Applying machine learning to improve the near-real-time products of the Aura Microwave Limb Sounder

A new algorithm to derive near-real-time (NRT) data products for the Aura Microwave Limb Sounder (MLS) is presented. The old approach was based on a simplified optimal estimation retrieval algorithm (OE-NRT) to reduce computational demands and latency. This paper describes the setup, training, and e...

Full description

Saved in:
Bibliographic Details
Published inAtmospheric measurement techniques Vol. 16; no. 11; pp. 2733 - 2751
Main Authors Werner, Frank, Livesey, Nathaniel J., Millán, Luis F., Read, William G., Schwartz, Michael J., Wagner, Paul A., Daffer, William H., Lambert, Alyn, Tolstoff, Sasha N., Santee, Michelle L.
Format Journal Article
LanguageEnglish
Published Katlenburg-Lindau Copernicus GmbH 02.06.2023
Copernicus Publications
Subjects
Online AccessGet full text
ISSN1867-8548
1867-1381
1867-8548
DOI10.5194/amt-16-2733-2023

Cover

Abstract A new algorithm to derive near-real-time (NRT) data products for the Aura Microwave Limb Sounder (MLS) is presented. The old approach was based on a simplified optimal estimation retrieval algorithm (OE-NRT) to reduce computational demands and latency. This paper describes the setup, training, and evaluation of a redesigned approach based on artificial neural networks (ANN-NRT), which is trained on >17 years of MLS radiance observations and composition profile retrievals. Comparisons of joint histograms and performance metrics derived between the two NRT results and the operational MLS products demonstrate a noticeable statistical improvement from ANN-NRT. This new approach results in higher correlation coefficients, in addition to lower root-mean-square deviations and biases at almost all retrieval levels compared to OE-NRT. The exceptions are pressure levels with concentrations close to 0 ppbv (parts per billion by volume), where the ANN models fail to establish a functional relationship and tend to predict 0. Depending on the application, this behavior might be advantageous. While the developed models can take advantage of the extended MLS data record, this study demonstrates that training ANN-NRT on just a single year of MLS observations is sufficient to improve upon OE-NRT. This confirms the potential of applying machine learning to the NRT efforts of other current and future mission concepts.
AbstractList A new algorithm to derive near-real-time (NRT) data products for the Aura Microwave Limb Sounder (MLS) is presented. The old approach was based on a simplified optimal estimation retrieval algorithm (OE-NRT) to reduce computational demands and latency. This paper describes the setup, training, and evaluation of a redesigned approach based on artificial neural networks (ANN-NRT), which is trained on >17  years of MLS radiance observations and composition profile retrievals. Comparisons of joint histograms and performance metrics derived between the two NRT results and the operational MLS products demonstrate a noticeable statistical improvement from ANN-NRT. This new approach results in higher correlation coefficients, in addition to lower root-mean-square deviations and biases at almost all retrieval levels compared to OE-NRT. The exceptions are pressure levels with concentrations close to 0 ppbv (parts per billion by volume), where the ANN models fail to establish a functional relationship and tend to predict 0. Depending on the application, this behavior might be advantageous. While the developed models can take advantage of the extended MLS data record, this study demonstrates that training ANN-NRT on just a single year of MLS observations is sufficient to improve upon OE-NRT. This confirms the potential of applying machine learning to the NRT efforts of other current and future mission concepts.
A new algorithm to derive near-real-time (NRT) data products for the Aura Microwave Limb Sounder (MLS) is presented. The old approach was based on a simplified optimal estimation retrieval algorithm (OE-NRT) to reduce computational demands and latency. This paper describes the setup, training, and evaluation of a redesigned approach based on artificial neural networks (ANN-NRT), which is trained on 17 years of MLS radiance observations and composition profile retrievals. Comparisons of joint histograms and performance metrics derived between the two NRT results and the operational MLS products demonstrate a noticeable statistical improvement from ANN-NRT. This new approach results in higher correlation coefficients, in addition to lower root-mean-square deviations and biases at almost all retrieval levels compared to OE-NRT. The exceptions are pressure levels with concentrations close to 0 ppbv (parts per billion by volume), where the ANN models fail to establish a functional relationship and tend to predict 0. Depending on the application, this behavior might be advantageous. While the developed models can take advantage of the extended MLS data record, this study demonstrates that training ANN-NRT on just a single year of MLS observations is sufficient to improve upon OE-NRT. This confirms the potential of applying machine learning to the NRT efforts of other current and future mission concepts.
