Experimental evolution reveals hidden diversity in evolutionary pathways

Replicate populations of natural and experimental organisms often show evidence of parallel genetic evolution, but the causes are unclear. The wrinkly spreader morph of Pseudomonas fluorescens arises repeatedly during experimental evolution. The mutational causes reside exclusively within three path...

Full description

Saved in:
Bibliographic Details
Published ineLife Vol. 4
Main Authors Lind, Peter A, Farr, Andrew D, Rainey, Paul B
Format Journal Article
LanguageEnglish
Published England eLife Sciences Publications Ltd 25.03.2015
eLife Sciences Publications, Ltd
Subjects
Online AccessGet full text
ISSN2050-084X
2050-084X
DOI10.7554/eLife.07074

Cover

Abstract Replicate populations of natural and experimental organisms often show evidence of parallel genetic evolution, but the causes are unclear. The wrinkly spreader morph of Pseudomonas fluorescens arises repeatedly during experimental evolution. The mutational causes reside exclusively within three pathways. By eliminating these, 13 new mutational pathways were discovered with the newly arising WS types having fitnesses similar to those arising from the commonly passaged routes. Our findings show that parallel genetic evolution is strongly biased by constraints and we reveal the genetic bases. From such knowledge, and in instances where new phenotypes arise via gene activation, we suggest a set of principles: evolution proceeds firstly via pathways subject to negative regulation, then via promoter mutations and gene fusions, and finally via activation by intragenic gain-of-function mutations. These principles inform evolutionary forecasting and have relevance to interpreting the diverse array of mutations associated with clinically identical instances of disease in humans. Different living things often develop similar strategies to adapt to the environments in which they live. Sometimes two species that share a common ancestor independently evolve the same trait by changing the exact same genes. This is called ‘parallel evolution’, and it has led some scientists to ask: are there certain traits that can only evolve in a limited number of ways? Or are there other ways to evolve the same trait that, for some reason, are not explored? Experimentally, investigating these questions is challenging, but parallel evolution occurs in the laboratory as well as in the wild. Many commonly studied organisms—such as fruit flies or bacteria—can be used in relevant studies, because they can be grown in large numbers and then exposed to identical environments. However, if this method fails to find a new way that a trait can evolve, it doesn't mean that alternative mechanisms do not exist. Lind et al. used a different approach that instead relies on removing all of the known pathways that can be mutated to produce a given trait and then seeing if that trait can still evolve via mutations elsewhere. The experiments involved a bacterium called Pseudomonas fluorescens that can evolve to grow flattened and wrinkled colonies (instead of smooth, round ones) when it has to compete for access to oxygen. Previous experiments had shown that the evolution of the so-called ‘wrinkly spreader’ form can be caused by mutations in one of three biological pathways. But P. fluorescens can survive unharmed without these pathways, which enabled Lind et al. to ask if there might be other ways that this trait could evolve. Bacteria without these three pathways were engineered and then grown under oxygen-deprived conditions. This experiment produced 91 new mutants that each had the wrinkly spreader phenotype. Further experiments revealed that together these mutants represented 13 previously unrecognized ways that the ‘wrinkly spreader’ phenotype can evolve. The new rare mutants had similar fitness as the previously known, common ones—so this cannot explain why they hadn't been seen before. Lind et al. instead suggest a set of principles to explain why these newly discovered pathways are rarely mutated and how genetic constraints can bias the outcome of evolution. Further work could investigate whether these principles can help us to predict the course of evolution in other biological contexts, such as in the evolution of antibiotic resistance.
AbstractList Replicate populations of natural and experimental organisms often show evidence of parallel genetic evolution, but the causes are unclear. The wrinkly spreader morph of Pseudomonas fluorescens arises repeatedly during experimental evolution. The mutational causes reside exclusively within three pathways. By eliminating these, 13 new mutational pathways were discovered with the newly arising WS types having fitnesses similar to those arising from the commonly passaged routes. Our findings show that parallel genetic evolution is strongly biased by constraints and we reveal the genetic bases. From such knowledge, and in instances where new phenotypes arise via gene activation, we suggest a set of principles: evolution proceeds firstly via pathways subject to negative regulation, then via promoter mutations and gene fusions, and finally via activation by intragenic gain-of-function mutations. These principles inform evolutionary forecasting and have relevance to interpreting the diverse array of mutations associated with clinically identical instances of disease in humans.
Replicate populations of natural and experimental organisms often show evidence of parallel genetic evolution, but the causes are unclear. The wrinkly spreader morph of Pseudomonas fluorescens arises repeatedly during experimental evolution. The mutational causes reside exclusively within three pathways. By eliminating these, 13 new mutational pathways were discovered with the newly arising WS types having fitnesses similar to those arising from the commonly passaged routes. Our findings show that parallel genetic evolution is strongly biased by constraints and we reveal the genetic bases. From such knowledge, and in instances where new phenotypes arise via gene activation, we suggest a set of principles: evolution proceeds firstly via pathways subject to negative regulation, then via promoter mutations and gene fusions, and finally via activation by intragenic gain-of-function mutations. These principles inform evolutionary forecasting and have relevance to interpreting the diverse array of mutations associated with clinically identical instances of disease in humans. Different living things often develop similar strategies to adapt to the environments in which they live. Sometimes two species that share a common ancestor independently evolve the same trait by changing the exact same genes. This is called ‘parallel evolution’, and it has led some scientists to ask: are there certain traits that can only evolve in a limited number of ways? Or are there other ways to evolve the same trait that, for some reason, are not explored? Experimentally, investigating these questions is challenging, but parallel evolution occurs in the laboratory as well as in the wild. Many commonly studied organisms—such as fruit flies or bacteria—can be used in relevant studies, because they can be grown in large numbers and then exposed to identical environments. However, if this method fails to find a new way that a trait can evolve, it doesn't mean that alternative mechanisms do not exist. Lind et al. used a different approach that instead relies on removing all of the known pathways that can be mutated to produce a given trait and then seeing if that trait can still evolve via mutations elsewhere. The experiments involved a bacterium called Pseudomonas fluorescens that can evolve to grow flattened and wrinkled colonies (instead of smooth, round ones) when it has to compete for access to oxygen. Previous experiments had shown that the evolution of the so-called ‘wrinkly spreader’ form can be caused by mutations in one of three biological pathways. But P. fluorescens can survive unharmed without these pathways, which enabled Lind et al. to ask if there might be other ways that this trait could evolve. Bacteria without these three pathways were engineered and then grown under oxygen-deprived conditions. This experiment produced 91 new mutants that each had the wrinkly spreader phenotype. Further experiments revealed that together these mutants represented 13 previously unrecognized ways that the ‘wrinkly spreader’ phenotype can evolve. The new rare mutants had similar fitness as the previously known, common ones—so this cannot explain why they hadn't been seen before. Lind et al. instead suggest a set of principles to explain why these newly discovered pathways are rarely mutated and how genetic constraints can bias the outcome of evolution. Further work could investigate whether these principles can help us to predict the course of evolution in other biological contexts, such as in the evolution of antibiotic resistance.
