Experimental evolution reveals hidden diversity in evolutionary pathways
Replicate populations of natural and experimental organisms often show evidence of parallel genetic evolution, but the causes are unclear. The wrinkly spreader morph of Pseudomonas fluorescens arises repeatedly during experimental evolution. The mutational causes reside exclusively within three path...
Saved in:
| Published in | eLife Vol. 4 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
England
eLife Sciences Publications Ltd
25.03.2015
eLife Sciences Publications, Ltd |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2050-084X 2050-084X |
| DOI | 10.7554/eLife.07074 |
Cover
| Abstract | Replicate populations of natural and experimental organisms often show evidence of parallel genetic evolution, but the causes are unclear. The wrinkly spreader morph of Pseudomonas fluorescens arises repeatedly during experimental evolution. The mutational causes reside exclusively within three pathways. By eliminating these, 13 new mutational pathways were discovered with the newly arising WS types having fitnesses similar to those arising from the commonly passaged routes. Our findings show that parallel genetic evolution is strongly biased by constraints and we reveal the genetic bases. From such knowledge, and in instances where new phenotypes arise via gene activation, we suggest a set of principles: evolution proceeds firstly via pathways subject to negative regulation, then via promoter mutations and gene fusions, and finally via activation by intragenic gain-of-function mutations. These principles inform evolutionary forecasting and have relevance to interpreting the diverse array of mutations associated with clinically identical instances of disease in humans.
Different living things often develop similar strategies to adapt to the environments in which they live. Sometimes two species that share a common ancestor independently evolve the same trait by changing the exact same genes. This is called ‘parallel evolution’, and it has led some scientists to ask: are there certain traits that can only evolve in a limited number of ways? Or are there other ways to evolve the same trait that, for some reason, are not explored?
Experimentally, investigating these questions is challenging, but parallel evolution occurs in the laboratory as well as in the wild. Many commonly studied organisms—such as fruit flies or bacteria—can be used in relevant studies, because they can be grown in large numbers and then exposed to identical environments. However, if this method fails to find a new way that a trait can evolve, it doesn't mean that alternative mechanisms do not exist.
Lind et al. used a different approach that instead relies on removing all of the known pathways that can be mutated to produce a given trait and then seeing if that trait can still evolve via mutations elsewhere. The experiments involved a bacterium called Pseudomonas fluorescens that can evolve to grow flattened and wrinkled colonies (instead of smooth, round ones) when it has to compete for access to oxygen.
Previous experiments had shown that the evolution of the so-called ‘wrinkly spreader’ form can be caused by mutations in one of three biological pathways. But P. fluorescens can survive unharmed without these pathways, which enabled Lind et al. to ask if there might be other ways that this trait could evolve. Bacteria without these three pathways were engineered and then grown under oxygen-deprived conditions. This experiment produced 91 new mutants that each had the wrinkly spreader phenotype. Further experiments revealed that together these mutants represented 13 previously unrecognized ways that the ‘wrinkly spreader’ phenotype can evolve.
The new rare mutants had similar fitness as the previously known, common ones—so this cannot explain why they hadn't been seen before. Lind et al. instead suggest a set of principles to explain why these newly discovered pathways are rarely mutated and how genetic constraints can bias the outcome of evolution. Further work could investigate whether these principles can help us to predict the course of evolution in other biological contexts, such as in the evolution of antibiotic resistance. |
|---|---|
| AbstractList | Replicate populations of natural and experimental organisms often show evidence of parallel genetic evolution, but the causes are unclear. The wrinkly spreader morph of Pseudomonas fluorescens arises repeatedly during experimental evolution. The mutational causes reside exclusively within three pathways. By eliminating these, 13 new mutational pathways were discovered with the newly arising WS types having fitnesses similar to those arising from the commonly passaged routes. Our findings show that parallel genetic evolution is strongly biased by constraints and we reveal the genetic bases. From such knowledge, and in instances where new phenotypes arise via gene activation, we suggest a set of principles: evolution proceeds firstly via pathways subject to negative regulation, then via promoter mutations and gene fusions, and finally via activation by intragenic gain-of-function mutations. These principles inform evolutionary forecasting and have relevance to interpreting the diverse array of mutations associated with clinically identical instances of disease in humans. Replicate populations of natural and experimental organisms often show evidence of parallel genetic evolution, but the causes are unclear. The wrinkly spreader morph of Pseudomonas fluorescens arises repeatedly during experimental evolution. The mutational causes reside exclusively within three pathways. By eliminating these, 13 new mutational pathways were discovered with the newly arising WS types having fitnesses similar to those arising from the commonly passaged routes. Our findings show that parallel genetic evolution is strongly biased by constraints and we reveal the genetic bases. From such knowledge, and in instances where new phenotypes arise via gene activation, we suggest a set of principles: evolution proceeds firstly via pathways subject to negative regulation, then via promoter mutations and gene fusions, and finally via activation by intragenic gain-of-function mutations. These principles inform evolutionary forecasting and have relevance to interpreting the diverse array of mutations associated with clinically identical instances of disease in humans. Different living things often develop similar strategies to adapt to the environments in which they live. Sometimes two species that share a common ancestor