Active learning for accelerated design of layered materials

Hetero-structures made from vertically stacked monolayers of transition metal dichalcogenides hold great potential for optoelectronic and thermoelectric devices. Discovery of the optimal layered material for specific applications necessitates the estimation of key material properties, such as electr...

Full description

Saved in:
Bibliographic Details
Published innpj computational materials Vol. 4; no. 1; pp. 1 - 9
Main Authors Bassman Oftelie, Lindsay, Rajak, Pankaj, Kalia, Rajiv K., Nakano, Aiichiro, Sha, Fei, Sun, Jifeng, Singh, David J., Aykol, Muratahan, Huck, Patrick, Persson, Kristin, Vashishta, Priya
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 10.12.2018
Nature Publishing Group
Subjects
Online AccessGet full text
ISSN2057-3960
2057-3960
DOI10.1038/s41524-018-0129-0

Cover

Abstract Hetero-structures made from vertically stacked monolayers of transition metal dichalcogenides hold great potential for optoelectronic and thermoelectric devices. Discovery of the optimal layered material for specific applications necessitates the estimation of key material properties, such as electronic band structure and thermal transport coefficients. However, screening of material properties via brute force ab initio calculations of the entire material structure space exceeds the limits of current computing resources. Moreover, the functional dependence of material properties on the structures is often complicated, making simplistic statistical procedures for prediction difficult to employ without large amounts of data collection. Here, we present a Gaussian process regression model, which predicts material properties of an input hetero-structure, as well as an active learning model based on Bayesian optimization, which can efficiently discover the optimal hetero-structure using a minimal number of ab initio calculations. The electronic band gap, conduction/valence band dispersions, and thermoelectric performance are used as representative material properties for prediction and optimization. The Materials Project platform is used for electronic structure computation, while the BoltzTraP code is used to compute thermoelectric properties. Bayesian optimization is shown to significantly reduce the computational cost of discovering the optimal structure when compared with finding an optimal structure by building a regression model to predict material properties. The models can be used for predictions with respect to any material property and our software, including data preparation code based on the Python Materials Genomics (PyMatGen) library as well as python-based machine learning code, is available open source. Materials design: Bayesian optimization High accuracy predictions of materials properties can be obtained using Bayesian optimization (BO). A team led by Priya Vashishta at University of Southern California developed a Gaussian regression model capable of predicting the band gap value and thermoelectric properties of three-layered van der Waals heterostructures of transition metal dichalcogenides. A BO model further allowed identification of optimal heterostructures using a minimal number of ab initio calculations. BO models were computed to find either heterostructures with maximum band gap or heterostructures with a band gap value closest to 1.1 eV, relevant for optoelectronic and thermoelectric applications. BO was found to identify nearly optimal materials configurations with high probability, whilst significantly reducing the computational cost of discovering ideal structures using regression models.
AbstractList Hetero-structures made from vertically stacked monolayers of transition metal dichalcogenides hold great potential for optoelectronic and thermoelectric devices. Discovery of the optimal layered material for specific applications necessitates the estimation of key material properties, such as electronic band structure and thermal transport coefficients. However, screening of material properties via brute force ab initio calculations of the entire material structure space exceeds the limits of current computing resources. Moreover, the functional dependence of material properties on the structures is often complicated, making simplistic statistical procedures for prediction difficult to employ without large amounts of data collection. Here, we present a Gaussian process regression model, which predicts material properties of an input hetero-structure, as well as an active learning model based on Bayesian optimization, which can efficiently discover the optimal hetero-structure using a minimal number of ab initio calculations. The electronic band gap, conduction/valence band dispersions, and thermoelectric performance are used as representative material properties for prediction and optimization. The Materials Project platform is used for electronic structure computation, while the BoltzTraP code is used to compute thermoelectric properties. Bayesian optimization is shown to significantly reduce the computational cost of discovering the optimal structure when compared with finding an optimal structure by building a regression model to predict material properties. The models can be used for predictions with respect to any material property and our software, including data preparation code based on the Python Materials Genomics (PyMatGen) library as well as python-based machine learning code, is available open source.Materials design: Bayesian optimizationHigh accuracy predictions of materials properties can be obtained using Bayesian optimization (BO). A team led by Priya Vashishta at University of Southern California developed a Gaussian regression model capable of predicting the band gap value and thermoelectric properties of three-layered van der Waals heterostructures of transition metal dichalcogenides. A BO model further allowed identification of optimal heterostructures using a minimal number of ab initio calculations. BO models were computed to find either heterostructures with maximum band gap or heterostructures with a band gap value closest to 1.1 eV, relevant for optoelectronic and thermoelectric applications. BO was found to identify nearly optimal materials configurations with high probability, whilst significantly reducing the computational cost of discovering ideal structures using regression models.
Hetero-structures made from vertically stacked monolayers of transition metal dichalcogenides hold great potential for optoelectronic and thermoelectric devices. Discovery of the optimal layered material for specific applications necessitates the estimation of key material properties, such as electronic band structure and thermal transport coefficients. However, screening of material properties via brute force ab initio calculations of the entire material structure space exceeds the limits of current computing resources. Moreover, the functional dependence of material properties on the structures is often complicated, making simplistic statistical procedures for prediction difficult to employ without large amounts of data collection. Here, we present a Gaussian process regression model, which predicts material properties of an input hetero-structure, as well as an active learning model based on Bayesian optimization, which can efficiently discover the optimal hetero-structure using a minimal number of ab initio calculations. The electronic band gap, conduction/valence band dispersions, and thermoelectric performance are used as representative material properties for prediction and optimization. The Materials Project platform is used for electronic structure computation, while the BoltzTraP code is used to compute thermoelectric properties. Bayesian optimization is shown to significantly reduce the computational cost of discovering the optimal structure when compared with finding an optimal structure by building a regression model to predict material properties. The models can be used for predictions with respect to any material property and our software, including data preparation code based on the Python Materials Genomics (PyMatGen) library as well as python-based machine learning code, is available open source.
Hetero-structures made from vertically stacked monolayers of transition metal dichalcogenides hold great potential for optoelectronic and thermoelectric devices. Discovery of the optimal layered material for specific applications necessitates the estimation of key material properties, such as electronic band structure and thermal transport coefficients. However, screening of material properties via brute force ab initio calculations of the entire material structure space exceeds the limits of current computing resources. Moreover, the functional dependence of material properties on the structures is often complicated, making simplistic statistical procedures for prediction difficult to employ without large amounts of data collection. Here, we present a Gaussian process regression model, which predicts material properties of an input hetero-structure, as well as an active learning model based on Bayesian optimization, which can efficiently discover the optimal hetero-structure using a minimal number of ab initio calculations. The electronic band gap, conduction/valence band dispersions, and thermoelectric performance are used as representative material properties for prediction and optimization. The Materials Project platform is used for electronic structure computation, while the BoltzTraP code is used to compute thermoelectric properties. Bayesian optimization is shown to significantly reduce the computational cost of discovering the optimal structure when compared with finding an optimal structure by building a regression model to predict material properties. The models can be used for predictions with respect to any material property and our software, including data preparation code based on the Python Materials Genomics (PyMatGen) library as well as python-based machine learning code, is available open source. Materials design: Bayesian optimization High accuracy predictions of materials properties can be obtained using Bayesian optimization (BO). A team led by Priya Vashishta at University of Southern California developed a Gaussian regression model capable of predicting the band gap value and thermoelectric properties of three-layered van der Waals heterostructures of transition metal dichalcogenides. A BO model further allowed identification of optimal heterostructures using a minimal number of ab initio calculations. BO models were computed to find either heterostructures with maximum band gap or heterostructures with a band gap value closest to 1.1 eV, relevant for optoelectronic and thermoelectric applications. BO was found to identify nearly optimal materials configurations with high probability, whilst significantly reducing the computational cost of discovering ideal structures using regression models.