Replicate populations of natural and experimental organisms often show evidence of parallel genetic evolution, but the causes are unclear. The wrinkly spreader morph of Pseudomonas fluorescens arises repeatedly during experimental evolution. The mutational causes reside exclusively within three pathways. By eliminating these, 13 new mutational pathways were discovered with the newly arising WS types having fitnesses similar to those arising from the commonly passaged routes. Our findings show that parallel genetic evolution is strongly biased by constraints and we reveal the genetic bases. From such knowledge, and in instances where new phenotypes arise via gene activation, we suggest a set of principles: evolution proceeds firstly via pathways subject to negative regulation, then via promoter mutations and gene fusions, and finally via activation by intragenic gain-of-function mutations. These principles inform evolutionary forecasting and have relevance to interpreting the diverse array of mutations associated with clinically identical instances of disease in humans. DOI: http://dx.doi.org/10.7554/eLife.07074.001 Different living things often develop similar strategies to adapt to the environments in which they live. Sometimes two species that share a common ancestor independently evolve the same trait by changing the exact same genes. This is called ‘parallel evolution’, and it has led some scientists to ask: are there certain traits that can only evolve in a limited number of ways? Or are there other ways to evolve the same trait that, for some reason, are not explored? Experimentally, investigating these questions is challenging, but parallel evolution occurs in the laboratory as well as in the wild. Many commonly studied organisms—such as fruit flies or bacteria—can be used in relevant studies, because they can be grown in large numbers and then exposed to identical environments. However, if this method fails to find a new way that a trait can evolve, it doesn't mean that alternative mechanisms do not exist. Lind et al. used a different approach that instead relies on removing all of the known pathways that can be mutated to produce a given trait and then seeing if that trait can still evolve via mutations elsewhere. The experiments involved a bacterium called Pseudomonas fluorescens that can evolve to grow flattened and wrinkled colonies (instead of smooth, round ones) when it has to compete for access to oxygen. Previous experiments had shown that the evolution of the so-called ‘wrinkly spreader’ form can be caused by mutations in one of three biological pathways. But P. fluorescens can survive unharmed without these pathways, which enabled Lind et al. to ask if there might be other ways that this trait could evolve. Bacteria without these three pathways were engineered and then grown under oxygen-deprived conditions. This experiment produced 91 new mutants that each had the wrinkly spreader phenotype. Further experiments revealed that together these mutants represented 13 previously unrecognized ways that the ‘wrinkly spreader’ phenotype can evolve. The new rare mutants had similar fitness as the previously known, common ones—so this cannot explain why they hadn't been seen before. Lind et al. instead suggest a set of principles to explain why these newly discovered pathways are rarely mutated and how genetic constraints can bias the outcome of evolution. Further work could investigate whether these principles can help us to predict the course of evolution in other biological contexts, such as in the evolution of antibiotic resistance. DOI: http://dx.doi.org/10.7554/eLife.07074.002
Replicate populations of natural and experimental organisms often show evidence of parallel genetic evolution, but the causes are unclear. The wrinkly spreader morph of Pseudomonas fluorescens arises repeatedly during experimental evolution. The mutational causes reside exclusively within three pathways. By eliminating these, 13 new mutational pathways were discovered with the newly arising WS types having fitnesses similar to those arising from the commonly passaged routes. Our findings show that parallel genetic evolution is strongly biased by constraints and we reveal the genetic bases. From such knowledge, and in instances where new phenotypes arise via gene activation, we suggest a set of principles: evolution proceeds firstly via pathways subject to negative regulation, then via promoter mutations and gene fusions, and finally via activation by intragenic gain-of-function mutations. These principles inform evolutionary forecasting and have relevance to interpreting the diverse array of mutations associated with clinically identical instances of disease in humans.DOI: http://dx.doi.org/10.7554/eLife.07074.001
Author Lind, Peter A
Rainey, Paul B
Farr, Andrew D
Author_xml – sequence: 1
  givenname: Peter A
  orcidid: 0000-0003-1510-8324
  surname: Lind
  fullname: Lind, Peter A
  organization: New Zealand Institute for Advanced Study, Massey University, Auckland, New Zealand, Allan Wilson Centre for Molecular Ecology and Evolution, Massey University, Auckland, New Zealand
– sequence: 2
  givenname: Andrew D
  surname: Farr
  fullname: Farr, Andrew D
  organization: New Zealand Institute for Advanced Study, Massey University, Auckland, New Zealand, Allan Wilson Centre for Molecular Ecology and Evolution, Massey University, Auckland, New Zealand
– sequence: 3
  givenname: Paul B
  surname: Rainey
  fullname: Rainey, Paul B
  organization: New Zealand Institute for Advanced Study, Massey University, Auckland, New Zealand, Allan Wilson Centre for Molecular Ecology and Evolution, Massey University, Auckland, New Zealand, Max Planck Institute for Evolutionary Biology, Plön, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25806684$$D View this record in MEDLINE/PubMed
https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-118571$$DView record from Swedish Publication Index
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-424788$$DView record from Swedish Publication Index
BookMark eNqNks1v0zAYxiM0xMbYiTuKxAUJMuzEnxekaQw2qRIXQNws13m9unLjYCct_e9x27G1gwO-2LJ_7_M-fuznxVEXOiiKlxidc0rJe5g4C-eII06eFCc1oqhCgvw42lsfF2cpzVEenAiB5bPiuKYCMSbISXF99auH6BbQDdqXsAx-HFzoyghL0D6VM9e20JWtW0JMbliXrnugdFyXvR5mK71OL4qnNhfA2d18Wnz7dPX18rqafPl8c3kxqQwRaKiyZyKRbKy1QrdacmlrgbjhnEnBsNQaajmtuUWoZoYiU1uDa8psQ6bcNqY5LW52um3Qc9Vn69mFCtqp7UaIt0rHwRkPigCh1DS4bakkZsqkAdRkNdQy3OAasta7ndbY9Xq90t7fC2KkNvkq8Dlftc33AU8r6MfpQfOP7vvFtvk4KlITLkTGq__AF6PCWFCOM_9hx2d4Aa3JTxK1Pyg7POncTN2GpSKNpIJtGr65E4jh5whpUAuXDHivOwhjUpjxhkucyYy-foTOwxi7_HAKS8YoytxG8NW-o3srf75PBt7uABNDShHs3_lN9vPDj2jjBr35SPk6zv-z5jeABujX
CitedBy_id crossref_primary_10_1111_mec_13378
crossref_primary_10_1111_eva_13513
crossref_primary_10_21769_BioProtoc_3407
crossref_primary_10_7554_eLife_25100
crossref_primary_10_1128_JB_00110_19
crossref_primary_10_1098_rsfs_2015_0057
crossref_primary_10_1099_mic_0_000938
crossref_primary_10_1128_msystems_00737_22
crossref_primary_10_1093_ve_vez011