independently evolve the same trait by changing the exact same genes. This is called ‘parallel evolution’, and it has led some scientists to ask: are there certain traits that can only evolve in a limited number of ways? Or are there other ways to evolve the same trait that, for some reason, are not explored? Experimentally, investigating these questions is challenging, but parallel evolution occurs in the laboratory as well as in the wild. Many commonly studied organisms—such as fruit flies or bacteria—can be used in relevant studies, because they can be grown in large numbers and then exposed to identical environments. However, if this method fails to find a new way that a trait can evolve, it doesn't mean that alternative mechanisms do not exist. Lind et al. used a different approach that instead relies on removing all of the known pathways that can be mutated to produce a given trait and then seeing if that trait can still evolve via mutations elsewhere. The experiments involved a bacterium called Pseudomonas fluorescens that can evolve to grow flattened and wrinkled colonies (instead of smooth, round ones) when it has to compete for access to oxygen. Previous experiments had shown that the evolution of the so-called ‘wrinkly spreader’ form can be caused by mutations in one of three biological pathways. But P. fluorescens can survive unharmed without these pathways, which enabled Lind et al. to ask if there might be other ways that this trait could evolve. Bacteria without these three pathways were engineered and then grown under oxygen-deprived conditions. This experiment produced 91 new mutants that each had the wrinkly spreader phenotype. Further experiments revealed that together these mutants represented 13 previously unrecognized ways that the ‘wrinkly spreader’ phenotype can evolve. The new rare mutants had similar fitness as the previously known, common ones—so this cannot explain why they hadn't been seen before. Lind et al. instead suggest a set of principles to explain why these newly discovered pathways are rarely mutated and how genetic constraints can bias the outcome of evolution. Further work could investigate whether these principles can help us to predict the course of evolution in other biological contexts, such as in the evolution of antibiotic resistance. Replicate populations of natural and experimental organisms often show evidence of parallel genetic evolution, but the causes are unclear. The wrinkly spreader morph of Pseudomonas fluorescens arises repeatedly during experimental evolution. The mutational causes reside exclusively within three pathways. By eliminating these, 13 new mutational pathways were discovered with the newly arising WS types having fitnesses similar to those arising from the commonly passaged routes. Our findings show that parallel genetic evolution is strongly biased by constraints and we reveal the genetic bases. From such knowledge, and in instances where new phenotypes arise via gene activation, we suggest a set of principles: evolution proceeds firstly via pathways subject to negative regulation, then via promoter mutations and gene fusions, and finally via activation by intragenic gain-of-function mutations. These principles inform evolutionary forecasting and have relevance to interpreting the diverse array of mutations associated with clinically identical instances of disease in humans. DOI: http://dx.doi.org/10.7554/eLife.07074.001 Different living things often develop similar strategies to adapt to the environments in which they live. Sometimes two species that share a common ancestor independently evolve the same trait by changing the exact same genes. This is called ‘parallel evolution’, and it has led some scientists to ask: are there certain traits that can only evolve in a limited number of ways? Or are there other ways to evolve the same trait that, for some reason, are not explored? Experimentally, investigating these questions is challenging, but parallel evolution occurs in the laboratory as well as in the wild. Many commonly studied organisms—such as fruit flies or bacteria—can be used in relevant studies, because they can be grown in large numbers and then exposed to identical environments. However, if this method fails to find a new way that a trait can evolve, it doesn't mean that alternative mechanisms do not exist. Lind et al. used a different approach that instead relies on removing all of the known pathways that can be mutated to produce a given trait and then seeing if that trait can still evolve via mutations elsewhere. The experiments involved a bacterium called Pseudomonas fluorescens that can evolve to grow flattened and wrinkled colonies (instead of smooth, round ones) when it has to compete for access to oxygen. Previous experiments had shown that the evolution of the so-called ‘wrinkly spreader’ form can be caused by mutations in one of three biological pathways. But P. fluorescens can survive unharmed without these pathways, which enabled Lind et al. to ask if there might be other ways that this trait could evolve. Bacteria without these three pathways were engineered and then grown under oxygen-deprived conditions. This experiment produced 91 new mutants that each had the wrinkly spreader phenotype. Further experiments revealed that together these mutants represented 13 previously unrecognized ways that the ‘wrinkly spreader’ phenotype can evolve. The new rare mutants had similar fitness as the previously known, common ones—so this cannot explain why they hadn't been seen before. Lind et al. instead suggest a set of principles to explain why these newly discovered pathways are rarely mutated and how genetic constraints can bias the outcome of evolution. Further work could investigate whether these principles can help us to predict the course of evolution in other biological contexts, such as in the evolution of antibiotic resistance. DOI: http://dx.doi.org/10.7554/eLife.07074.002 Replicate populations of natural and experimental organisms often show evidence of parallel genetic evolution, but the causes are unclear. The wrinkly spreader morph of Pseudomonas fluorescens arises repeatedly during experimental evolution. The mutational causes reside exclusively within three pathways. By eliminating these, 13 new mutational pathways were discovered with the newly arising WS types having fitnesses similar to those arising from the commonly passaged routes. Our findings show that parallel genetic evolution is strongly biased by constraints and we reveal the genetic bases. From such knowledge, and in instances where new phenotypes arise via gene activation, we suggest a set of principles: evolution proceeds firstly via pathways subject to negative regulation, then via promoter mutations and gene fusions, and finally via activation by intragenic gain-of-function mutations. These principles inform evolutionary forecasting and have relevance to interpreting the diverse array of mutations associated with clinically identical instances of disease in humans.DOI: http://dx.doi.org/10.7554/eLife.07074.001 |
