Feasibility of using abbreviated scan protocols with population-based input functions for accurate kinetic modeling of [18F]-FDG datasets from a long axial FOV PET scanner

Background Accurate kinetic modeling of 18F-fluorodeoxyglucose ([ 18 F]-FDG) positron emission tomography (PET) data requires accurate knowledge of the available tracer concentration in the plasma during the scan time, known as the arterial input function (AIF). The gold standard method to derive th...

Full description

Saved in:
Bibliographic Details
Published inEUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING Vol. 50; no. 2; pp. 257 - 265
Main Authors Sari, Hasan, Eriksson, Lars, Mingels, Clemens, Alberts, Ian, Casey, Michael E., Afshar-Oromieh, Ali, Conti, Maurizio, Cumming, Paul, Shi, Kuangyu, Rominger, Axel
Format Journal Article Publication
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.01.2023
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1619-7070
1619-7089
1619-7089
DOI10.1007/s00259-022-05983-7

Cover

Abstract Background Accurate kinetic modeling of 18F-fluorodeoxyglucose ([ 18 F]-FDG) positron emission tomography (PET) data requires accurate knowledge of the available tracer concentration in the plasma during the scan time, known as the arterial input function (AIF). The gold standard method to derive the AIF requires collection of serial arterial blood samples, but the introduction of long axial field of view (LAFOV) PET systems enables the use of non-invasive image-derived input functions (IDIFs) from large blood pools such as the aorta without any need for bed movement. However, such protocols require a prolonged dynamic PET acquisition, which is impractical in a busy clinical setting. Population-based input functions (PBIFs) have previously shown potential in accurate Patlak analysis of [ 18 F]-FDG datasets and can enable the use of shortened dynamic imaging protocols. Here, we exploit the high sensitivity and temporal resolution of a LAFOV PET system and explore the use of PBIF with abbreviated protocols in [ 18 F]-FDG total body kinetic modeling. Methods Dynamic PET data were acquired in 24 oncological subjects for 65 min following the administration of [ 18 F]-FDG. IDIFs were extracted from the descending thoracic aorta, and a PBIF was generated from 16 datasets. Five different scaled PBIFs (sPBIFs) were generated by scaling the PBIF with the AUC of IDIF curve tails using various portions of image data (35–65, 40–65, 45–65, 50–65, and 55–65 min post-injection). The sPBIFs were compared with the IDIFs using the AUCs and Patlak K i estimates in tumor lesions and cerebral gray matter. Patlak plot start time ( t *) was also varied to evaluate the performance of shorter acquisitions on the accuracy of Patlak K i estimates. Patlak K i estimates with IDIF and t * = 35 min were used as reference, and mean bias and precision (standard deviation of bias) were calculated to assess the relative performance of different sPBIFs. A comparison of parametric images generated using IDIF and sPBIFs was also performed. Results There was no statistically significant difference between AUCs of the IDIF and sPBIFs (Wilcoxon test: P  > 0.05). Excellent agreement was shown between Patlak K i estimates obtained using sPBIF and IDIF. Using the sPBIF 55–65 with the Patlak model, 20 min of PET data (i.e., 45 to 65 min post-injection) achieved < 15% precision error in K i estimates in tumor lesions compared to the estimates with the IDIF. Parametric images reconstructed using the IDIF and sPBIFs with and without an abbreviated protocol were visually comparable. Using Patlak K i generated with an IDIF and 30 min of PET data as reference, Patlak K i images generated using sPBIF 55–65 with 20 min of PET data ( t * = 45 min) provided excellent image quality with structural similarity index measure > 0.99 and peak signal-to-noise ratio > 55 dB. Conclusion We demonstrate the feasibility of performing accurate [ 18 F]-FDG Patlak analysis using sPBIFs with only 20 min of PET data from a LAFOV PET scanner.
AbstractList Accurate kinetic modeling of 18F-fluorodeoxyglucose ([ F]-FDG) positron emission tomography (PET) data requires accurate knowledge of the available tracer concentration in the plasma during the scan time, known as the arterial input function (AIF). The gold standard method to derive the AIF requires collection of serial arterial blood samples, but the introduction of long axial field of view (LAFOV) PET systems enables the use of non-invasive image-derived input functions (IDIFs) from large blood pools such as the aorta without any need for bed movement. However, such protocols require a prolonged dynamic PET acquisition, which is impractical in a busy clinical setting. Population-based input functions (PBIFs) have previously shown potential in accurate Patlak analysis of [ F]-FDG datasets and can enable the use of shortened dynamic imaging protocols. Here, we exploit the high sensitivity and temporal resolution of a LAFOV PET system and explore the use of PBIF with abbreviated protocols in [ F]-FDG total body kinetic modeling. Dynamic PET data were acquired in 24 oncological subjects for 65 min following the administration of [ F]-FDG. IDIFs were extracted from the descending thoracic aorta, and a PBIF was generated from 16 datasets. Five different scaled PBIFs (sPBIFs) were generated by scaling the PBIF with the AUC of IDIF curve tails using various portions of image data (35-65, 40-65, 45-65, 50-65, and 55-65 min post-injection). The sPBIFs were compared with the IDIFs using the AUCs and Patlak K estimates in tumor lesions and cerebral gray matter. Patlak plot start time (t*) was also varied to evaluate the performance of shorter acquisitions on the accuracy of Patlak K estimates. Patlak K estimates with IDIF and t* = 35 min were used as reference, and mean bias and precision (standard deviation of bias) were calculated to assess the relative performance of different sPBIFs. A comparison of parametric images generated using IDIF and sPBIFs was also performed. There was no statistically significant difference between AUCs of the IDIF and sPBIFs (Wilcoxon test: P > 0.05). Excellent agreement was shown between Patlak K estimates obtained using sPBIF and IDIF. Using the sPBIF with the Patlak model, 20 min of PET data (i.e., 45 to 65 min post-injection) achieved < 15% precision error in K estimates in tumor lesions compared to the estimates with the IDIF. Parametric images reconstructed using the IDIF and sPBIFs with and without an abbreviated protocol were visually comparable. Using Patlak K generated with an IDIF and 30 min of PET data as reference, Patlak K images generated using sPBIF with 20 min of PET data (t* = 45 min) provided excellent image quality with structural similarity index measure > 0.99 and peak signal-to-noise ratio > 55 dB. We demonstrate the feasibility of performing accurate [ F]-FDG Patlak analysis using sPBIFs with only 20 min of PET data from a LAFOV PET scanner.