ArticleNumber 74
Author Sun, Jifeng
Rajak, Pankaj
Sha, Fei
Persson, Kristin
Aykol, Muratahan
Singh, David J.
Bassman Oftelie, Lindsay
Nakano, Aiichiro
Kalia, Rajiv K.
Vashishta, Priya
Huck, Patrick
Author_xml – sequence: 1
  givenname: Lindsay
  surname: Bassman Oftelie
  fullname: Bassman Oftelie, Lindsay
  organization: Collaboratory for Advanced Computing and Simulations, University of Southern California, Department of Physics and Astronomy, University of Southern California
– sequence: 2
  givenname: Pankaj
  orcidid: 0000-0002-6344-6056
  surname: Rajak
  fullname: Rajak, Pankaj
  organization: Collaboratory for Advanced Computing and Simulations, University of Southern California, Department of Chemical Engineering and Material Science, University of Southern California
– sequence: 3
  givenname: Rajiv K.
  surname: Kalia
  fullname: Kalia, Rajiv K.
  organization: Collaboratory for Advanced Computing and Simulations, University of Southern California, Department of Physics and Astronomy, University of Southern California, Department of Chemical Engineering and Material Science, University of Southern California, Department of Computer Science, University of Southern California
– sequence: 4
  givenname: Aiichiro
  orcidid: 0000-0003-3228-3896
  surname: Nakano
  fullname: Nakano, Aiichiro
  email: anakano@usc.edu
  organization: Collaboratory for Advanced Computing and Simulations, University of Southern California, Department of Physics and Astronomy, University of Southern California, Department of Chemical Engineering and Material Science, University of Southern California, Department of Computer Science, University of Southern California, Department of Biological Sciences, University of Southern California
– sequence: 5
  givenname: Fei
  surname: Sha
  fullname: Sha, Fei
  organization: Department of Computer Science, University of Southern California, Department of Biological Sciences, University of Southern California
– sequence: 6
  givenname: Jifeng
  surname: Sun
  fullname: Sun, Jifeng
  organization: Department of Physics and Astronomy, University of Missouri
– sequence: 7
  givenname: David J.
  orcidid: 0000-0001-7750-1485
  surname: Singh
  fullname: Singh, David J.
  organization: Department of Physics and Astronomy, University of Missouri
– sequence: 8
  givenname: Muratahan
  surname: Aykol
  fullname: Aykol, Muratahan
  organization: Lawrence Berkeley National Laboratory
– sequence: 9
  givenname: Patrick
  surname: Huck
  fullname: Huck, Patrick
  organization: Lawrence Berkeley National Laboratory
– sequence: 10
  givenname: Kristin
  surname: Persson
  fullname: Persson, Kristin
  organization: Lawrence Berkeley National Laboratory
– sequence: 11
  givenname: Priya
  surname: Vashishta
  fullname: Vashishta, Priya
  organization: Collaboratory for Advanced Computing and Simulations, University of Southern California, Department of Physics and Astronomy, University of Southern California, Department of Chemical Engineering and Material Science, University of Southern California, Department of Computer Science, University of Southern California
BackLink https://www.osti.gov/servlets/purl/1494091$$D View this record in Osti.gov
BookMark eNqNkE1LAzEQhoMoWGt_gLdFz6uTbLKbxVMRv0DwoueQprM1ZZvUJFX6742soAgWD2HC8LzJzHNE9p13SMgJhXMKlbyInArGS6AyH9aWsEdGDERTVm0N-z_uh2QS4xIAaMsk4zAil1OT7BsWPergrFsUnQ-FNgZ7DDrhvJhjtAtX-K7o9RZD7qxyP1jdx2Ny0OWCk686Js83109Xd-XD4-391fShNFxCKhsJRpq27Zp6BnomGkopVh12QhjkNXLoqKg0RyNlg5qimc8ZgOFYMayZrMaEDe9u3Fpv33Xfq3WwKx22ioL6NKAGAyobUJ8GFOTQ6RDyMVkVjU1oXox3Dk1SlLccWpqhswFaB_-6wZjU0m-Cy8so1rCqFoLWcidFBWe84S3LVDNQJvgYA3Yq_6mT9S4Fbfudo9Jfyf-s9-UkZtYtMHzP9HfoA1e9o_g
CitedBy_id crossref_primary_10_1038_s41598_021_92278_w
crossref_primary_10_1016_j_engstruct_2023_117412
crossref_primary_10_1038_s41524_021_00656_9
crossref_primary_10_1016_j_mtcomm_2022_103440
crossref_primary_10_1021_acsami_3c14610
crossref_primary_10_1038_s41524_025_01531_7
crossref_primary_10_1021_acs_jpcc_0c00545
crossref_primary_10_1016_j_jallcom_2024_177403
crossref_primary_10_1021_acs_jctc_9b01297
crossref_primary_10_1088_1674_1056_ad01a4
crossref_primary_10_1039_D1SC02087K
crossref_primary_10_1021_acsami_1c04583
crossref_primary_10_1038_s41524_020_00431_2
crossref_primary_10_1016_j_isci_2022_105192
crossref_primary_10_1016_j_actamat_2023_119063
crossref_primary_10_1088_2516_1083_ad7220
crossref_primary_10_1063_5_0229834
crossref_primary_10_1063_5_0012405
crossref_primary_10_1021_acsami_4c16614
crossref_primary_10_1021_acscombsci_0c00057
crossref_primary_10_1021_acscatal_9b05248
crossref_primary_10_1016_j_nanoen_2022_107218
crossref_primary_10_1016_j_commatsci_2020_110074
crossref_primary_10_1021_acs_chemmater_0c01894
crossref_primary_10_1038_s41524_022_00787_7
crossref_primary_10_1002_batt_202200309
crossref_primary_10_1080_14786435_2025_2467873
crossref_primary_10_1103_PhysRevB_105_L121201
crossref_primary_10_1002_smtd_202100987
crossref_primary_10_1039_D3TA01361H
crossref_primary_10_1016_j_eng_2023_02_019
crossref_primary_10_1007_s40843_023_2800_x
crossref_primary_10_1016_j_fuel_2023_129948
crossref_primary_10_1016_j_jmat_2021_11_010
crossref_primary_10_1080_27660400_2023_2261834
crossref_primary_10_3390_ma17081810
crossref_primary_10_1038_s41524_020_00417_0
crossref_primary_10_1016_j_egyai_2021_100049
crossref_primary_10_1021_acs_jcim_9b00781
crossref_primary_10_1557_mrs_2020_163
crossref_primary_10_1021_acsami_9b04933
crossref_primary_10_1039_D3SC07012C
crossref_primary_10_3389_fmats_2022_861817
crossref_primary_10_1016_j_ijheatmasstransfer_2024_125296
crossref_primary_10_1021_acscatal_9b04186