crossref_primary_10_7554_eLife_61271
crossref_primary_10_1038_s41467_023_39320_9
crossref_primary_10_1007_s00239_023_10127_y
crossref_primary_10_1007_s00239_023_10103_6
crossref_primary_10_1371_journal_pgen_1011572
crossref_primary_10_1098_rspb_2024_2312
crossref_primary_10_1371_journal_pone_0238151
crossref_primary_10_1038_s41522_024_00644_z
crossref_primary_10_15252_embr_201846992
crossref_primary_10_1038_s41559_017_0283_7
crossref_primary_10_3389_fmicb_2018_00427
crossref_primary_10_1016_j_plrev_2021_03_004
crossref_primary_10_1128_mbio_00764_22
crossref_primary_10_1371_journal_pone_0152395
crossref_primary_10_1017_S0024282921000256
crossref_primary_10_1099_mic_0_000844
crossref_primary_10_1038_s41598_019_52400_5
crossref_primary_10_7554_eLife_24669
crossref_primary_10_1016_j_tree_2019_03_008
crossref_primary_10_1128_msystems_01053_24
crossref_primary_10_1111_1462_2920_70061
crossref_primary_10_7554_eLife_92899
crossref_primary_10_1016_j_biotechadv_2021_107862
crossref_primary_10_1002_bies_201700069
crossref_primary_10_1038_ncomms13002
crossref_primary_10_7554_eLife_38822
crossref_primary_10_1128_aem_01776_22
crossref_primary_10_1093_femsml_uqad041
crossref_primary_10_1128_AEM_00233_21
crossref_primary_10_1016_j_cpb_2020_100185
crossref_primary_10_3389_fgene_2018_00451
crossref_primary_10_1128_mSphere_00121_18
crossref_primary_10_7554_eLife_09638
crossref_primary_10_1093_jac_dkv475
crossref_primary_10_1016_j_bpj_2022_09_028
crossref_primary_10_1042_BST20200885
crossref_primary_10_1099_mic_0_001323
crossref_primary_10_1038_s41559_017_0385_2
crossref_primary_10_1111_ele_13570
crossref_primary_10_1111_jeb_13722
crossref_primary_10_1111_jeb_13964
crossref_primary_10_1111_mec_14080
crossref_primary_10_1093_molbev_msx247
crossref_primary_10_1128_jb_00185_22
crossref_primary_10_1093_icb_icad106
crossref_primary_10_1111_mmi_13278
crossref_primary_10_1128_jb_00355_23
crossref_primary_10_1038_s41467_021_26286_9
crossref_primary_10_1098_rstb_2022_0043
crossref_primary_10_1016_j_gde_2017_09_003
crossref_primary_10_1111_mec_13389
crossref_primary_10_1093_molbev_msz040
crossref_primary_10_1099_mic_0_001354
crossref_primary_10_1093_femsre_fuw002
crossref_primary_10_1016_j_cub_2023_03_031
crossref_primary_10_1038_s41522_022_00292_1
crossref_primary_10_1186_s12862_018_1266_2
crossref_primary_10_1016_j_cels_2021_08_011
crossref_primary_10_1093_femsle_fnx109
crossref_primary_10_1038_s41559_018_0547_x
crossref_primary_10_1093_molbev_msx174
crossref_primary_10_1098_rstb_2022_0055
crossref_primary_10_1038_ismej_2016_157
crossref_primary_10_7554_eLife_51963
crossref_primary_10_1093_molbev_msz155
crossref_primary_10_1093_molbev_msz199
crossref_primary_10_1186_s12862_019_1512_2
crossref_primary_10_1128_MMBR_00008_18
Cites_doi 10.1046/j.1462-2920.1999.00040.x
10.5962/bhl.title.2141
10.1016/S0076-6879(00)26045-X
10.1093/molbev/msu262
10.1002/bbpc.19940980907
10.1098/rsbl.2010.0547
10.1038/nrg1292
10.1128/JB.05346-11
10.1146/annurev.genet.40.110405.090423
10.1093/genetics/129.3.957
10.1371/journal.pbio.1001490
10.1007/BF02983073
10.1038/nrg3317
10.1016/j.ydbio.2009.04.040
10.1016/S0092-8674(02)00665-7
10.1146/annurev.es.21.110190.002105
10.1093/molbev/msp161
10.1093/genetics/161.1.33
10.1086/414425
10.1534/genetics.112.142620
10.1006/meth.2001.1262
10.1038/27900
10.1038/nprot.2009.2
10.1038/nrg3744
10.1086/509049
10.1080/10409230701495631
10.1038/nature12912
10.1046/j.1365-2958.2003.03670.x
10.1038/nature11514
10.1099/mic.0.2006/002824-0
10.1126/science.1226630
10.1038/nrg3118
10.1038/sj.hdy.6801087
10.1146/annurev.ecolsys.37.091305.110224
10.1093/genetics/148.4.1667
10.1073/pnas.0706739104
10.1371/journal.pgen.1002651
10.7554/eLife.03568
10.1088/1742-5468/2013/01/P01003
10.1534/genetics.106.055863
10.1111/j.1462-2920.2004.00605.x
10.1038/nature13884
10.1098/rstb.2009.0241
10.1016/S0168-9525(01)02447-7
10.1093/molbev/msn025
10.1093/molbev/msp037
10.1073/pnas.1210309109
10.1038/nrg3483
10.1534/genetics.109.107110
10.1038/nrg2063
10.1534/genetics.113.154948
10.1128/JB.62.3.293-300.1951
10.1534/genetics.106.069906
10.1186/gb-2009-10-5-r51
10.1126/science.1214449
10.1126/science.1158997
ContentType Journal Article
Copyright 2015, Lind et al. This work is licensed under the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/3.0/ ) (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2015, Lind et al 2015 Lind et al
Copyright_xml – notice: 2015, Lind et al. This work is licensed under the Creative Commons Attribution License ( https://creativecommons.org/licenses/by/3.0/ ) (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2015, Lind et al 2015 Lind et al
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
ADHXS
ADTPV
AOWAS
D8T
D93
ZZAVC
ACNBI
DF2
ADTOC
UNPAY
DOA
DOI 10.7554/eLife.07074
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni Edition)
ProQuest Medical Database
Science Database (Proquest)
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
SWEPUB Umeå universitet full text
SwePub
SwePub Articles
SWEPUB Freely available online
SWEPUB Umeå universitet
SwePub Articles full text
SWEPUB Uppsala universitet full text
SWEPUB Uppsala universitet
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

CrossRef

MEDLINE


Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2050-084X
ExternalDocumentID oai_doaj_org_article_4e455c31dd594cb69ce03c120d61312e
10.7554/elife.07074
oai_DiVA_org_uu_424788
oai_DiVA_org_umu_118571
PMC4395868
25806684
10_7554_eLife_07074
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: ;
  grantid: Marsden Fund Council
GroupedDBID 53G
5VS
7X7
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAKDD
AAYXX
ABUWG
ACGFO
ACGOD
ACPRK
ADBBV
ADRAZ
AENEX
AFKRA
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
CCPQU
CITATION
DIK
DWQXO
EMOBN
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
H13
HCIFZ
HMCUK
HYE
IAO
IEA
IHR
INH
ISR
ITC
KQ8
LK8
M1P
M2P
M48
M7P
M~E
NQS
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
RHI
RNS
RPM
UKHRP
3V.
ALIPV
CGR
CUY
CVF
ECM
EIF
FRP
NPM
RHF
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ADHXS
ADTPV
AOWAS
D8T
D93
INR
ZZAVC
ACNBI
DF2
ADTOC
AFFHD
UNPAY
ID FETCH-LOGICAL-c480t-55449093fff8ada979f2807c77698619aae29b27f0026c50c2fc1256f34b7f3c3
IEDL.DBID UNPAY
ISSN 2050-084X
IngestDate Fri Oct 03 12:45:50 EDT 2025
Wed Oct 29 12:17:17 EDT 2025
Tue Sep 09 23:28:23 EDT 2025
Tue Sep 09 23:18:40 EDT 2025
Tue Sep 30 16:50:54 EDT 2025
Sun Aug 24 04:01:20 EDT 2025
Tue Oct 07 06:45:36 EDT 2025
Thu Jan 02 22:20:51 EST 2025
Wed Oct 01 03:49:52 EDT 2025
Thu Apr 24 22:55:48 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords diguanylate cyclase
parallel evolution
evolutionary biology
genetic constraint
bacterial evolution
genomics
Pseudomonas fluorescens
evolutionary rules
Language English
License http://creativecommons.org/licenses/by/4.0
This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c480t-55449093fff8ada979f2807c77698619aae29b27f0026c50c2fc1256f34b7f3c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
ORCID 0000-0003-1510-8324