Abstract BackgroundAccurate kinetic modeling of 18F-fluorodeoxyglucose ([18F]-FDG) positron emission tomography (PET) data requires accurate knowledge of the available tracer concentration in the plasma during the scan time, known as the arterial input function (AIF). The gold standard method to derive the AIF requires collection of serial arterial blood samples, but the introduction of long axial field of view (LAFOV) PET systems enables the use of non-invasive image-derived input functions (IDIFs) from large blood pools such as the aorta without any need for bed movement. However, such protocols require a prolonged dynamic PET acquisition, which is impractical in a busy clinical setting. Population-based input functions (PBIFs) have previously shown potential in accurate Patlak analysis of [18F]-FDG datasets and can enable the use of shortened dynamic imaging protocols. Here, we exploit the high sensitivity and temporal resolution of a LAFOV PET system and explore the use of PBIF with abbreviated protocols in [18F]-FDG total body kinetic modeling.MethodsDynamic PET data were acquired in 24 oncological subjects for 65 min following the administration of [18F]-FDG. IDIFs were extracted from the descending thoracic aorta, and a PBIF was generated from 16 datasets. Five different scaled PBIFs (sPBIFs) were generated by scaling the PBIF with the AUC of IDIF curve tails using various portions of image data (35–65, 40–65, 45–65, 50–65, and 55–65 min post-injection). The sPBIFs were compared with the IDIFs using the AUCs and Patlak Ki estimates in tumor lesions and cerebral gray matter. Patlak plot start time (t*) was also varied to evaluate the performance of shorter acquisitions on the accuracy of Patlak Ki estimates. Patlak Ki estimates with IDIF and t* = 35 min were used as reference, and mean bias and precision (standard deviation of bias) were calculated to assess the relative performance of different sPBIFs. A comparison of parametric images generated using IDIF and sPBIFs was also performed.ResultsThere was no statistically significant difference between AUCs of the IDIF and sPBIFs (Wilcoxon test: P > 0.05). Excellent agreement was shown between Patlak Ki estimates obtained using sPBIF and IDIF. Using the sPBIF55–65 with the Patlak model, 20 min of PET data (i.e., 45 to 65 min post-injection) achieved < 15% precision error in Ki estimates in tumor lesions compared to the estimates with the IDIF. Parametric images reconstructed using the IDIF and sPBIFs with and without an abbreviated protocol were visually comparable. Using Patlak Ki generated with an IDIF and 30 min of PET data as reference, Patlak Ki images generated using sPBIF55–65 with 20 min of PET data (t* = 45 min) provided excellent image quality with structural similarity index measure > 0.99 and peak signal-to-noise ratio > 55 dB.ConclusionWe demonstrate the feasibility of performing accurate [18F]-FDG Patlak analysis using sPBIFs with only 20 min of PET data from a LAFOV PET scanner.
Background Accurate kinetic modeling of 18F-fluorodeoxyglucose ([ 18 F]-FDG) positron emission tomography (PET) data requires accurate knowledge of the available tracer concentration in the plasma during the scan time, known as the arterial input function (AIF). The gold standard method to derive the AIF requires collection of serial arterial blood samples, but the introduction of long axial field of view (LAFOV) PET systems enables the use of non-invasive image-derived input functions (IDIFs) from large blood pools such as the aorta without any need for bed movement. However, such protocols require a prolonged dynamic PET acquisition, which is impractical in a busy clinical setting. Population-based input functions (PBIFs) have previously shown potential in accurate Patlak analysis of [ 18 F]-FDG datasets and can enable the use of shortened dynamic imaging protocols. Here, we exploit the high sensitivity and temporal resolution of a LAFOV PET system and explore the use of PBIF with abbreviated protocols in [ 18 F]-FDG total body kinetic modeling. Methods Dynamic PET data were acquired in 24 oncological subjects for 65 min following the administration of [ 18 F]-FDG. IDIFs were extracted from the descending thoracic aorta, and a PBIF was generated from 16 datasets. Five different scaled PBIFs (sPBIFs) were generated by scaling the PBIF with the AUC of IDIF curve tails using various portions of image data (35–65, 40–65, 45–65, 50–65, and 55–65 min post-injection). The sPBIFs were compared with the IDIFs using the AUCs and Patlak K i estimates in tumor lesions and cerebral gray matter. Patlak plot start time ( t *) was also varied to evaluate the performance of shorter acquisitions on the accuracy of Patlak K i estimates. Patlak K i estimates with IDIF and t * = 35 min were used as reference, and mean bias and precision (standard deviation of bias) were calculated to assess the relative performance of different sPBIFs. A comparison of parametric images generated using IDIF and sPBIFs was also performed. Results There was no statistically significant difference between AUCs of the IDIF and sPBIFs (Wilcoxon test: P  > 0.05). Excellent agreement was shown between Patlak K i estimates obtained using sPBIF and IDIF. Using the sPBIF 55–65 with the Patlak model, 20 min of PET data (i.e., 45 to 65 min post-injection) achieved < 15% precision error in K i estimates in tumor lesions compared to the estimates with the IDIF. Parametric images reconstructed using the IDIF and sPBIFs with and without an abbreviated protocol were visually comparable. Using Patlak K i generated with an IDIF and 30 min of PET data as reference, Patlak K i images generated using sPBIF 55–65 with 20 min of PET data ( t * = 45 min) provided excellent image quality with structural similarity index measure > 0.99 and peak signal-to-noise ratio > 55 dB. Conclusion We demonstrate the feasibility of performing accurate [ 18 F]-FDG Patlak analysis using sPBIFs with only 20 min of PET data from a LAFOV PET scanner.
Author Conti, Maurizio
Eriksson, Lars
Rominger, Axel
Mingels, Clemens
Alberts, Ian
Shi, Kuangyu
Casey, Michael E.
Afshar-Oromieh, Ali
Sari, Hasan
Cumming, Paul
Author_xml – sequence: 1
  givenname: Hasan
  orcidid: 0000-0002-1504-1767
  surname: Sari
  fullname: Sari, Hasan
  email: hasan.sari@siemens-healthineers.com
  organization: Advanced Clinical Imaging Technology, Siemens Healthcare AG, Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern
– sequence: 2
  givenname: Lars
  surname: Eriksson
  fullname: Eriksson, Lars
  organization: Siemens Medical Solutions USA, Inc., Department of Oncology and Pathology, Medical Radiation Physics, Karolinska Institutet
– sequence: 3
  givenname: Clemens
  surname: Mingels
  fullname: Mingels, Clemens
  organization: Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern
– sequence: 4
  givenname: Ian
  surname: Alberts
  fullname: Alberts, Ian
  organization: Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern
– sequence: 5
  givenname: Michael E.
  surname: Casey
  fullname: Casey, Michael E.
