Applying machine learning to improve the near-real-time products of the Aura Microwave Limb Sounder
A new algorithm to derive near-real-time (NRT) data products for the Aura Microwave Limb Sounder (MLS) is presented. The old approach was based on a simplified optimal estimation retrieval algorithm (OE-NRT) to reduce computational demands and latency. This paper describes the setup, training, and e...
Saved in:
| Published in | Atmospheric measurement techniques Vol. 16; no. 11; pp. 2733 - 2751 |
|---|---|
| Main Authors | , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Katlenburg-Lindau
Copernicus GmbH
02.06.2023
Copernicus Publications |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1867-8548 1867-1381 1867-8548 |
| DOI | 10.5194/amt-16-2733-2023 |
Cover
| Abstract | A new algorithm to derive near-real-time (NRT) data products for the Aura Microwave Limb Sounder (MLS) is presented. The old approach was based on a simplified optimal estimation retrieval algorithm (OE-NRT) to reduce computational demands and latency. This paper describes the setup, training, and evaluation of a redesigned approach based on artificial neural networks (ANN-NRT), which is trained on >17 years of MLS radiance observations and composition profile retrievals. Comparisons of joint histograms and performance metrics derived between the two NRT results and the operational MLS products demonstrate a noticeable statistical improvement from ANN-NRT. This new approach results in higher correlation coefficients, in addition to lower root-mean-square deviations and biases at almost all retrieval levels compared to OE-NRT. The exceptions are pressure levels with concentrations close to 0 ppbv (parts per billion by volume), where the ANN models fail to establish a functional relationship and tend to predict 0. Depending on the application, this behavior might be advantageous. While the developed models can take advantage of the extended MLS data record, this study demonstrates that training ANN-NRT on just a single year of MLS observations is sufficient to improve upon OE-NRT. This confirms the potential of applying machine learning to the NRT efforts of other current and future mission concepts. |
|---|---|
| AbstractList | A new algorithm to derive near-real-time (NRT) data products for the Aura Microwave Limb Sounder (MLS) is presented. The old approach was based on a simplified optimal estimation retrieval algorithm (OE-NRT) to reduce computational demands and latency. This paper describes the setup, training, and evaluation of a redesigned approach based on artificial neural networks (ANN-NRT), which is trained on >17 years of MLS radiance observations and composition profile retrievals. Comparisons of joint histograms and performance metrics derived between the two NRT results and the operational MLS products demonstrate a noticeable statistical improvement from ANN-NRT. This new approach results in higher correlation coefficients, in addition to lower root-mean-square deviations and biases at almost all retrieval levels compared to OE-NRT. The exceptions are pressure levels with concentrations close to 0 ppbv (parts per billion by