| Author | Lind, Peter A Rainey, Paul B Farr, Andrew D |
| Author_xml | – sequence: 1 givenname: Peter A orcidid: 0000-0003-1510-8324 surname: Lind fullname: Lind, Peter A organization: New Zealand Institute for Advanced Study, Massey University, Auckland, New Zealand, Allan Wilson Centre for Molecular Ecology and Evolution, Massey University, Auckland, New Zealand – sequence: 2 givenname: Andrew D surname: Farr fullname: Farr, Andrew D organization: New Zealand Institute for Advanced Study, Massey University, Auckland, New Zealand, Allan Wilson Centre for Molecular Ecology and Evolution, Massey University, Auckland, New Zealand – sequence: 3 givenname: Paul B surname: Rainey fullname: Rainey, Paul B organization: New Zealand Institute for Advanced Study, Massey University, Auckland, New Zealand, Allan Wilson Centre for Molecular Ecology and Evolution, Massey University, Auckland, New Zealand, Max Planck Institute for Evolutionary Biology, Plön, Germany |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25806684$$D View this record in MEDLINE/PubMed https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-118571$$DView record from Swedish Publication Index https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-424788$$DView record from Swedish Publication Index |
| BookMark | eNqNks1v0zAYxiM0xMbYiTuKxAUJMuzEnxekaQw2qRIXQNws13m9unLjYCct_e9x27G1gwO-2LJ_7_M-fuznxVEXOiiKlxidc0rJe5g4C-eII06eFCc1oqhCgvw42lsfF2cpzVEenAiB5bPiuKYCMSbISXF99auH6BbQDdqXsAx-HFzoyghL0D6VM9e20JWtW0JMbliXrnugdFyXvR5mK71OL4qnNhfA2d18Wnz7dPX18rqafPl8c3kxqQwRaKiyZyKRbKy1QrdacmlrgbjhnEnBsNQaajmtuUWoZoYiU1uDa8psQ6bcNqY5LW52um3Qc9Vn69mFCtqp7UaIt0rHwRkPigCh1DS4bakkZsqkAdRkNdQy3OAasta7ndbY9Xq90t7fC2KkNvkq8Dlftc33AU8r6MfpQfOP7vvFtvk4KlITLkTGq__AF6PCWFCOM_9hx2d4Aa3JTxK1Pyg7POncTN2GpSKNpIJtGr65E4jh5whpUAuXDHivOwhjUpjxhkucyYy-foTOwxi7_HAKS8YoytxG8NW-o3srf75PBt7uABNDShHs3_lN9vPDj2jjBr35SPk6zv-z5jeABujX |
| CitedBy_id | crossref_primary_10_1111_mec_13378 crossref_primary_10_1111_eva_13513 crossref_primary_10_21769_BioProtoc_3407 crossref_primary_10_7554_eLife_25100 crossref_primary_10_1128_JB_00110_19 crossref_primary_10_1098_rsfs_2015_0057 crossref_primary_10_1099_mic_0_000938 crossref_primary_10_1128_msystems_00737_22 crossref_primary_10_1093_ve_vez011 crossref_primary_10_7554_eLife_61271 crossref_primary_10_1038_s41467_023_39320_9 crossref_primary_10_1007_s00239_023_10127_y crossref_primary_10_1007_s00239_023_10103_6 crossref_primary_10_1371_journal_pgen_1011572 crossref_primary_10_1098_rspb_2024_2312 crossref_primary_10_1371_journal_pone_0238151 crossref_primary_10_1038_s41522_024_00644_z crossref_primary_10_15252_embr_201846992 crossref_primary_10_1038_s41559_017_0283_7 crossref_primary_10_3389_fmicb_2018_00427 crossref_primary_10_1016_j_plrev_2021_03_004 crossref_primary_10_1128_mbio_00764_22 crossref_primary_10_1371_journal_pone_0152395 crossref_primary_10_1017_S0024282921000256 crossref_primary_10_1099_mic_0_000844 crossref_primary_10_1038_s41598_019_52400_5 crossref_primary_10_7554_eLife_24669 crossref_primary_10_1016_j_tree_2019_03_008 crossref_primary_10_1128_msystems_01053_24 crossref_primary_10_1111_1462_2920_70061 crossref_primary_10_7554_eLife_92899 crossref_primary_10_1016_j_biotechadv_2021_107862 crossref_primary_10_1002_bies_201700069 crossref_primary_10_1038_ncomms13002 crossref_primary_10_7554_eLife_38822 crossref_primary_10_1128_aem_01776_22 crossref_primary_10_1093_femsml_uqad041 crossref_primary_10_1128_AEM_00233_21 crossref_primary_10_1016_j_cpb_2020_100185 crossref_primary_10_3389_fgene_2018_00451 crossref_primary_10_1128_mSphere_00121_18 crossref_primary_10_7554_eLife_09638 crossref_primary_10_1093_jac_dkv475 crossref_primary_10_1016_j_bpj_2022_09_028 crossref_primary_10_1042_BST20200885 crossref_primary_10_1099_mic_0_001323 crossref_primary_10_1038_s41559_017_0385_2 crossref_primary_10_1111_ele_13570 crossref_primary_10_1111_jeb_13722 crossref_primary_10_1111_jeb_13964 crossref_primary_10_1111_mec_14080 crossref_primary_10_1093_molbev_msx247 crossref_primary_10_1128_jb_00185_22 crossref_primary_10_1093_icb_icad106 crossref_primary_10_1111_mmi_13278 crossref_primary_10_1128_jb_00355_23 crossref_primary_10_1038_s41467_021_26286_9 crossref_primary_10_1098_rstb_2022_0043 crossref_primary_10_1016_j_gde_2017_09_003 crossref_primary_10_1111_mec_13389 crossref_primary_10_1093_molbev_msz040 crossref_primary_10_1099_mic_0_001354 crossref_primary_10_1093_femsre_fuw002 crossref_primary_10_1016_j_cub_2023_03_031 crossref_primary_10_1038_s41522_022_00292_1 crossref_primary_10_1186_s12862_018_1266_2 crossref_primary_10_1016_j_cels_2021_08_011 crossref_primary_10_1093_femsle_fnx109 crossref_primary_10_1038_s41559_018_0547_x crossref_primary_10_1093_molbev_msx174 crossref_primary_10_1098_rstb_2022_0055 crossref_primary_10_1038_ismej_2016_157 crossref_primary_10_7554_eLife_51963 crossref_primary_10_1093_molbev_msz155 crossref_primary_10_1093_molbev_msz199 crossref_primary_10_1186_s12862_019_1512_2 crossref_primary_10_1128_MMBR_00008_18 |
| Cites_doi | 10.1046/j.1462-2920.1999.00040.x 10.5962/bhl.title.2141 10.1016/S0076-6879(00)26045-X 10.1093/molbev/msu262 10.1002/bbpc.19940980907 10.1098/rsbl.2010.0547 10.1038/nrg1292 10.1128/JB.05346-11 10.1146/annurev.genet.40.110405.090423 10.1093/genetics/129.3.957 10.1371/journal.pbio.1001490 10.1007/BF02983073 10.1038/nrg3317 10.1016/j.ydbio.2009.04.040 10.1016/S0092-8674(02)00665-7 10.1146/annurev.es.21.110190.002105 10.1093/molbev/msp161 10.1093/genetics/161.1.33 10.1086/414425 10.1534/genetics.112.142620 10.1006/meth.2001.1262 10.1038/27900 10.1038/nprot.2009.2 10.1038/nrg3744 10.1086/509049 10.1080/10409230701495631 10.1038/nature12912 10.1046/j.1365-2958.2003.03670.x 10.1038/nature11514 10.1099/mic.0.2006/002824-0 10.1126/science.1226630 10.1038/nrg3118 10.1038/sj.hdy.6801087 10.1146/annurev.ecolsys.37.091305.110224 10.1093/genetics/148.4.1667 10.1073/pnas.0706739104 10.1371/journal.pgen.1002651 10.7554/eLife.03568 10.1088/1742-5468/2013/01/P01003 10.1534/genetics.106.055863 10.1111/j.1462-2920.2004.00605.x 10.1038/nature13884 10.1098/rstb.2009.0241 10.1016/S0168-9525(01)02447-7 10.1093/molbev/msn025 10.1093/molbev/msp037 10.1073/pnas.1210309109 10.1038/nrg3483 10.1534/genetics.109.107110 10.1038/nrg2063 10.1534/genetics.113.154948 10.1128/JB.62.3.293-300.1951 10.1534/genetics.106.069906 10.1186/gb-2009-10-5-r51 10.1126/science.1214449 10.1126/science.1158997 |