  organization: Siemens Medical Solutions USA, Inc
– sequence: 6
  givenname: Ali
  surname: Afshar-Oromieh
  fullname: Afshar-Oromieh, Ali
  organization: Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern
– sequence: 7
  givenname: Maurizio
  surname: Conti
  fullname: Conti, Maurizio
  organization: Siemens Medical Solutions USA, Inc
– sequence: 8
  givenname: Paul
  surname: Cumming
  fullname: Cumming, Paul
  organization: Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, School of Psychology and Counselling, Queensland University of Technology
– sequence: 9
  givenname: Kuangyu
  surname: Shi
  fullname: Shi, Kuangyu
  organization: Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern
– sequence: 10
  givenname: Axel
  surname: Rominger
  fullname: Rominger, Axel
  organization: Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36192468$$D View this record in MEDLINE/PubMed
http://kipublications.ki.se/Default.aspx?queryparsed=id:$$DView record from Swedish Publication Index
BookMark eNqNUstuEzEUtVARfcAPsECWWA_4MZmxN0iobQpSpbIobBCyPB47devYg-1pyDfxkziZECiLipWv7j2P62MfgwMfvAbgJUZvMELt24QQmfEKEVKhGWe0ap-AI9xgXrWI8YN93aJDcJzSLUKYEcafgUNaBqRu2BH4Odcy2c46m9cwGDgm6xdQdl3U91Zm3cOkpIdDDDmo4BJc2XwDhzCMTmYbfNXJVEDWD2OGZvRq00zQhAilUmMsEvDOep2tgsvQa7eRLz5fMZt_q-ZnF7CXuUjkwolhCSV0YbPADysdnF99gZ_Or7creB2fg6dGuqRf7M4T8Hl-fn36obq8uvh4-v6yUnXLc9UZYmTH5UzOak4YZQ3ttcKINl2jKFOmrbk0qOlwT2rDlO56VZOaUoVaqrihJ4BOuqMf5HolnRNDtEsZ1wIjsYleTNGLEr3YRi_awqomVlrpYez2lCCt2LXuSqVFUxPEm4J_N-HLZKl7pX2O0j2gPZx4eyMW4V5whhvCWBF4vROI4fuoUxa3YYy-JCNI2yDOakR5Qb3622av__sLFACbACqGlKI2Qtm8fdviat3jVyb_UP8rp126qYD9Qsc_az_C-gVBS-mg
CitedBy_id crossref_primary_10_1007_s00259_023_06456_1
crossref_primary_10_1186_s40658_024_00614_6
crossref_primary_10_1007_s00259_023_06222_3
crossref_primary_10_1007_s00259_023_06161_z
crossref_primary_10_1053_j_semnuclmed_2024_10_006
crossref_primary_10_1053_j_semnuclmed_2024_05_008
crossref_primary_10_2214_AJR_24_31712
crossref_primary_10_1016_j_cpet_2024_05_005
crossref_primary_10_1111_dom_15247
crossref_primary_10_1186_s40644_023_00540_3
crossref_primary_10_1186_s13550_023_01049_3
crossref_primary_10_2967_jnumed_124_267784
crossref_primary_10_1007_s00259_024_06592_2
crossref_primary_10_1007_s00259_024_06926_0
crossref_primary_10_1186_s40658_023_00601_3
crossref_primary_10_1007_s00259_025_07182_6
crossref_primary_10_1186_s13550_023_01061_7
crossref_primary_10_1007_s00259_023_06526_4
crossref_primary_10_1053_j_semnuclmed_2024_08_003
crossref_primary_10_1053_j_semnuclmed_2024_10_011
crossref_primary_10_1016_j_zemedi_2023_09_001
crossref_primary_10_1007_s00259_024_06745_3
crossref_primary_10_2967_jnumed_123_266948
crossref_primary_10_1053_j_semnuclmed_2024_11_004
crossref_primary_10_1186_s13550_024_01072_y
Cites_doi 10.1007/s00259-020-05007-2
10.1038/jcbfm.2014.194
10.1038/jcbfm.2011.107
10.2967/jnumed.119.229997
10.1186/2191-219X-2-11
10.1097/MNM.0000000000000063
10.1109/TRPMS.2020.3025086
10.2967/jnumed.121.261972
10.1186/s40658-020-00330-x
10.1109/TRPMS.2020.2994316
10.2967/jnumed.120.242057
10.1007/s00259-021-05282-7
10.1038/jcbfm.2009.93
10.2967/jnumed.120.261651
10.1088/1361-6560/abd4f7
10.2967/jnumed.119.230565
10.1177/0271678X16656197
10.1007/s00259-021-05623-6
10.2967/jnumed.120.250597
10.1371/journal.pone.0060231
10.1007/s00259-020-04843-6
10.1186/s40658-021-00357-8
10.1016/0020-7101(93)90049-C
10.1007/s00259-022-05747-3
10.1148/radiology.188.1.8511286
ContentType Journal Article
Publication
Copyright The Author(s) 2022
2022. The Author(s).
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: 2022. The Author(s).
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7RV
7TK
7X7
7XB
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
KB0
LK8
M0S
M1P
M7P
NAPCQ
P5Z
P62
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
5PM
ADTPV
BZJLE
D8T
STUKM
ADTOC
UNPAY
DOI 10.1007/s00259-022-05983-7
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Nursing & Allied Health Database
Neurosciences Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
Biological Sciences
Health & Medical Collection (Alumni Edition)
Medical Database
Biological Science Database
Nursing & Allied Health Premium
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
PubMed Central (Full Participant titles)
SwePub
SwePub Other
SWEPUB Freely available online
SwePub Other full text
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Advanced Technologies & Aerospace Database
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList MEDLINE
ProQuest Central Student

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1619-7089
EndPage 265
ExternalDocumentID oai:escholarship.org:ark:/13030/qt6nt5g059
oai_swepub_ki_se_642096
PMC9816288
36192468
10_1007_s00259_022_05983_7
Genre Journal Article
GrantInformation_xml – fundername: University of Bern
– fundername: ;
GroupedDBID ---
-5E
-5G
-BR
-Y2
-~C
.86
.GJ
.VR
04C
06C
06D
0R~
0VY
199
1N0
203
29G
29~
2JN
2JY
2KM
2LR
2P1
2VQ
2~H
30V
36B
3V.
4.4
406
40D
53G
5GY
5QI
5RE
5VS
67Z
6NX
78A
7RV
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8UJ
95-
95.
95~
96X
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABECU
ABFTV
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABLJU
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTKH
ABTMW
ABULA
ABUWG
ABUWZ
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHVE
ACIWK
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACUDM
ACUHS
ACZOJ
ADBBV
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFJLC
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGVAE
AGWIL
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARAPS
ARMRJ
AXYYD
AZFZN
B-.