crossref_primary_10_1021_acs_nanolett_9b04090
crossref_primary_10_1093_nsr_nwae411
crossref_primary_10_1021_acs_jcim_2c00515
crossref_primary_10_1146_annurev_matsci_070218_010015
crossref_primary_10_1038_s41524_020_0309_6
crossref_primary_10_1557_mrc_2019_78
crossref_primary_10_1103_PhysRevMaterials_5_013802
crossref_primary_10_1103_PhysRevB_100_014108
crossref_primary_10_1103_PhysRevB_100_085202
crossref_primary_10_1039_D3CC01570J
crossref_primary_10_46670_JSST_2021_30_1_1
crossref_primary_10_1016_j_ensm_2023_103090
crossref_primary_10_1039_D0TC00985G
crossref_primary_10_1039_D0SC01101K
crossref_primary_10_1038_s41586_023_06735_9
crossref_primary_10_1016_j_matt_2020_06_011
crossref_primary_10_1088_1361_6595_ac6e04
crossref_primary_10_1002_inf2_12099
crossref_primary_10_1016_j_isci_2021_102781
crossref_primary_10_1088_2053_1583_ab8f62
crossref_primary_10_1088_1674_1056_abf12d
crossref_primary_10_1039_D0MA00764A
crossref_primary_10_3390_nano13162283
crossref_primary_10_1088_2515_7639_ab0c3d
crossref_primary_10_1021_acsmaterialslett_3c01322
crossref_primary_10_1021_acs_jpcc_2c07461
crossref_primary_10_1016_j_colsurfa_2024_136057
crossref_primary_10_1016_j_drudis_2024_103985
crossref_primary_10_1139_cjc_2022_0198
crossref_primary_10_1103_PhysRevMaterials_8_055406
crossref_primary_10_1002_adts_202100411
crossref_primary_10_1021_acs_chemmater_0c00768
crossref_primary_10_1007_s00158_022_03391_x
crossref_primary_10_1038_s42256_019_0098_0
crossref_primary_10_1016_j_jmat_2024_07_002
crossref_primary_10_1557_mrc_2019_95
crossref_primary_10_1039_D1NR07747C
crossref_primary_10_3390_catal14060388
crossref_primary_10_1039_D4MH01464B
crossref_primary_10_1021_acsami_9b14530
crossref_primary_10_1103_PhysRevMaterials_6_043802
crossref_primary_10_1021_acs_jcim_0c00630
crossref_primary_10_1021_acs_jpcc_3c05812
crossref_primary_10_1038_s41598_022_08413_8
crossref_primary_10_1021_acsami_0c17148
crossref_primary_10_1039_D2MA00746K
crossref_primary_10_1016_j_mtcomm_2021_102932
crossref_primary_10_1039_D1NR03886A
crossref_primary_10_1063_5_0044511
crossref_primary_10_1021_acsaem_1c01223
crossref_primary_10_1007_s11837_020_04389_w
crossref_primary_10_1016_j_actamat_2024_120437
crossref_primary_10_1038_s41524_019_0221_0
crossref_primary_10_1021_acs_chemmater_1c02040
crossref_primary_10_1073_pnas_1821674116
crossref_primary_10_1038_s41524_020_0337_2
crossref_primary_10_1063_1_5093220
crossref_primary_10_1007_s00214_021_02766_5
crossref_primary_10_1016_j_jnoncrysol_2019_119643
crossref_primary_10_1039_D4DD00267A
crossref_primary_10_1016_j_mtcomm_2020_101538
crossref_primary_10_1021_acs_jcim_0c01393
crossref_primary_10_1088_2515_7639_ab084b
crossref_primary_10_1038_s41467_024_47070_5
crossref_primary_10_1038_s41524_021_00572_y
crossref_primary_10_1093_nsr_nwad125
crossref_primary_10_1080_27660400_2022_2039573
crossref_primary_10_1016_j_solidstatesciences_2019_106096
crossref_primary_10_1063_5_0161736
crossref_primary_10_1016_j_ijheatmasstransfer_2021_121116
crossref_primary_10_1002_adfm_201906041
crossref_primary_10_1146_annurev_matsci_090319_010954
crossref_primary_10_1063_5_0076324
crossref_primary_10_1021_acsnano_3c01062
Cites_doi 10.1103/PhysRevLett.77.3865
10.1016/j.tsf.2016.08.068
10.1038/nnano.2012.193
10.1103/PhysRevB.47.12727
10.1103/PhysRevMaterials.1.065405
10.1088/1674-4926/37/5/051001
10.1021/acs.chemmater.5b04109
10.1063/1.4990503
10.1038/npjcompumats.2015.15
10.1038/srep19375
10.1103/PhysRevB.59.1758
10.1016/S0921-5107(98)00157-3
10.1103/PhysRev.140.A1133
10.1103/PhysRev.136.B864
10.1103/PhysRevB.92.014106
10.1038/nature12385
10.1021/ci00038a003
10.1039/C4CS00287C
10.1016/j.commatsci.2013.10.016
10.1103/PhysRevB.47.558
10.1038/nchem.1589
10.1115/1.3653121
10.1103/PhysRevB.93.115104
10.1063/1.1736034
10.1103/PhysRevLett.114.108001
10.1016/j.solidstatesciences.2005.10.011
10.1002/sam.10034
10.1109/JPROC.2015.2494218
10.1016/j.cpc.2006.03.007
10.1016/j.commatsci.2012.10.028
10.1021/acsnano.5b07457
10.1016/0927-0256(96)00008-0
10.1016/j.pmatsci.2015.02.002
10.1063/1.4812323
10.1021/acs.jpcc.6b05068
10.1073/pnas.1405435111
10.1016/j.commatsci.2016.12.004
10.1038/srep20952
10.1021/nl501962c
10.1016/S1369-7021(05)71123-8
10.1103/PhysRevB.50.17953
10.1038/npjcompumats.2016.28
10.1103/PhysRevB.54.11169
10.1021/acs.jpcc.7b12670
ContentType Journal Article
Copyright The Author(s) 2018. corrected publication 2022
2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2018. corrected publication 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2018. corrected publication 2022
– notice: 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2018. corrected publication 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
CorporateAuthor Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
CorporateAuthor_xml – name: Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
DBID C6C
AAYXX
CITATION
3V.
7X7
7XB
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
D1I
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB.
LK8
M0S
M7P
PDBOC
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
OIOZB
OTOTI
ADTOC
UNPAY
DOI 10.1038/s41524-018-0129-0
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Materials Science Database
ProQuest Biological Science Collection
Health & Medical Collection (Alumni)
Biological Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
OSTI.GOV - Hybrid
OSTI.GOV
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Publicly Available Content Database
CrossRef


Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2057-3960
EndPage 9
ExternalDocumentID 10.1038/s41524-018-0129-0
1494091
10_1038_s41524_018_0129_0
GroupedDBID 0R~
3V.