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.7554/elife.07074
PMID 25806684
PQID 1966507918
PQPubID 2045579
ParticipantIDs doaj_primary_oai_doaj_org_article_4e455c31dd594cb69ce03c120d61312e
unpaywall_primary_10_7554_elife_07074
swepub_primary_oai_DiVA_org_uu_424788
swepub_primary_oai_DiVA_org_umu_118571
pubmedcentral_primary_oai_pubmedcentral_nih_gov_4395868
proquest_miscellaneous_1673791683
proquest_journals_1966507918
pubmed_primary_25806684
crossref_primary_10_7554_eLife_07074
crossref_citationtrail_10_7554_eLife_07074
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-03-25
PublicationDateYYYYMMDD 2015-03-25
PublicationDate_xml – month: 03
  year: 2015
  text: 2015-03-25
  day: 25
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle eLife
PublicationTitleAlternate Elife
PublicationYear 2015
Publisher eLife Sciences Publications Ltd
eLife Sciences Publications, Ltd
Publisher_xml – name: eLife Sciences Publications Ltd
– name: eLife Sciences Publications, Ltd
References McAdams (bib35) 2004; 5
Drake (bib9) 1998; 148
Vogwill (bib54) 2014; 31
McDonald (bib36) 2011; 7
Lawrence (bib29) 2014; 505
Brakefield (bib4) 2006; 168
Herron (bib23) 2013; 11
Rainey (bib44) 1999; 1
Goymer (bib19) 2006; 173
Jost (bib25) 2008; 25
Spiers (bib49) 2003; 50
Meyer (bib38) 2012; 335
Yates (bib56) 2012; 13
Bantinaki (bib1) 2007; 176
Jenal (bib24) 2006; 40
Neher (bib41) 2014; 3
Kelley (bib26) 2009; 4
McDonald (bib37) 2009; 183
Ferguson (bib12) 2013; 195
Drake (bib8) 2007; 42
Desai (bib7) 2013
Manoil (bib34) 2000; 326
Stern (bib51) 2013; 14
King (bib27) 1954; 44
Smith (bib48) 1985; 60
Bull (bib5) 2008; 100
Spiers (bib50) 2002; 161
Roy (bib46) 2012; 194
Gerstein (bib15) 2012; 192
Heineman (bib22) 2009; 26
Lee (bib30) 2012; 109
Moran (bib40) 2002; 108
Blount (bib3) 2012; 489
Hansen (bib21) 2006; 37
Silby (bib47) 2009; 10
Pigliucci (bib43) 2010; 365
Wray (bib55) 2007; 8
Gompel (bib18) 2009; 332
Ninio (bib42) 1991; 129
de Visser (bib6) 2014; 15
Lambertsen (bib28) 2004; 6
Livak (bib32) 2001; 25
Flowers (bib13) 2009; 26
Zhen (bib57) 2012; 337
Mira (bib39) 2001; 17
Stern (bib52) 2009; 323
Hammerschmidt (bib20) 2014; 515
Rainey (bib45) 1998; 394
Geoffroy Saint-Hilaire (bib14) 1818
Giddens (bib17) 2007; 104
Lee (bib31) 2012; 8
Vavilov (bib53) 1922; 12
Gibson (bib16) 2011; 13
Ellington (bib11) 1994; 98
Malone (bib33) 2007; 153
Bertani (bib2) 1951; 62
Dykhuizen (bib10) 1990; 21
19197055 - Science. 2009 Feb 6;323(5915):746-51
23431270 - PLoS Biol. 2013;11(2):e1001490
18258611 - Mol Biol Evol. 2008 Jun;25(6):1016-24
19704015 - Genetics. 2009 Nov;183(3):1041-53
13184240 - J Lab Clin Med. 1954 Aug;44(2):301-7
19433086 - Dev Biol. 2009 Aug 1;332(1):36-47
14888646 - J Bacteriol. 1951 Sep;62(3):293-300
14507360 - Mol Microbiol. 2003 Oct;50(1):15-27
17379708 - Microbiology. 2007 Apr;153(Pt 4):980-94
17989226 - Proc Natl Acad Sci U S A. 2007 Nov 13;104(46):18247-52
25228081 - Mol Biol Evol. 2014 Dec;31(12):3314-23
19264970 - Mol Biol Evol. 2009 Jun;26(6):1289-98
22282803 - Science. 2012 Jan 27;335(6067):428-32
24390350 - Nature. 2014 Jan 23;505(7484):495-501
16624907 - Genetics. 2006 Jun;173(2):515-26
24077305 - Genetics. 2013 Dec;195(4):1319-35
17304246 - Nat Rev Genet. 2007 Mar;8(3):206-16
22589730 - PLoS Genet. 2012;8(5):e1002651
16895465 - Annu Rev Genet. 2006;40:385-407
17687667 - Crit Rev Biochem Mol Biol. 2007 Jul-Aug;42(4):247-58
25373677 - Nature. 2014 Nov 6;515(7525):75-9
25385532 - Elife. 2014;3. doi: 10.7554/eLife.03568
22992527 - Nature. 2012 Sep 27;489(7417):513-8
22493016 - J Bacteriol. 2012 Jun;194(11):2904-15
14970819 - Nat Rev Genet. 2004 Mar;5(3):169-78
9560386 - Genetics. 1998 Apr;148(4):1667-86
20659918 - Biol Lett. 2011 Feb 23;7(1):98-100
22714405 - Genetics. 2012 Sep;192(1):241-52
24913663 - Nat Rev Genet. 2014 Jul;15(7):480-90
19625391 - Mol Biol Evol. 2009 Nov;26(11):2475-86
18212807 - Heredity (Edinb). 2008 May;100(5):453-63
19432983 - Genome Biol. 2009;10(5):R51
11585665 - Trends Genet. 2001 Oct;17(10):589-96
11893328 - Cell. 2002 Mar 8;108(5):583-6
19247286 - Nat Protoc. 2009;4(3):363-71
15186351 - Environ Microbiol. 2004 Jul;6(7):726-32
11846609 - Methods. 2001 Dec;25(4):402-8
17339222 - Genetics. 2007 May;176(1):441-53
1752431 - Genetics. 1991 Nov;129(3):957-62
23044827 - Nat Rev Genet. 2012 Nov;13(11):795-806
24105273 - Nat Rev Genet. 2013 Nov;14(11):751-64
17109328 - Am Nat. 2006 Dec;168 Suppl 6:S4-13
23019645 - Science. 2012 Sep 28;337(6102):1634-7
11036633 - Methods Enzymol. 2000;326:35-47
9665128 - Nature. 1998 Jul 2;394(6688):69-72
22991466 - Proc Natl Acad Sci U S A. 2012 Oct 9;109(41):E2774-83
11207743 - Environ Microbiol. 1999 Jun;1(3):243-57
22251874 - Nat Rev Genet. 2011 Feb;13(2):135-45
20083632 - Philos Trans R Soc Lond B Biol Sci. 2010 Feb 27;365(1540):557-66
12019221 - Genetics. 2002 May;161(1):33-46
References_xml – volume: 1
  start-page: 243
  year: 1999
  ident: bib44
  article-title: Adaptation of Pseudomonas fluorescens to the plant rhizosphere
  publication-title: Environmental Microbiology
  doi: 10.1046/j.1462-2920.1999.00040.x
– volume-title: Philosophie anatomique
  year: 1818
  ident: bib14
  doi: 10.5962/bhl.title.2141
– volume: 326
  start-page: 35
  year: 2000
  ident: bib34
  article-title: Tagging exported proteins using Escherichia coli alkaline phosphatase gene fusions
  publication-title: Methods in Enzymology
  doi: 10.1016/S0076-6879(00)26045-X
– volume: 31
  start-page: 3314
  year: 2014
  ident: bib54
  article-title: Testing the role of genetic background in parallel evolution using the comparative experimental evolution of antibiotic resistance
  publication-title: Molecular Biology and Evolution
  doi: 10.1093/molbev/msu262
– volume: 98
  start-page: 1115
  year: 1994
  ident: bib11
  article-title: Empirical explorations of sequence space–host–guest chemistry in the RNA world
  publication-title: Berichte Der Bunsen-Gesellschaft-Physical Chemistry Chemical Physics
  doi: 10.1002/bbpc.19940980907
– volume: 7
  start-page: 98
  year: 2011
  ident: bib36
  article-title: The distribution of fitness effects of new beneficial mutations in Pseudomonas fluorescens
  publication-title: Biology Letters
  doi: 10.1098/rsbl.2010.0547
– volume: 5
  start-page: 169
  year: 2004
  ident: bib35
  article-title: The evolution of genetic regulatory systems in bacteria
  publication-title: Nature Reviews Genetics
  doi: 10.1038/nrg1292
– volume: 194
  start-page: 2904
  year: 2012
  ident: bib46
  article-title: The phosphodiesterase DipA (PA5017) is essential for Pseudomonas aeruginosa biofilm dispersion
  publication-title: Journal of Bacteriology
  doi: 10.1128/JB.05346-11
– volume: 40
  start-page: 385
  year: 2006
  ident: bib24
  article-title: Mechanisms of cyclic-di-GMP signaling in bacteria
  publication-title: Annual Review of Genetics
  doi: 10.1146/annurev.genet.40.110405.090423
– volume: 129
  start-page: 957
  year: 1991
  ident: bib42
  article-title: Transient mutators: a semiquantitative analysis of the influence of translation and transcription errors on mutation rates
  publication-title: Genetics