B0M
BA0
BBNVY
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKEYQ
BMSDO
BPHCQ
BSONS
BVXVI
C6C
CAG
CCPQU
COF
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EAS
EBB
EBC
EBD
EBLON
EBO
EBS
EBX
EHN
EIHBH
EIOEI
EJD
EMB
EMK
EMOBN
EN4
EPL
EPT
ESBYG
ESX
EX3
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GNWQR
GQ6
GQ7
GQ8
GRRUI
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IMOTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KPH
LAS
LK8
LLZTM
M1P
M4Y
M7P
MA-
N2Q
N9A
NAPCQ
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P62
P9S
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
Q~Q
R89
R9I
RNI
RNS
ROL
RPX
RRX
RSV
RZK
S1Z
S26
S27
S28
S37
S3B
SAP
SCLPG
SDH
SISQX
SJYHP
SMD
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZ9
SZN
T13
T16
TEORI
TH9
TSG
TSK
TT1
TUS
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
WOW
YLTOR
Z45
Z7R
Z7U
Z7W
Z7X
Z7Y
Z7Z
Z81
Z82
Z83
Z87
Z88
Z8M
Z8O
Z8Q
Z8R
Z8S
Z8T
Z8U
Z8V
Z8W
Z8Z
Z91
ZMTXR
~8M
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PUEGO
CGR
CUY
CVF
ECM
EIF
NPM
7TK
7XB
8FK
AZQEC
DWQXO
GNUQQ
K9.
PKEHL
PQEST
PQUKI
PRINS
5PM
ADTPV
BZJLE
D8T
STUKM
ADTOC
UNPAY
ID FETCH-LOGICAL-c479t-bf2fab9a5a549283863dec1036b6c38cf749af06b1d24f8cebdc42433c073c9f3
IEDL.DBID UNPAY
ISSN 1619-7070
1619-7089
IngestDate Sun Oct 26 04:15:53 EDT 2025
Mon Oct 20 03:26:14 EDT 2025
Tue Sep 30 17:16:20 EDT 2025
Tue Oct 07 05:21:40 EDT 2025
Thu Apr 03 07:02:27 EDT 2025
Wed Oct 01 04:42:48 EDT 2025
Thu Apr 24 23:10:05 EDT 2025
Fri Feb 21 02:46:20 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords FDG
LAFOV PET
Kinetic modeling
Parametric imaging
Language English
License 2022. The Author(s).
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c479t-bf2fab9a5a549283863dec1036b6c38cf749af06b1d24f8cebdc42433c073c9f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1504-1767
OpenAccessLink https://proxy.k.utb.cz/login?url=https://escholarship.org/uc/item/6nt5g059
PMID 36192468
PQID 2760984039
PQPubID 42802
PageCount 9
ParticipantIDs unpaywall_primary_10_1007_s00259_022_05983_7
swepub_primary_oai_swepub_ki_se_642096
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9816288
proquest_journals_2760984039
pubmed_primary_36192468
crossref_citationtrail_10_1007_s00259_022_05983_7
crossref_primary_10_1007_s00259_022_05983_7
springer_journals_10_1007_s00259_022_05983_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
– name: Heidelberg
PublicationTitle EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING
PublicationTitleAbbrev Eur J Nucl Med Mol Imaging
PublicationTitleAlternate Eur J Nucl Med Mol Imaging
PublicationYear 2023
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Wu, Feng, Zhao, Xu, Fu, Huang (CR14) 2021; 63
Prenosil, Sari, Fürstner, Afshar-Oromieh, Shi, Rominger (CR12) 2022; 63
Christensen, Reichkendler, Larsen, Auerbach, Højgaard, Nielsen (CR7) 2014; 35
Seifert, Herrmann, Kleesiek, Schäfers, Shah, Xu (CR22) 2020; 61
Hu, Panin, Smith, Spottiswoode, Shah, CA von Gall (CR25) 2020; 4
Karp, Viswanath, Geagan, Muehllehner, Pantel, Parma (CR13) 2020; 61
Eberl, Anayat, Fulton, Hooper, Fulham (CR20) 1997; 24
Meikle, Sossi, Roncali, Cherry, Banati, Mankoff (CR1) 2021; 66
CR19
Zanotti-Fregonara, Chen, Liow, Fujita, Innis (CR5) 2011; 31
Feng, Huang, Wang (CR23) 1993; 32
Spencer, Berg, Schmall, Omidvari, Leung, Abdelhafez (CR11) 2021; 62
CR15
Zanotti-Fregonara, Fadaili, Maroy, Comtat, Souloumiac, Jan (CR8) 2009; 29
Muzic, Cornelius (CR24) 2001; 42
Contractor, Kenny, Coombes, Turkheimer, Aboagye, Rosso (CR17) 2012; 2
Dias, Pedersen, Danielsen, Munk, Gormsen (CR4) 2021; 48
Sari, Mingels, Alberts, Hu, Buesser, Shah (CR9) 2022; 49
Zanotti-Fregonara, Hirvonen, Lyoo, Zoghbi, Rallis-Frutos, Huestis (CR18) 2013; 8
van Sluis, Yaqub, Brouwers, Dierckx, Noordzij, Boellaard (CR26) 2021; 8
Wang, Rahmim, Gunn (CR3) 2020; 4
Sari, Erlandsson, Law, Larsson, Ourselin, Arridge (CR6) 2017; 37
Dimitrakopoulou-Strauss, Pan, Sachpekidis (CR2) 2021; 48
Zhang, Xie, Berg, Judenhofer, Liu, Xu (CR10) 2020; 61
Rissanen, Tuisku, Luoto, Arponen, Johansson, Oikonen (CR16) 2015; 35
Alberts, Hünermund, Prenosil, Mingels, Bohn, Viscione (CR27) 2021; 48
Naganawa, Gallezot, Shah, Mulnix, Young, Dias (CR21) 2020; 7
P Zanotti-Fregonara (5983_CR5) 2011; 31
X Zhang (5983_CR10) 2020; 61
H Sari (5983_CR6) 2017; 37
R Seifert (5983_CR22) 2020; 61
D Feng (5983_CR23) 1993; 32
S Eberl (5983_CR20) 1997; 24
G Wang (5983_CR3) 2020; 4
M Naganawa (5983_CR21) 2020; 7
J Hu (5983_CR25) 2020; 4
A Dimitrakopoulou-Strauss (5983_CR2) 2021; 48
P Zanotti-Fregonara (5983_CR8) 2009; 29
AN Christensen (5983_CR7) 2014; 35
E Rissanen (5983_CR16) 2015; 35
P Zanotti-Fregonara (5983_CR18) 2013; 8
J Muzic (5983_CR24) 2001; 42
H Sari (5983_CR9) 2022; 49
GA Prenosil (5983_CR12) 2022; 63
I Alberts (5983_CR27) 2021; 48
BA Spencer (5983_CR11) 2021; 62
Y Wu (5983_CR14) 2021; 63
J van Sluis (5983_CR26) 2021; 8
JS Karp (5983_CR13) 2020; 61
SR Meikle (5983_CR1) 2021; 66
AH Dias (5983_CR4) 2021; 48
KB Contractor (5983_CR17) 2012; 2
5983_CR19
5983_CR15
References_xml – volume: 48
  start-page: 837
  year: 2021
  end-page: 850
  ident: CR4
  article-title: Clinical feasibility and impact of fully automated multiparametric PET imaging using direct Patlak reconstruction: evaluation of 103 dynamic whole-body 18F-FDG PET/CT scans