5VS
7X7
8FE
8FG
8FH
8FI
8FJ
AAJSJ
ABJCF
ABUWG
ACGFS
ACSMW
ADBBV
ADMLS
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ARCSS
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
D1I
EBLON
EBS
EJD
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
KB.
KQ8
LK8
M7P
M~E
NAO
NO~
OK1
PDBOC
PIMPY
PQQKQ
PROAC
RNT
SNYQT
UKHRP
AASML
AAYXX
CITATION
PUEGO
7XB
8FK
AZQEC
DWQXO
GNUQQ
K9.
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
AAADF
AFGXO
OIOZB
OTOTI
ADTOC
AFFHD
UNPAY
ID FETCH-LOGICAL-c480t-780c8c99f76b0ab57111e3fef55ce46e40f153a4ec887ea1ecdd200c4e32e6283
IEDL.DBID BENPR
ISSN 2057-3960
IngestDate Wed Oct 29 12:12:27 EDT 2025
Wed Nov 29 06:12:15 EST 2023
Tue Oct 07 06:33:03 EDT 2025
Tue Oct 07 06:41:44 EDT 2025
Thu Apr 24 23:03:34 EDT 2025
Wed Oct 01 02:23:56 EDT 2025
Fri Feb 21 02:40:23 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c480t-780c8c99f76b0ab57111e3fef55ce46e40f153a4ec887ea1ecdd200c4e32e6283
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
AC02-05CH11231
USDOE Office of Science (SC), Basic Energy Sciences (BES)
ORCID 0000-0003-3228-3896
0000-0001-7750-1485
0000-0002-6344-6056
0000000263446056
0000000177501485
0000000332283896
OpenAccessLink https://www.proquest.com/docview/2723655168?pq-origsite=%requestingapplication%&accountid=15518
PQID 2154247492
PQPubID 2041924
PageCount 9
ParticipantIDs unpaywall_primary_10_1038_s41524_018_0129_0
osti_scitechconnect_1494091
proquest_journals_2723655168
proquest_journals_2154247492
crossref_citationtrail_10_1038_s41524_018_0129_0
crossref_primary_10_1038_s41524_018_0129_0
springer_journals_10_1038_s41524_018_0129_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-12-10
PublicationDateYYYYMMDD 2018-12-10
PublicationDate_xml – month: 12
  year: 2018
  text: 2018-12-10
  day: 10
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: United States
PublicationTitle npj computational materials
PublicationTitleAbbrev npj Comput Mater
PublicationYear 2018
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Xing (CR26) 2017; 1
Choi, Zhang, Choi (CR9) 2016; 10
Gu, Lu, Bao, Chen (CR15) 2006; 8
Pilania, Gubernatis, Lookman (CR16) 2017; 129
Kresse, Furthmüller (CR46) 1996; 54
Wang, Yuan, Hong, Li, Cui (CR7) 2015; 44
Mueller, Kusne, Ramprasad (CR13) 2016; 29
McDonnell, Wallace (CR2) 2016; 616
Ward, Agrawal, Choudhary, Wolverton (CR34) 2016; 2
Furchi, Pospischil, Libisch, Burgdörfer, Mueller (CR10) 2014; 14
Cubuk (CR20) 2015; 114
Cubuk, Malone, Onat, Waterland, Kaxiras (CR22) 2017; 147
Hohenberg, Kohn (CR41) 1964; 136
Geim, Grigorieva (CR6) 2013; 499
Kohn, Sham (CR42) 1965; 140
Hicks, Dresselhaus (CR25) 1993; 47
Dey (CR36) 2014; 83
Zhaochun, Ruiwu, Nianyi (CR21) 1998; 54
Kim, Pilania, Ramprasad (CR19) 2016; 120
Ong (CR40) 2013; 68
Shahriari, Swersky, Wang, Adams, de Freitas (CR30) 2016; 104
Shockley, Queisser (CR27) 1961; 32
Blöchl (CR43) 1994; 50
Pilania (CR35) 2016; 6
LeSar (CR12) 2009; 1
CR28
Bergerhoff, Hundt, Sievers, Brown (CR39) 1983; 23
Yang (CR24) 2016; 2
Kresse, Joubert (CR47) 1999; 59
Congxin, Jingbo (CR3) 2016; 37
Madsen, Singh (CR33) 2006; 175
Wang, Kalantar-Zadeh, Kis, Coleman, Strano (CR4) 2012; 7
Mannodi-Kanakkithodi, Pilania, Huan, Lookman, Ramprasad (CR17) 2016; 6
Toyao (CR37) 2018; 122
Gupta, Sakthivel, Seal (CR1) 2015; 73
Kushner (CR31) 1964; 86
Perdew, Burke, Ernzerhof (CR48) 1996; 77
Rajan (CR11) 2005; 8
Jain (CR32) 2013; 1
Kresse, Hafner (CR44) 1993; 47
Kresse, Furthmüller (CR45) 1996; 6
Snoek, Larochelle, Adams (CR29) 2012; 25
Lee, Seko, Shitara, Nakayama, Tanaka (CR14) 2016; 93
Huan, Mannodi-Kanakkithodi, Ramprasad (CR23) 2015; 92
Yanaki, Obolonchik (CR38) 1973; 9
Fang (CR8) 2014; 111
Kim, Pilania, Ramprasad (CR18) 2016; 28
Chhowalla (CR5) 2013; 5
JP Perdew (129_CR48) 1996; 77
X Congxin (129_CR3) 2016; 37
J Lee (129_CR14) 2016; 93
G Kresse (129_CR47) 1999; 59
J Snoek (129_CR29) 2012; 25
G Kresse (129_CR45) 1996; 6
HJ Kushner (129_CR31) 1964; 86
SJ McDonnell (129_CR2) 2016; 616
G Pilania (129_CR35) 2016; 6
J Choi (129_CR9) 2016; 10
K Rajan (129_CR11) 2005; 8
TD Huan (129_CR23) 2015; 92
C Kim (129_CR19) 2016; 120
H Fang (129_CR8) 2014; 111
G Xing (129_CR26) 2017; 1
L Ward (129_CR34) 2016; 2
ED Cubuk (129_CR20) 2015; 114
G Kresse (129_CR44) 1993; 47
T Mueller (129_CR13) 2016; 29
A Jain (129_CR32) 2013; 1
G Bergerhoff (129_CR39) 1983; 23
J Yang (129_CR24) 2016; 2
W Kohn (129_CR42) 1965; 140
H Wang (129_CR7) 2015; 44
Z Zhaochun (129_CR21) 1998; 54
B Shahriari (129_CR30) 2016; 104
R LeSar (129_CR12) 2009; 1
T Toyao (129_CR37) 2018; 122
G Pilania (129_CR16) 2017; 129
M Chhowalla (129_CR5) 2013; 5
P Dey (129_CR36) 2014; 83
A Yanaki (129_CR38) 1973; 9
G Kresse (129_CR46) 1996; 54
PE Blöchl (129_CR43) 1994; 50
129_CR28
ED Cubuk (129_CR22) 2017; 147
A Mannodi-Kanakkithodi (129_CR17) 2016; 6
W Shockley (129_CR27) 1961; 32
MM Furchi (129_CR10) 2014; 14
GK Madsen (129_CR33) 2006; 175
A Gupta (129_CR1) 2015; 73
C Kim (129_CR18) 2016; 28
QH Wang (129_CR4) 2012; 7
T Gu (129_CR15) 2006; 8
L Hicks (129_CR25) 1993; 47
P Hohenberg (129_CR41) 1964; 136
AK Geim (129_CR6) 2013; 499
SP Ong (129_CR40) 2013; 68
References_xml – volume: 77
  start-page: 3865
  year: 1996
  ident: CR48
  article-title: Generalized gradient approximation made simple
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 616
  start-page: 482
  year: 2016
  end-page: 501
  ident: CR2
  article-title: Atomically-thin layered films for device applications based upon 2D TMDC materials
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2016.08.068
– volume: 7
  start-page: 699
  year: 2012
  end-page: 712
  ident: CR4
  article-title: Electronics and optoelectronics of two-dimensional transition metal dichalcogenides
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2012.193
– volume: 47
  start-page: 12727
  year: 1993
  ident: CR25
  article-title: Effect of quantum-well structures on the thermoelectric figure of merit
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.47.12727
– volume: 1
  start-page: 065405
  year: 2017
  ident: CR26
  article-title: Electronic fitness function for screening semiconductors as thermoelectric materials
  publication-title: Phys. Rev. Mater.