  doi: 10.1093/genetics/129.3.957
– volume: 11
  start-page: e1001490
  year: 2013
  ident: bib23
  article-title: Parallel evolutionary dynamics of adaptive diversification in Escherichia coli
  publication-title: PLOS Biology
  doi: 10.1371/journal.pbio.1001490
– volume: 12
  start-page: 47
  year: 1922
  ident: bib53
  article-title: The law of homologous series in variation
  publication-title: Journal of Genetics
  doi: 10.1007/BF02983073
– volume: 13
  start-page: 795
  year: 2012
  ident: bib56
  article-title: Evolution of the cancer genome
  publication-title: Nature Reviews Genetics
  doi: 10.1038/nrg3317
– volume: 332
  start-page: 36
  year: 2009
  ident: bib18
  article-title: The causes of repeated genetic evolution
  publication-title: Developmental Biology
  doi: 10.1016/j.ydbio.2009.04.040
– volume: 108
  start-page: 583
  year: 2002
  ident: bib40
  article-title: Microbial minimalism: genome reduction in bacterial pathogens
  publication-title: Cell
  doi: 10.1016/S0092-8674(02)00665-7
– volume: 44
  start-page: 301
  year: 1954
  ident: bib27
  article-title: Two simple media for the demonstration of pyocyanin and fluorescin
  publication-title: The Journal of Laboratory and Clinical Medicine
– volume: 21
  start-page: 373
  year: 1990
  ident: bib10
  article-title: Experimental studies of natural selection in bacteria
  publication-title: Annual Review of Ecology and Systematics
  doi: 10.1146/annurev.es.21.110190.002105
– volume: 26
  start-page: 2475
  year: 2009
  ident: bib13
  article-title: Population genomics of the Arabidopsis thaliana flowering time gene network
  publication-title: Molecular Biology and Evolution
  doi: 10.1093/molbev/msp161
– volume: 161
  start-page: 33
  year: 2002
  ident: bib50
  article-title: Adaptive divergence in experimental populations of Pseudomonas fluorescens. I. Genetic and phenotypic bases of wrinkly spreader fitness
  publication-title: Genetics
  doi: 10.1093/genetics/161.1.33
– volume: 60
  start-page: 265
  year: 1985
  ident: bib48
  article-title: Developmental constraints and evolution
  publication-title: Quarterly Review of Biology
  doi: 10.1086/414425
– volume: 192
  start-page: 241
  year: 2012
  ident: bib15
  article-title: Parallel genetic changes and nonparallel gene-environment interactions characterize the evolution of drug resistance in yeast
  publication-title: Genetics
  doi: 10.1534/genetics.112.142620
– volume: 25
  start-page: 402
  year: 2001
  ident: bib32
  article-title: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method
  publication-title: Methods
  doi: 10.1006/meth.2001.1262
– volume: 394
  start-page: 69
  year: 1998
  ident: bib45
  article-title: Adaptive radiation in a heterogeneous environment
  publication-title: Nature
  doi: 10.1038/27900
– volume: 4
  start-page: 363
  year: 2009
  ident: bib26
  article-title: Protein structure prediction on the Web: a case study using the Phyre server
  publication-title: Nature Protocols
  doi: 10.1038/nprot.2009.2
– volume: 15
  start-page: 480
  year: 2014
  ident: bib6
  article-title: Empirical fitness landscapes and the predictability of evolution
  publication-title: Nature Reviews Genetics
  doi: 10.1038/nrg3744
– volume: 168
  start-page: S4
  year: 2006
  ident: bib4
  article-title: Exploring evolutionary constraints is a task for an integrative evolutionary biology
  publication-title: The American Naturalist
  doi: 10.1086/509049
– volume: 42
  start-page: 247
  year: 2007
  ident: bib8
  article-title: Too many mutants with multiple mutations
  publication-title: Critical Reviews in Biochemistry and Molecular Biology
  doi: 10.1080/10409230701495631
– volume: 505
  start-page: 495
  year: 2014
  ident: bib29
  article-title: Discovery and saturation analysis of cancer genes across 21 tumour types
  publication-title: Nature
  doi: 10.1038/nature12912
– volume: 50
  start-page: 15
  year: 2003
  ident: bib49
  article-title: Biofilm formation at the air-liquid interface by the Pseudomonas fluorescens SBW25 wrinkly spreader requires an acetylated form of cellulose
  publication-title: Molecular Microbiology
  doi: 10.1046/j.1365-2958.2003.03670.x
– volume: 489
  start-page: 513
  year: 2012
  ident: bib3
  article-title: Genomic analysis of a key innovation in an experimental Escherichia coli population
  publication-title: Nature
  doi: 10.1038/nature11514
– volume: 153
  start-page: 980
  year: 2007
  ident: bib33
  article-title: The structure-function relationship of WspR, a Pseudomonas fluorescens response regulator with a GGDEF output domain
  publication-title: Microbiology
  doi: 10.1099/mic.0.2006/002824-0
– volume: 337
  start-page: 1634
  year: 2012
  ident: bib57
  article-title: Parallel molecular evolution in an herbivore community
  publication-title: Science
  doi: 10.1126/science.1226630
– volume: 13
  start-page: 135
  year: 2011
  ident: bib16
  article-title: Rare and common variants: twenty arguments
  publication-title: Nature Reviews Genetics
  doi: 10.1038/nrg3118
– volume: 100
  start-page: 453
  year: 2008
  ident: bib5
  article-title: Predicting evolution from genomics: experimental evolution of bacteriophage T7
  publication-title: Heredity
  doi: 10.1038/sj.hdy.6801087
– volume: 37
  start-page: 123
  year: 2006
  ident: bib21
  article-title: The evolution of genetic architecture
  publication-title: Annual Review of Ecology Evolution and Systematics
  doi: 10.1146/annurev.ecolsys.37.091305.110224
– volume: 148
  start-page: 1667
  year: 1998
  ident: bib9
  article-title: Rates of spontaneous mutation
  publication-title: Genetics
  doi: 10.1093/genetics/148.4.1667
– volume: 104
  start-page: 18247
  year: 2007
  ident: bib17
  article-title: Mutational activation of niche-specific genes provides insight into regulatory networks and bacterial function in a complex environment
  publication-title: Proceedings of the National Academy of Sciences of USA
  doi: 10.1073/pnas.0706739104
– volume: 8
  start-page: e1002651
  year: 2012
  ident: bib31
  article-title: Repeated, selection-driven genome reduction of accessory genes in experimental populations
  publication-title: PLOS Genetics
  doi: 10.1371/journal.pgen.1002651
– volume: 3
  start-page: e03568
  year: 2014
  ident: bib41
  article-title: Predicting evolution from the shape of genealogical trees
  publication-title: eLife
  doi: 10.7554/eLife.03568
– year: 2013
  ident: bib7
  article-title: Statistical questions in experimental evolution
  publication-title: Journal of Statistical Mechanics-Theory and Experiment
  doi: 10.1088/1742-5468/2013/01/P01003
– volume: 173
  start-page: 515
  year: 2006
  ident: bib19
  article-title: Adaptive divergence in experimental populations of Pseudomonas fluorescens. II. Role of the GGDEF regulator WspR in evolution and development of the wrinkly spreader phenotype
  publication-title: Genetics
  doi: 10.1534/genetics.106.055863
– volume: 6
  start-page: 726
  year: 2004
  ident: bib28