  publication-title: Eur J Nucl Med Mol Imaging
  doi: 10.1007/s00259-020-05007-2
– volume: 35
  start-page: 157
  year: 2015
  end-page: 165
  ident: CR16
  article-title: Automated reference region extraction and population-based input function for brain [11C]TMSX PET image analyses
  publication-title: J Cereb Blood Flow Metab
  doi: 10.1038/jcbfm.2014.194
– volume: 31
  start-page: 1986
  year: 2011
  end-page: 1998
  ident: CR5
  article-title: Image-derived input function for brain PET studies: many challenges and few opportunities
  publication-title: J Cereb Blood Flow Metab
  doi: 10.1038/jcbfm.2011.107
– volume: 42
  start-page: 636
  year: 2001
  end-page: 645
  ident: CR24
  article-title: COMKAT: compartment model kinetic analysis tool
  publication-title: J Nucl Med
– volume: 61
  start-page: 136
  year: 2020
  end-page: 143
  ident: CR13
  article-title: PennPET explorer: design and preliminary performance of a whole-body imager
  publication-title: J Nucl Med
  doi: 10.2967/jnumed.119.229997
– volume: 2
  start-page: 1
  year: 2012
  end-page: 8
  ident: CR17
  article-title: Evaluation of limited blood sampling population input approaches for kinetic quantification of [18F]fluorothymidine PET data
  publication-title: EJNMMI Res
  doi: 10.1186/2191-219X-2-11
– volume: 35
  start-page: 353
  year: 2014
  end-page: 361
  ident: CR7
  article-title: Calibrated image-derived input functions for the determination of the metabolic uptake rate of glucose with [18F]-FDG PET
  publication-title: Nucl Med Commun
  doi: 10.1097/MNM.0000000000000063
– volume: 4
  start-page: 663
  year: 2020
  end-page: 675
  ident: CR3
  article-title: PET parametric imaging: past, present, and future
  publication-title: IEEE Trans Radiat Plasma Med Sci
  doi: 10.1109/TRPMS.2020.3025086
– volume: 63
  start-page: 476
  year: 2022
  end-page: 484
  ident: CR12
  article-title: Performance characteristics of the Biograph Vision Quadra PET/CT system with a long axial field of view using the NEMA NU 2–2018 standard
  publication-title: J Nucl Med
  doi: 10.2967/jnumed.121.261972
– volume: 7
  start-page: 67
  year: 2020
  ident: CR21
  article-title: Assessment of population-based input functions for Patlak imaging of whole body dynamic 18F-FDG PET
  publication-title: EJNMMI Phys
  doi: 10.1186/s40658-020-00330-x
– volume: 4
  start-page: 696
  year: 2020
  end-page: 707
  ident: CR25
  article-title: Design and implementation of automated clinical whole body parametric PET with continuous bed motion
  publication-title: IEEE Trans Radiat Plasma Med Sci
  doi: 10.1109/TRPMS.2020.2994316
– volume: 61
  start-page: 1786
  year: 2020
  end-page: 1792
  ident: CR22
  article-title: Semiautomatically quantified tumor volume using 68Ga-PSMA-11 PET as a biomarker for survival in patients with advanced prostate cancer
  publication-title: J Nucl Med
  doi: 10.2967/jnumed.120.242057
– volume: 48
  start-page: 2395
  year: 2021
  end-page: 2404
  ident: CR27
  article-title: Clinical performance of long axial field of view PET/CT: a head-to-head intra-individual comparison of the Biograph Vision Quadra with the biograph vision PET/CT
  publication-title: Eur J Nucl Med Mol Imaging
  doi: 10.1007/s00259-021-05282-7
– volume: 29
  start-page: 1825
  year: 2009
  end-page: 1835
  ident: CR8
  article-title: Comparison of eight methods for the estimation of the image-derived input function in dynamic [18F]-FDG PET human brain studies
  publication-title: J Cereb Blood Flow Metab
  doi: 10.1038/jcbfm.2009.93
– volume: 63
  start-page: 622
  year: 2021
  end-page: 628
  ident: CR14
  article-title: Whole-body parametric imaging of FDG PET using uEXPLORER with reduced scan time
  publication-title: J Nucl Med
  doi: 10.2967/jnumed.120.261651
– volume: 66
  start-page: 06RM01
  year: 2021
  ident: CR1
  article-title: Quantitative PET in the 2020s: a roadmap
  publication-title: Phys Med Biol
  doi: 10.1088/1361-6560/abd4f7
– volume: 61
  start-page: 285
  year: 2020
  end-page: 291
  ident: CR10
  article-title: Total-body dynamic reconstruction and parametric imaging on the uexplorer
  publication-title: J Nucl Med
  doi: 10.2967/jnumed.119.230565
– ident: CR19
– volume: 37
  start-page: 1398
  year: 2017
  end-page: 1409
  ident: CR6
  article-title: Estimation of an image derived input function with MR-defined carotid arteries in FDG-PET human studies using a novel partial volume correction method
  publication-title: J Cereb Blood Flow Metab
  doi: 10.1177/0271678X16656197
– ident: CR15
– volume: 24
  start-page: 299
  year: 1997
  end-page: 304
  ident: CR20
  article-title: Evaluation of two population-based input functions for quantitative neurological FDG PET studies
  publication-title: Eur J Nucl Med
– volume: 49
  start-page: 1997
  year: 2022
  end-page: 2009
  ident: CR9
  article-title: First results on kinetic modelling and parametric imaging of dynamic 18F-FDG datasets from a long axial FOV PET scanner in oncological patients
  publication-title: Eur J Nucl Med Mol Imaging
  doi: 10.1007/s00259-021-05623-6
– volume: 62
  start-page: 861
  year: 2021
  end-page: 870
  ident: CR11