volume), where the ANN models fail to establish a functional relationship and tend to predict 0. Depending on the application, this behavior might be advantageous. While the developed models can take advantage of the extended MLS data record, this study demonstrates that training ANN-NRT on just a single year of MLS observations is sufficient to improve upon OE-NRT. This confirms the potential of applying machine learning to the NRT efforts of other current and future mission concepts. A new algorithm to derive near-real-time (NRT) data products for the Aura Microwave Limb Sounder (MLS) is presented. The old approach was based on a simplified optimal estimation retrieval algorithm (OE-NRT) to reduce computational demands and latency. This paper describes the setup, training, and evaluation of a redesigned approach based on artificial neural networks (ANN-NRT), which is trained on 17 years of MLS radiance observations and composition profile retrievals. Comparisons of joint histograms and performance metrics derived between the two NRT results and the operational MLS products demonstrate a noticeable statistical improvement from ANN-NRT. This new approach results in higher correlation coefficients, in addition to lower root-mean-square deviations and biases at almost all retrieval levels compared to OE-NRT. The exceptions are pressure levels with concentrations close to 0 ppbv (parts per billion by volume), where the ANN models fail to establish a functional relationship and tend to predict 0. Depending on the application, this behavior might be advantageous. While the developed models can take advantage of the extended MLS data record, this study demonstrates that training ANN-NRT on just a single year of MLS observations is sufficient to improve upon OE-NRT. This confirms the potential of applying machine learning to the NRT efforts of other current and future mission concepts. A new algorithm to derive near-real-time (NRT) data products for the Aura Microwave Limb Sounder (MLS) is presented. The old approach was based on a simplified optimal estimation retrieval algorithm (OE-NRT) to reduce computational demands and latency. This paper describes the setup, training, and evaluation of a redesigned approach based on artificial neural networks (ANN-NRT), which is trained on >17 years of MLS radiance observations and composition profile retrievals. Comparisons of joint histograms and performance metrics derived between the two NRT results and the operational MLS products demonstrate a noticeable statistical improvement from ANN-NRT. This new approach results in higher correlation coefficients, in addition to lower root-mean-square deviations and biases at almost all retrieval levels compared to OE-NRT. The exceptions are pressure levels with concentrations close to 0 ppbv (parts per billion by volume), where the ANN models fail to establish a functional relationship and tend to predict 0. Depending on the application, this behavior might be advantageous. While the developed models can take advantage of the extended MLS data record, this study demonstrates that training ANN-NRT on just a single year of MLS observations is sufficient to improve upon OE-NRT. This confirms the potential of applying machine learning to the NRT efforts of other current and future mission concepts. |
