaluation of Materials Computational efficiency Computational Intelligence Computer applications Computing costs Conduction Conduction bands Data acquisition Data collection Dependence Design optimization Electronic structure Energy gap Gaussian process Heterostructures Layered materials Learning algorithms Machine learning Material properties MATERIALS SCIENCE Mathematical and Computational Engineering Mathematical and Computational Physics Mathematical Modeling and Industrial Mathematics Mathematical models Optimization Optoelectronic devices Predictions Regression analysis Regression models Source code Statistical analysis Theoretical Thermoelectricity Transition metal compounds Transport properties Valence band |
| SummonAdditionalLinks | – databaseName: HAS SpringerNature Open Access 2022 dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB6kPWgP4hNrq-TgyVLcRzabxVMRSynoRQu9hWw28VLaYluk_96Z3e0LpeI5mxAmk5lvdibfANyFWSZkmKLyou9tc3omIxMEckI7F3vai0weKL68it6A94fRsOTZprcwO_n7nLp7Ri6GKiWo6ArXw_i8KlEvZQWqnU7_rb_5pZJg_MDXuctQPvyYu-N9KhO8RTvIcp0MrcHhYjzVyy89Gm35m-4JHJdAkXWKkz2FAzs-g9oWfeA5PHZyY8XKzg8fDAEo08agJyECiIxleXkGmzg20ktqyskQnxYqdwGD7vP7U69dNkNoGy69eTuWnpEmSVwsUk-nUYxGyobOuigylgvLPYfGS3Nr0GxY7VuTZXgDDLdhYAWCiEuojCdjewVMpL4ONEItR_6bqMYj31L_eJOE2llRB28lJGVKpnBqWDFSecY6lKqQq0K5KpKr8upwv54yLWgy9n3cIMkr9PFEVGuoosfMMQhJMNj069BcHYgq79NMITDhAY95Evw-HAehoJSfrENrdYab4T07aa2P-e99X_9r7QYcBaR4foCurgmV-efC3iCAmae3peJ-A3_R41M priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BOwADb0R5yQMTqMVJHCcRU4VAFRKIgSKYLMexGajaClIh-PXc5VGeAjHHTpzzPT7rzt8B7AdZJuMgReXF2NsWdE0mThDISe1cxDUPTXFQvLiUvb44vw1vZyCs78IURfsFpWXhpuvqsKMnCjRUL0GlV_hW3hlnbhaaMkQI3oBm__Kqe0eN5BB_4HflNIMZxN_nfopBjRHa0id8OU2JLsDcZDjWL896MPgQdc6W4KZeb1ls8tCZ5GnHvH6hcvz3Dy3DYoVDWbccuAIzdrgKCx_YCdfguFv4QlY1lrhniG-ZNgYDFfFLZCwrqj_YyLGBfqGenwzhb6nR69A_O70-6bWrXgttI2Ket6OYm9gkiYtkynUaRugDbeCsC0NjhbSCO_SNWliDXslqz5osQwMzwga-lYhRNqAxHA3tJjCZetrXiOQcwQNiMg89S-3pTRJoZ2ULeC19ZSoicuqHMVBFQjyIVSkbhbJRJBvFW3AwnTIuWTh-G7xNW6oQQhAPrqGCIZPjGSfBs6zXgp16p1Vlrk8KcY_wRSQS_-fHkR9IyijGLTisleP98S8rOZzqz9_r3vrX6G2Y90l5PB8j6Q408seJ3UV8lKd7lTW8ATPfBb0 priority: 102 providerName: Unpaywall |
| Title | Active learning for accelerated design of layered materials |