  doi: 10.1103/PhysRevMaterials.1.065405
– volume: 37
  start-page: 051001
  year: 2016
  ident: CR3
  article-title: Recent advances in optoelectronic properties and applications of two-dimensional metal chalcogenides
  publication-title: J. Semicond.
  doi: 10.1088/1674-4926/37/5/051001
– volume: 28
  start-page: 1304
  year: 2016
  end-page: 1311
  ident: CR18
  article-title: From organized high-throughput data to phenomenological theory using machine learning: the example of dielectric breakdown
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.5b04109
– volume: 147
  start-page: 024104
  year: 2017
  ident: CR22
  article-title: Representations in neural network based empirical potentials
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4990503
– volume: 2
  start-page: 15015
  year: 2016
  ident: CR24
  article-title: On the tuning of electrical and thermal transport in thermoelectrics: an integrated theory–experiment perspective
  publication-title: NPJ Comput. Mater.
  doi: 10.1038/npjcompumats.2015.15
– volume: 6
  year: 2016
  ident: CR35
  article-title: Machine learning bandgaps of double perovskites
  publication-title: Sci. Rep.
  doi: 10.1038/srep19375
– volume: 59
  start-page: 1758
  year: 1999
  ident: CR47
  article-title: From ultrasoft pseudopotentials to the projector augmented-wave method
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.59.1758
– volume: 9
  start-page: 1855
  year: 1973
  end-page: 1858
  ident: CR38
  article-title: Preparation of transition-metal tellurides by means of hydrogen telluride
  publication-title: Inorg. Mater.
– volume: 54
  start-page: 149
  year: 1998
  end-page: 152
  ident: CR21
  article-title: Artificial neural network prediction of the band gap and melting point of binary and ternary compound semiconductors
  publication-title: Mater. Sci. Eng. B
  doi: 10.1016/S0921-5107(98)00157-3
– volume: 140
  start-page: A1133
  year: 1965
  ident: CR42
  article-title: Self-consistent equations including exchange and correlation effects
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.140.A1133
– volume: 136
  start-page: B864
  year: 1964
  ident: CR41
  article-title: Inhomogeneous electron gas
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.136.B864
– volume: 92
  start-page: 014106
  year: 2015
  ident: CR23
  article-title: Accelerated materials property predictions and design using motif-based fingerprints
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.92.014106
– volume: 499
  start-page: 419
  year: 2013
  end-page: 425
  ident: CR6
  article-title: Van der Waals heterostructures
  publication-title: Nature
  doi: 10.1038/nature12385
– volume: 23
  start-page: 66
  year: 1983
  end-page: 69
  ident: CR39
  article-title: The inorganic crystal structure data base
  publication-title: J. Chem. Inf. Comp. Sci.
  doi: 10.1021/ci00038a003
– volume: 44
  start-page: 2664
  year: 2015
  end-page: 2680
  ident: CR7
  article-title: Physical and chemical tuning of two-dimensional transition metal dichalcogenides
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00287C
– volume: 83
  start-page: 185
  year: 2014
  end-page: 195
  ident: CR36
  article-title: Informatics-aided bandgap engineering for solar materials
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2013.10.016
– volume: 47
  start-page: 558
  year: 1993
  ident: CR44
  article-title: Ab initio molecular dynamics for liquid metals
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.47.558
– volume: 5
  start-page: 263
  year: 2013
  end-page: 275
  ident: CR5
  article-title: The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1589
– volume: 86
  start-page: 97
  year: 1964
  end-page: 106
  ident: CR31
  article-title: A new method of locating the maximum point of an arbitrary multipeak curve in the presence of noise
  publication-title: J. Basic Eng.
  doi: 10.1115/1.3653121
– volume: 93
  start-page: 115104
  year: 2016
  ident: CR14
  article-title: Prediction model of band gap for inorganic compounds by combination of density functional theory calculations and machine learning techniques
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.93.115104
– volume: 32
  start-page: 510
  year: 1961
  end-page: 519
  ident: CR27
  article-title: Detailed balance limit of efficiency of p–n junction solar cells
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1736034
– volume: 114
  start-page: 108001
  year: 2015
  ident: CR20
  article-title: Identifying structural flow defects in disordered solids using machine-learning methods
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.114.108001
– volume: 8
  start-page: 129
  year: 2006
  end-page: 136
  ident: CR15
  article-title: Using support vector regression for the prediction of the band gap and melting point of binary and ternary compound semiconductors
  publication-title: Solid State Sci.
  doi: 10.1016/j.solidstatesciences.2005.10.011
– volume: 1
  start-page: 372
  year: 2009
  end-page: 374
  ident: CR12
  article-title: Materials informatics: an emerging technology for materials development
  publication-title: Stat. Anal. Data Min.
  doi: 10.1002/sam.10034
– volume: 104
  start-page: 148
  year: 2016
  end-page: 175
  ident: CR30
  article-title: Taking the human out of the loop: a review of bayesian optimization
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2015.2494218
– volume: 175
  start-page: 67
  year: 2006
  end-page: 71
  ident: CR33
  article-title: BoltzTraP. A code for calculating band-structure dependent quantities
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2006.03.007
– volume: 68
  start-page: 314
  year: 2013
  end-page: 319
  ident: CR40
  article-title: Python Materials Genomics (pymatgen): a robust, open-source python library for materials analysis
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2012.10.028
– volume: 10
  start-page: 1671
  year: 2016
  end-page: 1680
  ident: CR9
  article-title: Modulating optoelectronic properties of two-dimensional transition metal dichalcogenide semiconductors by photoinduced charge transfer
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b07457
– volume: 6
  start-page: 15
  year: 1996
  end-page: 50
  ident: CR45
  article-title: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/0927-0256(96)00008-0
– volume: 73
  start-page: 44
  year: 2015
  end-page: 126
  ident: CR1
  article-title: Recent development in 2D materials beyond graphene
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2015.02.002
– volume: 1
  start-page: 011002
  year: 2013
  ident: CR32
  article-title: Commentary: The Materials Project: a materials genome approach to accelerating materials innovation
  publication-title: APL Mater.