  article-title: Performance evaluation of the uEXPLORER total-body PET/CT scanner based on NEMA NU 2–2018 with additional tests to characterize PET scanners with a long axial field of view
  publication-title: J Nucl Med
  doi: 10.2967/jnumed.120.250597
– volume: 8
  start-page: e60231
  year: 2013
  ident: CR18
  article-title: Population-based input function modeling for [18F]FMPEP-d2, an inverse agonist radioligand for cannabinoid CB1 receptors: validation in clinical studies
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0060231
– volume: 48
  start-page: 21
  year: 2021
  end-page: 39
  ident: CR2
  article-title: Kinetic modeling and parametric imaging with dynamic PET for oncological applications: general considerations, current clinical applications, and future perspectives
  publication-title: Eur J Nucl Med Mol Imaging
  doi: 10.1007/s00259-020-04843-6
– volume: 8
  start-page: 11
  year: 2021
  ident: CR26
  article-title: Use of population input functions for reduced scan duration whole-body Patlak 18F-FDG PET imaging
  publication-title: EJNMMI Phys
  doi: 10.1186/s40658-021-00357-8
– volume: 32
  start-page: 95
  year: 1993
  end-page: 110
  ident: CR23
  article-title: Models for computer simulation studies of input functions for tracer kinetic modeling with positron emission tomography
  publication-title: Int J Biomed Comput
  doi: 10.1016/0020-7101(93)90049-C
– volume: 4
  start-page: 663
  year: 2020
  ident: 5983_CR3
  publication-title: IEEE Trans Radiat Plasma Med Sci
  doi: 10.1109/TRPMS.2020.3025086
– volume: 66
  start-page: 06RM01
  year: 2021
  ident: 5983_CR1
  publication-title: Phys Med Biol
  doi: 10.1088/1361-6560/abd4f7
– ident: 5983_CR15
  doi: 10.1007/s00259-022-05747-3
– volume: 61
  start-page: 285
  year: 2020
  ident: 5983_CR10
  publication-title: J Nucl Med
  doi: 10.2967/jnumed.119.230565
– volume: 4
  start-page: 696
  year: 2020
  ident: 5983_CR25
  publication-title: IEEE Trans Radiat Plasma Med Sci
  doi: 10.1109/TRPMS.2020.2994316
– ident: 5983_CR19
  doi: 10.1148/radiology.188.1.8511286
– volume: 7
  start-page: 67
  year: 2020
  ident: 5983_CR21
  publication-title: EJNMMI Phys
  doi: 10.1186/s40658-020-00330-x
– volume: 63
  start-page: 476
  year: 2022
  ident: 5983_CR12
  publication-title: J Nucl Med
  doi: 10.2967/jnumed.121.261972
– volume: 37
  start-page: 1398
  year: 2017
  ident: 5983_CR6
  publication-title: J Cereb Blood Flow Metab
  doi: 10.1177/0271678X16656197
– volume: 49
  start-page: 1997
  year: 2022
  ident: 5983_CR9
  publication-title: Eur J Nucl Med Mol Imaging
  doi: 10.1007/s00259-021-05623-6
– volume: 8
  start-page: e60231
  year: 2013
  ident: 5983_CR18
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0060231
– volume: 48
  start-page: 2395
  year: 2021
  ident: 5983_CR27
  publication-title: Eur J Nucl Med Mol Imaging
  doi: 10.1007/s00259-021-05282-7
– volume: 48
  start-page: 837
  year: 2021
  ident: 5983_CR4
  publication-title: Eur J Nucl Med Mol Imaging
  doi: 10.1007/s00259-020-05007-2
– volume: 62
  start-page: 861
  year: 2021
  ident: 5983_CR11
  publication-title: J Nucl Med
  doi: 10.2967/jnumed.120.250597
– volume: 42
  start-page: 636
  year: 2001
  ident: 5983_CR24
  publication-title: J Nucl Med
– volume: 61
  start-page: 136
  year: 2020
  ident: 5983_CR13
  publication-title: J Nucl Med
  doi: 10.2967/jnumed.119.229997
– volume: 24
  start-page: 299
  year: 1997
  ident: 5983_CR20
  publication-title: Eur J Nucl Med
– volume: 31
  start-page: 1986
  year: 2011
  ident: 5983_CR5
  publication-title: J Cereb Blood Flow Metab
  doi: 10.1038/jcbfm.2011.107
– volume: 8
  start-page: 11
  year: 2021
  ident: 5983_CR26
  publication-title: EJNMMI Phys
  doi: 10.1186/s40658-021-00357-8
– volume: 48
  start-page: 21
  year: 2021
  ident: 5983_CR2
  publication-title: Eur J Nucl Med Mol Imaging
  doi: 10.1007/s00259-020-04843-6
– volume: 61
  start-page: 1786
  year: 2020
  ident: 5983_CR22
  publication-title: J Nucl Med
  doi: 10.2967/jnumed.120.242057
– volume: 32
  start-page: 95
  year: 1993
  ident: 5983_CR23
  publication-title: Int J Biomed Comput
  doi: 10.1016/0020-7101(93)90049-C
– volume: 35
  start-page: 157
  year: 2015
  ident: 5983_CR16
  publication-title: J Cereb Blood Flow Metab
  doi: 10.1038/jcbfm.2014.194
– volume: 35
  start-page: 353
  year: 2014
  ident: 5983_CR7
  publication-title: Nucl Med Commun
  doi: 10.1097/MNM.0000000000000063
– volume: 29
  start-page: 1825
  year: 2009
  ident: 5983_CR8
  publication-title: J Cereb Blood Flow Metab
  doi: 10.1038/jcbfm.2009.93
– volume: 63
  start-page: 622
  year: 2021
  ident: 5983_CR14
  publication-title: J Nucl Med
  doi: 10.2967/jnumed.120.261651
– volume: 2
  start-page: 1
  year: 2012
  ident: 5983_CR17
  publication-title: EJNMMI Res
  doi: 10.1186/2191-219X-2-11
SSID ssj0018289
Score 2.5387635
Snippet Background Accurate kinetic modeling of 18F-fluorodeoxyglucose ([ 18 F]-FDG) positron emission tomography (PET) data requires accurate knowledge of the...
Accurate kinetic modeling of 18F-fluorodeoxyglucose ([ F]-FDG) positron emission tomography (PET) data requires accurate knowledge of the available tracer...
Abstract BackgroundAccurate kinetic modeling of 18F-fluorodeoxyglucose ([18F]-FDG) positron emission tomography (PET) data requires accurate knowledge of the...