| URI | https://link.springer.com/article/10.1038/s41524-018-0129-0 https://www.proquest.com/docview/2154247492 https://www.proquest.com/docview/2723655168 https://www.osti.gov/servlets/purl/1494091 https://www.nature.com/articles/s41524-018-0129-0.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 4 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2057-3960 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001928240 issn: 2057-3960 databaseCode: KQ8 dateStart: 20150101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2057-3960 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001928240 issn: 2057-3960 databaseCode: KQ8 dateStart: 20151125 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: Directory of Open Access Journals (DOAJ) customDbUrl: eissn: 2057-3960 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001928240 issn: 2057-3960 databaseCode: DOA dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2057-3960 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001928240 issn: 2057-3960 databaseCode: ADMLS dateStart: 20170101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVAQT databaseName: Springer Nature - nature.com Journals - Fully Open Access customDbUrl: eissn: 2057-3960 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001928240 issn: 2057-3960 databaseCode: NAO dateStart: 20151201 isFulltext: true titleUrlDefault: https://www.nature.com/siteindex/index.html providerName: Nature Publishing – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2057-3960 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001928240 issn: 2057-3960 databaseCode: 8FG dateStart: 20151101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: HAS SpringerNature Open Access 2022 customDbUrl: eissn: 2057-3960 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001928240 issn: 2057-3960 databaseCode: AAJSJ dateStart: 20151201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 2057-3960 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001928240 issn: 2057-3960 databaseCode: C6C dateStart: 20151201 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3da9swED_a5GHrw-i-WNYu6GFPK6ayLMsyYwwvNC2BhbItkD0JWZb6EpJsTRn973fn2G4LJX3xg2xj-e509zvd6Q7gY1JVSiclCi_a3kjSMRmdI5BTNoSMW5662lH8PlUXMzmZp_M9mLZnYSitstWJtaKuVo72yE9FJhJFUR39df0noq5RFF1tW2jYprVC9aUuMbYPfUGVsXrQ_3Y2vfxxt-uSo4shu_Bmok-vyYJRIgbldOF0-QMD1VvhQnsAPrt46QE8u1mu7e0_u1jcM0njQ3jRYElWbJn_Evb88hUc3Ksw-Bo-F7U-Y01ziCuGGJXhb6CxoRoRFavqDA62Cmxhb6lvJ0MIu5XKNzAbn_0aXURNv4TISc03Uaa50y7PQ6ZKbss0Qz3mk-BDmjovlZc8oH6z0jvULN7G3lUVLhInfSK8QpzxFnrL1dK_A6bK2AqLaCyQiadq5GnsqcW8yxMbvBoAb4lkXFNMnHpaLEwd1E602dLVIF0N0dXwAXzqXllvK2nseviIKG8QBlAtW0dJP26DfkqO_mg8gOOWIaZZctcGsYsUMpO5ePx2Jz8DOGl5eHd7x0xOOjY_Pe_3uz99BM8FSVos0PwdQ2_z98Z_QFCzKYewn80zvOrx-RD6RTH5ORk20oujIzUa1tsFODabXha__wNWV_aH |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7R5UA5IPoSWx71ob0URTi24ySqEAIKWgqsqgokbq7j2L2sdrfdRWj_HL-tM9kkgFRtT5ydhzXPbzzjGYCPsix1JgsUXvS9kaJrMlmOQE7bEFJueeKqQPGyr3vX6ttNcrME981dGCqrbGxiZajLkaMz8j2RCqkpq5MdjH9HNDWKsqvNCA1bj1Yo96sWY_XFjnM_u8MQbrJ_9hX5_UmI05Or415UTxmInMr4NEoz7jKX5yHVBbdFkqL2exl8SBLnlfaKB7QKVnmH-uht7F1Zomg55aXwGr0zfvcFLCupcgz-lo9O-t9_PJzy5BjSqDadKrO9CXlMKvygGjIkD3_iEDsjVOwnYLfNz67Cyu1wbGd3djB45AJP12Gtxq7scC5sr2DJD1_D6qOOhm_gy2FlP1k9jOIXQ0zMkGzo3KgnRcnKqmKEjQIb2BnNCWUImeda8Baun4Vy76AzHA39BjBdxFZYRH-BIAV1P09iTyPtXS5t8LoLvCGScXXzcpqhMTBVEl1mZk5Xg3Q1RFfDu_C5fWU879yx6OFNorxB2EG9cx0VGbkpxkU5xr9xF7YahphaxScGsZISKlW5-PdyK69d2G14-LC8YCe7LZv_v-_3i3_9AVZ6V5cX5uKsf74JLwVJXSzQ9W5BZ_rn1m8joJoWO7XUMvj53IryF-tDLTs |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VIAE9IJ4itIAPcKFaxWt77V0hhCpK1FKoOFApN-P12lyiJG1SVflr_Dpm9tVWQuHUs_dhzfMbz3gG4K2sKp3LEoUXfW-i6JpMXiCQ0y5Gwx3PfB0ofj_Rh6fq6ySbbMGf7i4MlVV2NrE21NXc0xn5SBghNWV18lFsyyJ-HIw_Lc4SmiBFmdZunEYjIsdhfYnh2_Lj0QHy-p0Q4y8_Px8m7YSBxKucrxKTc5_7oohGl9yVmUHNDzKGmGU-KB0Uj2gRnAoedTG4NPiqQrHyKkgRNHpm_O4duGukLKic0EzM1flOgcGM6hOpMh8tyVdSyQdVjyFh-A1XOJijSt-AuX1mdhvuX8wWbn3pptNrzm_8CB62qJXtN2L2GLbC7AlsX-tl-BQ-7NeWk7VjKH4zRMPMeY9ujbpRVKyqa0XYPLKpW9OEUIZguZH_Z3B6K3R7DoPZfBZeANNl6oRD3BcJTFDf8ywNNMzeF9LFoIfAOyJZ37Ytp-kZU1unz2VuG7papKslulo-hPf9K4umZ8emh3eI8hYBB3XN9VRe5FcYERUY-aZD2O0YYlvlXlpESUooowrx7-VeUoew1_HwannDTvZ6Nv9_3y83__oN3EP1sN-OTo534IEgoUsF-txdGKzOL8IrRFKr8nUtsgx-3baO_AWZtCrV |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BOwADb0R5yQMTqMVJHCcRU4VAFRKIgSKYLMexGajaClIh-PXc5VGeAjHHTpzzPT7rzt8B7AdZJuMgReXF2NsWdE0mThDISe1cxDUPTXFQvLiUvb44vw1vZyCs78IURfsFpWXhpuvqsKMnCjRUL0GlV_hW3hlnbhaaMkQI3oBm__Kqe0eN5BB_4HflNIMZxN_nfopBjRHa0id8OU2JLsDcZDjWL896MPgQdc6W4KZeb1ls8tCZ5GnHvH6hcvz3Dy3DYoVDWbccuAIzdrgKCx_YCdfguFv4QlY1lrhniG-ZNgYDFfFLZCwrqj_YyLGBfqGenwzhb6nR69A_O70-6bWrXgttI2Ket6OYm9gkiYtkynUaRugDbeCsC0NjhbSCO_SNWliDXslqz5osQwMzwga-lYhRNqAxHA3tJjCZetrXiOQcwQNiMg89S-3pTRJoZ2ULeC19ZSoicuqHMVBFQjyIVSkbhbJRJBvFW3AwnTIuWTh-G7xNW6oQQhAPrqGCIZPjGSfBs6zXgp16p1Vlrk8KcY_wRSQS_-fHkR9IyijGLTisleP98S8rOZzqz9_r3vrX6G2Y90l5PB8j6Q408seJ3UV8lKd7lTW8ATPfBb0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Active+learning+for+accelerated+design+of+layered+materials&rft.jtitle=npj+computational+materials&rft.au=Bassman+Oftelie%2C+Lindsay&rft.au=Rajak%2C+Pankaj&rft.au=Kalia%2C+Rajiv+K&rft.au=Nakano%2C+Aiichiro&rft.date=2018-12-10&rft.pub=Nature+Publishing+Group&rft.eissn=2057-3960&rft.volume=4&rft.issue=1&rft.spage=74&rft_id=info:doi/10.1038%2Fs41524-018-0129-0&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2057-3960&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2057-3960&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2057-3960&client=summon |