A new algorithm to derive near-real-time (NRT) data products for the Aura Microwave Limb Sounder (MLS) is presented. The old approach was based on a simplified optimal estimation retrieval algorithm (OE-NRT) to reduce computational demands and latency. This paper describes the setup, training, and evaluation of a redesigned approach based on artificial neural networks (ANN-NRT), which is trained on >17 years of MLS radiance observations and composition profile retrievals. Comparisons of joint histograms and performance metrics derived between the two NRT results and the operational MLS products demonstrate a noticeable statistical improvement from ANN-NRT. This new approach results in higher correlation coefficients, in addition to lower root-mean-square deviations and biases at almost all retrieval levels compared to OE-NRT. The exceptions are pressure levels with concentrations close to 0 ppbv (parts per billion by volume), where the ANN models fail to establish a functional relationship and tend to predict 0. Depending on the application, this behavior might be advantageous. While the developed models can take advantage of the extended MLS data record, this study demonstrates that training ANN-NRT on just a single year of MLS observations is sufficient to improve upon OE-NRT. This confirms the potential of applying machine learning to the NRT efforts of other current and future mission concepts.
Audience Academic
Author Werner, Frank
Read, William G.
Lambert, Alyn
Tolstoff, Sasha N.
Santee, Michelle L.
Wagner, Paul A.
Millán, Luis F.
Schwartz, Michael J.
Livesey, Nathaniel J.
Daffer, William H.
Author_xml – sequence: 1
  givenname: Frank
  orcidid: 0000-0002-7141-0934
  surname: Werner
  fullname: Werner, Frank
– sequence: 2
  givenname: Nathaniel J.
  surname: Livesey
  fullname: Livesey, Nathaniel J.
– sequence: 3
  givenname: Luis F.
  orcidid: 0000-0002-9509-9095
  surname: Millán
  fullname: Millán, Luis F.
– sequence: 4
  givenname: William G.
  surname: Read
  fullname: Read, William G.
– sequence: 5
  givenname: Michael J.
  orcidid: 0000-0001-6169-5094
  surname: Schwartz
  fullname: Schwartz, Michael J.
– sequence: 6
  givenname: Paul A.
  surname: Wagner
  fullname: Wagner, Paul A.
– sequence: 7
  givenname: William H.
  surname: Daffer
  fullname: Daffer, William H.
– sequence: 8
  givenname: Alyn
  orcidid: 0000-0003-3182-1824
  surname: Lambert
  fullname: Lambert, Alyn
– sequence: 9
  givenname: Sasha N.
  surname: Tolstoff
  fullname: Tolstoff, Sasha N.
– sequence: 10
  givenname: Michelle L.
  surname: Santee
  fullname: Santee, Michelle L.