| ContentType | Journal Article |
| Copyright | 2015, Lind et al. This work is licensed under the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/3.0/ ) (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2015, Lind et al 2015 Lind et al |
| Copyright_xml | – notice: 2015, Lind et al. This work is licensed under the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/3.0/ ) (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2015, Lind et al 2015 Lind et al |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM ADHXS ADTPV AOWAS D8T D93 ZZAVC ACNBI DF2 ADTOC UNPAY DOA |
| DOI | 10.7554/eLife.07074 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni Edition) ProQuest Medical Database Science Database (Proquest) Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) SWEPUB Umeå universitet full text SwePub SwePub Articles SWEPUB Freely available online SWEPUB Umeå universitet SwePub Articles full text SWEPUB Uppsala universitet full text SWEPUB Uppsala universitet Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2050-084X |
| ExternalDocumentID | oai_doaj_org_article_4e455c31dd594cb69ce03c120d61312e 10.7554/elife.07074 oai_DiVA_org_uu_424788 oai_DiVA_org_umu_118571 PMC4395868 25806684 10_7554_eLife_07074 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: ; grantid: Marsden Fund Council |
| GroupedDBID | 53G 5VS 7X7 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAKDD AAYXX ABUWG ACGFO ACGOD ACPRK ADBBV ADRAZ AENEX AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI CCPQU CITATION DIK DWQXO EMOBN FYUFA GNUQQ GROUPED_DOAJ GX1 H13 HCIFZ HMCUK HYE IAO IEA IHR INH ISR ITC KQ8 LK8 M1P M2P M48 M7P M~E NQS OK1 PGMZT PHGZM PHGZT PIMPY PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO RHI RNS RPM UKHRP 3V. ALIPV CGR CUY CVF ECM EIF FRP NPM RHF 7XB 8FK K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM ADHXS ADTPV AOWAS D8T D93 INR ZZAVC ACNBI DF2 ADTOC AFFHD UNPAY |
| ID | FETCH-LOGICAL-c480t-55449093fff8ada979f2807c77698619aae29b27f0026c50c2fc1256f34b7f3c3 |
| IEDL.DBID | UNPAY |
| ISSN | 2050-084X |
| IngestDate | Fri Oct 03 12:45:50 EDT 2025 Wed Oct 29 12:17:17 EDT 2025 Tue Sep 09 23:28:23 EDT 2025 Tue Sep 09 23:18:40 EDT 2025 Tue Sep 30 16:50:54 EDT 2025 Sun Aug 24 04:01:20 EDT 2025 Tue Oct 07 06:45:36 EDT 2025 Thu Jan 02 22:20:51 EST 2025 Wed Oct 01 03:49:52 EDT 2025 Thu Apr 24 22:55:48 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | diguanylate cyclase parallel evolution evolutionary biology genetic constraint bacterial evolution genomics Pseudomonas fluorescens evolutionary rules |
| Language | English |
| License | http://creativecommons.org/licenses/by/4.0 This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c480t-55449093fff8ada979f2807c77698619aae29b27f0026c50c2fc1256f34b7f3c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden. |
| ORCID | 0000-0003-1510-8324 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.7554/elife.07074 |
| PMID | 25806684 |
| PQID | 1966507918 |
| PQPubID | 2045579 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_4e455c31dd594cb69ce03c120d61312e unpaywall_primary_10_7554_elife_07074 swepub_primary_oai_DiVA_org_uu_424788 swepub_primary_oai_DiVA_org_umu_118571 pubmedcentral_primary_oai_pubmedcentral_nih_gov_4395868 proquest_miscellaneous_1673791683 proquest_journals_1966507918 pubmed_primary_25806684 crossref_primary_10_7554_eLife_07074 crossref_citationtrail_10_7554_eLife_07074 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2015-03-25 |
| PublicationDateYYYYMMDD | 2015-03-25 |
| PublicationDate_xml | – month: 03 year: 2015 text: 2015-03-25 day: 25 |
| PublicationDecade | 2010 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England – name: Cambridge |
| PublicationTitle | eLife |
| PublicationTitleAlternate | Elife |
| PublicationYear | 2015 |
| Publisher | eLife Sciences Publications Ltd eLife Sciences Publications, Ltd |
| Publisher_xml | – name: eLife Sciences Publications Ltd – name: eLife Sciences Publications, Ltd |
| References | McAdams (bib35) 2004; 5 Drake (bib9) 1998; 148 Vogwill (bib54) 2014; 31 McDonald (bib36) 2011; 7 Lawrence (bib29) 2014; 505 Brakefield (bib4) 2006; 168 Herron (bib23) 2013; 11 Rainey (bib44) 1999; 1 Goymer (bib19) 2006; 173 Jost (bib25) 2008; 25 Spiers (bib49) 2003; 50 Meyer (bib38) 2012; 335 Yates (bib56) 2012; 13 Bantinaki (bib1) 2007; 176 Jenal (bib24) 2006; 40 Neher (bib41) 2014; 3 Kelley (bib26) 2009; 4 McDonald (bib37) 2009; 183 Ferguson (bib12) 2013; 195 Drake (bib8) 2007; 42 Desai (bib7) 2013 Manoil (bib34) 2000; 326 Stern (bib51) 2013; 14 King (bib27) 1954; 44 Smith (bib48) 1985; 60 Bull (bib5) 2008; 100 Spiers (bib50) 2002; 161 Roy (bib46) 2012; 194 Gerstein (bib15) 2012; 192 Heineman (bib22) 2009; 26 Lee (bib30) 2012; 109 Moran (bib40) 2002; 108 Blount (bib3) 2012; 489 Hansen (bib21) 2006; 37 Silby (bib47) 2009; 10 Pigliucci (bib43) 2010; 365 Wray (bib55) 2007; 8 Gompel (bib18) 2009; 332 Ninio (bib42) 1991; 129 de Visser (bib6) 2014; 15 Lambertsen (bib28) 2004; 6 Livak (bib32) 2001; 25 Flowers (bib13) 2009; 26 Zhen (bib57) 2012; 337 Mira (bib39) 2001; 17 Stern (bib52) 2009; 323 Hammerschmidt (bib20) 2014; 515 Rainey (bib45) 1998; 394 Geoffroy Saint-Hilaire (bib14) 1818 Giddens (bib17) 2007; 104 Lee (bib31) 2012; 8 Vavilov (bib53) 1922; 12 Gibson (bib16) 2011; 13 Ellington (bib11) 1994; 98 Malone (bib33) 2007; 153 Bertani (bib2) 1951; 62 Dykhuizen (bib10) 1990; 21 19197055 - Science. 2009 Feb 6;323(5915):746-51 23431270 - PLoS Biol. 2013;11(2):e1001490 18258611 - Mol Biol Evol. 2008 Jun;25(6):1016-24 19704015 - Genetics. 2009 Nov;183(3):1041-53 13184240 - J Lab Clin Med. 1954 Aug;44(2):301-7 19433086 - Dev Biol. 2009 Aug 1;332(1):36-47 14888646 - J Bacteriol. 1951 Sep;62(3):293-300 14507360 - Mol Microbiol. 2003 Oct;50(1):15-27 17379708 - Microbiology. 2007 Apr;153(Pt 4):980-94 17989226 - Proc Natl Acad Sci U S A. 2007 Nov 13;104(46):18247-52 25228081 - Mol Biol Evol. 2014 Dec;31(12):3314-23 19264970 - Mol Biol Evol. 2009 Jun;26(6):1289-98 22282803 - Science. 2012 Jan 27;335(6067):428-32 24390350 - Nature. 2014 Jan 23;505(7484):495-501 16624907 - Genetics. 2006 Jun;173(2):515-26 24077305 - Genetics. 2013 Dec;195(4):1319-35 17304246 - Nat Rev Genet. 2007 Mar;8(3):206-16 22589730 - PLoS Genet. 2012;8(5):e1002651 16895465 - Annu Rev Genet. 