| Audience | Academic |
| Author | Werner, Frank Read, William G. Lambert, Alyn Tolstoff, Sasha N. Santee, Michelle L. Wagner, Paul A. Millán, Luis F. Schwartz, Michael J. Livesey, Nathaniel J. Daffer, William H. |
| Author_xml | – sequence: 1 givenname: Frank orcidid: 0000-0002-7141-0934 surname: Werner fullname: Werner, Frank – sequence: 2 givenname: Nathaniel J. surname: Livesey fullname: Livesey, Nathaniel J. – sequence: 3 givenname: Luis F. orcidid: 0000-0002-9509-9095 surname: Millán fullname: Millán, Luis F. – sequence: 4 givenname: William G. surname: Read fullname: Read, William G. – sequence: 5 givenname: Michael J. orcidid: 0000-0001-6169-5094 surname: Schwartz fullname: Schwartz, Michael J. – sequence: 6 givenname: Paul A. surname: Wagner fullname: Wagner, Paul A. – sequence: 7 givenname: William H. surname: Daffer fullname: Daffer, William H. – sequence: 8 givenname: Alyn orcidid: 0000-0003-3182-1824 surname: Lambert fullname: Lambert, Alyn – sequence: 9 givenname: Sasha N. surname: Tolstoff fullname: Tolstoff, Sasha N. – sequence: 10 givenname: Michelle L. surname: Santee fullname: Santee, Michelle L. |
| BookMark | eNqFkc2P0zAQxS20SOwW7hwjceKQJf5KnGO14qNSERILZ2tqT7quErvYDkv_e9wtAooQyAdbb94bzfx8RS588EjIc9pcS9qLVzDlmrY16zivWcP4I3JJVdvVSgp18dv7CblKadc0raAduyRmud-PB-e31QTmznmsRoToj0IOlZv2MXzFKt9h5YteR4Sxzm7CqhTsbHKqwvBQXs4RqvfOxHAPJbF206a6DbO3GJ-SxwOMCZ_9uBfk85vXn27e1esPb1c3y3VthGpyzZRVEsAiHQbZiV5xi33Hu5ZJ2duNYp1SlhYPIrcCFXLTI_bKglQopOILsjr1tQF2eh_dBPGgAzj9IIS41RCzMyNqoAMYazlVYAVI6GWr2IYxrlgjeGG4IPTUa_Z7ONzDOP5sSBt9JK4LcU1bfSSuj8RL5sUpU9h8mTFlvQtz9GVlzRSjUrQF-i_XFsogzg8hRzCTS0YvO0llGaCVxXX9F1c5FidnytcPruhngZdngeLJ-C1vYU5Jr24_nnvbk7f8VkoRB21chuxKJIIb_7Vh80fwv1C-AwLazUQ |
| CitedBy_id | crossref_primary_10_1016_j_jqsrt_2025_109426 |
| Cites_doi | 10.1016/j.jqsrt.2004.07.028 10.5194/essd-13-1855-2021 10.1029/2020GL090831 10.1038/ngeo2138 10.5194/acp-8-6103-2008 10.5194/amt-8-195-2015 10.5194/amt-6-2301-2013 10.7551/mitpress/4937.001.0001 10.1109/TGRS.2006.872327 10.1029/2020GL090131 10.1017/CBO9780511812651 10.1038/s41598-020-74215-5 10.1016/j.atmosenv.2005.10.036 10.1002/2017GL074830 10.5194/acp-18-8331-2018 10.5194/amt-9-2497-2016 10.1175/BAMS-D-21-0314.1 10.5194/acp-19-425-2019 10.1109/TGRS.2006.873771 10.1029/2021GL096270 10.1029/2022GL099381 10.5194/amt-14-7749-2021 10.1002/grl.50421 10.5194/acp-19-4783-2019 10.5194/amt-15-3377-2022 10.1029/2022JD037511 10.1525/elementa.291 10.1098/rsta.2020.0097 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2023 Copernicus GmbH 2023. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2023 Copernicus GmbH – notice: 2023. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ISR 7QH 7TG 7TN 7UA 8FD 8FE 8FG ABUWG AEUYN AFKRA ARAPS AZQEC BENPR BFMQW BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W H8D H96 HCIFZ KL. L.G L7M P5Z P62 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS ADTOC UNPAY DOA |
| DOI | 10.5194/amt-16-2733-2023 |