BookMark eNqFkc2P0zAQxS20SOwW7hwjceKQJf5KnGO14qNSERILZ2tqT7quErvYDkv_e9wtAooQyAdbb94bzfx8RS588EjIc9pcS9qLVzDlmrY16zivWcP4I3JJVdvVSgp18dv7CblKadc0raAduyRmud-PB-e31QTmznmsRoToj0IOlZv2MXzFKt9h5YteR4Sxzm7CqhTsbHKqwvBQXs4RqvfOxHAPJbF206a6DbO3GJ-SxwOMCZ_9uBfk85vXn27e1esPb1c3y3VthGpyzZRVEsAiHQbZiV5xi33Hu5ZJ2duNYp1SlhYPIrcCFXLTI_bKglQopOILsjr1tQF2eh_dBPGgAzj9IIS41RCzMyNqoAMYazlVYAVI6GWr2IYxrlgjeGG4IPTUa_Z7ONzDOP5sSBt9JK4LcU1bfSSuj8RL5sUpU9h8mTFlvQtz9GVlzRSjUrQF-i_XFsogzg8hRzCTS0YvO0llGaCVxXX9F1c5FidnytcPruhngZdngeLJ-C1vYU5Jr24_nnvbk7f8VkoRB21chuxKJIIb_7Vh80fwv1C-AwLazUQ
CitedBy_id crossref_primary_10_1016_j_jqsrt_2025_109426
Cites_doi 10.1016/j.jqsrt.2004.07.028
10.5194/essd-13-1855-2021
10.1029/2020GL090831
10.1038/ngeo2138
10.5194/acp-8-6103-2008
10.5194/amt-8-195-2015
10.5194/amt-6-2301-2013
10.7551/mitpress/4937.001.0001
10.1109/TGRS.2006.872327
10.1029/2020GL090131
10.1017/CBO9780511812651
10.1038/s41598-020-74215-5
10.1016/j.atmosenv.2005.10.036
10.1002/2017GL074830
10.5194/acp-18-8331-2018
10.5194/amt-9-2497-2016
10.1175/BAMS-D-21-0314.1
10.5194/acp-19-425-2019
10.1109/TGRS.2006.873771
10.1029/2021GL096270
10.1029/2022GL099381
10.5194/amt-14-7749-2021
10.1002/grl.50421
10.5194/acp-19-4783-2019
10.5194/amt-15-3377-2022
10.1029/2022JD037511
10.1525/elementa.291
10.1098/rsta.2020.0097
ContentType Journal Article
Copyright COPYRIGHT 2023 Copernicus GmbH
2023. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 Copernicus GmbH
– notice: 2023. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ISR
7QH
7TG
7TN
7UA
8FD
8FE
8FG
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
H8D
H96
HCIFZ
KL.
L.G
L7M
P5Z
P62
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
DOA
DOI 10.5194/amt-16-2733-2023
DatabaseName CrossRef
Gale In Context: Science
Aqualine
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Water Resources Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Advanced Technologies & Aerospace Database
ProQuest Central Essentials
ProQuest Central
Continental Europe Database
Technology collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
Aerospace Database
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Continental Europe Database
ProQuest SciTech Collection
Aqualine
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
DatabaseTitleList

CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
EISSN 1867-8548
EndPage 2751
ExternalDocumentID oai_doaj_org_article_a1facdd318ad4a5a95682b2238204373
10.5194/amt-16-2733-2023
A751520465
10_5194_amt_16_2733_2023
GroupedDBID 23N
5VS
8FE
8FG
8FH
8R4
8R5
AAFWJ
AAYXX
ABDBF
ABUWG
ACGFO
ACUHS
ADBBV
AEGXH
AENEX
AEUYN
AFKRA
AFPKN
AFRAH
AHGZY
AIAGR
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BFMQW
BGLVJ
BHPHI
BKSAR
BPHCQ
CCPQU
CITATION
D1K
E3Z
ESX
GROUPED_DOAJ
H13
HCIFZ
IAO
IEA
ISR
ITC
K6-
KQ8
LK5
M7R
OK1
P2P
P62
PCBAR
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PUEGO
Q2X
RKB
RNS
TR2
TUS
7QH
7TG
7TN
7UA
8FD
AZQEC
C1K
DWQXO
F1W
H8D
H96
KL.