2006;40:385-407 17687667 - Crit Rev Biochem Mol Biol. 2007 Jul-Aug;42(4):247-58 25373677 - Nature. 2014 Nov 6;515(7525):75-9 25385532 - Elife. 2014;3. doi: 10.7554/eLife.03568 22992527 - Nature. 2012 Sep 27;489(7417):513-8 22493016 - J Bacteriol. 2012 Jun;194(11):2904-15 14970819 - Nat Rev Genet. 2004 Mar;5(3):169-78 9560386 - Genetics. 1998 Apr;148(4):1667-86 20659918 - Biol Lett. 2011 Feb 23;7(1):98-100 22714405 - Genetics. 2012 Sep;192(1):241-52 24913663 - Nat Rev Genet. 2014 Jul;15(7):480-90 19625391 - Mol Biol Evol. 2009 Nov;26(11):2475-86 18212807 - Heredity (Edinb). 2008 May;100(5):453-63 19432983 - Genome Biol. 2009;10(5):R51 11585665 - Trends Genet. 2001 Oct;17(10):589-96 11893328 - Cell. 2002 Mar 8;108(5):583-6 19247286 - Nat Protoc. 2009;4(3):363-71 15186351 - Environ Microbiol. 2004 Jul;6(7):726-32 11846609 - Methods. 2001 Dec;25(4):402-8 17339222 - Genetics. 2007 May;176(1):441-53 1752431 - Genetics. 1991 Nov;129(3):957-62 23044827 - Nat Rev Genet. 2012 Nov;13(11):795-806 24105273 - Nat Rev Genet. 2013 Nov;14(11):751-64 17109328 - Am Nat. 2006 Dec;168 Suppl 6:S4-13 23019645 - Science. 2012 Sep 28;337(6102):1634-7 11036633 - Methods Enzymol. 2000;326:35-47 9665128 - Nature. 1998 Jul 2;394(6688):69-72 22991466 - Proc Natl Acad Sci U S A. 2012 Oct 9;109(41):E2774-83 11207743 - Environ Microbiol. 1999 Jun;1(3):243-57 22251874 - Nat Rev Genet. 2011 Feb;13(2):135-45 20083632 - Philos Trans R Soc Lond B Biol Sci. 2010 Feb 27;365(1540):557-66 12019221 - Genetics. 2002 May;161(1):33-46 |
| References_xml | – volume: 1 start-page: 243 year: 1999 ident: bib44 article-title: Adaptation of Pseudomonas fluorescens to the plant rhizosphere publication-title: Environmental Microbiology doi: 10.1046/j.1462-2920.1999.00040.x – volume-title: Philosophie anatomique year: 1818 ident: bib14 doi: 10.5962/bhl.title.2141 – volume: 326 start-page: 35 year: 2000 ident: bib34 article-title: Tagging exported proteins using Escherichia coli alkaline phosphatase gene fusions publication-title: Methods in Enzymology doi: 10.1016/S0076-6879(00)26045-X – volume: 31 start-page: 3314 year: 2014 ident: bib54 article-title: Testing the role of genetic background in parallel evolution using the comparative experimental evolution of antibiotic resistance publication-title: Molecular Biology and Evolution doi: 10.1093/molbev/msu262 – volume: 98 start-page: 1115 year: 1994 ident: bib11 article-title: Empirical explorations of sequence space–host–guest chemistry in the RNA world publication-title: Berichte Der Bunsen-Gesellschaft-Physical Chemistry Chemical Physics doi: 10.1002/bbpc.19940980907 – volume: 7 start-page: 98 year: 2011 ident: bib36 article-title: The distribution of fitness effects of new beneficial mutations in Pseudomonas fluorescens publication-title: Biology Letters doi: 10.1098/rsbl.2010.0547 – volume: 5 start-page: 169 year: 2004 ident: bib35 article-title: The evolution of genetic regulatory systems in bacteria publication-title: Nature Reviews Genetics doi: 10.1038/nrg1292 – volume: 194 start-page: 2904 year: 2012 ident: bib46 article-title: The phosphodiesterase DipA (PA5017) is essential for Pseudomonas aeruginosa biofilm dispersion publication-title: Journal of Bacteriology doi: 10.1128/JB.05346-11 – volume: 40 start-page: 385 year: 2006 ident: bib24 article-title: Mechanisms of cyclic-di-GMP signaling in bacteria publication-title: Annual Review of Genetics doi: 10.1146/annurev.genet.40.110405.090423 – volume: 129 start-page: 957 year: 1991 ident: bib42 article-title: Transient mutators: a semiquantitative analysis of the influence of translation and transcription errors on mutation rates publication-title: Genetics doi: 10.1093/genetics/129.3.957 – volume: 11 start-page: e1001490 year: 2013 ident: bib23 article-title: Parallel evolutionary dynamics of adaptive diversification in Escherichia coli publication-title: PLOS Biology doi: 10.1371/journal.pbio.1001490 – volume: 12 start-page: 47 year: 1922 ident: bib53 article-title: The law of homologous series in variation publication-title: Journal of Genetics doi: 10.1007/BF02983073 – volume: 13 start-page: 795 year: 2012 ident: bib56 article-title: Evolution of the cancer genome publication-title: Nature Reviews Genetics doi: 10.1038/nrg3317 – volume: 332 start-page: 36 year: 2009 ident: bib18 article-title: The causes of repeated genetic evolution publication-title: Developmental Biology doi: 10.1016/j.ydbio.2009.04.040 – volume: 108 start-page: 583 year: 2002 ident: bib40 article-title: Microbial minimalism: genome reduction in bacterial pathogens publication-title: Cell doi: 10.1016/S0092-8674(02)00665-7 – volume: 44 start-page: 301 year: 1954 ident: bib27 article-title: Two simple media for the demonstration of pyocyanin and fluorescin publication-title: The Journal of Laboratory and Clinical Medicine – volume: 21 start-page: 373 year: 1990 ident: bib10 article-title: Experimental studies of natural selection in bacteria publication-title: Annual Review of Ecology and Systematics doi: 10.1146/annurev.es.21.110190.002105 – volume: 26 start-page: 2475 year: 2009 ident: bib13 article-title: Population genomics of the Arabidopsis thaliana flowering time gene network publication-title: Molecular Biology and Evolution doi: 10.1093/molbev/msp161 – volume: 161 start-page: 33 year: 2002 ident: bib50 article-title: Adaptive divergence in experimental populations of Pseudomonas fluorescens. I. Genetic and phenotypic bases of wrinkly spreader fitness publication-title: Genetics doi: 10.1093/genetics/161.1.33 – volume: 60 start-page: 265 year: 1985 ident: bib48 article-title: Developmental constraints and evolution publication-title: Quarterly Review of Biology doi: 10.1086/414425 – volume: 192 start-page: 241 year: 2012 ident: bib15 article-title: Parallel genetic changes and nonparallel gene-environment interactions characterize the evolution of drug resistance in yeast publication-title: Genetics doi: 10.1534/genetics.112.142620 – volume: 25 start-page: 402 year: 2001 ident: bib32 article-title: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method publication-title: Methods doi: 10.1006/meth.2001.1262 – volume: 394 start-page: 69 year: 1998 ident: bib45 article-title: Adaptive radiation in a heterogeneous environment publication-title: Nature doi: 10.1038/27900 – volume: 4 start-page: 363 year: 2009 ident: bib26 article-title: Protein structure prediction on the Web: a case study using the Phyre server publication-title: Nature Protocols doi: 10.1038/nprot.2009.2 – volume: 15 start-page: 480 year: 2014 ident: bib6 article-title: Empirical fitness landscapes and the predictability of evolution publication-title: Nature Reviews Genetics doi: 10.1038/nrg3744 – volume: 168 start-page: S4 year: 2006 ident: bib4 article-title: Exploring evolutionary constraints is a task for an integrative evolutionary biology publication-title: The American Naturalist doi: 10.1086/509049 – volume: 42 start-page: 247 year: 2007 ident: bib8 article-title: Too many mutants with multiple mutations publication-title: Critical Reviews in Biochemistry and Molecular Biology doi: 10.1080/10409230701495631 – volume: 505 start-page: 495 year: 2014 ident: bib29 article-title: Discovery and saturation analysis of cancer genes across 21 tumour types publication-title: Nature doi: 10.1038/nature12912 – volume: 50 start-page: 15 year: 2003 ident: bib49 article-title: Biofilm formation at the air-liquid interface by the Pseudomonas fluorescens SBW25 wrinkly spreader requires an acetylated form of cellulose publication-title: Molecular Microbiology doi: 10.1046/j.1365-2958.2003.03670.x – volume: 489 start-page: 513 year: 2012 ident: bib3 article-title: Genomic analysis of a key innovation in an experimental Escherichia coli population publication-title: Nature doi: 10.1038/nature11514 – volume: 153 start-page: 980 year: 2007 ident: bib33 article-title: The structure-function relationship of WspR, a Pseudomonas fluorescens response regulator with a GGDEF output domain publication-title: Microbiology doi: 10.1099/mic.0.2006/002824-0 – volume: 337 start-page: 1634 year: 2012 ident: bib57 article-title: Parallel molecular evolution in an herbivore community publication-title: Science doi: 10.1126/science.1226630 – volume: 13 start-page: 135 year: 2011 ident: bib16 article-title: Rare and common variants: twenty arguments publication-title: Nature Reviews Genetics doi: 10.1038/nrg3118 – volume: 100 start-page: 453 year: 2008 ident: bib5 article-title: Predicting evolution from genomics: experimental evolution of bacteriophage T7 publication-title: Heredity doi: 10.1038/sj.hdy.6801087 – volume: 37 start-page: 123 year: 2006 ident: bib21 article-title: The evolution of genetic architecture publication-title: Annual Review of Ecology Evolution and Systematics doi: 10.1146/annurev.ecolsys.37.091305.110224 – volume: 148 start-page: 1667 year: 1998 ident: bib9 article-title: Rates of spontaneous mutation publication-title: Genetics doi: 10.1093/genetics/148.4.1667 – volume: 104 start-page: 18247 year: 2007 ident: bib17 article-title: Mutational activation of niche-specific genes provides insight into regulatory networks and bacterial function in a complex environment publication-title: Proceedings of the National Academy of Sciences of USA doi: 10.1073/pnas.0706739104 – volume: 8 start-page: e1002651 year: 2012 ident: bib31 article-title: Repeated, selection-driven genome reduction of accessory genes in experimental populations publication-title: PLOS Genetics doi: 10.1371/journal.pgen.1002651 – volume: 3 start-page: e03568 year: 2014 ident: bib41 article-title: Predicting evolution from the shape of genealogical trees publication-title: eLife doi: 10.7554/eLife.03568 – year: 2013 ident: bib7 article-title: Statistical questions in experimental evolution publication-title: Journal of Statistical Mechanics-Theory and Experiment doi: 10.1088/1742-5468/2013/01/P01003 – volume: 173 start-page: 515 year: 2006 ident: bib19 article-title: Adaptive divergence in experimental populations of Pseudomonas fluorescens. II. Role of the GGDEF regulator WspR in evolution and development of the wrinkly spreader phenotype publication-title: Genetics doi: 10.1534/genetics.106.055863 – volume: 6 start-page: 726 year: 2004 ident: bib28 article-title: Mini-Tn7 transposons for site-specific tagging of bacteria with fluorescent proteins publication-title: Environmental Microbiology doi: 10.1111/j.1462-2920.2004.00605.x – volume: 515 start-page: 75 year: 2014 ident: bib20 article-title: Life cycles, fitness decoupling and the evolution of multicellularity publication-title: Nature doi: 10.1038/nature13884 – volume: 365 start-page: 557 year: 2010 ident: bib43 article-title: Genotype-phenotype mapping and the end of the 'genes as blueprint' metaphor publication-title: Philosophical Transactions of the Royal Society of London Series B, Biological Sciences doi: 10.1098/rstb.2009.0241 – volume: 17 start-page: 589 year: 2001 ident: bib39 article-title: Deletional bias and the evolution of bacterial genomes publication-title: Trends in Genetics doi: 10.1016/S0168-9525(01)02447-7 – volume: 25 start-page: 1016 year: 2008 ident: bib25 article-title: Toxin-resistant sodium channels: parallel adaptive evolution across a complete gene family publication-title: Molecular Biology and Evolution doi: 10.1093/molbev/msn025 – volume: 26 start-page: 1289 year: 2009 ident: bib22 article-title: Layers of evolvability in a bacteriophage life history trait publication-title: Molecular Biology and Evolution doi: 10.1093/molbev/msp037 – volume: 109 start-page: E2774 year: 2012 ident: bib30 article-title: Rate and molecular spectrum of spontaneous mutations in the bacterium Escherichia coli as determined by whole-genome sequencing publication-title: Proceedings of the National Academy of Sciences of USA doi: 10.1073/pnas.1210309109 – volume: 14 start-page: 751 year: 2013 ident: bib51 article-title: The genetic causes of convergent evolution publication-title: Nature Reviews Genetics doi: 10.1038/nrg3483 – volume: 183 start-page: 1041 year: 2009 ident: bib37 article-title: Adaptive divergence in experimental populations of Pseudomonas fluorescens. IV. Genetic constraints guide evolutionary trajectories in a parallel adaptive radiation publication-title: Genetics doi: 10.1534/genetics.109.107110 – volume: 8 start-page: 206 year: 2007 ident: bib55 article-title: The evolutionary significance of cis-regulatory mutations publication-title: Nature Reviews Genetics doi: 10.1038/nrg2063 – volume: 195 start-page: 1319 year: 2013 ident: bib12 article-title: Adaptive divergence in experimental populations of Pseudomonas fluorescens. V. Insight into the niche specialist fuzzy spreader compels revision of the model Pseudomonas radiation publication-title: Genetics doi: 10.1534/genetics.113.154948 – volume: 62 start-page: 293 year: 1951 ident: bib2 article-title: Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli publication-title: Journal of Bacteriology doi: 10.1128/JB.62.3.293-300.1951 – volume: 176 start-page: 441 year: 2007 ident: bib1 article-title: Adaptive divergence in experimental populations of Pseudomonas fluorescens. III. Mutational origins of wrinkly spreader diversity publication-title: Genetics doi: 10.1534/genetics.106.069906 – volume: 10 start-page: R51 year: 2009 ident: bib47 article-title: Genomic and genetic analyses of diversity and plant interactions of Pseudomonas fluorescens publication-title: Genome Biology doi: 10.1186/gb-2009-10-5-r51 – volume: 335 start-page: 428 year: 2012 ident: bib38 article-title: Repeatability and contingency in the evolution of a key innovation in phage lambda publication-title: Science doi: 10.1126/science.1214449 – volume: 323 start-page: 746 year: 2009 ident: bib52 article-title: Is genetic evolution predictable? publication-title: Science doi: 10.1126/science.1158997 – reference: 11893328 - Cell. 2002 Mar 8;108(5):583-6 – reference: 24390350 - Nature. 