Feasibility of using abbreviated scan protocols with population-based input functions for accurate kinetic modeling of [18F]-FDG datasets from a long axial FOV PET scanner
Background Accurate kinetic modeling of 18F-fluorodeoxyglucose ([ 18 F]-FDG) positron emission tomography (PET) data requires accurate knowledge of the available tracer concentration in the plasma during the scan time, known as the arterial input function (AIF). The gold standard method to derive th...
Saved in:
| Published in | EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING Vol. 50; no. 2; pp. 257 - 265 |
|---|---|
| Main Authors | , , , , , , , , , |
| Format | Journal Article Publication |
| Language | English |
| Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.01.2023
Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1619-7070 1619-7089 1619-7089 |
| DOI | 10.1007/s00259-022-05983-7 |
Cover
| Abstract | Background
Accurate kinetic modeling of 18F-fluorodeoxyglucose ([
18
F]-FDG) positron emission tomography (PET) data requires accurate knowledge of the available tracer concentration in the plasma during the scan time, known as the arterial input function (AIF). The gold standard method to derive the AIF requires collection of serial arterial blood samples, but the introduction of long axial field of view (LAFOV) PET systems enables the use of non-invasive image-derived input functions (IDIFs) from large blood pools such as the aorta without any need for bed movement. However, such protocols require a prolonged dynamic PET acquisition, which is impractical in a busy clinical setting. Population-based input functions (PBIFs) have previously shown potential in accurate Patlak analysis of [
18
F]-FDG datasets and can enable the use of shortened dynamic imaging protocols. Here, we exploit the high sensitivity and temporal resolution of a LAFOV PET system and explore the use of PBIF with abbreviated protocols in [
18
F]-FDG total body kinetic modeling.
Methods
Dynamic PET data were acquired in 24 oncological subjects for 65 min following the administration of [
18
F]-FDG. IDIFs were extracted from the descending thoracic aorta, and a PBIF was generated from 16 datasets. Five different scaled PBIFs (sPBIFs) were generated by scaling the PBIF with the AUC of IDIF curve tails using various portions of image data (35–65, 40–65, 45–65, 50–65, and 55–65 min post-injection). The sPBIFs were compared with the IDIFs using the AUCs and Patlak
K
i
estimates in tumor lesions and cerebral gray matter. Patlak plot start time (
t
*) was also varied to evaluate the performance of shorter acquisitions on the accuracy of Patlak
K
i
estimates. Patlak
K
i
estimates with IDIF and
t
* = 35 min were used as reference, and mean bias and precision (standard deviation of bias) were calculated to assess the relative performance of different sPBIFs. A comparison of parametric images generated using IDIF and sPBIFs was also performed.
Results
There was no statistically significant difference between AUCs of the IDIF and sPBIFs (Wilcoxon test:
P
> 0.05). Excellent agreement was shown between Patlak
K
i
estimates obtained using sPBIF and IDIF. Using the sPBIF
55–65
with the Patlak model, 20 min of PET data (i.e., 45 to 65 min post-injection) achieved < 15% precision error in
K
i
estimates in tumor lesions compared to the estimates with the IDIF. Parametric images reconstructed using the IDIF and sPBIFs with and without an abbreviated protocol were visually comparable. Using Patlak
K
i
generated with an IDIF and 30 min of PET data as reference, Patlak
K
i
images generated using sPBIF
55–65
with 20 min of PET data (
t
* = 45 min) provided excellent image quality with structural similarity index measure > 0.99 and peak signal-to-noise ratio > 55 dB.
Conclusion
We demonstrate the feasibility of performing accurate [
18
F]-FDG Patlak analysis using sPBIFs with only 20 min of PET data from a LAFOV PET scanner. |
|---|---|
| AbstractList | Accurate kinetic modeling of 18F-fluorodeoxyglucose ([
F]-FDG) positron emission tomography (PET) data requires accurate knowledge of the available tracer concentration in the plasma during the scan time, known as the arterial input function (AIF). The gold standard method to derive the AIF requires collection of serial arterial blood samples, but the introduction of long axial field of view (LAFOV) PET systems enables the use of non-invasive image-derived input functions (IDIFs) from large blood pools such as the aorta without any need for bed movement. However, such protocols require a prolonged dynamic PET acquisition, which is impractical in a busy clinical setting. Population-based input functions (PBIFs) have previously shown potential in accurate Patlak analysis of [
F]-FDG datasets and can enable the use of shortened dynamic imaging protocols. Here, we exploit the high sensitivity and temporal resolution of a LAFOV PET system and explore the use of PBIF with abbreviated protocols in [
F]-FDG total body kinetic modeling.
Dynamic PET data were acquired in 24 oncological subjects for 65 min following the administration of [
F]-FDG. IDIFs were extracted from the descending thoracic aorta, and a PBIF was generated from 16 datasets. Five different scaled PBIFs (sPBIFs) were generated by scaling the PBIF with the AUC of IDIF curve tails using various portions of image data (35-65, 40-65, 45-65, 50-65, and 55-65 min post-injection). The sPBIFs were compared with the IDIFs using the AUCs and Patlak K
estimates in tumor lesions and cerebral gray matter. Patlak plot start time (t*) was also varied to evaluate the performance of shorter acquisitions on the accuracy of Patlak K
estimates. Patlak K
estimates with IDIF and t* = 35 min were used as reference, and mean bias and precision (standard deviation of bias) were calculated to assess the relative performance of different sPBIFs. A comparison of parametric images generated using IDIF and sPBIFs was also performed.
There was no statistically significant difference between AUCs of the IDIF and sPBIFs (Wilcoxon test: P > 0.05). Excellent agreement was shown between Patlak K
estimates obtained using sPBIF and IDIF. Using the sPBIF
with the Patlak model, 20 min of PET data (i.e., 45 to 65 min post-injection) achieved < 15% precision error in K
estimates in tumor lesions compared to the estimates with the IDIF. Parametric images reconstructed using the IDIF and sPBIFs with and without an abbreviated protocol were visually comparable. Using Patlak K
generated with an IDIF and 30 min of PET data as reference, Patlak K
images generated using sPBIF
with 20 min of PET data (t* = 45 min) provided excellent image quality with structural similarity index measure > 0.99 and peak signal-to-noise ratio > 55 dB.