L.G
L7M
PKEHL
PQEST
PQUKI
PRINS
ADTOC
C1A
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c480t-28d85aade1ff574983de973762559db82788d1d85ee3d4e8e3c9ee98da58e4583
IEDL.DBID DOA
ISSN 1867-8548
1867-1381
IngestDate Tue Oct 14 19:06:20 EDT 2025
Sun Sep 07 11:11:53 EDT 2025
Fri Jul 25 22:55:03 EDT 2025
Mon Oct 20 22:21:30 EDT 2025
Mon Oct 20 16:39:16 EDT 2025
Thu Oct 16 16:17:27 EDT 2025
Wed Oct 01 03:51:41 EDT 2025
Thu Apr 24 23:08:53 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://creativecommons.org/licenses/by/4.0
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c480t-28d85aade1ff574983de973762559db82788d1d85ee3d4e8e3c9ee98da58e4583
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9509-9095
0000-0002-7141-0934
0000-0001-6169-5094
0000-0003-3182-1824
OpenAccessLink https://doaj.org/article/a1facdd318ad4a5a95682b2238204373
PQID 2821546641
PQPubID 105742
PageCount 19
ParticipantIDs doaj_primary_oai_doaj_org_article_a1facdd318ad4a5a95682b2238204373
unpaywall_primary_10_5194_amt_16_2733_2023
proquest_journals_2821546641
gale_infotracmisc_A751520465
gale_infotracacademiconefile_A751520465
gale_incontextgauss_ISR_A751520465
crossref_citationtrail_10_5194_amt_16_2733_2023
crossref_primary_10_5194_amt_16_2733_2023
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-06-02
PublicationDateYYYYMMDD 2023-06-02
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-02
  day: 02
PublicationDecade 2020
PublicationPlace Katlenburg-Lindau
PublicationPlace_xml – name: Katlenburg-Lindau
PublicationTitle Atmospheric measurement techniques
PublicationYear 2023
Publisher Copernicus GmbH
Copernicus Publications
Publisher_xml – name: Copernicus GmbH
– name: Copernicus Publications
References ref13
ref12
ref15
ref14
ref11
ref10
ref17
ref16
ref19
ref18
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
References_xml – ident: ref4
  doi: 10.1016/j.jqsrt.2004.07.028
– ident: ref1
– ident: ref17
  doi: 10.5194/essd-13-1855-2021
– ident: ref20
– ident: ref27
– ident: ref43
  doi: 10.1029/2020GL090831
– ident: ref30
  doi: 10.1038/ngeo2138
– ident: ref9
– ident: ref18
  doi: 10.5194/acp-8-6103-2008
– ident: ref33
  doi: 10.5194/amt-8-195-2015
– ident: ref40
  doi: 10.5194/amt-6-2301-2013
– ident: ref11
– ident: ref34
– ident: ref36
  doi: 10.7551/mitpress/4937.001.0001
– ident: ref6
– ident: ref44
– ident: ref23
– ident: ref24
  doi: 10.1109/TGRS.2006.872327
– ident: ref49
  doi: 10.1029/2020GL090131
– ident: ref37
  doi: 10.1017/CBO9780511812651
– ident: ref2
  doi: 10.1038/s41598-020-74215-5
– ident: ref12
– ident: ref16
  doi: 10.1016/j.atmosenv.2005.10.036
– ident: ref47
  doi: 10.1002/2017GL074830
– ident: ref3
– ident: ref26
  doi: 10.5194/acp-18-8331-2018
– ident: ref7
– ident: ref45
– ident: ref29
– ident: ref22
– ident: ref25
– ident: ref19
  doi: 10.5194/amt-9-2497-2016
– ident: ref32
  doi: 10.1175/BAMS-D-21-0314.1
– ident: ref5
  doi: 10.5194/acp-19-425-2019
– ident: ref48
  doi: 10.1109/TGRS.2006.873771
– ident: ref39
  doi: 10.1029/2021GL096270
– ident: ref15
– ident: ref28
  doi: 10.1029/2022GL099381
– ident: ref50
  doi: 10.5194/amt-14-7749-2021
– ident: ref42
  doi: 10.1002/grl.50421
– ident: ref38
– ident: ref13
  doi: 10.5194/acp-19-4783-2019
– ident: ref46
– ident: ref21
– ident: ref35
  doi: 10.5194/amt-15-3377-2022
– ident: ref31
  doi: 10.1029/2022JD037511
– ident: ref8
– ident: ref14
  doi: 10.1525/elementa.291
– ident: ref41
  doi: 10.1098/rsta.2020.0097
– ident: ref10
SSID ssj0064172
Score 2.360909
Snippet A new algorithm to derive near-real-time (NRT) data products for the Aura Microwave Limb Sounder (MLS) is presented. The old approach was based on a simplified...