SourceID unpaywall
swepub
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 257
SubjectTerms Aorta
Arteries
Bed movements
Bias
Blood
Body measurements
Cardiology
Coronary vessels
Data acquisition
Datasets
Estimates
Feasibility
Feasibility Studies
Fluorine isotopes
Fluorodeoxyglucose F18
Humans
Image quality
Image reconstruction
Imaging
Lesions
Medicine
Medicine & Public Health
Modelling
Neoplasms - diagnostic imaging
Noise levels
Nuclear Medicine
Oncology
Original
Original Article
Orthopedics
Performance evaluation
Positron emission
Positron emission tomography
Positron-Emission Tomography - methods
Radiology
Scanners
Signal to noise ratio
Statistical analysis
Substantia grisea
Technology
Temporal resolution
Thorax
Tumors
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFLZGJ3F5QNwXGMgPiBewaOI0th8Q4tIwIa1MaEOTEIocx2bTShLaVLDfxJ_kHOcyqkkVb1Wa2E782ec79vF3CHmqwUoBDwhZmAvBYhM7pqzjzIbSgDVw4JLhQeH9WbJ3FH88nhxvkVl_FgbDKvs50U_URWVwjfxlJJKxAm-Eq9f1T4ZZo3B3tU-hobvUCsUrLzF2hWxHqIw1Ittvp7ODz8O-AvoX6IKB28AEoL07RuMP06H5Vwyj24FySM7Euqm6xD8vh1EOe6mD7ugNcm1V1vr8l57P_7Fb6S1ysyOc9E2LkNtky5Z3yNX9bkv9LvkDJLALkT2nlaMYCP-d6jzH-F8gogVdwtenqOdQAWiWFFduaT3k_WJoBwt6WtarhqKV9ECmwIUpfK4VKlHQM6gJqqc-7Q4WD_V8DWX6jaXvP1AMUl3aBp5ZVD-opvMKG_AbBgZNP32hB9ND34TSLu6Ro3R6-G6PdRkcmImFaljuIqdzpScaheAklwkvrAnBauaJ4dI4ESvtxkkeFlHspLF5YeIo5tzAzGOU4_fJqKxKu0Oo0iLiYgwtBwgZpaVOIuukAoYZuthNAhL2nZWZTt4cs2zMs0GY2XdwBh2c-Q7ORECeD8_UrbjHxrt3ewxk3UBfZhewDMiDFg5DUdx7t4kMiFgDynADSnuv_1OenniJbyVDzAMdkBc9pC6q3NTCZy3s1mroLp3BL5uBuwlOK5Q7wPI_3vzh5jd_RK5HQP3ahaldMmoWK_sYqFqTP-nG31_3wDvm
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELWgSHwcEN8ECpoD4gKWNnE2to-oNFRIBQ4tqoRQ5Dh2qbokq92soL-JP8mM4w0sRRXcVtnEM7t-ybyJx28Ye2YwSiEPSHlaS8lzm3uunRfcpcpiNPCYktFG4f13xd5h_vZoehRlcmgvzB_r9yT2iQSdU805EgEluLzMrmCQKsLCbLEzrhhQ5kDJFSYEXCKO4waZv4-xGYTOMcvzBZLjKumoKHqDXVu1c3P2zcxmv0Wk8ha7GakkvBrm_ja75No77Op-XCy_y34gvYvFr2fQeaAS92MwdU2VvUgxG1ji_wqk1NAhHJZA72RhPnb04hThGjhp56seKP4FiAKyXDDWrkhjAk7REpqH0FCHhkc7n1JVfubl6zdA5adL1-M1i-4rGJh15MB3hDyU7z_Ch92D4ELrFvfYYbl7sLPHY28GbnOpe177zJtam6khiTclVCEaZ1OMh3VhhbJe5tr4SVGnTZZ7ZV3d2DzLhbD4TLHai_tsq-1a95CBNjITcoKeIzisNsoUmfNKI3dMfe6nCUvXk1XZKFxO_TNm1Si5HCa4wgmuwgRXMmEvxmvmg2zHhWdvrzFQxVt4WWWymGhMf4VO2IMBDuNQIuSthUqY3ADKeAKJdm9-0558CeLdWqXU4TlhL9eQ-mXyIg-fD7DbsBAPneInV2EiiekojjvC8h9--aP_c-Mxu54hyRteQW2zrX6xck-QlPX103A3_gQQ3i4o
  priority: 102
  providerName: Springer Nature
Title Feasibility of using abbreviated scan protocols with population-based input functions for accurate kinetic modeling of [18F]-FDG datasets from a long axial FOV PET scanner
URI https://link.springer.com/article/10.1007/s00259-022-05983-7
https://www.ncbi.nlm.nih.gov/pubmed/36192468
https://www.proquest.com/docview/2760984039
https://pubmed.ncbi.nlm.nih.gov/PMC9816288
http://kipublications.ki.se/Default.aspx?queryparsed=id
https://escholarship.org/uc/item/6nt5g059
UnpaywallVersion submittedVersion
Volume 50
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1619-7089
  dateEnd: 20241103
  omitProxy: true
  ssIdentifier: ssj0018289
  issn: 1619-7070
  databaseCode: ABDBF
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1619-7089
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0018289
  issn: 1619-7070
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1619-7089
  dateEnd: 20241103
  omitProxy: true
  ssIdentifier: ssj0018289
  issn: 1619-7070
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central Health & Medical Collection (via ProQuest)
  customDbUrl:
  eissn: 1619-7089
  dateEnd: 20241103
  omitProxy: true
  ssIdentifier: ssj0018289
  issn: 1619-7070
  databaseCode: 7X7
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1619-7089
  dateEnd: 20241103
  omitProxy: true
  ssIdentifier: ssj0018289
  issn: 1619-7070
  databaseCode: 8FG