2014 Jan 23;505(7484):495-501 – reference: 17989226 - Proc Natl Acad Sci U S A. 2007 Nov 13;104(46):18247-52 – reference: 25228081 - Mol Biol Evol. 2014 Dec;31(12):3314-23 – reference: 19264970 - Mol Biol Evol. 2009 Jun;26(6):1289-98 – reference: 24077305 - Genetics. 2013 Dec;195(4):1319-35 – reference: 20659918 - Biol Lett. 2011 Feb 23;7(1):98-100 – reference: 22493016 - J Bacteriol. 2012 Jun;194(11):2904-15 – reference: 23044827 - Nat Rev Genet. 2012 Nov;13(11):795-806 – reference: 23019645 - Science. 2012 Sep 28;337(6102):1634-7 – reference: 11585665 - Trends Genet. 2001 Oct;17(10):589-96 – reference: 22992527 - Nature. 2012 Sep 27;489(7417):513-8 – reference: 14507360 - Mol Microbiol. 2003 Oct;50(1):15-27 – reference: 25385532 - Elife. 2014;3. doi: 10.7554/eLife.03568 – reference: 17339222 - Genetics. 2007 May;176(1):441-53 – reference: 1752431 - Genetics. 1991 Nov;129(3):957-62 – reference: 16624907 - Genetics. 2006 Jun;173(2):515-26 – reference: 19247286 - Nat Protoc. 2009;4(3):363-71 – reference: 22991466 - Proc Natl Acad Sci U S A. 2012 Oct 9;109(41):E2774-83 – reference: 19432983 - Genome Biol. 2009;10(5):R51 – reference: 23431270 - PLoS Biol. 2013;11(2):e1001490 – reference: 22589730 - PLoS Genet. 2012;8(5):e1002651 – reference: 11036633 - Methods Enzymol. 2000;326:35-47 – reference: 9665128 - Nature. 1998 Jul 2;394(6688):69-72 – reference: 24105273 - Nat Rev Genet. 2013 Nov;14(11):751-64 – reference: 13184240 - J Lab Clin Med. 1954 Aug;44(2):301-7 – reference: 16895465 - Annu Rev Genet. 2006;40:385-407 – reference: 25373677 - Nature. 2014 Nov 6;515(7525):75-9 – reference: 19433086 - Dev Biol. 2009 Aug 1;332(1):36-47 – reference: 19704015 - Genetics. 2009 Nov;183(3):1041-53 – reference: 9560386 - Genetics. 1998 Apr;148(4):1667-86 – reference: 17304246 - Nat Rev Genet. 2007 Mar;8(3):206-16 – reference: 19625391 - Mol Biol Evol. 2009 Nov;26(11):2475-86 – reference: 15186351 - Environ Microbiol. 2004 Jul;6(7):726-32 – reference: 17687667 - Crit Rev Biochem Mol Biol. 2007 Jul-Aug;42(4):247-58 – reference: 19197055 - Science. 2009 Feb 6;323(5915):746-51 – reference: 22282803 - Science. 2012 Jan 27;335(6067):428-32 – reference: 22714405 - Genetics. 2012 Sep;192(1):241-52 – reference: 14970819 - Nat Rev Genet. 2004 Mar;5(3):169-78 – reference: 11846609 - Methods. 2001 Dec;25(4):402-8 – reference: 17379708 - Microbiology. 2007 Apr;153(Pt 4):980-94 – reference: 24913663 - Nat Rev Genet. 2014 Jul;15(7):480-90 – reference: 11207743 - Environ Microbiol. 1999 Jun;1(3):243-57 – reference: 20083632 - Philos Trans R Soc Lond B Biol Sci. 2010 Feb 27;365(1540):557-66 – reference: 14888646 - J Bacteriol. 1951 Sep;62(3):293-300 – reference: 17109328 - Am Nat. 2006 Dec;168 Suppl 6:S4-13 – reference: 12019221 - Genetics. 2002 May;161(1):33-46 – reference: 18212807 - Heredity (Edinb). 2008 May;100(5):453-63 – reference: 18258611 - Mol Biol Evol. 2008 Jun;25(6):1016-24 – reference: 22251874 - Nat Rev Genet. 2011 Feb;13(2):135-45 |
| SSID | ssj0000748819 |
| Score | 2.396959 |
| Snippet | Replicate populations of natural and experimental organisms often show evidence of parallel genetic evolution, but the causes are unclear. The wrinkly spreader... |
| SourceID | doaj unpaywall swepub pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| SubjectTerms | bacterial evolution Bias Biological Evolution c-di-GMP diguanylate cyclase Directed Molecular Evolution Evolution Evolution & development evolutionary rule evolutionary rules Experiments Gene Fusion genetic constraint Genetic Fitness Genomes Genomics and Evolutionary Biology Mutation Mutation - genetics parallel evolution Phenotype Population Promoter Regions, Genetic - genetics Pseudomonas fluorescens - genetics Pseudomonas fluorescens SBW25 RNA, Messenger - genetics RNA, Messenger - metabolism Transcription, Genetic |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hSgg4IN6EFhSklgNSaOL4eSzQaoUQJ4p6sxw_1JW2adVuqPbfd-xkw0at4MI1mST252_sGcX-BmCX1NwbymhhvBBFPElVmErwgjn0rtJVUtik9vmDz47ptxN2slHqK-4J6-WBe-D2qaeM2bpyjilqG65igStbkdLhQlQRH2ffUqqNZCrNwQKJWan-QJ7AJXPff58H_ymK29DJEpSU-u8KL2_vkhy0RB_Bg669MKtrs1hsrEVHT-DxEETmB33jn8I93z6D-31ZydVzmB1uyPbn_vfArjyqNSHb8tMoG9Lmbr0lI5-3f6zM5SqPZYqvzerqBRwfHf78MiuGigmFpbJcFthRqkpVhxCkcUYJFaLajRWCK4mpkjGeqIaIEFMvy0pLAkLJeKhpI0Jt65ew1Z63_jXkEi0aBD5I1VBreeNs8LUK3Anifagz-LgGUdtBTjxWtVhoTCsi4johrhPiGeyOxhe9isbdZp_jaIwmUfo6XUBC6IEQ-l-EyGBnPZZ68McrjfMMhqJCVTKD9-Nt9KT4e8S0_rxDm1iyB6NliX171Q_92BLCJMZmElsoJqSYNHV6p52fJrVujPiY5PjdDz19Jo98nf86SL3rzjpMxiQTVQZ7fzXsNHqUkPjCvZGGt0FdjKC--R-gbsNDjBRZ3HxH2A5sLS87_xajsWXzLjneDczPNaY priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB6VrRBwQLxZKChILQektHnYsX1AqIWtVgitEKKot8jxg660ZJfthmr_PTN5tatWvSaTxB7PZD4n9vcB7CZp5jTjLNROiJB2UoU6FlnILWZXZGMpTM32OcnGJ-zrKT_dgkm3F4aWVXbvxPpFbeeGvpEfYKQgmBAqlp8Wf0NSjaK_q52Ehm6lFezHmmLsDmwnxIw1gO2j0eT7j_6rCxZMiTWw2agnsJQeuG9T7_aJ9IZtlKaawf8m2Hl99WTLMfoA7lXlQq8v9Gx2pUYdP4KHLbgMDptoeAxbrnwCdxu5yfVTGI-u0PkH7l8bdQGxOGEUBmdEJ1IGtluqEUzLSyu9XAckX3yh1-fP4OR49PPzOGyVFELDZLQKsaNMRSr13ktttRLKEwuOESJTEqdQWrtEFYnwNCUzPDKJN4h8Mp-yQvjUpM9hUM5L9xICiRYFN6mXqmDGZIU13qXKZ1Ykzvl0CB86J-ampRkntYtZjtMN8nheezyvPT6E3d540bBr3Gx2RKPRmxAldn1gvvydtxmWM8c4tiu2litmikyREhr2IrKIWOLEDWGnG8u8zdPz_DKqhvCuP40ZRr9NdOnmFdqQlA-iaIl9e9EMfd-ShEvEbBJbKDaCYqOpm2fK6VnN4o1IkMsMn_u-CZ-NS75Mfx3Wvav-VDhJk1zEQ9i71bDKMdOExBvu9WF43amz3qmvbvfHa7iP2JDTcruE78BgtazcG8Rfq-Jtm1T_AbKyNCE priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIgQcKt6EFhSklgNSljzs2D5VLbRaIeDEor1FjmO3K4Vs2W4o-feMnQcNXSGu8SSxxzP2N4rzfQD7cZJqSSgJpGYssH9SBTJiaUALzK6wiDhTju3zSzqdkY9zOt-CXoyzc-DlxtLO6knNVuXk14_mEBMe8euE4W74Tn9aGD2xvDXkFtzGLUpYDYfPHc53SzLDOHUiH3FIHZfpvP1X7-_7R7uTI_HfhDxvHqDsaEbvw926upDNlSzLa9vU6QPY6fClf9QGxEPY0tUjuNMqTjaPYXpyjdHf1z-7wPMtkRM6xD-3jCKVX_SnNfxF9cdKrhrfKhhfyebyCcxOT76-nwadmEKgCA_XAQ6UiFAkxhguCymYMJYIRzGWCo5VlJQ6FnnMjK3KFA1VbBSCn9QkJGcmUclT2K6WlX4OPkeLnKrEcJETpdK8UEYnwqQFi7U2iQdveydmqmMat4IXZYYVh_V45jyeOY97sD8YX7QEG5vNju1sDCaWFdtdWK7Osi7JMqIJxX5FRUEFUXkqrBgajiIsELREsfZgr5_LrI-0DJcgRKlMRNyD10MzJpn9ciIrvazRxqr5IJDmOLZn7dQPPYkpR9jGsYdsFBSjro5bqsW5I_JGMEh5iu9904bP6JYPi29HbnT19xrrNE5Z5MHBPw3rDJONcXzgwRCGN51aDk598b8v3oV7CBSpPXsX0z3YXq9q_RLB2Dp_5RLtN5PRNmo priority: 102 providerName: Scholars Portal |