  article-title: Mini-Tn7 transposons for site-specific tagging of bacteria with fluorescent proteins
  publication-title: Environmental Microbiology
  doi: 10.1111/j.1462-2920.2004.00605.x
– volume: 515
  start-page: 75
  year: 2014
  ident: bib20
  article-title: Life cycles, fitness decoupling and the evolution of multicellularity
  publication-title: Nature
  doi: 10.1038/nature13884
– volume: 365
  start-page: 557
  year: 2010
  ident: bib43
  article-title: Genotype-phenotype mapping and the end of the 'genes as blueprint' metaphor
  publication-title: Philosophical Transactions of the Royal Society of London Series B, Biological Sciences
  doi: 10.1098/rstb.2009.0241
– volume: 17
  start-page: 589
  year: 2001
  ident: bib39
  article-title: Deletional bias and the evolution of bacterial genomes
  publication-title: Trends in Genetics
  doi: 10.1016/S0168-9525(01)02447-7
– volume: 25
  start-page: 1016
  year: 2008
  ident: bib25
  article-title: Toxin-resistant sodium channels: parallel adaptive evolution across a complete gene family
  publication-title: Molecular Biology and Evolution
  doi: 10.1093/molbev/msn025
– volume: 26
  start-page: 1289
  year: 2009
  ident: bib22
  article-title: Layers of evolvability in a bacteriophage life history trait
  publication-title: Molecular Biology and Evolution
  doi: 10.1093/molbev/msp037
– volume: 109
  start-page: E2774
  year: 2012
  ident: bib30
  article-title: Rate and molecular spectrum of spontaneous mutations in the bacterium Escherichia coli as determined by whole-genome sequencing
  publication-title: Proceedings of the National Academy of Sciences of USA
  doi: 10.1073/pnas.1210309109
– volume: 14
  start-page: 751
  year: 2013
  ident: bib51
  article-title: The genetic causes of convergent evolution
  publication-title: Nature Reviews Genetics
  doi: 10.1038/nrg3483
– volume: 183
  start-page: 1041
  year: 2009
  ident: bib37
  article-title: Adaptive divergence in experimental populations of Pseudomonas fluorescens. IV. Genetic constraints guide evolutionary trajectories in a parallel adaptive radiation
  publication-title: Genetics
  doi: 10.1534/genetics.109.107110
– volume: 8
  start-page: 206
  year: 2007
  ident: bib55
  article-title: The evolutionary significance of cis-regulatory mutations
  publication-title: Nature Reviews Genetics
  doi: 10.1038/nrg2063
– volume: 195
  start-page: 1319
  year: 2013
  ident: bib12
  article-title: Adaptive divergence in experimental populations of Pseudomonas fluorescens. V. Insight into the niche specialist fuzzy spreader compels revision of the model Pseudomonas radiation
  publication-title: Genetics
  doi: 10.1534/genetics.113.154948
– volume: 62
  start-page: 293
  year: 1951
  ident: bib2
  article-title: Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli
  publication-title: Journal of Bacteriology
  doi: 10.1128/JB.62.3.293-300.1951
– volume: 176
  start-page: 441
  year: 2007
  ident: bib1
  article-title: Adaptive divergence in experimental populations of Pseudomonas fluorescens. III. Mutational origins of wrinkly spreader diversity
  publication-title: Genetics
  doi: 10.1534/genetics.106.069906
– volume: 10
  start-page: R51
  year: 2009
  ident: bib47
  article-title: Genomic and genetic analyses of diversity and plant interactions of Pseudomonas fluorescens
  publication-title: Genome Biology
  doi: 10.1186/gb-2009-10-5-r51
– volume: 335
  start-page: 428
  year: 2012
  ident: bib38
  article-title: Repeatability and contingency in the evolution of a key innovation in phage lambda
  publication-title: Science
  doi: 10.1126/science.1214449
– volume: 323
  start-page: 746
  year: 2009
  ident: bib52
  article-title: Is genetic evolution predictable?
  publication-title: Science
  doi: 10.1126/science.1158997
– reference: 11893328 - Cell. 2002 Mar 8;108(5):583-6
– reference: 24390350 - Nature. 2014 Jan 23;505(7484):495-501
– reference: 17989226 - Proc Natl Acad Sci U S A. 2007 Nov 13;104(46):18247-52
– reference: 25228081 - Mol Biol Evol. 2014 Dec;31(12):3314-23
– reference: 19264970 - Mol Biol Evol. 2009 Jun;26(6):1289-98
– reference: 24077305 - Genetics. 2013 Dec;195(4):1319-35
– reference: 20659918 - Biol Lett. 2011 Feb 23;7(1):98-100
– reference: 22493016 - J Bacteriol. 2012 Jun;194(11):2904-15
– reference: 23044827 - Nat Rev Genet. 2012 Nov;13(11):795-806
– reference: 23019645 - Science. 2012 Sep 28;337(6102):1634-7
– reference: 11585665 - Trends Genet. 2001 Oct;17(10):589-96
– reference: 22992527 - Nature. 2012 Sep 27;489(7417):513-8
– reference: 14507360 - Mol Microbiol. 2003 Oct;50(1):15-27
– reference: 25385532 - Elife. 2014;3. doi: 10.7554/eLife.03568
– reference: 17339222 - Genetics. 2007 May;176(1):441-53
– reference: 1752431 - Genetics. 1991 Nov;129(3):957-62
– reference: 16624907 - Genetics. 2006 Jun;173(2):515-26
– reference: 19247286 - Nat Protoc. 2009;4(3):363-71
– reference: 22991466 - Proc Natl Acad Sci U S A. 2012 Oct 9;109(41):E2774-83
– reference: 19432983 - Genome Biol. 2009;10(5):R51
– reference: 23431270 - PLoS Biol. 2013;11(2):e1001490
– reference: 22589730 - PLoS Genet. 2012;8(5):e1002651
– reference: 11036633 - Methods Enzymol. 2000;326:35-47
– reference: 9665128 - Nature. 1998 Jul 2;394(6688):69-72
– reference: 24105273 - Nat Rev Genet. 2013 Nov;14(11):751-64
– reference: 13184240 - J Lab Clin Med. 1954 Aug;44(2):301-7
– reference: 16895465 - Annu Rev Genet. 2006;40:385-407
– reference: 25373677 - Nature. 2014 Nov 6;515(7525):75-9
– reference: 19433086 - Dev Biol. 2009 Aug 1;332(1):36-47
– reference: 19704015 - Genetics. 2009 Nov;183(3):1041-53
– reference: 9560386 - Genetics. 1998 Apr;148(4):1667-86
– reference: 17304246 - Nat Rev Genet. 2007 Mar;8(3):206-16
– reference: 19625391 - Mol Biol Evol. 2009 Nov;26(11):2475-86
– reference: 15186351 - Environ Microbiol. 2004 Jul;6(7):726-32
– reference: 17687667 - Crit Rev Biochem Mol Biol. 2007 Jul-Aug;42(4):247-58
– reference: 19197055 - Science. 2009 Feb 6;323(5915):746-51
– reference: 22282803 - Science. 2012 Jan 27;335(6067):428-32
– reference: 22714405 - Genetics. 2012 Sep;192(1):241-52
– reference: 14970819 - Nat Rev Genet. 2004 Mar;5(3):169-78
– reference: 11846609 - Methods. 2001 Dec;25(4):402-8
– reference: 17379708 - Microbiology. 2007 Apr;153(Pt 4):980-94
– reference: 24913663 - Nat Rev Genet. 2014 Jul;15(7):480-90
– reference: 11207743 - Environ Microbiol. 1999 Jun;1(3):243-57
– reference: 20083632 - Philos Trans R Soc Lond B Biol Sci. 2010 Feb 27;365(1540):557-66
– reference: 14888646 - J Bacteriol. 1951 Sep;62(3):293-300
– reference: 17109328 - Am Nat. 2006 Dec;168 Suppl 6:S4-13
– reference: 12019221 - Genetics. 2002 May;161(1):33-46
– reference: 18212807 - Heredity (Edinb). 2008 May;100(5):453-63
– reference: 18258611 - Mol Biol Evol. 2008 Jun;25(6):1016-24
– reference: 22251874 - Nat Rev Genet. 2011 Feb;13(2):135-45
SSID ssj0000748819
Score 2.396959
Snippet Replicate populations of natural and experimental organisms often show evidence of parallel genetic evolution, but the causes are unclear. The wrinkly spreader...