We demonstrate the feasibility of performing accurate [
F]-FDG Patlak analysis using sPBIFs with only 20 min of PET data from a LAFOV PET scanner. Abstract BackgroundAccurate kinetic modeling of 18F-fluorodeoxyglucose ([18F]-FDG) positron emission tomography (PET) data requires accurate knowledge of the available tracer concentration in the plasma during the scan time, known as the arterial input function (AIF). The gold standard method to derive the AIF requires collection of serial arterial blood samples, but the introduction of long axial field of view (LAFOV) PET systems enables the use of non-invasive image-derived input functions (IDIFs) from large blood pools such as the aorta without any need for bed movement. However, such protocols require a prolonged dynamic PET acquisition, which is impractical in a busy clinical setting. Population-based input functions (PBIFs) have previously shown potential in accurate Patlak analysis of [18F]-FDG datasets and can enable the use of shortened dynamic imaging protocols. Here, we exploit the high sensitivity and temporal resolution of a LAFOV PET system and explore the use of PBIF with abbreviated protocols in [18F]-FDG total body kinetic modeling.MethodsDynamic PET data were acquired in 24 oncological subjects for 65 min following the administration of [18F]-FDG. IDIFs were extracted from the descending thoracic aorta, and a PBIF was generated from 16 datasets. Five different scaled PBIFs (sPBIFs) were generated by scaling the PBIF with the AUC of IDIF curve tails using various portions of image data (35–65, 40–65, 45–65, 50–65, and 55–65 min post-injection). The sPBIFs were compared with the IDIFs using the AUCs and Patlak Ki estimates in tumor lesions and cerebral gray matter. Patlak plot start time (t*) was also varied to evaluate the performance of shorter acquisitions on the accuracy of Patlak Ki estimates. Patlak Ki estimates with IDIF and t* = 35 min were used as reference, and mean bias and precision (standard deviation of bias) were calculated to assess the relative performance of different sPBIFs. A comparison of parametric images generated using IDIF and sPBIFs was also performed.ResultsThere was no statistically significant difference between AUCs of the IDIF and sPBIFs (Wilcoxon test: P > 0.05). Excellent agreement was shown between Patlak Ki estimates obtained using sPBIF and IDIF. Using the sPBIF55–65 with the Patlak model, 20 min of PET data (i.e., 45 to 65 min post-injection) achieved < 15% precision error in Ki estimates in tumor lesions compared to the estimates with the IDIF. Parametric images reconstructed using the IDIF and sPBIFs with and without an abbreviated protocol were visually comparable. Using Patlak Ki generated with an IDIF and 30 min of PET data as reference, Patlak Ki images generated using sPBIF55–65 with 20 min of PET data (t* = 45 min) provided excellent image quality with structural similarity index measure > 0.99 and peak signal-to-noise ratio > 55 dB.ConclusionWe demonstrate the feasibility of performing accurate [18F]-FDG Patlak analysis using sPBIFs with only 20 min of PET data from a LAFOV PET scanner. Background Accurate kinetic modeling of 18F-fluorodeoxyglucose ([ 18 F]-FDG) positron emission tomography (PET) data requires accurate knowledge of the available tracer concentration in the plasma during the scan time, known as the arterial input function (AIF). The gold standard method to derive the AIF requires collection of serial arterial blood samples, but the introduction of long axial field of view (LAFOV) PET systems enables the use of non-invasive image-derived input functions (IDIFs) from large blood pools such as the aorta without any need for bed movement. However, such protocols require a prolonged dynamic PET acquisition, which is impractical in a busy clinical setting. Population-based input functions (PBIFs) have previously shown potential in accurate Patlak analysis of [ 18 F]-FDG datasets and can enable the use of shortened dynamic imaging protocols. Here, we exploit the high sensitivity and temporal resolution of a LAFOV PET system and explore the use of PBIF with abbreviated protocols in [ 18 F]-FDG total body kinetic modeling. Methods Dynamic PET data were acquired in 24 oncological subjects for 65 min following the administration of [ 18 F]-FDG. IDIFs were extracted from the descending thoracic aorta, and a PBIF was generated from 16 datasets. Five different scaled PBIFs (sPBIFs) were generated by scaling the PBIF with the AUC of IDIF curve tails using various portions of image data (35–65, 40–65, 45–65, 50–65, and 55–65 min post-injection). The sPBIFs were compared with the IDIFs using the AUCs and Patlak K i estimates in tumor lesions and cerebral gray matter. Patlak plot start time ( t *) was also varied to evaluate the performance of shorter acquisitions on the accuracy of Patlak K i estimates. Patlak K i estimates with IDIF and t * = 35 min were used as reference, and mean bias and precision (standard deviation of bias) were calculated to assess the relative performance of different sPBIFs. A comparison of parametric images generated using IDIF and sPBIFs was also performed. Results There was no statistically significant difference