SourceID doaj
unpaywall
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 2733
SubjectTerms Algorithms
Artificial neural networks
Atmospheric sciences
Coefficients
Correlation coefficient
Correlation coefficients
Latency
Learning algorithms
Machine learning
Neural networks
Neurons
Performance measurement
Radiance
Real time
Retrieval
Stratosphere
Temperature
Training
Volcanoes
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3fi9NAEF7O3oP6IP7E6CmLiKKwtEl2k82DSO-44xRb5M6De1sm2U0ppEltUw7_e2e2SbUI52OT2ZJkZmdnZ2e-j7G3OnPa6RiEc6EUEiAXubSlgBGMYgUpRgmUh5xMk_Mr-fVaXR-wad8LQ2WVvU_0jto2BeXIh7g1wNU-SWT4eflTEGsUna72FBrQUSvYTx5i7A47jAgZa8AOj0-n3y9634yjPZ0TobgR-l64PbjEKEYOYdGKMKFWlVgQp_jeQuXx_P_12vfZ3U29hF83UFV_LUtnD9mDLp7k460BPGIHrn7MggmGws3KZ8z5O35SzTEu9b-eMMp9VdTbxBe-jtLxjjhixtuGz32OwXEMC3mN1wXGlJUgAnq-3GLDrnlT-tvjzQr4hOr5bgBHfJsvcn5JJE1u9ZRdnZ3-ODkXHdOCKKQetSLSVisA68KyVKnMdGxdlqLvoQ2HzXWEG2UbooxzsZWo3bjInMu0BaUdnbw-Y4O6qd1zxotRgXqOc2UhltpKwB2kgiJFC0hcplTAhv1nNUUHQ05sGJXB7QgpwqAiTJgYUoQhRQTsw27EcgvBcYvsMWlqJ0fg2f5Cs5qZbi4aCEsorEVvBvh8CqhjMsoxTtKRR3oK2BvSsyF4jJrqb2awWa_Nl8sLM04x_kOpBN_jfSdUNvj8BXTtDPgVCFFrT_JoTxLnb7F_uzcn0_mPtflj7QH7uDOx_77-i9v_6yW7R1K-0i06YoN2tXGvMKZq89fdRPkNYqkd5w
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELegewAe-EYEBrIQAoHkrUnsxHksE9NAdEKMSuPJusTOVJEmVZNogr-eOzerVkB8PKVJLlV8Pju_s-9-x9hznTntdAzCuVAKCZCLXNpSwBjGsYIUUQKtQ06Pk6OZfH-qTof1DsqFubR_j9hC7sOiE2FCCSSxoErfV9lOohB1j9jO7Pjj5Av5UxrHehj7eqT-t0YUvt6R_O1fbH2BPFH_r9PxDXatr5fw7Ryq6tL35vDWmvyo9TSFFGbyda_v8r3i-08kjv_SlNvs5gA6-WRtJXfYFVffZcEU8XKz8svq_AU_qOYIXv3ZPUYLZBUlQPGFD7Z0fKgucca7hs_9QoTjiB15jdcFAs9KUJV6vlwTyLa8Kf3tSb8CPqWgv3PAJz7MFzk_oUpObnWfzQ7ffj44EkM5BlFIPe5EpK1WANaFZalSmenYuizFCYq8EpvrCL1pG6KMc7GVaAJxkTmXaQtKO9qefcBGdVO7h4wX4wKNIc6VhVhqKwHdTAVFimaSuEypgO1fdJEpBq5yKplRGfRZSJkGlWnCxJAyDSkzYK82TyzXPB1_kH1Dvb6RI4ZtfwF7ywwD1kBYQmEtTnmA76eA0iqjHMGUjjwdVMCekc0Y4tCoKUjnDPq2Ne9OPplJiiARpRJsx8tBqGzw_QsYch5QC0S7tSW5uyWJg7zYvn1hmmaYZFqD3jIC4CSRYcBeb8z1r81_9D_Cj9l1OvjguGiXjbpV754gDOvyp8MI_AFoJCi6
  priority: 102
  providerName: Unpaywall
Title Applying machine learning to improve the near-real-time products of the Aura Microwave Limb Sounder
URI https://www.proquest.com/docview/2821546641
https://doi.org/10.5194/amt-16-2733-2023
https://doaj.org/article/a1facdd318ad4a5a95682b2238204373
UnpaywallVersion publishedVersion
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1867-8548
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0064172
  issn: 1867-1381
  databaseCode: KQ8
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1867-8548