SourceID doaj
unpaywall
swepub
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
SubjectTerms bacterial evolution
Bias
Biological Evolution
c-di-GMP
diguanylate cyclase
Directed Molecular Evolution
Evolution
Evolution & development
evolutionary rule
evolutionary rules
Experiments
Gene Fusion
genetic constraint
Genetic Fitness
Genomes
Genomics and Evolutionary Biology
Mutation
Mutation - genetics
parallel evolution
Phenotype
Population
Promoter Regions, Genetic - genetics
Pseudomonas fluorescens - genetics
Pseudomonas fluorescens SBW25
RNA, Messenger - genetics
RNA, Messenger - metabolism
Transcription, Genetic
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hSgg4IN6EFhSklgNSaOL4eSzQaoUQJ4p6sxw_1JW2adVuqPbfd-xkw0at4MI1mST252_sGcX-BmCX1NwbymhhvBBFPElVmErwgjn0rtJVUtik9vmDz47ptxN2slHqK-4J6-WBe-D2qaeM2bpyjilqG65igStbkdLhQlQRH2ffUqqNZCrNwQKJWan-QJ7AJXPff58H_ymK29DJEpSU-u8KL2_vkhy0RB_Bg669MKtrs1hsrEVHT-DxEETmB33jn8I93z6D-31ZydVzmB1uyPbn_vfArjyqNSHb8tMoG9Lmbr0lI5-3f6zM5SqPZYqvzerqBRwfHf78MiuGigmFpbJcFthRqkpVhxCkcUYJFaLajRWCK4mpkjGeqIaIEFMvy0pLAkLJeKhpI0Jt65ew1Z63_jXkEi0aBD5I1VBreeNs8LUK3Anifagz-LgGUdtBTjxWtVhoTCsi4johrhPiGeyOxhe9isbdZp_jaIwmUfo6XUBC6IEQ-l-EyGBnPZZ68McrjfMMhqJCVTKD9-Nt9KT4e8S0_rxDm1iyB6NliX171Q_92BLCJMZmElsoJqSYNHV6p52fJrVujPiY5PjdDz19Jo98nf86SL3rzjpMxiQTVQZ7fzXsNHqUkPjCvZGGt0FdjKC--R-gbsNDjBRZ3HxH2A5sLS87_xajsWXzLjneDczPNaY
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB6VrRBwQLxZKChILQektHnYsX1AqIWtVgitEKKot8jxg660ZJfthmr_PTN5tatWvSaTxB7PZD4n9vcB7CZp5jTjLNROiJB2UoU6FlnILWZXZGMpTM32OcnGJ-zrKT_dgkm3F4aWVXbvxPpFbeeGvpEfYKQgmBAqlp8Wf0NSjaK_q52Ehm6lFezHmmLsDmwnxIw1gO2j0eT7j_6rCxZMiTWw2agnsJQeuG9T7_aJ9IZtlKaawf8m2Hl99WTLMfoA7lXlQq8v9Gx2pUYdP4KHLbgMDptoeAxbrnwCdxu5yfVTGI-u0PkH7l8bdQGxOGEUBmdEJ1IGtluqEUzLSyu9XAckX3yh1-fP4OR49PPzOGyVFELDZLQKsaNMRSr13ktttRLKEwuOESJTEqdQWrtEFYnwNCUzPDKJN4h8Mp-yQvjUpM9hUM5L9xICiRYFN6mXqmDGZIU13qXKZ1Ykzvl0CB86J-ampRkntYtZjtMN8nheezyvPT6E3d540bBr3Gx2RKPRmxAldn1gvvydtxmWM8c4tiu2litmikyREhr2IrKIWOLEDWGnG8u8zdPz_DKqhvCuP40ZRr9NdOnmFdqQlA-iaIl9e9EMfd-ShEvEbBJbKDaCYqOpm2fK6VnN4o1IkMsMn_u-CZ-NS75Mfx3Wvav-VDhJk1zEQ9i71bDKMdOExBvu9WF43amz3qmvbvfHa7iP2JDTcruE78BgtazcG8Rfq-Jtm1T_AbKyNCE
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VIgQcKt6EFhSklgNSljzs2D5VLbRaIeDEor1FjmO3K4Vs2W4o-feMnQcNXSGu8SSxxzP2N4rzfQD7cZJqSSgJpGYssH9SBTJiaUALzK6wiDhTju3zSzqdkY9zOt-CXoyzc-DlxtLO6knNVuXk14_mEBMe8euE4W74Tn9aGD2xvDXkFtzGLUpYDYfPHc53SzLDOHUiH3FIHZfpvP1X7-_7R7uTI_HfhDxvHqDsaEbvw926upDNlSzLa9vU6QPY6fClf9QGxEPY0tUjuNMqTjaPYXpyjdHf1z-7wPMtkRM6xD-3jCKVX_SnNfxF9cdKrhrfKhhfyebyCcxOT76-nwadmEKgCA_XAQ6UiFAkxhguCymYMJYIRzGWCo5VlJQ6FnnMjK3KFA1VbBSCn9QkJGcmUclT2K6WlX4OPkeLnKrEcJETpdK8UEYnwqQFi7U2iQdveydmqmMat4IXZYYVh_V45jyeOY97sD8YX7QEG5vNju1sDCaWFdtdWK7Osi7JMqIJxX5FRUEFUXkqrBgajiIsELREsfZgr5_LrI-0DJcgRKlMRNyD10MzJpn9ciIrvazRxqr5IJDmOLZn7dQPPYkpR9jGsYdsFBSjro5bqsW5I_JGMEh5iu9904bP6JYPi29HbnT19xrrNE5Z5MHBPw3rDJONcXzgwRCGN51aDk598b8v3oV7CBSpPXsX0z3YXq9q_RLB2Dp_5RLtN5PRNmo
  priority: 102
  providerName: Scholars Portal
Title Experimental evolution reveals hidden diversity in evolutionary pathways
URI https://www.ncbi.nlm.nih.gov/pubmed/25806684
https://www.proquest.com/docview/1966507918
https://www.proquest.com/docview/1673791683
https://pubmed.ncbi.nlm.nih.gov/PMC4395868
https://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-118571
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-424788
https://doi.org/10.7554/elife.07074
https://doaj.org/article/4e455c31dd594cb69ce03c120d61312e
UnpaywallVersion publishedVersion
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2050-084X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000748819
  issn: 2050-084X
  databaseCode: KQ8
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2050-084X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000748819
  issn: 2050-084X
  databaseCode: KQ8
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2050-084X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000748819
  issn: 2050-084X
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVBFR
  databaseName: Free Medical Journals at publisher websites
  customDbUrl:
  eissn: 2050-084X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000748819
  issn: 2050-084X
  databaseCode: DIK
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 2050-084X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000748819
  issn: 2050-084X
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2050-084X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000748819
  issn: 2050-084X