between AUCs of the IDIF and sPBIFs (Wilcoxon test: P > 0.05). Excellent agreement was shown between Patlak K i estimates obtained using sPBIF and IDIF. Using the sPBIF 55–65 with the Patlak model, 20 min of PET data (i.e., 45 to 65 min post-injection) achieved < 15% precision error in K i estimates in tumor lesions compared to the estimates with the IDIF. Parametric images reconstructed using the IDIF and sPBIFs with and without an abbreviated protocol were visually comparable. Using Patlak K i generated with an IDIF and 30 min of PET data as reference, Patlak K i images generated using sPBIF 55–65 with 20 min of PET data ( t * = 45 min) provided excellent image quality with structural similarity index measure > 0.99 and peak signal-to-noise ratio > 55 dB. Conclusion We demonstrate the feasibility of performing accurate [ 18 F]-FDG Patlak analysis using sPBIFs with only 20 min of PET data from a LAFOV PET scanner. |
| Author | Conti, Maurizio Eriksson, Lars Rominger, Axel Mingels, Clemens Alberts, Ian Shi, Kuangyu Casey, Michael E. Afshar-Oromieh, Ali Sari, Hasan Cumming, Paul |
| Author_xml | – sequence: 1 givenname: Hasan orcidid: 0000-0002-1504-1767 surname: Sari fullname: Sari, Hasan email: hasan.sari@siemens-healthineers.com organization: Advanced Clinical Imaging Technology, Siemens Healthcare AG, Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern – sequence: 2 givenname: Lars surname: Eriksson fullname: Eriksson, Lars organization: Siemens Medical Solutions USA, Inc., Department of Oncology and Pathology, Medical Radiation Physics, Karolinska Institutet – sequence: 3 givenname: Clemens surname: Mingels fullname: Mingels, Clemens organization: Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern – sequence: 4 givenname: Ian surname: Alberts fullname: Alberts, Ian organization: Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern – sequence: 5 givenname: Michael E. surname: Casey fullname: Casey, Michael E. organization: Siemens Medical Solutions USA, Inc – sequence: 6 givenname: Ali surname: Afshar-Oromieh fullname: Afshar-Oromieh, Ali organization: Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern – sequence: 7 givenname: Maurizio surname: Conti fullname: Conti, Maurizio organization: Siemens Medical Solutions USA, Inc – sequence: 8 givenname: Paul surname: Cumming fullname: Cumming, Paul organization: Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, School of Psychology and Counselling, Queensland University of Technology – sequence: 9 givenname: Kuangyu surname: Shi fullname: Shi, Kuangyu organization: Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern – sequence: 10 givenname: Axel surname: Rominger fullname: Rominger, Axel organization: Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36192468$$D View this record in MEDLINE/PubMed http://kipublications.ki.se/Default.aspx?queryparsed=id:$$DView record from Swedish Publication Index |
| BookMark | eNqNUstuEzEUtVARfcAPsECWWA_4MZmxN0iobQpSpbIobBCyPB47devYg-1pyDfxkziZECiLipWv7j2P62MfgwMfvAbgJUZvMELt24QQmfEKEVKhGWe0ap-AI9xgXrWI8YN93aJDcJzSLUKYEcafgUNaBqRu2BH4Odcy2c46m9cwGDgm6xdQdl3U91Zm3cOkpIdDDDmo4BJc2XwDhzCMTmYbfNXJVEDWD2OGZvRq00zQhAilUmMsEvDOep2tgsvQa7eRLz5fMZt_q-ZnF7CXuUjkwolhCSV0YbPADysdnF99gZ_Or7creB2fg6dGuqRf7M4T8Hl-fn36obq8uvh4-v6yUnXLc9UZYmTH5UzOak4YZQ3ttcKINl2jKFOmrbk0qOlwT2rDlO56VZOaUoVaqrihJ4BOuqMf5HolnRNDtEsZ1wIjsYleTNGLEr3YRi_awqomVlrpYez2lCCt2LXuSqVFUxPEm4J_N-HLZKl7pX2O0j2gPZx4eyMW4V5whhvCWBF4vROI4fuoUxa3YYy-JCNI2yDOakR5Qb3622av__sLFACbACqGlKI2Qtm8fdviat3jVyb_UP8rp126qYD9Qsc_az_C-gVBS-mg |
| CitedBy_id | crossref_primary_10_1007_s00259_023_06456_1 crossref_primary_10_1186_s40658_024_00614_6 crossref_primary_10_1007_s00259_023_06222_3 crossref_primary_10_1007_s00259_023_06161_z crossref_primary_10_1053_j_semnuclmed_2024_10_006 crossref_primary_10_1053_j_semnuclmed_2024_05_008 crossref_primary_10_2214_AJR_24_31712 crossref_primary_10_1016_j_cpet_2024_05_005 crossref_primary_10_1111_dom_15247 crossref_primary_10_1186_s40644_023_00540_3 crossref_primary_10_1186_s13550_023_01049_3 crossref_primary_10_2967_jnumed_124_267784 crossref_primary_10_1007_s00259_024_06592_2 crossref_primary_10_1007_s00259_024_06926_0 crossref_primary_10_1186_s40658_023_00601_3 crossref_primary_10_1007_s00259_025_07182_6 crossref_primary_10_1186_s13550_023_01061_7 crossref_primary_10_1007_s00259_023_06526_4 crossref_primary_10_1053_j_semnuclmed_2024_08_003 crossref_primary_10_1053_j_semnuclmed_2024_10_011 crossref_primary_10_1016_j_zemedi_2023_09_001 crossref_primary_10_1007_s00259_024_06745_3 crossref_primary_10_2967_jnumed_123_266948 crossref_primary_10_1053_j_semnuclmed_2024_11_004 crossref_primary_10_1186_s13550_024_01072_y |
| Cites_doi | 10.1007/s00259-020-05007-2 10.1038/jcbfm.2014.194 10.1038/jcbfm.2011.107 10.2967/jnumed.119.229997 10.1186/2191-219X-2-11 10.1097/MNM.0000000000000063 10.1109/TRPMS.2020.3025086 10.2967/jnumed.121.261972 10.1186/s40658-020-00330-x 10.1109/TRPMS.2020.2994316 10.2967/jnumed.120.242057 10.1007/s00259-021-05282-7 10.1038/jcbfm.2009.93 10.2967/jnumed.120.261651 10.1088/1361-6560/abd4f7 10.2967/jnumed.119.230565 10.1177/0271678X16656197 10.1007/s00259-021-05623-6 10.2967/jnumed.120.250597 10.1371/journal.pone.0060231 10.1007/s00259-020-04843-6 10.1186/s40658-021-00357-8 10.1016/0020-7101(93)90049-C 10.1007/s00259-022-05747-3 10.1148/radiology.188.1.8511286 |