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0064172
  issn: 1867-1381
  databaseCode: DOA
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Academic Search Ultimate | Ebsco
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1867-8548
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0064172
  issn: 1867-1381
  databaseCode: ABDBF
  dateStart: 20100501
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVPQU
  databaseName: Continental Europe Database
  customDbUrl:
  eissn: 1867-8548
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0064172
  issn: 1867-1381
  databaseCode: BFMQW
  dateStart: 20100501
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/conteurope
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1867-8548
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0064172
  issn: 1867-1381
  databaseCode: BENPR
  dateStart: 20100501
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1867-8548
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0064172
  issn: 1867-1381
  databaseCode: 8FG
  dateStart: 20100501
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fa9swEBZb97Dtoewn89YFMcbGBiL-IdvyY1qadWMJpV2gexJnSy4Bxw6JQ-l_vzvZCQ2D9WWPts_G0neWvpNP3zH2UWVWWRWBsDaQQgLkIpemFOCDH8WQIkugdcjJNDmbyR9X8dWdUl-UE9bJA3cdN4SghMIYdD0wEmKg7W1hjpOaCp0sD42-vsq2wVQ3BicycGWbSK2NVPaC7gclshU5hEUrgoS2pESCaofvTUhOt__v0fkpe7ypl3B7A1V1Z_oZP2OHPW_ko-59n7MHtn7BvAlS3mblVsb5J35SzZF_uqOXjNa4KtrDxBcuX9LyvkDENW8bPndrCZYj_eM1nhfIHStBheb5stOAXfOmdJdHmxXwCeXt3QDe8XO-yPklFWOyq1dsNj79dXIm-ooKopDKb0WojIoBjA3KMk5lpiJjsxTHGAosTK5CDIhNgDbWRkYiilGRWZspA7Gy9If1NTuom9q-YbzwC8QzymMDkVQIDUaKMRQpIp3YLI49Ntx2qy56uXGqelFpDDsICI1A6CDRBIQmIDz2ZXfHspPa-IftMSG1syORbHcCXUf3rqPvcx2PfSCcNclg1JRncw2b9Vp_v7zQoxR5Hlol2I7PvVHZ4PsX0G9bwF4g5aw9y6M9S_xOi_3LW3fS_Tix1hjwIodN0F899nXnYvc2_-3_aP479oSe5fLewiN20K429j0yrDYfsIdq_G3AHh2fTs8vBu7TwqPZ9Hz0-w88byO0
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbG9jB4QFxFYYCFuAgkq03ipM7DhLqxqWXthHaR9uadxE5VKU1KL6r25_htnOMmhQppPO0xyXFk-_jynWOf8zH2XsVWWRWAsNaTQgIkIpEmE9CCVhBCG1EC-SEHp1H3Un6_Cq-22K86FoauVdZroluoTZmSj7yJpgHu9lEkva-Tn4JYo-h0tabQgIpawey7FGNVYMeJvVmiCTfb731DfX_w_eOji8OuqFgGRCpVay58ZVQIYKyXZWFbxiowNm7jvCOwbRLlo5FoPJSxNjASWxaksbWxMhAqS6eO-N97bEcGMkbjb-fg6PTHWb0XYG0dfRRljaNsf97qoBRRk2zCeC68iEJjAkEc5hsbo-MP-HeXeMB2F8UEbpaQ539tg8eP2MMKv_LOasA9Zlu2eMIaA4Te5dR56PlHfpiPEAe7p6eMfG05xVLxsbu3aXlFVDHk85KPnE_DcoShvMD3AjFsLojwnk9WuWhnvMzc585iCnxA9weXgCX6o3HCz4kUyk6fscs76fPnbLsoC_uC8bSV4rgKktBAIJWRgBZrCGkbR1xk4zBssGbdrTqt0p4T-0au0fwhRWhUhPYiTYrQpIgG-7wuMVml_LhF9oA0tZajZN3uRTkd6mrua_AySI3B1ROwfiFQhKafIC5Tvsss1