| DatabaseName | CrossRef Gale In Context: Science Aqualine Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Water Resources Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Advanced Technologies & Aerospace Database ProQuest Central Essentials ProQuest Central Continental Europe Database Technology collection Natural Science Collection Earth, Atmospheric & Aquatic Science Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences Aerospace Database ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Natural Science Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Continental Europe Database ProQuest SciTech Collection Aqualine Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Meteorology & Climatology |
| EISSN | 1867-8548 |
| EndPage | 2751 |
| ExternalDocumentID | oai_doaj_org_article_a1facdd318ad4a5a95682b2238204373 10.5194/amt-16-2733-2023 A751520465 10_5194_amt_16_2733_2023 |
| GroupedDBID | 23N 5VS 8FE 8FG 8FH 8R4 8R5 AAFWJ AAYXX ABDBF ABUWG ACGFO ACUHS ADBBV AEGXH AENEX AEUYN AFKRA AFPKN AFRAH AHGZY AIAGR ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BFMQW BGLVJ BHPHI BKSAR BPHCQ CCPQU CITATION D1K E3Z ESX GROUPED_DOAJ H13 HCIFZ IAO IEA ISR ITC K6- KQ8 LK5 M7R OK1 P2P P62 PCBAR PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PUEGO Q2X RKB RNS TR2 TUS 7QH 7TG 7TN 7UA 8FD AZQEC C1K DWQXO F1W H8D H96 KL. L.G L7M PKEHL PQEST PQUKI PRINS ADTOC C1A IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c480t-28d85aade1ff574983de973762559db82788d1d85ee3d4e8e3c9ee98da58e4583 |
| IEDL.DBID | DOA |
| ISSN | 1867-8548 1867-1381 |
| IngestDate | Tue Oct 14 19:06:20 EDT 2025 Sun Sep 07 11:11:53 EDT 2025 Fri Jul 25 22:55:03 EDT 2025 Mon Oct 20 22:21:30 EDT 2025 Mon Oct 20 16:39:16 EDT 2025 Thu Oct 16 16:17:27 EDT 2025 Wed Oct 01 03:51:41 EDT 2025 Thu Apr 24 23:08:53 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0 cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c480t-28d85aade1ff574983de973762559db82788d1d85ee3d4e8e3c9ee98da58e4583 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-9509-9095 0000-0002-7141-0934 0000-0001-6169-5094 0000-0003-3182-1824 |
| OpenAccessLink | https://doaj.org/article/a1facdd318ad4a5a95682b2238204373 |
| PQID | 2821546641 |
| PQPubID | 105742 |
| PageCount | 19 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_a1facdd318ad4a5a95682b2238204373 unpaywall_primary_10_5194_amt_16_2733_2023 proquest_journals_2821546641 gale_infotracmisc_A751520465 gale_infotracacademiconefile_A751520465 gale_incontextgauss_ISR_A751520465 crossref_citationtrail_10_5194_amt_16_2733_2023 crossref_primary_10_5194_amt_16_2733_2023 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2023-06-02 |
| PublicationDateYYYYMMDD | 2023-06-02 |
| PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-02 day: 02 |
| PublicationDecade | 2020 |
| PublicationPlace | Katlenburg-Lindau |
| PublicationPlace_xml | – name: Katlenburg-Lindau |
| PublicationTitle | Atmospheric measurement techniques |
| PublicationYear | 2023 |
| Publisher | Copernicus GmbH Copernicus Publications |
| Publisher_xml | – name: Copernicus GmbH – name: Copernicus Publications |
| References | ref13 ref12 ref15 ref14 ref11 ref10 ref17 ref16 ref19 ref18 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 |