| ContentType | Journal Article Publication |
| Copyright | The Author(s) 2022 2022. The Author(s). The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2022 – notice: 2022. The Author(s). – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7RV 7TK 7X7 7XB 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. KB0 LK8 M0S M1P M7P NAPCQ P5Z P62 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 5PM ADTPV BZJLE D8T STUKM ADTOC UNPAY |
| DOI | 10.1007/s00259-022-05983-7 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Nursing & Allied Health Database Neurosciences Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Database (Alumni Edition) Biological Sciences Health & Medical Collection (Alumni Edition) Medical Database Biological Science Database Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China PubMed Central (Full Participant titles) SwePub SwePub Other SWEPUB Freely available online SwePub Other full text Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Nursing & Allied Health Source ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Advanced Technologies & Aerospace Database Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest Nursing & Allied Health Source (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | MEDLINE ProQuest Central Student |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1619-7089 |
| EndPage | 265 |
| ExternalDocumentID | oai:escholarship.org:ark:/13030/qt6nt5g059 oai_swepub_ki_se_642096 PMC9816288 36192468 10_1007_s00259_022_05983_7 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: University of Bern – fundername: ; |
| GroupedDBID | --- -5E -5G -BR -Y2 -~C .86 .GJ .VR 04C 06C 06D 0R~ 0VY 199 1N0 203 29G 29~ 2JN 2JY 2KM 2LR 2P1 2VQ 2~H 30V 36B 3V. 4.4 406 40D 53G 5GY 5QI 5RE 5VS 67Z 6NX 78A 7RV 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ 8UJ 95- 95. 95~ 96X AAAVM AACDK AAHNG AAIAL AAJBT AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABECU ABFTV ABHQN ABIPD ABJNI ABJOX ABKCH ABLJU ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTKH ABTMW ABULA ABUWG ABUWZ ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHVE ACIWK ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACUDM ACUHS ACZOJ ADBBV ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AEVLU AEXYK AFBBN AFEXP AFFNX AFJLC AFKRA AFLOW AFQWF AFRAH AFWTZ AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGVAE AGWIL AHAVH AHBYD AHIZS AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARAPS ARMRJ AXYYD AZFZN B-. B0M BA0 BBNVY BDATZ BENPR BGLVJ BGNMA BHPHI BKEYQ BMSDO BPHCQ BSONS BVXVI C6C CAG CCPQU COF CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EAS EBB EBC EBD EBLON EBO EBS EBX EHN EIHBH EIOEI EJD EMB EMK EMOBN EN4 EPL EPT ESBYG ESX EX3 F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GNWQR GQ6 GQ7 GQ8 GRRUI GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IMOTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KPH LAS LK8 LLZTM M1P M4Y M7P MA- N2Q N9A NAPCQ NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P62 P9S PF0 PQQKQ PROAC PSQYO PT4 PT5 Q2X QOK QOR QOS Q~Q R89 R9I RNI RNS ROL RPX RRX RSV RZK S1Z S26 S27 S28 S37 S3B SAP SCLPG SDH SISQX SJYHP SMD SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZ9 SZN T13 T16 TEORI TH9 TSG TSK TT1 TUS U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 WOW YLTOR Z45 Z7R Z7U Z7W Z7X Z7Y Z7Z Z81 Z82 Z83 Z87 Z88 Z8M Z8O Z8Q Z8R Z8S Z8T Z8U Z8V Z8W Z8Z Z91 ZMTXR ~8M AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PJZUB PPXIY PQGLB PUEGO CGR CUY CVF ECM EIF NPM 7TK 7XB 8FK AZQEC DWQXO GNUQQ K9. PKEHL PQEST PQUKI PRINS 5PM ADTPV BZJLE D8T STUKM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c479t-bf2fab9a5a549283863dec1036b6c38cf749af06b1d24f8cebdc42433c073c9f3 |
| IEDL.DBID | UNPAY |
| ISSN | 1619-7070 1619-7089 |
| IngestDate | Sun Oct 26 04:15:53 EDT 2025 Mon Oct 20 03:26:14 EDT 2025 Tue Sep 30 17:16:20 EDT 2025 Tue Oct 07 05:21:40 EDT 2025 Thu Apr 03 07:02:27 EDT 2025 Wed Oct 01 04:42:48 EDT 2025 Thu Apr 24 23:10:05 EDT 2025 Fri Feb 21 02:46:20 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | FDG LAFOV PET Kinetic modeling Parametric imaging |
| Language | English |
| License | 2022. The Author(s). Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c479t-bf2fab9a5a549283863dec1036b6c38cf749af06b1d24f8cebdc42433c073c9f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-1504-1767 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://escholarship.org/uc/item/6nt5g059 |
| PMID | 36192468 |
| PQID | 2760984039 |
| PQPubID | 42802 |
| PageCount | 9 |
| ParticipantIDs | unpaywall_primary_10_1007_s00259_022_05983_7 swepub_primary_oai_swepub_ki_se_642096 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9816288 proquest_journals_2760984039 pubmed_primary_36192468 crossref_citationtrail_10_1007_s00259_022_05983_7 crossref_primary_10_1007_s00259_022_05983_7 springer_journals_10_1007_s00259_022_05983_7 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2023-01-01 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany – name: Heidelberg |
| PublicationTitle | EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING |
| PublicationTitleAbbrev | Eur J Nucl Med Mol Imaging |
| PublicationTitleAlternate | Eur J Nucl Med Mol Imaging |
| PublicationYear | 2023 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | Wu, Feng, Zhao, Xu, Fu, Huang (CR14) 2021; 63 Prenosil, Sari, Fürstner, Afshar-Oromieh, Shi, Rominger (CR12) 2022; 63 Christensen, Reichkendler, Larsen, Auerbach, Højgaard, Nielsen (CR7) 2014; 35 Seifert, Herrmann, Kleesiek, Schäfers, Shah, Xu (CR22) 2020; 61 Hu, Panin, Smith, Spottiswoode, Shah, CA von Gall (CR25) 2020; 4 Karp, Viswanath, Geagan, Muehllehner, Pantel, Parma (CR13) 2020; 61 Eberl, Anayat, Fulton, Hooper, Fulham (CR20) 1997; 24 Meikle, Sossi, Roncali, Cherry, Banati, Mankoff (CR1) 2021; 66 CR19 Zanotti-Fregonara, Chen, Liow, Fujita, Innis (CR5) 2011; 31 Feng, Huang, Wang (CR23) 1993; 32 Spencer, Berg, Schmall, Omidvari, Leung, Abdelhafez (CR11) 2021; 62 CR15 Zanotti-Fregonara, Fadaili, Maroy, Comtat, Souloumiac, Jan (CR8) 2009; 29 Muzic, Cornelius (CR24) 2001; 42 Contractor, Kenny, Coombes, Turkheimer, Aboagye, Rosso (CR17) 2012; 2 Dias, Pedersen, Danielsen, Munk, Gormsen (CR4) 2021; 48 Sari, Mingels, Alberts, Hu, Buesser, Shah (CR9) 2022; 49 Zanotti-Fregonara, Hirvonen, Lyoo, Zoghbi, Rallis-Frutos, Huestis (CR18) 2013; 8 van Sluis, Yaqub, Brouwers, Dierckx, Noordzij, Boellaard (CR26) 2021; 8 Wang, Rahmim, Gunn (CR3) 2020; 4 Sari, Erlandsson, Law, Larsson, Ourselin, Arridge (CR6) 2017; 37 Dimitrakopoulou-Strauss, Pan, Sachpekidis (CR2) 2021; 48 Zhang, Xie, Berg, Judenhofer, Liu, Xu (CR10) 2020; 61 Rissanen, Tuisku, Luoto, Arponen, Johansson, Oikonen (CR16) 2015; 35 Alberts, Hünermund, Prenosil, Mingels, Bohn, Viscione (CR27) 2021; 48 Naganawa, Gallezot, Shah, Mulnix, Young, Dias (CR21) 2020; 7 P Zanotti-Fregonara (5983_CR5) 2011; 31 X Zhang (5983_CR10) 2020; 61 H Sari (5983_CR6) 2017; 37 R Seifert (5983_CR22) 2020; 61 D Feng (5983_CR23) 1993; 32 S Eberl (5983_CR20) 1997; 24 G Wang (5983_CR3) 2020; 4 M Naganawa (5983_CR21) 2020; 7 J Hu (5983_CR25) 2020; 4 A Dimitrakopoulou-Strauss (5983_CR2) 2021; 48 P Zanotti-Fregonara (5983_CR8) 2009; 29 AN Christensen (5983_CR7) 2014; 35 E Rissanen (5983_CR16) 2015; 35 P Zanotti-Fregonara (5983_CR18) 2013; 8 J Muzic (5983_CR24) 2001; 42 H Sari (5983_CR9) 2022; 49 GA Prenosil (5983_CR12) 2022; 63 I Alberts (5983_CR27) 2021; 48 BA Spencer (5983_CR11) 2021; 62 Y Wu (5983_CR14) 2021; 63 J van Sluis (5983_CR26) 2021; 8 JS Karp (5983_CR13) 2020; 61 SR Meikle (5983_CR1) 2021; 66 AH Dias (5983_CR4) 2021; 48 KB Contractor (5983_CR17) 2012; 2 5983_CR19 5983_CR15 |
| References_xml | – volume: 48 start-page: 837 year: 2021 end-page: 850 ident: CR4 article-title: Clinical feasibility and impact of fully automated multiparametric PET imaging using direct Patlak reconstruction: evaluation of 103 dynamic whole-body 18F-FDG PET/CT scans publication-title: Eur J Nucl Med Mol Imaging doi: 10.1007/s00259-020-05007-2 – volume: 35 start-page: 157 year: 2015 end-page: 165 ident: CR16 article-title: Automated reference region extraction and population-based input function for brain [11C]TMSX PET image analyses publication-title: J Cereb Blood Flow Metab doi: 10.1038/jcbfm.2014.194 – volume: 31 start-page: 1986 year: 2011 end-page: 1998 ident: CR5 article-title: Image-derived input function for brain PET studies: many challenges and few opportunities publication-title: J Cereb Blood Flow Metab doi: 10.1038/jcbfm.2011.107 – volume: 42 start-page: 636 year: 2001 end-page: 645 ident: CR24 article-title: COMKAT: compartment model kinetic analysis tool publication-title: J Nucl Med – volume: 61 start-page: 136 year: 2020 end-page: 143 ident: CR13 article-title: PennPET explorer: design and preliminary performance of a whole-body imager publication-title: J Nucl Med doi: 10.2967/jnumed.119.229997 – volume: 2 start-page: 1 year: 2012 end-page: 8 ident: CR17 article-title: Evaluation of limited blood sampling population input approaches for kinetic quantification of [18F]fluorothymidine PET data publication-title: EJNMMI Res doi: 10.1186/2191-219X-2-11 – volume: 35 start-page: 353 year: 2014 end-page: 361 ident: CR7 article-title: Calibrated image-derived input functions for the determination of the metabolic uptake rate of glucose with [18F]-FDG PET publication-title: Nucl Med Commun doi: 10.1097/MNM.0000000000000063 – volume: 4 start-page: 663 year: 2020 end-page: 675 ident: CR3 article-title: PET parametric imaging: past, present, and future publication-title: IEEE Trans Radiat Plasma Med Sci doi: 10.1109/TRPMS.2020.3025086 – volume: 63 start-page: 476 year: 2022 end-page: 484 ident: CR12 article-title: Performance characteristics of the Biograph Vision Quadra PET/CT system with a long axial field of view using the NEMA NU 2–2018 standard publication-title: J Nucl Med doi: 10.2967/jnumed.121.261972 – volume: 7 start-page: 67 year: 2020 ident: CR21 article-title: Assessment of population-based input functions for Patlak imaging of whole body dynamic 18F-FDG PET publication-title: EJNMMI Phys doi: 10.1186/s40658-020-00330-x – volume: 4 start-page: 696 year: 2020 end-page: 707 ident: CR25 article-title: Design and implementation of automated clinical whole body parametric PET with continuous bed motion