  doi: 10.1063/1.4812323
– volume: 120
  start-page: 14575
  year: 2016
  end-page: 14580
  ident: CR19
  article-title: Machine learning assisted predictions of intrinsic dielectric breakdown strength of ABX3 perovskites
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.6b05068
– volume: 111
  start-page: 6198
  year: 2014
  end-page: 6202
  ident: CR8
  article-title: Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1405435111
– volume: 129
  start-page: 156
  year: 2017
  end-page: 163
  ident: CR16
  article-title: Multi-fidelity machine learning models for accurate bandgap predictions of solids
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2016.12.004
– volume: 6
  year: 2016
  ident: CR17
  article-title: Machine learning strategy for accelerated design of polymer dielectrics
  publication-title: Sci. Rep.
  doi: 10.1038/srep20952
– volume: 14
  start-page: 4785
  year: 2014
  end-page: 4791
  ident: CR10
  article-title: Photovoltaic effect in an electrically tunable van der Waals heterojunction
  publication-title: Nano Lett.
  doi: 10.1021/nl501962c
– volume: 25
  start-page: 2951
  year: 2012
  end-page: 2959
  ident: CR29
  article-title: Practical Bayesian Optimization of Machine Learning Algorithms
  publication-title: Proc. Neural Inform. Process. Syst
– volume: 8
  start-page: 38
  year: 2005
  end-page: 45
  ident: CR11
  article-title: Materials informatics
  publication-title: Mater. Today
  doi: 10.1016/S1369-7021(05)71123-8
– ident: CR28
– volume: 50
  start-page: 17953
  year: 1994
  ident: CR43
  article-title: Projector augmented-wave method
  publication-title: Phy. Rev. B
  doi: 10.1103/PhysRevB.50.17953
– volume: 2
  start-page: 16028
  year: 2016
  ident: CR34
  article-title: A general-purpose machine learning framework for predicting properties of inorganic materials
  publication-title: NPJ Comput. Mater.
  doi: 10.1038/npjcompumats.2016.28
– volume: 29
  start-page: 186
  year: 2016
  end-page: 273
  ident: CR13
  article-title: Machine learning in materials science: recent progress and emerging applications
  publication-title: Rev. Comput. Chem
– volume: 54
  start-page: 11169
  year: 1996
  ident: CR46
  article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.11169
– volume: 122
  start-page: 8315
  year: 2018
  end-page: 8326
  ident: CR37
  article-title: Toward effective utilization of methane: machine learning prediction of adsorption energies on metal alloys
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/acs.jpcc.7b12670
– volume: 8
  start-page: 38
  year: 2005
  ident: 129_CR11
  publication-title: Mater. Today
  doi: 10.1016/S1369-7021(05)71123-8
– volume: 54
  start-page: 11169
  year: 1996
  ident: 129_CR46
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.11169
– volume: 93
  start-page: 115104
  year: 2016
  ident: 129_CR14
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.93.115104
– volume: 499
  start-page: 419
  year: 2013
  ident: 129_CR6
  publication-title: Nature
  doi: 10.1038/nature12385
– volume: 29
  start-page: 186
  year: 2016
  ident: 129_CR13
  publication-title: Rev. Comput. Chem
– volume: 129
  start-page: 156
  year: 2017
  ident: 129_CR16
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2016.12.004
– volume: 86
  start-page: 97
  year: 1964
  ident: 129_CR31
  publication-title: J. Basic Eng.
  doi: 10.1115/1.3653121
– volume: 120
  start-page: 14575
  year: 2016
  ident: 129_CR19
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.6b05068
– volume: 8
  start-page: 129
  year: 2006
  ident: 129_CR15
  publication-title: Solid State Sci.
  doi: 10.1016/j.solidstatesciences.2005.10.011
– volume: 136
  start-page: B864
  year: 1964
  ident: 129_CR41
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.136.B864
– volume: 92
  start-page: 014106
  year: 2015
  ident: 129_CR23
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.92.014106
– volume: 44
  start-page: 2664
  year: 2015
  ident: 129_CR7
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00287C
– volume: 14
  start-page: 4785
  year: 2014
  ident: 129_CR10
  publication-title: Nano Lett.
  doi: 10.1021/nl501962c
– volume: 111
  start-page: 6198
  year: 2014
  ident: 129_CR8
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1405435111
– volume: 6
  year: 2016
  ident: 129_CR17
  publication-title: Sci. Rep.
  doi: 10.1038/srep20952
– volume: 54
  start-page: 149
  year: 1998
  ident: 129_CR21
  publication-title: Mater. Sci. Eng. B
  doi: 10.1016/S0921-5107(98)00157-3
– volume: 37
  start-page: 051001
  year: 2016
  ident: 129_CR3
  publication-title: J. Semicond.
  doi: 10.1088/1674-4926/37/5/051001
– volume: 47
  start-page: 12727
  year: 1993
  ident: 129_CR25
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.47.12727
– volume: 2
  start-page: 16028
  year: 2016
  ident: 129_CR34
  publication-title: NPJ Comput. Mater.
  doi: 10.1038/npjcompumats.2016.28
– volume: 5
  start-page: 263
  year: 2013
  ident: 129_CR5
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1589
– volume: 6
  year: 2016
  ident: 129_CR35
  publication-title: Sci. Rep.
  doi: 10.1038/srep19375
– volume: 83
  start-page: 185
  year: 2014
  ident: 129_CR36
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2013.10.016
– volume: 1
  start-page: 372
  year: 2009
  ident: 129_CR12
  publication-title: Stat. Anal. Data Min.
  doi: 10.1002/sam.10034
– volume: 77
  start-page: 3865
  year: 1996
  ident: 129_CR48
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 9
  start-page: 1855
  year: 1973
  ident: 129_CR38
  publication-title: Inorg. Mater.