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2050-084X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000748819
  issn: 2050-084X
  databaseCode: RPM
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2050-084X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000748819
  issn: 2050-084X
  databaseCode: BENPR
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Health & Medical Collection
  customDbUrl:
  eissn: 2050-084X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000748819
  issn: 2050-084X
  databaseCode: 7X7
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 2050-084X
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0000748819
  issn: 2050-084X
  databaseCode: M48
  dateStart: 20121201
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED9trRDwwPdHYFRBbDxMSsmHHduPHetUIagmRFF5ihzH1ipCNm0NU_nrOeeLdpuAlzzE5-R8vot_ju3fAeyGUawlocSTmjHPnqTyZMBij2YYXX4WcKYqts9pPJmRD3M634I37VmYtfV7hiPdO50vjB5aThqyDf2YIuDuQX82PR59s2njfFoxk87rk3dXa2yMNRUl_0048vp2yIY09C7cLoszubqUeb426Bzdh8NW3XqvyfdhuUyH6tcVJsd_tOcB3GtApzuqveQhbOniEdyq01CuHsNkvEbz7-qfjTe6lt0JvdM9sTQjhZu1WzjcRfFHSp6vXJvW-FKuLp7A7Gj85f3EazIseIpwf-mhRkT4IjLGcJlJwYSx7DiKsVhwnFpJqUORhszYqZqivgqNQkQUm4ikzEQqegq94rTQz8HlKJFSFRkuUqJUnGbK6EiYOGOh1iZyYL_ti0Q19OM2C0ae4DTEmibRH9E0SWUaB3Y74bOadeNmsQPbqZ2IpcqubqDFkybyEqIJRb2CLKOCqDQWNkMatsLPEMkEoXZgp3WJpInfiwS_SwhdmQi4A6-7Yow8u5wiC31aooxN8YPommPbntUe1GkSUo5YjqOGbMO3NlTdLCkWJxW7NyJEymN879vaCzeqHC6-jqrWlT9KnLxxygIH9v4qWCYYgYzjA_c6b75u1Lwz6ov_lHsJdxA8UrsfL6Q70Fuel_oVArRlOoBtNmcD6B-Mp8efB9VvDrx-InzQhO5v5hlAkQ
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4am9DgAXGnMCBIKw9IYU1ix_bDhDbWqWOlQmhDewuOL6xSSUvbUPXP8ds4zm2rNu1tr81pYh-fY38nsb8PYDuMYiMJJb40jPnuJJUvAxb7VGN2dXTAmSrYPgdx75R8OaNna_CvPgvjtlXWc2IxUeuxcu_IdzBSEEwwEfBPkz--U41yX1drCQ1ZSSvo3YJirDrYcWyWCyzhZrtHBzje7TA87J587vmVyoCvCO_MfVxPicC63lrLpZaCCesYYhRjseBYXkhpQpGGzLpyRdGOCq1CVBDbiKTMRirC-96BDRIRgcXfxn538O1785YHF2iOa255MJDho3ZMf2jNR0eyQ1aWwkIx4DqYe3W3ZsVpeh8282wilws5Gl1aEw8fwoMKzHp7ZfQ9gjWTPYa7pbzl8gn0upfkAzzzt4pyz7FGYdR7546-JPN0vTXEG2YXVnK69Jxc8kIuZ0_h9FZ8-gzWs3FmXoDH0SKlKrJcpESpONXKmkjYWLPQGBu14EPtxERVtOZOXWOUYHnjPJ4UHk8Kj7dguzGelGwe15vtu9FoTBwFd_HDePorqTI6IYZQbFegNRVEpbFwymvYi45GhBSEpgVb9Vgm1bwwSy6iuAXvmsuY0e4zjczMOEcbJx2EqJ1j356XQ9-0JKQcMSLHFrKVoFhp6uqVbHhesIYj8qQ8xue-L8Nn5S8Hwx97Re_y3zkWhZyyoAXtGw3zBDObcbxhuwnDq04dNU59ebM_3sJm7-RrP-kfDY5fwT3EpdRt9QvpFqzPp7l5jdhvnr6pEsyDn7ed0_8BCj5v9Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NIb4eEN8EBgRp5QEptEns2H5AaNBVHZsmHhjqW3Acm1UqaWkbqvxr_HWc87VFm_a21-aa2Oc7311y_v0AdoMw0pJQ4knNmGdPUnnSZ5FHU_SuQepzpkq0z-NofEK-TuhkC_41Z2FsW2WzJ5YbdTpX9h15Hy0FkwkmfN43dVvEt-Ho0-KPZxmk7JfWhk6jMpFDXWywfFt9PBjiWveCYLT__cvYqxkGPEX4YO1hLCUCa3pjDJepFEwYiw6jGIsEx9JCSh2IJGDGliqKDlRgFGYEkQlJwkyoQrzvDbjJwlDYdkI2Ye37HQzNHKNtdSSQ4YP6-mhq9AcLr0M6QbDkCrgswb3Yp1mjmd6DO3m2kMVGzmbnouHoAdyv01h3r7K7h7Cls0dwqyK2LB7DeP8ccYCr_9b27Vq8KLR399QCl2Ru2jSFuNPsTEouC9cSJW9ksXoCJ9ei0aewnc0z_RxcjhIJVaHhIiFKRUmqjA6FiVIWaG1CB943SoxVDWhueTVmMRY2VuNxqfG41LgDu63wosLxuFzss12NVsSCb5c_zJe_4tqXY6IJxXH5aUoFUUkkLOcazmKQYm7kB9qBnWYt43pHWMVn9uvA2_Yy-rL9QCMzPc9RxpIGYb7OcW7PqqVvRxJQjtkhxxGyjlF0htq9kk1PS7xwzDkpj_C57yrz6fxlOP2xV84u_51jOcgp8x3oXSmYx-jTjOMNe60ZXlTqrFXqi6v18QZuoyfHRwfHhy_hLiak1Pb4BXQHttfLXL_CpG-dvC69y4Wf1-3O_wEKhW2P
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VrRDlwPsRKCiIlkOlLHn4eVxoqxVCFQcWLafIcWx1RZpW7YZq-fWM82LTVsA1Hicz45n4s2x_A7ATJ8woQkmgDOeBu0kVqIizgOaYXWEeCa5rts8jNp2RT3M634C33V2Ytf17jjPde1MsrBk7ThpyCzYZRcA9gs3Z0ZfJd1c2LqQ1M-m8uXl3tcdgrqkp-W_CkdePQ7akoXfhTlWeqdWlKoq1SefwPux36jZnTX6Mq2U21r-uMDn-w54HcK8Fnf6kiZKHsGHKR3C7KUO5egzTgzWaf9_8bKPRd-xOGJ3-saMZKf28O8LhL8o_Uup85buyxpdqdfEEZocHXz9Og7bCQqCJCJcBakRkKBNrrVC5klxax46jOWdS4NJKKRPLLObWLdU0DXVsNSIiZhOScZvo5CmMytPSPAdfoERGdWKFzIjWLMu1NYm0LOexMTbxYK8bi1S39OOuCkaR4jLEuSY1n9E1ae0aD3Z64bOGdeNmsQ9uUHsRR5VdP0CPp23mpcQQinpFeU4l0RmTrkIaWhHmiGSi2Hiw3YVE2ubvRYr_JYSuXEbCgzd9M2ae205RpTmtUMaV-EF0LdC2Z00E9ZrEVCCWE6ghH8TWQNVhS7k4rtm9ESFSwfC775ooHHTZX3yb1NZVJxUu3gTlkQe7fxWsUsxALvCFu300X3dq0Tv1xX_KvYQtBI_UnceL6TaMlueVeYUAbZm9bhP0N5k9PEE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Experimental+evolution+reveals+hidden+diversity+in+evolutionary+pathways&rft.jtitle=eLife&rft.au=Lind%2C+Peter+A&rft.au=Farr%2C+Andrew+D&rft.au=Rainey%2C+Paul+B&rft.date=2015-03-25&rft.issn=2050-084X&rft.eissn=2050-084X&rft.volume=4&rft_id=info:doi/10.7554%2FeLife.07074&rft.externalDocID=oai_DiVA_org_umu_118571
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-084X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-084X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-084X&client=summon