publication-title: IEEE Trans Radiat Plasma Med Sci doi: 10.1109/TRPMS.2020.2994316 – volume: 61 start-page: 1786 year: 2020 end-page: 1792 ident: CR22 article-title: Semiautomatically quantified tumor volume using 68Ga-PSMA-11 PET as a biomarker for survival in patients with advanced prostate cancer publication-title: J Nucl Med doi: 10.2967/jnumed.120.242057 – volume: 48 start-page: 2395 year: 2021 end-page: 2404 ident: CR27 article-title: Clinical performance of long axial field of view PET/CT: a head-to-head intra-individual comparison of the Biograph Vision Quadra with the biograph vision PET/CT publication-title: Eur J Nucl Med Mol Imaging doi: 10.1007/s00259-021-05282-7 – volume: 29 start-page: 1825 year: 2009 end-page: 1835 ident: CR8 article-title: Comparison of eight methods for the estimation of the image-derived input function in dynamic [18F]-FDG PET human brain studies publication-title: J Cereb Blood Flow Metab doi: 10.1038/jcbfm.2009.93 – volume: 63 start-page: 622 year: 2021 end-page: 628 ident: CR14 article-title: Whole-body parametric imaging of FDG PET using uEXPLORER with reduced scan time publication-title: J Nucl Med doi: 10.2967/jnumed.120.261651 – volume: 66 start-page: 06RM01 year: 2021 ident: CR1 article-title: Quantitative PET in the 2020s: a roadmap publication-title: Phys Med Biol doi: 10.1088/1361-6560/abd4f7 – volume: 61 start-page: 285 year: 2020 end-page: 291 ident: CR10 article-title: Total-body dynamic reconstruction and parametric imaging on the uexplorer publication-title: J Nucl Med doi: 10.2967/jnumed.119.230565 – ident: CR19 – volume: 37 start-page: 1398 year: 2017 end-page: 1409 ident: CR6 article-title: Estimation of an image derived input function with MR-defined carotid arteries in FDG-PET human studies using a novel partial volume correction method publication-title: J Cereb Blood Flow Metab doi: 10.1177/0271678X16656197 – ident: CR15 – volume: 24 start-page: 299 year: 1997 end-page: 304 ident: CR20 article-title: Evaluation of two population-based input functions for quantitative neurological FDG PET studies publication-title: Eur J Nucl Med – volume: 49 start-page: 1997 year: 2022 end-page: 2009 ident: CR9 article-title: First results on kinetic modelling and parametric imaging of dynamic 18F-FDG datasets from a long axial FOV PET scanner in oncological patients publication-title: Eur J Nucl Med Mol Imaging doi: 10.1007/s00259-021-05623-6 – volume: 62 start-page: 861 year: 2021 end-page: 870 ident: CR11 article-title: Performance evaluation of the uEXPLORER total-body PET/CT scanner based on NEMA NU 2–2018 with additional tests to characterize PET scanners with a long axial field of view publication-title: J Nucl Med doi: 10.2967/jnumed.120.250597 – volume: 8 start-page: e60231 year: 2013 ident: CR18 article-title: Population-based input function modeling for [18F]FMPEP-d2, an inverse agonist radioligand for cannabinoid CB1 receptors: validation in clinical studies publication-title: PLoS One doi: 10.1371/journal.pone.0060231 – volume: 48 start-page: 21 year: 2021 end-page: 39 ident: CR2 article-title: Kinetic modeling and parametric imaging with dynamic PET for oncological applications: general considerations, current clinical applications, and future perspectives publication-title: Eur J Nucl Med Mol Imaging doi: 10.1007/s00259-020-04843-6 – volume: 8 start-page: 11 year: 2021 ident: CR26 article-title: Use of population input functions for reduced scan duration whole-body Patlak 18F-FDG PET imaging publication-title: EJNMMI Phys doi: 10.1186/s40658-021-00357-8 – volume: 32 start-page: 95 year: 1993 end-page: 110 ident: CR23 article-title: Models for computer simulation studies of input functions for tracer kinetic modeling with positron emission tomography publication-title: Int J Biomed Comput doi: 10.1016/0020-7101(93)90049-C – volume: 4 start-page: 663 year: 2020 ident: 5983_CR3 publication-title: IEEE Trans Radiat Plasma Med Sci doi: 10.1109/TRPMS.2020.3025086 – volume: 66 start-page: 06RM01 year: 2021 ident: 5983_CR1 publication-title: Phys Med Biol doi: 10.1088/1361-6560/abd4f7 – ident: 5983_CR15 doi: 10.1007/s00259-022-05747-3 – volume: 61 start-page: 285 year: 2020 ident: 5983_CR10 publication-title: J Nucl Med doi: 10.2967/jnumed.119.230565 – volume: 4 start-page: 696 year: 2020 ident: 5983_CR25 publication-title: IEEE Trans Radiat Plasma Med Sci doi: 10.1109/TRPMS.2020.2994316 – ident: 5983_CR19 doi: 10.1148/radiology.188.1.8511286 – volume: 7 start-page: 67 year: 2020 ident: 5983_CR21 publication-title: EJNMMI Phys doi: 10.1186/s40658-020-00330-x – volume: 63 start-page: 476 year: 2022 ident: 5983_CR12 publication-title: J Nucl Med doi: 10.2967/jnumed.121.261972 – volume: 37 start-page: 1398 year: 2017 ident: 5983_CR6 publication-title: J Cereb Blood Flow Metab doi: 10.1177/0271678X16656197 – volume: 49 start-page: 1997 year: 2022 ident: 5983_CR9 publication-title: Eur J Nucl Med Mol Imaging doi: 10.1007/s00259-021-05623-6 – volume: 8 start-page: e60231 year: 2013 ident: 5983_CR18 publication-title: PLoS One doi: 10.1371/journal.pone.0060231 – volume: 48 start-page: 2395 year: 2021 ident: 5983_CR27 publication-title: Eur J Nucl Med Mol Imaging doi: 10.1007/s00259-021-05282-7 – volume: 48 start-page: 837 year: 2021 ident: 5983_CR4 publication-title: Eur J Nucl Med Mol Imaging doi: 10.1007/s00259-020-05007-2 – volume: 62 start-page: 861 year: 2021 ident: 5983_CR11 publication-title: J Nucl Med doi: 10.2967/jnumed.120.250597 – volume: 42 start-page: 636 year: 2001 ident: 5983_CR24 publication-title: J Nucl Med – volume: 61 start-page: 136 year: 2020 ident: 5983_CR13 publication-title: J Nucl Med doi: 10.2967/jnumed.119.229997 – volume: 24 start-page: 299 year: 1997 ident: 5983_CR20 publication-title: Eur J Nucl Med – volume: 31 start-page: 1986 year: 2011 ident: 5983_CR5 publication-title: J Cereb Blood Flow Metab doi: 10.1038/jcbfm.2011.107 – volume: 8 start-page: 11 year: 2021 ident: 5983_CR26 publication-title: EJNMMI Phys doi: 10.1186/s40658-021-00357-8 – volume: 48 start-page: 21 year: 2021 ident: 5983_CR2 publication-title: Eur J Nucl Med Mol Imaging doi: 10.1007/s00259-020-04843-6 – volume: 61 start-page: 1786 year: 2020 ident: 5983_CR22 publication-title: J Nucl Med doi: 10.2967/jnumed.120.242057 – volume: 32 start-page: 95 year: 1993 ident: 5983_CR23 publication-title: Int J Biomed Comput doi: 10.1016/0020-7101(93)90049-C – volume: 35 start-page: 157 year: 2015 ident: 5983_CR16 publication-title: J Cereb Blood Flow Metab doi: 10.1038/jcbfm.2014.194 – volume: 35 start-page: 353 year: 2014 ident: 5983_CR7 publication-title: Nucl Med Commun doi: 10.1097/MNM.0000000000000063 – volume: 29 start-page: 1825 year: 2009 ident: 5983_CR8 publication-title: J Cereb Blood Flow Metab doi: 10.1038/jcbfm.2009.93 – volume: 63 start-page: 622 year: 2021 ident: 5983_CR14 publication-title: J Nucl Med doi: 10.2967/jnumed.120.261651 – volume: 2 start-page: 1 year: 2012 ident: 5983_CR17 publication-title: EJNMMI Res doi: 10.1186/2191-219X-2-11 |
| SSID | ssj0018289 |
| Score | 2.5387635 |
| Snippet | Background
Accurate kinetic modeling of 18F-fluorodeoxyglucose ([
18
F]-FDG) positron emission tomography (PET) data requires accurate knowledge of the... Accurate kinetic modeling of 18F-fluorodeoxyglucose ([ F]-FDG) positron emission tomography (PET) data requires accurate knowledge of the available tracer... Abstract BackgroundAccurate kinetic modeling of 18F-fluorodeoxyglucose ([18F]-FDG) positron emission tomography (PET) data requires accurate knowledge of the... |
| SourceID | unpaywall swepub pubmedcentral proquest pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 257 |
| SubjectTerms | Aorta Arteries Bed movements Bias Blood Body measurements Cardiology Coronary vessels Data acquisition Datasets Estimates Feasibility Feasibility Studies Fluorine isotopes Fluorodeoxyglucose F18 Humans Image quality Image reconstruction Imaging Lesions Medicine Medicine & Public Health Modelling Neoplasms - diagnostic imaging Noise levels Nuclear Medicine Oncology Original Original Article Orthopedics Performance evaluation Positron emission Positron emission tomography Positron-Emission Tomography - methods Radiology Scanners Signal to noise ratio Statistical analysis Substantia grisea Technology Temporal resolution Thorax Tumors |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFLZGJ3F5QNwXGMgPiBewaOI0th8Q4tIwIa1MaEOTEIocx2bTShLaVLDfxJ_kHOcyqkkVb1Wa2E782ec79vF3CHmqwUoBDwhZmAvBYhM7pqzjzIbSgDVw4JLhQeH9WbJ3FH88nhxvkVl_FgbDKvs50U_URWVwjfxlJJKxAm-Eq9f1T4ZZo3B3tU-hobvUCsUrLzF2hWxHqIw1Ittvp7ODz8O-AvoX6IKB28AEoL07RuMP06H5Vwyj24FySM7Euqm6xD8vh1EOe6mD7ugNcm1V1vr8l57P_7Fb6S1ysyOc9E2LkNtky5Z3yNX9bkv9LvkDJLALkT2nlaMYCP-d6jzH-F8gogVdwtenqOdQAWiWFFduaT3k_WJoBwt6WtarhqKV9ECmwIUpfK4VKlHQM6gJqqc-7Q4WD_V8DWX6jaXvP1AMUl3aBp5ZVD-opvMKG_AbBgZNP32hB9ND34TSLu6Ro3R6-G6PdRkcmImFaljuIqdzpScaheAklwkvrAnBauaJ4dI4ESvtxkkeFlHspLF5YeIo5tzAzGOU4_fJqKxKu0Oo0iLiYgwtBwgZpaVOIuukAoYZuthNAhL2nZWZTt4cs2zMs0GY2XdwBh2c-Q7ORECeD8_UrbjHxrt3ewxk3UBfZhewDMiDFg5DUdx7t4kMiFgDynADSnuv_1OenniJbyVDzAMdkBc9pC6q3NTCZy3s1mroLp3BL5uBuwlOK5Q7wPI_3vzh5jd_RK5HQP3ahaldMmoWK_sYqFqTP-nG31_3wDvm priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELWgSHwcEN8ECpoD4gKWNnE2to-oNFRIBQ4tqoRQ5Dh2qbokq92soL-JP8mM4w0sRRXcVtnEM7t-ybyJx28Ye2YwSiEPSHlaS8lzm3uunRfcpcpiNPCYktFG4f13xd5h_vZoehRlcmgvzB_r9yT2iQSdU805EgEluLzMrmCQKsLCbLEzrhhQ5kDJFSYEXCKO4waZv4-xGYTOMcvzBZLjKumoKHqDXVu1c3P2zcxmv0Wk8ha7GakkvBrm_ja75No77Op-XCy_y34gvYvFr2fQeaAS92MwdU2VvUgxG1ji_wqk1NAhHJZA72RhPnb04hThGjhp56seKP4FiAKyXDDWrkhjAk7REpqH0FCHhkc7n1JVfubl6zdA5adL1-M1i-4rGJh15MB3hDyU7z_Ch92D4ELrFvfYYbl7sLPHY28GbnOpe177zJtam6khiTclVCEaZ1OMh3VhhbJe5tr4SVGnTZZ7ZV3d2DzLhbD4TLHai_tsq-1a95CBNjITcoKeIzisNsoUmfNKI3dMfe6nCUvXk1XZKFxO_TNm1Si5HCa4wgmuwgRXMmEvxmvmg2zHhWdvrzFQxVt4WWWymGhMf4VO2IMBDuNQIuSthUqY3ADKeAKJdm9-0558CeLdWqXU4TlhL9eQ-mXyIg-fD7DbsBAPneInV2EiiekojjvC8h9--aP_c-Mxu54hyRteQW2zrX6xck-QlPX103A3_gQQ3i4o priority: 102 providerName: Springer Nature |
| Title | Feasibility of using abbreviated scan protocols with population-based input functions for accurate kinetic modeling of [18F]-FDG datasets from a long axial FOV PET scanner |
| URI | https://link.springer.com/article/10.1007/s00259-022-05983-7 https://www.ncbi.nlm.nih.gov/pubmed/36192468 https://www.proquest.com/docview/2760984039 https://pubmed.ncbi.nlm.nih.gov/PMC9816288 http://kipublications.ki.se/Default.aspx?queryparsed=id https://escholarship.org/uc/item/6nt5g059 |