| Title | Experimental evolution reveals hidden diversity in evolutionary pathways |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/25806684 https://www.proquest.com/docview/1966507918 https://www.proquest.com/docview/1673791683 https://pubmed.ncbi.nlm.nih.gov/PMC4395868 https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-118571 https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-424788 https://doi.org/10.7554/elife.07074 https://doaj.org/article/4e455c31dd594cb69ce03c120d61312e |
| UnpaywallVersion | publishedVersion |
| Volume | 4 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2050-084X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000748819 issn: 2050-084X databaseCode: KQ8 dateStart: 20120101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2050-084X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000748819 issn: 2050-084X databaseCode: KQ8 dateStart: 20130101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2050-084X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000748819 issn: 2050-084X databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVBFR databaseName: Free Medical Journals at publisher websites customDbUrl: eissn: 2050-084X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000748819 issn: 2050-084X databaseCode: DIK dateStart: 20120101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 2050-084X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000748819 issn: 2050-084X databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2050-084X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000748819 issn: 2050-084X databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2050-084X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000748819 issn: 2050-084X databaseCode: RPM dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2050-084X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000748819 issn: 2050-084X databaseCode: BENPR dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Health & Medical Collection customDbUrl: eissn: 2050-084X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000748819 issn: 2050-084X databaseCode: 7X7 dateStart: 20120101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 2050-084X dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0000748819 issn: 2050-084X databaseCode: M48 dateStart: 20121201 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED9trRDwwPdHYFRBbDxMSsmHHduPHetUIagmRFF5ihzH1ipCNm0NU_nrOeeLdpuAlzzE5-R8vot_ju3fAeyGUawlocSTmjHPnqTyZMBij2YYXX4WcKYqts9pPJmRD3M634I37VmYtfV7hiPdO50vjB5aThqyDf2YIuDuQX82PR59s2njfFoxk87rk3dXa2yMNRUl_0048vp2yIY09C7cLoszubqUeb426Bzdh8NW3XqvyfdhuUyH6tcVJsd_tOcB3GtApzuqveQhbOniEdyq01CuHsNkvEbz7-qfjTe6lt0JvdM9sTQjhZu1WzjcRfFHSp6vXJvW-FKuLp7A7Gj85f3EazIseIpwf-mhRkT4IjLGcJlJwYSx7DiKsVhwnFpJqUORhszYqZqivgqNQkQUm4ikzEQqegq94rTQz8HlKJFSFRkuUqJUnGbK6EiYOGOh1iZyYL_ti0Q19OM2C0ae4DTEmibRH9E0SWUaB3Y74bOadeNmsQPbqZ2IpcqubqDFkybyEqIJRb2CLKOCqDQWNkMatsLPEMkEoXZgp3WJpInfiwS_SwhdmQi4A6-7Yow8u5wiC31aooxN8YPommPbntUe1GkSUo5YjqOGbMO3NlTdLCkWJxW7NyJEymN879vaCzeqHC6-jqrWlT9KnLxxygIH9v4qWCYYgYzjA_c6b75u1Lwz6ov_lHsJdxA8UrsfL6Q70Fuel_oVArRlOoBtNmcD6B-Mp8efB9VvDrx-InzQhO5v5hlAkQ |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4am9DgAXGnMCBIKw9IYU1ix_bDhDbWqWOlQmhDewuOL6xSSUvbUPXP8ds4zm2rNu1tr81pYh-fY38nsb8PYDuMYiMJJb40jPnuJJUvAxb7VGN2dXTAmSrYPgdx75R8OaNna_CvPgvjtlXWc2IxUeuxcu_IdzBSEEwwEfBPkz--U41yX1drCQ1ZSSvo3YJirDrYcWyWCyzhZrtHBzje7TA87J587vmVyoCvCO_MfVxPicC63lrLpZaCCesYYhRjseBYXkhpQpGGzLpyRdGOCq1CVBDbiKTMRirC-96BDRIRgcXfxn538O1785YHF2iOa255MJDho3ZMf2jNR0eyQ1aWwkIx4DqYe3W3ZsVpeh8282wilws5Gl1aEw8fwoMKzHp7ZfQ9gjWTPYa7pbzl8gn0upfkAzzzt4pyz7FGYdR7546-JPN0vTXEG2YXVnK69Jxc8kIuZ0_h9FZ8-gzWs3FmXoDH0SKlKrJcpESpONXKmkjYWLPQGBu14EPtxERVtOZOXWOUYHnjPJ4UHk8Kj7dguzGelGwe15vtu9FoTBwFd_HDePorqTI6IYZQbFegNRVEpbFwymvYi45GhBSEpgVb9Vgm1bwwSy6iuAXvmsuY0e4zjczMOEcbJx2EqJ1j356XQ9-0JKQcMSLHFrKVoFhp6uqVbHhesIYj8qQ8xue-L8Nn5S8Hwx97Re_y3zkWhZyyoAXtGw3zBDObcbxhuwnDq04dNU59ebM_3sJm7-RrP-kfDY5fwT3EpdRt9QvpFqzPp7l5jdhvnr6pEsyDn7ed0_8BCj5v9Q |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NIb4eEN8EBgRp5QEptEns2H5AaNBVHZsmHhjqW3Acm1UqaWkbqvxr_HWc87VFm_a21-aa2Oc7311y_v0AdoMw0pJQ4knNmGdPUnnSZ5FHU_SuQepzpkq0z-NofEK-TuhkC_41Z2FsW2WzJ5YbdTpX9h15Hy0FkwkmfN43dVvEt-Ho0-KPZxmk7JfWhk6jMpFDXWywfFt9PBjiWveCYLT__cvYqxkGPEX4YO1hLCUCa3pjDJepFEwYiw6jGIsEx9JCSh2IJGDGliqKDlRgFGYEkQlJwkyoQrzvDbjJwlDYdkI2Ye37HQzNHKNtdSSQ4YP6-mhq9AcLr0M6QbDkCrgswb3Yp1mjmd6DO3m2kMVGzmbnouHoAdyv01h3r7K7h7Cls0dwqyK2LB7DeP8ccYCr_9b27Vq8KLR399QCl2Ru2jSFuNPsTEouC9cSJW9ksXoCJ9ei0aewnc0z_RxcjhIJVaHhIiFKRUmqjA6FiVIWaG1CB943SoxVDWhueTVmMRY2VuNxqfG41LgDu63wosLxuFzss12NVsSCb5c_zJe_4tqXY6IJxXH5aUoFUUkkLOcazmKQYm7kB9qBnWYt43pHWMVn9uvA2_Yy-rL9QCMzPc9RxpIGYb7OcW7PqqVvRxJQjtkhxxGyjlF0htq9kk1PS7xwzDkpj_C57yrz6fxlOP2xV84u_51jOcgp8x3oXSmYx-jTjOMNe60ZXlTqrFXqi6v18QZuoyfHRwfHhy_hLiak1Pb4BXQHttfLXL_CpG-dvC69y4Wf1-3O_wEKhW2P |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VrRDlwPsRKCiIlkOlLHn4eVxoqxVCFQcWLafIcWx1RZpW7YZq-fWM82LTVsA1Hicz45n4s2x_A7ATJ8woQkmgDOeBu0kVqIizgOaYXWEeCa5rts8jNp2RT3M634C33V2Ytf17jjPde1MsrBk7ThpyCzYZRcA9gs3Z0ZfJd1c2LqQ1M-m8uXl3tcdgrqkp-W_CkdePQ7akoXfhTlWeqdWlKoq1SefwPux36jZnTX6Mq2U21r-uMDn-w54HcK8Fnf6kiZKHsGHKR3C7KUO5egzTgzWaf9_8bKPRd-xOGJ3-saMZKf28O8LhL8o_Uup85buyxpdqdfEEZocHXz9Og7bCQqCJCJcBakRkKBNrrVC5klxax46jOWdS4NJKKRPLLObWLdU0DXVsNSIiZhOScZvo5CmMytPSPAdfoERGdWKFzIjWLMu1NYm0LOexMTbxYK8bi1S39OOuCkaR4jLEuSY1n9E1ae0aD3Z64bOGdeNmsQ9uUHsRR5VdP0CPp23mpcQQinpFeU4l0RmTrkIaWhHmiGSi2Hiw3YVE2ubvRYr_JYSuXEbCgzd9M2ae205RpTmtUMaV-EF0LdC2Z00E9ZrEVCCWE6ghH8TWQNVhS7k4rtm9ESFSwfC775ooHHTZX3yb1NZVJxUu3gTlkQe7fxWsUsxALvCFu300X3dq0Tv1xX_KvYQtBI_UnceL6TaMlueVeYUAbZm9bhP0N5k9PEE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Experimental+evolution+reveals+hidden+diversity+in+evolutionary+pathways&rft.jtitle=eLife&rft.au=Lind%2C+Peter+A&rft.au=Farr%2C+Andrew+D&rft.au=Rainey%2C+Paul+B&rft.date=2015-03-25&rft.issn=2050-084X&rft.eissn=2050-084X&rft.volume=4&rft_id=info:doi/10.7554%2FeLife.07074&rft.externalDocID=oai_DiVA_org_umu_118571 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-084X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-084X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-084X&client=summon |