| References_xml | – ident: ref4 doi: 10.1016/j.jqsrt.2004.07.028 – ident: ref1 – ident: ref17 doi: 10.5194/essd-13-1855-2021 – ident: ref20 – ident: ref27 – ident: ref43 doi: 10.1029/2020GL090831 – ident: ref30 doi: 10.1038/ngeo2138 – ident: ref9 – ident: ref18 doi: 10.5194/acp-8-6103-2008 – ident: ref33 doi: 10.5194/amt-8-195-2015 – ident: ref40 doi: 10.5194/amt-6-2301-2013 – ident: ref11 – ident: ref34 – ident: ref36 doi: 10.7551/mitpress/4937.001.0001 – ident: ref6 – ident: ref44 – ident: ref23 – ident: ref24 doi: 10.1109/TGRS.2006.872327 – ident: ref49 doi: 10.1029/2020GL090131 – ident: ref37 doi: 10.1017/CBO9780511812651 – ident: ref2 doi: 10.1038/s41598-020-74215-5 – ident: ref12 – ident: ref16 doi: 10.1016/j.atmosenv.2005.10.036 – ident: ref47 doi: 10.1002/2017GL074830 – ident: ref3 – ident: ref26 doi: 10.5194/acp-18-8331-2018 – ident: ref7 – ident: ref45 – ident: ref29 – ident: ref22 – ident: ref25 – ident: ref19 doi: 10.5194/amt-9-2497-2016 – ident: ref32 doi: 10.1175/BAMS-D-21-0314.1 – ident: ref5 doi: 10.5194/acp-19-425-2019 – ident: ref48 doi: 10.1109/TGRS.2006.873771 – ident: ref39 doi: 10.1029/2021GL096270 – ident: ref15 – ident: ref28 doi: 10.1029/2022GL099381 – ident: ref50 doi: 10.5194/amt-14-7749-2021 – ident: ref42 doi: 10.1002/grl.50421 – ident: ref38 – ident: ref13 doi: 10.5194/acp-19-4783-2019 – ident: ref46 – ident: ref21 – ident: ref35 doi: 10.5194/amt-15-3377-2022 – ident: ref31 doi: 10.1029/2022JD037511 – ident: ref8 – ident: ref14 doi: 10.1525/elementa.291 – ident: ref41 doi: 10.1098/rsta.2020.0097 – ident: ref10 |
| SSID | ssj0064172 |
| Score | 2.360909 |
| Snippet | A new algorithm to derive near-real-time (NRT) data products for the Aura Microwave Limb Sounder (MLS) is presented. The old approach was based on a simplified... |
| SourceID | doaj unpaywall proquest gale crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 2733 |
| SubjectTerms | Algorithms Artificial neural networks Atmospheric sciences Coefficients Correlation coefficient Correlation coefficients Latency Learning algorithms Machine learning Neural networks Neurons Performance measurement Radiance Real time Retrieval Stratosphere Temperature Training Volcanoes |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3fi9NAEF7O3oP6IP7E6CmLiKKwtEl2k82DSO-44xRb5M6De1sm2U0ppEltUw7_e2e2SbUI52OT2ZJkZmdnZ2e-j7G3OnPa6RiEc6EUEiAXubSlgBGMYgUpRgmUh5xMk_Mr-fVaXR-wad8LQ2WVvU_0jto2BeXIh7g1wNU-SWT4eflTEGsUna72FBrQUSvYTx5i7A47jAgZa8AOj0-n3y9634yjPZ0TobgR-l64PbjEKEYOYdGKMKFWlVgQp_jeQuXx_P_12vfZ3U29hF83UFV_LUtnD9mDLp7k460BPGIHrn7MggmGws3KZ8z5O35SzTEu9b-eMMp9VdTbxBe-jtLxjjhixtuGz32OwXEMC3mN1wXGlJUgAnq-3GLDrnlT-tvjzQr4hOr5bgBHfJsvcn5JJE1u9ZRdnZ3-ODkXHdOCKKQetSLSVisA68KyVKnMdGxdlqLvoQ2HzXWEG2UbooxzsZWo3bjInMu0BaUdnbw-Y4O6qd1zxotRgXqOc2UhltpKwB2kgiJFC0hcplTAhv1nNUUHQ05sGJXB7QgpwqAiTJgYUoQhRQTsw27EcgvBcYvsMWlqJ0fg2f5Cs5qZbi4aCEsorEVvBvh8CqhjMsoxTtKRR3oK2BvSsyF4jJrqb2awWa_Nl8sLM04x_kOpBN_jfSdUNvj8BXTtDPgVCFFrT_JoTxLnb7F_uzcn0_mPtflj7QH7uDOx_77-i9v_6yW7R1K-0i06YoN2tXGvMKZq89fdRPkNYqkd5w priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELegewAe-EYEBrIQAoHkrUnsxHksE9NAdEKMSuPJusTOVJEmVZNogr-eOzerVkB8PKVJLlV8Pju_s-9-x9hznTntdAzCuVAKCZCLXNpSwBjGsYIUUQKtQ06Pk6OZfH-qTof1DsqFubR_j9hC7sOiE2FCCSSxoErfV9lOohB1j9jO7Pjj5Av5UxrHehj7eqT-t0YUvt6R_O1fbH2BPFH_r9PxDXatr5fw7Ryq6tL35vDWmvyo9TSFFGbyda_v8r3i-08kjv_SlNvs5gA6-WRtJXfYFVffZcEU8XKz8svq_AU_qOYIXv3ZPUYLZBUlQPGFD7Z0fKgucca7hs_9QoTjiB15jdcFAs9KUJV6vlwTyLa8Kf3tSb8CPqWgv3PAJz7MFzk_oUpObnWfzQ7ffj44EkM5BlFIPe5EpK1WANaFZalSmenYuizFCYq8EpvrCL1pG6KMc7GVaAJxkTmXaQtKO9qefcBGdVO7h4wX4wKNIc6VhVhqKwHdTAVFimaSuEypgO1fdJEpBq5yKplRGfRZSJkGlWnCxJAyDSkzYK82TyzXPB1_kH1Dvb6RI4ZtfwF7ywwD1kBYQmEtTnmA76eA0iqjHMGUjjwdVMCekc0Y4tCoKUjnDPq2Ne9OPplJiiARpRJsx8tBqGzw_QsYch5QC0S7tSW5uyWJg7zYvn1hmmaYZFqD3jIC4CSRYcBeb8z1r81_9D_Cj9l1OvjguGiXjbpV754gDOvyp8MI_AFoJCi6 priority: 102 providerName: Unpaywall |
| Title | Applying machine learning to improve the near-real-time products of the Aura Microwave Limb Sounder |
| URI | https://www.proquest.com/docview/2821546641 https://doi.org/10.5194/amt-16-2733-2023 https://doaj.org/article/a1facdd318ad4a5a95682b2238204373 |
| UnpaywallVersion | publishedVersion |
| Volume | 16 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1867-8548 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0064172 issn: 1867-1381 databaseCode: KQ8 dateStart: 20080101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1867-8548 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0064172 issn: 1867-1381 databaseCode: DOA dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Academic Search Ultimate | Ebsco customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1867-8548 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0064172 issn: 1867-1381 databaseCode: ABDBF dateStart: 20100501 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVPQU databaseName: Continental Europe Database customDbUrl: eissn: 1867-8548 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0064172 issn: 1867-1381 databaseCode: BFMQW dateStart: 20100501 isFulltext: true titleUrlDefault: https://search.proquest.com/conteurope providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1867-8548 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0064172 issn: 1867-1381 databaseCode: BENPR dateStart: 20100501 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1867-8548 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0064172 issn: 1867-1381 databaseCode: 8FG dateStart: 20100501 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fa9swEBZb97Dtoewn89YFMcbGBiL-IdvyY1qadWMJpV2gexJnSy4Bxw6JQ-l_vzvZCQ2D9WWPts_G0neWvpNP3zH2UWVWWRWBsDaQQgLkIpemFOCDH8WQIkugdcjJNDmbyR9X8dWdUl-UE9bJA3cdN4SghMIYdD0wEmKg7W1hjpOaCp0sD42-vsq2wVQ3BicycGWbSK2NVPaC7gclshU5hEUrgoS2pESCaofvTUhOt__v0fkpe7ypl3B7A1V1Z_oZP2OHPW_ko-59n7MHtn7BvAlS3mblVsb5J35SzZF_uqOXjNa4KtrDxBcuX9LyvkDENW8bPndrCZYj_eM1nhfIHStBheb5stOAXfOmdJdHmxXwCeXt3QDe8XO-yPklFWOyq1dsNj79dXIm-ooKopDKb0WojIoBjA3KMk5lpiJjsxTHGAosTK5CDIhNgDbWRkYiilGRWZspA7Gy9If1NTuom9q-YbzwC8QzymMDkVQIDUaKMRQpIp3YLI49Ntx2qy56uXGqelFpDDsICI1A6CDRBIQmIDz2ZXfHspPa-IftMSG1syORbHcCXUf3rqPvcx2PfSCcNclg1JRncw2b9Vp_v7zQoxR5Hlol2I7PvVHZ4PsX0G9bwF4g5aw9y6M9S_xOi_3LW3fS_Tix1hjwIodN0F899nXnYvc2_-3_aP479oSe5fLewiN20K429j0yrDYfsIdq_G3AHh2fTs8vBu7TwqPZ9Hz0-w88byO0 |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbG9jB4QFxFYYCFuAgkq03ipM7DhLqxqWXthHaR9uadxE5VKU1KL6r25_htnOMmhQppPO0xyXFk-_jynWOf8zH2XsVWWRWAsNaTQgIkIpEmE9CCVhBCG1EC-SEHp1H3Un6_Cq-22K86FoauVdZroluoTZmSj7yJpgHu9lEkva-Tn4JYo-h0tabQgIpawey7FGNVYMeJvVmiCTfb731DfX_w_eOji8OuqFgGRCpVay58ZVQIYKyXZWFbxiowNm7jvCOwbRLlo5FoPJSxNjASWxaksbWxMhAqS6eO-N97bEcGMkbjb-fg6PTHWb0XYG0dfRRljaNsf97qoBRRk2zCeC68iEJjAkEc5hsbo-MP-HeXeMB2F8UEbpaQ539tg8eP2MMKv_LOasA9Zlu2eMIaA4Te5dR56PlHfpiPEAe7p6eMfG05xVLxsbu3aXlFVDHk85KPnE_DcoShvMD3AjFsLojwnk9WuWhnvMzc585iCnxA9weXgCX6o3HCz4kUyk6fscs76fPnbLsoC_uC8bSV4rgKktBAIJWRgBZrCGkbR1xk4zBssGbdrTqt0p4T-0au0fwhRWhUhPYiTYrQpIgG-7wuMVml_LhF9oA0tZajZN3uRTkd6mrua_AySI3B1ROwfiFQhKafIC5Tvsss1WDvSM-a0nEUdN9nCIvZTPfOz3SnjXgTpSJsx6dKKCux_ilU4RPYC5TBa0Nyb0MS14t083M9nHS1Xs30n9nVYF_WQ-y_zX95-7_est3uxaCv-73Tk1fsPpVwt-z8PbY9ny7sa8Rz8-RNNWk4u77refobBA1bMQ |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGkGA8IK6iY4CFuAgkq03iJM4DQmWjrGydENukvZmT2KkqpUnpRdX-Gr-Oc9ykUCGNpz0mOY5sn4s_2-fC2CuVWGVVAMJaTwoJkIpUmlxABzpBCDGiBDqHHJxEh-fy60V4scV-NbEw5FbZ2ERnqE2V0Rl5G7cGuNpHkfTaee0W8e2g93HyU1AFKbppbcpprETkyF4ucfs2-9A_QF6_9v3e57P9Q1FXGBCZVJ258JVRIYCxXp6HsUxUYGwSo84R0Dap8nGDaDyksTYwEkcVZIm1iTIQKks3jvjfG-xmTFncKUq996VZBbCfrnAU5YujPH_e6ooU8ZJsw3guvIiCYgJB1cs3lkRXOeDf9eEOu70oJ3C5hKL4awHs3WN3a-TKuytRu8-2bPmAtQYIuqupO5vnb_h-MUIE7J4eMjplKyiKio-dx6bldYmKIZ9XfOROMyxHAMpLfC8QvRaCSt3zySoL7YxXufvcXUyBD8hzcAnY4ng0TvkplYOy00fs_Fpm_DHbLqvSPmE862QoUUEaGgikMhJwrxpCFqOsRTYJwxZrN9OqszrhOdXdKDRufIgRGhmhvUgTIzQxosXerVtMVsk-rqD9RJxa01Gabveimg51rfUavBwyY9BuAvYvBIrN9FNEZMp3OaVa7CXxWVMijpJEegiL2Uz3T7_rboxIE6kiHMfbmiivsP8Z1IETOAuUu2uDcm-DEi1Ftvm5ESddW6qZ_qNXLfZ-LWL_Hf7u1f96wW6hdurj_snRU7ZDDZx7nb_HtufThX2GQG6ePncaw9mP61bR33tdWMs |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELegewAe-EYEBrIQAoHkrUnsxHksE9NAdEKMSuPJusTOVJEmVZNogr-eOzerVkB8PKVJLlV8Pju_s-9-x9hznTntdAzCuVAKCZCLXNpSwBjGsYIUUQKtQ06Pk6OZfH-qTof1DsqFubR_j9hC7sOiE2FCCSSxoErfV9lOohB1j9jO7Pjj5Av5UxrHehj7eqT-t0YUvt6R_O1fbH2BPFH_r9PxDXatr5fw7Ryq6tL35vDWmvyo9TSFFGbyda_v8r3i-08kjv_SlNvs5gA6-WRtJXfYFVffZcEU8XKz8svq_AU_qOYIXv3ZPUYLZBUlQPGFD7Z0fKgucca7hs_9QoTjiB15jdcFAs9KUJV6vlwTyLa8Kf3tSb8CPqWgv3PAJz7MFzk_oUpObnWfzQ7ffj44EkM5BlFIPe5EpK1WANaFZalSmenYuizFCYq8EpvrCL1pG6KMc7GVaAJxkTmXaQtKO9qefcBGdVO7h4wX4wKNIc6VhVhqKwHdTAVFimaSuEypgO1fdJEpBq5yKplRGfRZSJkGlWnCxJAyDSkzYK82TyzXPB1_kH1Dvb6RI4ZtfwF7ywwD1kBYQmEtTnmA76eA0iqjHMGUjjwdVMCekc0Y4tCoKUjnDPq2Ne9OPplJiiARpRJsx8tBqGzw_QsYch5QC0S7tSW5uyWJg7zYvn1hmmaYZFqD3jIC4CSRYcBeb8z1r81_9D_Cj9l1OvjguGiXjbpV754gDOvyp8MI_AFoJCi6 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Applying+machine+learning+to+improve+the+near-real-time+products+of+the+Aura+Microwave+Limb+Sounder&rft.jtitle=Atmospheric+measurement+techniques&rft.au=F.+Werner&rft.au=N.+J.+Livesey&rft.au=L.+F.+Mill%C3%A1n&rft.au=W.+G.+Read&rft.date=2023-06-02&rft.pub=Copernicus+Publications&rft.issn=1867-1381&rft.eissn=1867-8548&rft.volume=16&rft.spage=2733&rft.epage=2751&rft_id=info:doi/10.5194%2Famt-16-2733-2023&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_a1facdd318ad4a5a95682b2238204373 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1867-8548&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1867-8548&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1867-8548&client=summon |