– volume: 47
  start-page: 558
  year: 1993
  ident: 129_CR44
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.47.558
– volume: 68
  start-page: 314
  year: 2013
  ident: 129_CR40
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2012.10.028
– volume: 114
  start-page: 108001
  year: 2015
  ident: 129_CR20
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.114.108001
– volume: 147
  start-page: 024104
  year: 2017
  ident: 129_CR22
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4990503
– volume: 6
  start-page: 15
  year: 1996
  ident: 129_CR45
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/0927-0256(96)00008-0
– volume: 2
  start-page: 15015
  year: 2016
  ident: 129_CR24
  publication-title: NPJ Comput. Mater.
  doi: 10.1038/npjcompumats.2015.15
– volume: 32
  start-page: 510
  year: 1961
  ident: 129_CR27
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1736034
– volume: 1
  start-page: 065405
  year: 2017
  ident: 129_CR26
  publication-title: Phys. Rev. Mater.
  doi: 10.1103/PhysRevMaterials.1.065405
– volume: 50
  start-page: 17953
  year: 1994
  ident: 129_CR43
  publication-title: Phy. Rev. B
  doi: 10.1103/PhysRevB.50.17953
– volume: 104
  start-page: 148
  year: 2016
  ident: 129_CR30
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2015.2494218
– volume: 175
  start-page: 67
  year: 2006
  ident: 129_CR33
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2006.03.007
– volume: 140
  start-page: A1133
  year: 1965
  ident: 129_CR42
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.140.A1133
– ident: 129_CR28
– volume: 7
  start-page: 699
  year: 2012
  ident: 129_CR4
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2012.193
– volume: 73
  start-page: 44
  year: 2015
  ident: 129_CR1
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2015.02.002
– volume: 59
  start-page: 1758
  year: 1999
  ident: 129_CR47
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.59.1758
– volume: 616
  start-page: 482
  year: 2016
  ident: 129_CR2
  publication-title: Thin Solid Films
  doi: 10.1016/j.tsf.2016.08.068
– volume: 122
  start-page: 8315
  year: 2018
  ident: 129_CR37
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/acs.jpcc.7b12670
– volume: 25
  start-page: 2951
  year: 2012
  ident: 129_CR29
  publication-title: Proc. Neural Inform. Process. Syst
– volume: 1
  start-page: 011002
  year: 2013
  ident: 129_CR32
  publication-title: APL Mater.
  doi: 10.1063/1.4812323
– volume: 23
  start-page: 66
  year: 1983
  ident: 129_CR39
  publication-title: J. Chem. Inf. Comp. Sci.
  doi: 10.1021/ci00038a003
– volume: 10
  start-page: 1671
  year: 2016
  ident: 129_CR9
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b07457
– volume: 28
  start-page: 1304
  year: 2016
  ident: 129_CR18
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.5b04109
SSID ssj0001928240
Score 2.4877539
Snippet Hetero-structures made from vertically stacked monolayers of transition metal dichalcogenides hold great potential for optoelectronic and thermoelectric...
SourceID unpaywall
osti
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms 639/301/1034/1037
639/638/898
Active learning
Bayesian analysis
Chalcogenides
Characterization and Evaluation of Materials
Computational efficiency
Computational Intelligence
Computer applications
Computing costs
Conduction
Conduction bands
Data acquisition
Data collection
Dependence
Design optimization
Electronic structure
Energy gap
Gaussian process
Heterostructures
Layered materials
Learning algorithms
Machine learning
Material properties
MATERIALS SCIENCE
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematical Modeling and Industrial Mathematics
Mathematical models
Optimization
Optoelectronic devices
Predictions
Regression analysis
Regression models
Source code
Statistical analysis
Theoretical
Thermoelectricity
Transition metal compounds
Transport properties
Valence band
SummonAdditionalLinks – databaseName: HAS SpringerNature Open Access 2022
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB6kPWgP4hNrq-TgyVLcRzabxVMRSynoRQu9hWw28VLaYluk_96Z3e0LpeI5mxAmk5lvdibfANyFWSZkmKLyou9tc3omIxMEckI7F3vai0weKL68it6A94fRsOTZprcwO_n7nLp7Ri6GKiWo6ArXw_i8KlEvZQWqnU7_rb_5pZJg_MDXuctQPvyYu-N9KhO8RTvIcp0MrcHhYjzVyy89Gm35m-4JHJdAkXWKkz2FAzs-g9oWfeA5PHZyY8XKzg8fDAEo08agJyECiIxleXkGmzg20ktqyskQnxYqdwGD7vP7U69dNkNoGy69eTuWnpEmSVwsUk-nUYxGyobOuigylgvLPYfGS3Nr0GxY7VuTZXgDDLdhYAWCiEuojCdjewVMpL4ONEItR_6bqMYj31L_eJOE2llRB28lJGVKpnBqWDFSecY6lKqQq0K5KpKr8upwv54yLWgy9n3cIMkr9PFEVGuoosfMMQhJMNj069BcHYgq79NMITDhAY95Evw-HAehoJSfrENrdYab4T07aa2P-e99X_9r7QYcBaR4foCurgmV-efC3iCAmae3peJ-A3_R41M
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BOwADb0R5yQMTqMVJHCcRU4VAFRKIgSKYLMexGajaClIh-PXc5VGeAjHHTpzzPT7rzt8B7AdZJuMgReXF2NsWdE0mThDISe1cxDUPTXFQvLiUvb44vw1vZyCs78IURfsFpWXhpuvqsKMnCjRUL0GlV_hW3hlnbhaaMkQI3oBm__Kqe0eN5BB_4HflNIMZxN_nfopBjRHa0id8OU2JLsDcZDjWL896MPgQdc6W4KZeb1ls8tCZ5GnHvH6hcvz3Dy3DYoVDWbccuAIzdrgKCx_YCdfguFv4QlY1lrhniG-ZNgYDFfFLZCwrqj_YyLGBfqGenwzhb6nR69A_O70-6bWrXgttI2Ket6OYm9gkiYtkynUaRugDbeCsC0NjhbSCO_SNWliDXslqz5osQwMzwga-lYhRNqAxHA3tJjCZetrXiOQcwQNiMg89S-3pTRJoZ2ULeC19ZSoicuqHMVBFQjyIVSkbhbJRJBvFW3AwnTIuWTh-G7xNW6oQQhAPrqGCIZPjGSfBs6zXgp16p1Vlrk8KcY_wRSQS_-fHkR9IyijGLTisleP98S8rOZzqz9_r3vrX6G2Y90l5PB8j6Q408seJ3UV8lKd7lTW8ATPfBb0
  priority: 102
  providerName: Unpaywall
Title Active learning for accelerated design of layered materials
URI https://link.springer.com/article/10.1038/s41524-018-0129-0