WDvSM-a0nEUdN9nCIvZTPfOz3SnjXgTpSJsx6dKKCux_ilU4RPYC5TBa0Nyb0MS14t083M9nHS1Xs30n9nVYF_WQ-y_zX95-7_est3uxaCv-73Tk1fsPpVwt-z8PbY9ny7sa8Rz8-RNNWk4u77refobBA1bMQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGkGA8IK6iY4CFuAgkq03iJM4DQmWjrGydENukvZmT2KkqpUnpRdX-Gr-Oc9ykUCGNpz0mOY5sn4s_2-fC2CuVWGVVAMJaTwoJkIpUmlxABzpBCDGiBDqHHJxEh-fy60V4scV-NbEw5FbZ2ERnqE2V0Rl5G7cGuNpHkfTaee0W8e2g93HyU1AFKbppbcpprETkyF4ucfs2-9A_QF6_9v3e57P9Q1FXGBCZVJ258JVRIYCxXp6HsUxUYGwSo84R0Dap8nGDaDyksTYwEkcVZIm1iTIQKks3jvjfG-xmTFncKUq996VZBbCfrnAU5YujPH_e6ooU8ZJsw3guvIiCYgJB1cs3lkRXOeDf9eEOu70oJ3C5hKL4awHs3WN3a-TKuytRu8-2bPmAtQYIuqupO5vnb_h-MUIE7J4eMjplKyiKio-dx6bldYmKIZ9XfOROMyxHAMpLfC8QvRaCSt3zySoL7YxXufvcXUyBD8hzcAnY4ng0TvkplYOy00fs_Fpm_DHbLqvSPmE862QoUUEaGgikMhJwrxpCFqOsRTYJwxZrN9OqszrhOdXdKDRufIgRGhmhvUgTIzQxosXerVtMVsk-rqD9RJxa01Gabveimg51rfUavBwyY9BuAvYvBIrN9FNEZMp3OaVa7CXxWVMijpJEegiL2Uz3T7_rboxIE6kiHMfbmiivsP8Z1IETOAuUu2uDcm-DEi1Ftvm5ESddW6qZ_qNXLfZ-LWL_Hf7u1f96wW6hdurj_snRU7ZDDZx7nb_HtufThX2GQG6ePncaw9mP61bR33tdWMs
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELegewAe-EYEBrIQAoHkrUnsxHksE9NAdEKMSuPJusTOVJEmVZNogr-eOzerVkB8PKVJLlV8Pju_s-9-x9hznTntdAzCuVAKCZCLXNpSwBjGsYIUUQKtQ06Pk6OZfH-qTof1DsqFubR_j9hC7sOiE2FCCSSxoErfV9lOohB1j9jO7Pjj5Av5UxrHehj7eqT-t0YUvt6R_O1fbH2BPFH_r9PxDXatr5fw7Ryq6tL35vDWmvyo9TSFFGbyda_v8r3i-08kjv_SlNvs5gA6-WRtJXfYFVffZcEU8XKz8svq_AU_qOYIXv3ZPUYLZBUlQPGFD7Z0fKgucca7hs_9QoTjiB15jdcFAs9KUJV6vlwTyLa8Kf3tSb8CPqWgv3PAJz7MFzk_oUpObnWfzQ7ffj44EkM5BlFIPe5EpK1WANaFZalSmenYuizFCYq8EpvrCL1pG6KMc7GVaAJxkTmXaQtKO9qefcBGdVO7h4wX4wKNIc6VhVhqKwHdTAVFimaSuEypgO1fdJEpBq5yKplRGfRZSJkGlWnCxJAyDSkzYK82TyzXPB1_kH1Dvb6RI4ZtfwF7ywwD1kBYQmEtTnmA76eA0iqjHMGUjjwdVMCekc0Y4tCoKUjnDPq2Ne9OPplJiiARpRJsx8tBqGzw_QsYch5QC0S7tSW5uyWJg7zYvn1hmmaYZFqD3jIC4CSRYcBeb8z1r81_9D_Cj9l1OvjguGiXjbpV754gDOvyp8MI_AFoJCi6
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Applying+machine+learning+to+improve+the+near-real-time+products+of+the+Aura+Microwave+Limb+Sounder&rft.jtitle=Atmospheric+measurement+techniques&rft.au=F.+Werner&rft.au=N.+J.+Livesey&rft.au=L.+F.+Mill%C3%A1n&rft.au=W.+G.+Read&rft.date=2023-06-02&rft.pub=Copernicus+Publications&rft.issn=1867-1381&rft.eissn=1867-8548&rft.volume=16&rft.spage=2733&rft.epage=2751&rft_id=info:doi/10.5194%2Famt-16-2733-2023&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_a1facdd318ad4a5a95682b2238204373
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1867-8548&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1867-8548&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1867-8548&client=summon