| UnpaywallVersion | submittedVersion |
| Volume | 50 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1619-7089 dateEnd: 20241103 omitProxy: true ssIdentifier: ssj0018289 issn: 1619-7070 databaseCode: ABDBF dateStart: 20020101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1619-7089 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0018289 issn: 1619-7070 databaseCode: AFBBN dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1619-7089 dateEnd: 20241103 omitProxy: true ssIdentifier: ssj0018289 issn: 1619-7070 databaseCode: BENPR dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central Health & Medical Collection (via ProQuest) customDbUrl: eissn: 1619-7089 dateEnd: 20241103 omitProxy: true ssIdentifier: ssj0018289 issn: 1619-7070 databaseCode: 7X7 dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1619-7089 dateEnd: 20241103 omitProxy: true ssIdentifier: ssj0018289 issn: 1619-7070 databaseCode: 8FG dateStart: 20020101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1db9MwFLVYK8F44JtRGJUfEC_g0cRpbD-O0mxCWqnQiooQihzX3qqWtGoTwfhL_EmuHTdQJk3jJUpax9dRTnLPja_PReiFBC8FPCAgQcYYiVRkiNCGEh1wBd7AQEhmFwqfDOLjUfR-3B17sWi7FkZvYrrz6dJN5JdVTbI3cV50z4AL7KBm3AXa3UDN0WB4-NkGVBAEENZxheH8Phd-gYxbJmcduyA2bx064JSwbSd0iVleTpCsZ0lrRdHb6FaZL-XFdzmf_-WRkrtVLtfaCRnaRJTZQVlkB-rnPzKP17rYe-iO56X4sALSfXRD5w_QzRM_8_4Q_QKu6DNpL_DCYJsvf4Zlltk0YeCrE7yGm4St7MMCsLXG9gMvXtblwYh1lxM8zZdlga0zdXjHQJmxVKq0ghV4BpbAPHbVeWz3YOdLwJOvJHl3hG0u61oXcM5q8Q1LPF_YAfyA5wcnHz7hYf_UDSHXq0dolPRPe8fEF3ogKmKiIJkJjcyE7EqrF8cpj-lEqwCcaxYrypVhkZCmE2fBJIwMVzqbqCiMKFXwglLC0MeokS9y_QRhIVlIWQdGDkhTQnIZh9pwAUQ0MJHptlCwufOp8irothjHPK31mx1aUkBL6tCSshZ6VZ-zrDRArmy9vwFU6t8H6zRkcUdALE1FC-1V2Kq7oi4IjnkLsS3U1Q2sAvj2P_n03CmBCx7YctEt9HqDzz8mrxrhywrDWxb8TzPY0ylEpRDbQr81xq9x5U__r_kztBsCY6y-Z-2jRrEq9XNgeEXWRjtszGDLk6M2ar7tD4Yf4agX99r-qf8NVeFSMA |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGJjF4QHxTGOAH4AUsmtiN44cJAWvp2Fom1KFJCAXHsWFaSUo_NPo38T_wt3GXOhnVpIqXvUX58Dm6O9_v7Psg5IkGKwU4IGBBKiUTRjimrOPMBrEBa-DAJcNE4V4_6h6K90etozXyp8qFwbDKak0sF-qsMLhH_jKUUVOBN8LVq9FPhl2j8HS1aqGhfWuFbLssMeYTO_bs_BRcuMn27g7w-2kYdtqDt13muwwwI6SastSFTqdKtzQWK4t5HPHMmgBW9jQyPDZOCqVdM0qDLBQuNjbNjAgF5wa0wyjHYdxLZENwocD523jT7h98rM8x0J9Blw_cFCZBu3zaTpm8h3BDMYymB4gTcyaXTeM5vHs-bLM-u63rnF4lm7N8pOenejj8x052rpNrHuDS1wuJvEHWbH6TXO75I_xb5DeATh-SO6eFoxh4_43qNMV4YwC-GZ0AtynWjyhASCcUd4rpqO4zxtDuZvQ4H82mFK1yqTgUsDcF9syw8gU9AUpAnpZtfnB4oPM5iDtfWGfnHcWg2Imdwjfj4gfVdFjgBH6BItLOh0_0oD0op5Db8W1yeCG8vEPW8yK39whVWoZcNmHmILJG6VhHoXWxAkQbOOFaDRJUzEqML6eOXT2GSV0IumRwAgxOSgYnskGe19-MFsVEVr69VclA4heWSXKmBg1ydyEO9VC89KajuEHkkqDUL2Ap8eUn-fH3sqS4igPsO90gLyqROiO5aobPFmK3RMHfOoErm4B7C04yjFuL5X_8-f3Vf_6YbHYHvf1kf7e_94BcCQF2LjbFtsj6dDyzDwEmTtNHXhcp-XrR6v8XteJ50g |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkQocEO8uFPABuIDVTZyN7QNCiG1oKS09tGglhILj2KXqkiybrMr-Jv4Bv46ZvMqq0opLb1EetqOZ8XyfPZ4h5JkGLwU4wGNeIgQLTOCYso4z60kD3sABJcODwnv74fZR8GE0GK2QP-1ZGAyrbOfEaqJOc4Nr5Ju-CPsK2AhXm64JizgYRm8mPxlWkMKd1racRq0iu3Z-BvSteL0zBFk_9_1o6_DdNmsqDDATCFWyxPlOJ0oPNCYqk1yGPLXGg1k9CQ2XxolAadcPEy_1AyeNTVIT-AHnBizDKMeh3SvkquBcYTihGHVkz0Mmg2QPCAoTYFfNgZ3q2B4CDcUwjh7AjeRMLDrFC0j3YsBmt2vbZTi9Qa7Nsomen-nx-B8PGd0iNxtoS9_WunibrNjsDlnbazbv75LfADebYNw5zR3FkPtjqpMEI40B8qa0ADlTzByRg3oWFNeI6aSrMMbQ46b0JJvMSor-uDIZCqibamNmmPOCnkJP0D2tCvxg89DPF09GX1k0fE8xHLawJXwzzX9QTcc5DuAXmCCNPn2mB1uH1RAyO71Hji5FkvfJapZndp1QpYXPRR9GDspqlJY69K2TCrCs5wI36BGvFVZsmkTqWM9jHHcpoCsBxyDguBJwLHrkZffNpE4jsvTtjVYH4mZKKeJzA-iRB7U6dE3xikeHskfEgqJ0L2AS8cUn2cn3Kpm4kh5WnO6RV61KnXe5bIQvarVb6KG5dQpXNgZiC_QY2u3U8j_-_OHyP39K1sDo4487-7uPyHUf8Ga9GrZBVsvpzD4GfFgmTypDpOTbZVv-X13od2w |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELVgK_Fx4JsSKMgHxAVcNnES28cKGiqklh66qAihyHHsdrXbZLVJBOUv8ScZO97AUqkqtyhxPI7yknljj98g9FKClwIeEJKwYIzEKjZEaEOJDrkCb2AgJLMbhfcP0r1J_PE4OfZi0XYvjF7FdKfThVvI7_qaZG_Tqk1OgAtcRxtpArR7hDYmB4c7X2xABUEAYWNXGM4fc-E3yLhtctaxC2Lz1qEDTglbd0IXmOXFBMlhlXRQFL2NbnbVQp5_l_P5Xx4pu9vncjVOyNAmosy2u7bYVj__kXm80sPeQ3c8L8U7PZDuo2u6eoBu7PuV94foF3BFn0l7jmuDbb78CZZFYdOEga-WuIGXhK3sQw3YarCd4MWLoTwYse6yxNNq0bXYOlOHdwyUGUulOitYgWdgCcxjV53Hdg92voY8-0ay9x-wzWVtdAv3LOszLPG8tgP4Ad8Pzj59xoe7R24IlV4-QpNs9-jdHvGFHoiKmWhJYSIjCyETafXiOOUpLbUKwbkWqaJcGRYLacZpEZZRbLjSRaniKKZUwQ9KCUMfo1FVV_oJwkKyiLIxjByQpoTkMo204QKIaGhikwQoXL35XHkVdFuMY54P-s0OLTmgJXdoyVmAXg_3LHoNkEtbb60Alfv_QZNHLB0LiKWpCNBmj62hK-qC4JQHiK2hbmhgFcDXr1TTU6cELnhoy0UH6M0Kn39MXjbCVz2G1yz4UzM40jlEpRDbQr8Dxq_w5E__r_kzdCsCxtjPZ22hUbvs9HNgeG3xwn_bvwFA7k3s |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Feasibility+of+using+abbreviated+scan+protocols+with+population-based+input+functions+for+accurate+kinetic+modeling+of+%5B18F%5D-FDG+datasets+from+a+long+axial+FOV+PET+scanner&rft.jtitle=European+journal+of+nuclear+medicine+and+molecular+imaging&rft.au=Sari%2C+Hasan&rft.au=Eriksson%2C+Lars&rft.au=Mingels%2C+Clemens&rft.au=Alberts%2C+Ian&rft.date=2023-01-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1619-7070&rft.eissn=1619-7089&rft.volume=50&rft.issue=2&rft.spage=257&rft.epage=265&rft_id=info:doi/10.1007%2Fs00259-022-05983-7&rft.externalDocID=10_1007_s00259_022_05983_7 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1619-7070&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1619-7070&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1619-7070&client=summon |