https://www.proquest.com/docview/2154247492
https://www.proquest.com/docview/2723655168
https://www.osti.gov/servlets/purl/1494091
https://www.nature.com/articles/s41524-018-0129-0.pdf
UnpaywallVersion publishedVersion
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2057-3960
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001928240
  issn: 2057-3960
  databaseCode: KQ8
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2057-3960
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001928240
  issn: 2057-3960
  databaseCode: KQ8
  dateStart: 20151125
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: Directory of Open Access Journals (DOAJ)
  customDbUrl:
  eissn: 2057-3960
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001928240
  issn: 2057-3960
  databaseCode: DOA
  dateStart: 20150101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2057-3960
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001928240
  issn: 2057-3960
  databaseCode: ADMLS
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVAQT
  databaseName: Springer Nature - nature.com Journals - Fully Open Access
  customDbUrl:
  eissn: 2057-3960
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001928240
  issn: 2057-3960
  databaseCode: NAO
  dateStart: 20151201
  isFulltext: true
  titleUrlDefault: https://www.nature.com/siteindex/index.html
  providerName: Nature Publishing
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2057-3960
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001928240
  issn: 2057-3960
  databaseCode: 8FG
  dateStart: 20151101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: HAS SpringerNature Open Access 2022
  customDbUrl:
  eissn: 2057-3960
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001928240
  issn: 2057-3960
  databaseCode: AAJSJ
  dateStart: 20151201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 2057-3960
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001928240
  issn: 2057-3960
  databaseCode: C6C
  dateStart: 20151201
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3da9swED_a5GHrw-i-WNYu6GFPK6ayLMsyYwwvNC2BhbItkD0JWZb6EpJsTRn973fn2G4LJX3xg2xj-e509zvd6Q7gY1JVSiclCi_a3kjSMRmdI5BTNoSMW5662lH8PlUXMzmZp_M9mLZnYSitstWJtaKuVo72yE9FJhJFUR39df0noq5RFF1tW2jYprVC9aUuMbYPfUGVsXrQ_3Y2vfxxt-uSo4shu_Bmok-vyYJRIgbldOF0-QMD1VvhQnsAPrt46QE8u1mu7e0_u1jcM0njQ3jRYElWbJn_Evb88hUc3Ksw-Bo-F7U-Y01ziCuGGJXhb6CxoRoRFavqDA62Cmxhb6lvJ0MIu5XKNzAbn_0aXURNv4TISc03Uaa50y7PQ6ZKbss0Qz3mk-BDmjovlZc8oH6z0jvULN7G3lUVLhInfSK8QpzxFnrL1dK_A6bK2AqLaCyQiadq5GnsqcW8yxMbvBoAb4lkXFNMnHpaLEwd1E602dLVIF0N0dXwAXzqXllvK2nseviIKG8QBlAtW0dJP26DfkqO_mg8gOOWIaZZctcGsYsUMpO5ePx2Jz8DOGl5eHd7x0xOOjY_Pe_3uz99BM8FSVos0PwdQ2_z98Z_QFCzKYewn80zvOrx-RD6RTH5ORk20oujIzUa1tsFODabXha__wNWV_aH
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB7R5UA5IPoSWx71ob0URTi24ySqEAIKWgqsqgokbq7j2L2sdrfdRWj_HL-tM9kkgFRtT5ydhzXPbzzjGYCPsix1JgsUXvS9kaJrMlmOQE7bEFJueeKqQPGyr3vX6ttNcrME981dGCqrbGxiZajLkaMz8j2RCqkpq5MdjH9HNDWKsqvNCA1bj1Yo96sWY_XFjnM_u8MQbrJ_9hX5_UmI05Or415UTxmInMr4NEoz7jKX5yHVBbdFkqL2exl8SBLnlfaKB7QKVnmH-uht7F1Zomg55aXwGr0zfvcFLCupcgz-lo9O-t9_PJzy5BjSqDadKrO9CXlMKvygGjIkD3_iEDsjVOwnYLfNz67Cyu1wbGd3djB45AJP12Gtxq7scC5sr2DJD1_D6qOOhm_gy2FlP1k9jOIXQ0zMkGzo3KgnRcnKqmKEjQIb2BnNCWUImeda8Baun4Vy76AzHA39BjBdxFZYRH-BIAV1P09iTyPtXS5t8LoLvCGScXXzcpqhMTBVEl1mZk5Xg3Q1RFfDu_C5fWU879yx6OFNorxB2EG9cx0VGbkpxkU5xr9xF7YahphaxScGsZISKlW5-PdyK69d2G14-LC8YCe7LZv_v-_3i3_9AVZ6V5cX5uKsf74JLwVJXSzQ9W5BZ_rn1m8joJoWO7XUMvj53IryF-tDLTs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VIAE9IJ4itIAPcKFaxWt77V0hhCpK1FKoOFApN-P12lyiJG1SVflr_Dpm9tVWQuHUs_dhzfMbz3gG4K2sKp3LEoUXfW-i6JpMXiCQ0y5Gwx3PfB0ofj_Rh6fq6ySbbMGf7i4MlVV2NrE21NXc0xn5SBghNWV18lFsyyJ-HIw_Lc4SmiBFmdZunEYjIsdhfYnh2_Lj0QHy-p0Q4y8_Px8m7YSBxKucrxKTc5_7oohGl9yVmUHNDzKGmGU-KB0Uj2gRnAoedTG4NPiqQrHyKkgRNHpm_O4duGukLKic0EzM1flOgcGM6hOpMh8tyVdSyQdVjyFh-A1XOJijSt-AuX1mdhvuX8wWbn3pptNrzm_8CB62qJXtN2L2GLbC7AlsX-tl-BQ-7NeWk7VjKH4zRMPMeY9ujbpRVKyqa0XYPLKpW9OEUIZguZH_Z3B6K3R7DoPZfBZeANNl6oRD3BcJTFDf8ywNNMzeF9LFoIfAOyJZ37Ytp-kZU1unz2VuG7papKslulo-hPf9K4umZ8emh3eI8hYBB3XN9VRe5FcYERUY-aZD2O0YYlvlXlpESUooowrx7-VeUoew1_HwannDTvZ6Nv9_3y83__oN3EP1sN-OTo534IEgoUsF-txdGKzOL8IrRFKr8nUtsgx-3baO_AWZtCrV
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BOwADb0R5yQMTqMVJHCcRU4VAFRKIgSKYLMexGajaClIh-PXc5VGeAjHHTpzzPT7rzt8B7AdZJuMgReXF2NsWdE0mThDISe1cxDUPTXFQvLiUvb44vw1vZyCs78IURfsFpWXhpuvqsKMnCjRUL0GlV_hW3hlnbhaaMkQI3oBm__Kqe0eN5BB_4HflNIMZxN_nfopBjRHa0id8OU2JLsDcZDjWL896MPgQdc6W4KZeb1ls8tCZ5GnHvH6hcvz3Dy3DYoVDWbccuAIzdrgKCx_YCdfguFv4QlY1lrhniG-ZNgYDFfFLZCwrqj_YyLGBfqGenwzhb6nR69A_O70-6bWrXgttI2Ket6OYm9gkiYtkynUaRugDbeCsC0NjhbSCO_SNWliDXslqz5osQwMzwga-lYhRNqAxHA3tJjCZetrXiOQcwQNiMg89S-3pTRJoZ2ULeC19ZSoicuqHMVBFQjyIVSkbhbJRJBvFW3AwnTIuWTh-G7xNW6oQQhAPrqGCIZPjGSfBs6zXgp16p1Vlrk8KcY_wRSQS_-fHkR9IyijGLTisleP98S8rOZzqz9_r3vrX6G2Y90l5PB8j6Q408seJ3UV8lKd7lTW8ATPfBb0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Active+learning+for+accelerated+design+of+layered+materials&rft.jtitle=npj+computational+materials&rft.au=Bassman+Oftelie%2C+Lindsay&rft.au=Rajak%2C+Pankaj&rft.au=Kalia%2C+Rajiv+K&rft.au=Nakano%2C+Aiichiro&rft.date=2018-12-10&rft.pub=Nature+Publishing+Group&rft.eissn=2057-3960&rft.volume=4&rft.issue=1&rft.spage=74&rft_id=info:doi/10.1038%2Fs41524-018-0129-0&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2057-3960&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2057-3960&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2057-3960&client=summon