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1db9MwFLVYK8F44JtRGJUfEC_g0cRpbD-O0mxCWqnQiooQihzX3qqWtGoTwfhL_EmuHTdQJk3jJUpax9dRTnLPja_PReiFBC8FPCAgQcYYiVRkiNCGEh1wBd7AQEhmFwqfDOLjUfR-3B17sWi7FkZvYrrz6dJN5JdVTbI3cV50z4AL7KBm3AXa3UDN0WB4-NkGVBAEENZxheH8Phd-gYxbJmcduyA2bx064JSwbSd0iVleTpCsZ0lrRdHb6FaZL-XFdzmf_-WRkrtVLtfaCRnaRJTZQVlkB-rnPzKP17rYe-iO56X4sALSfXRD5w_QzRM_8_4Q_QKu6DNpL_DCYJsvf4Zlltk0YeCrE7yGm4St7MMCsLXG9gMvXtblwYh1lxM8zZdlga0zdXjHQJmxVKq0ghV4BpbAPHbVeWz3YOdLwJOvJHl3hG0u61oXcM5q8Q1LPF_YAfyA5wcnHz7hYf_UDSHXq0dolPRPe8fEF3ogKmKiIJkJjcyE7EqrF8cpj-lEqwCcaxYrypVhkZCmE2fBJIwMVzqbqCiMKFXwglLC0MeokS9y_QRhIVlIWQdGDkhTQnIZh9pwAUQ0MJHptlCwufOp8irothjHPK31mx1aUkBL6tCSshZ6VZ-zrDRArmy9vwFU6t8H6zRkcUdALE1FC-1V2Kq7oi4IjnkLsS3U1Q2sAvj2P_n03CmBCx7YctEt9HqDzz8mrxrhywrDWxb8TzPY0ylEpRDbQr81xq9x5U__r_kztBsCY6y-Z-2jRrEq9XNgeEXWRjtszGDLk6M2ar7tD4Yf4agX99r-qf8NVeFSMA
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGJjF4QHxTGOAH4AUsmtiN44cJAWvp2Fom1KFJCAXHsWFaSUo_NPo38T_wt3GXOhnVpIqXvUX58Dm6O9_v7Psg5IkGKwU4IGBBKiUTRjimrOPMBrEBa-DAJcNE4V4_6h6K90etozXyp8qFwbDKak0sF-qsMLhH_jKUUVOBN8LVq9FPhl2j8HS1aqGhfWuFbLssMeYTO_bs_BRcuMn27g7w-2kYdtqDt13muwwwI6SastSFTqdKtzQWK4t5HPHMmgBW9jQyPDZOCqVdM0qDLBQuNjbNjAgF5wa0wyjHYdxLZENwocD523jT7h98rM8x0J9Blw_cFCZBu3zaTpm8h3BDMYymB4gTcyaXTeM5vHs-bLM-u63rnF4lm7N8pOenejj8x052rpNrHuDS1wuJvEHWbH6TXO75I_xb5DeATh-SO6eFoxh4_43qNMV4YwC-GZ0AtynWjyhASCcUd4rpqO4zxtDuZvQ4H82mFK1yqTgUsDcF9syw8gU9AUpAnpZtfnB4oPM5iDtfWGfnHcWg2Imdwjfj4gfVdFjgBH6BItLOh0_0oD0op5Db8W1yeCG8vEPW8yK39whVWoZcNmHmILJG6VhHoXWxAkQbOOFaDRJUzEqML6eOXT2GSV0IumRwAgxOSgYnskGe19-MFsVEVr69VclA4heWSXKmBg1ydyEO9VC89KajuEHkkqDUL2Ap8eUn-fH3sqS4igPsO90gLyqROiO5aobPFmK3RMHfOoErm4B7C04yjFuL5X_8-f3Vf_6YbHYHvf1kf7e_94BcCQF2LjbFtsj6dDyzDwEmTtNHXhcp-XrR6v8XteJ50g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkQocEO8uFPABuIDVTZyN7QNCiG1oKS09tGglhILj2KXqkiybrMr-Jv4Bv46ZvMqq0opLb1EetqOZ8XyfPZ4h5JkGLwU4wGNeIgQLTOCYso4z60kD3sABJcODwnv74fZR8GE0GK2QP-1ZGAyrbOfEaqJOc4Nr5Ju-CPsK2AhXm64JizgYRm8mPxlWkMKd1racRq0iu3Z-BvSteL0zBFk_9_1o6_DdNmsqDDATCFWyxPlOJ0oPNCYqk1yGPLXGg1k9CQ2XxolAadcPEy_1AyeNTVIT-AHnBizDKMeh3SvkquBcYTihGHVkz0Mmg2QPCAoTYFfNgZ3q2B4CDcUwjh7AjeRMLDrFC0j3YsBmt2vbZTi9Qa7Nsomen-nx-B8PGd0iNxtoS9_WunibrNjsDlnbazbv75LfADebYNw5zR3FkPtjqpMEI40B8qa0ADlTzByRg3oWFNeI6aSrMMbQ46b0JJvMSor-uDIZCqibamNmmPOCnkJP0D2tCvxg89DPF09GX1k0fE8xHLawJXwzzX9QTcc5DuAXmCCNPn2mB1uH1RAyO71Hji5FkvfJapZndp1QpYXPRR9GDspqlJY69K2TCrCs5wI36BGvFVZsmkTqWM9jHHcpoCsBxyDguBJwLHrkZffNpE4jsvTtjVYH4mZKKeJzA-iRB7U6dE3xikeHskfEgqJ0L2AS8cUn2cn3Kpm4kh5WnO6RV61KnXe5bIQvarVb6KG5dQpXNgZiC_QY2u3U8j_-_OHyP39K1sDo4487-7uPyHUf8Ga9GrZBVsvpzD4GfFgmTypDpOTbZVv-X13od2w
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELVgK_Fx4JsSKMgHxAVcNnES28cKGiqklh66qAihyHHsdrXbZLVJBOUv8ScZO97AUqkqtyhxPI7yknljj98g9FKClwIeEJKwYIzEKjZEaEOJDrkCb2AgJLMbhfcP0r1J_PE4OfZi0XYvjF7FdKfThVvI7_qaZG_Tqk1OgAtcRxtpArR7hDYmB4c7X2xABUEAYWNXGM4fc-E3yLhtctaxC2Lz1qEDTglbd0IXmOXFBMlhlXRQFL2NbnbVQp5_l_P5Xx4pu9vncjVOyNAmosy2u7bYVj__kXm80sPeQ3c8L8U7PZDuo2u6eoBu7PuV94foF3BFn0l7jmuDbb78CZZFYdOEga-WuIGXhK3sQw3YarCd4MWLoTwYse6yxNNq0bXYOlOHdwyUGUulOitYgWdgCcxjV53Hdg92voY8-0ay9x-wzWVtdAv3LOszLPG8tgP4Ad8Pzj59xoe7R24IlV4-QpNs9-jdHvGFHoiKmWhJYSIjCyETafXiOOUpLbUKwbkWqaJcGRYLacZpEZZRbLjSRaniKKZUwQ9KCUMfo1FVV_oJwkKyiLIxjByQpoTkMo204QKIaGhikwQoXL35XHkVdFuMY54P-s0OLTmgJXdoyVmAXg_3LHoNkEtbb60Alfv_QZNHLB0LiKWpCNBmj62hK-qC4JQHiK2hbmhgFcDXr1TTU6cELnhoy0UH6M0Kn39MXjbCVz2G1yz4UzM40jlEpRDbQr8Dxq_w5E__r_kzdCsCxtjPZ22hUbvs9HNgeG3xwn_bvwFA7k3s
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Feasibility+of+using+abbreviated+scan+protocols+with+population-based+input+functions+for+accurate+kinetic+modeling+of+%5B18F%5D-FDG+datasets+from+a+long+axial+FOV+PET+scanner&rft.jtitle=European+journal+of+nuclear+medicine+and+molecular+imaging&rft.au=Sari%2C+Hasan&rft.au=Eriksson%2C+Lars&rft.au=Mingels%2C+Clemens&rft.au=Alberts%2C+Ian&rft.date=2023-01-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1619-7070&rft.eissn=1619-7089&rft.volume=50&rft.issue=2&rft.spage=257&rft.epage=265&rft_id=info:doi/10.1007%2Fs00259-022-05983-7&rft.externalDocID=10_1007_s00259_022_05983_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1619-7070&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1619-7070&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1619-7070&client=summon