Comparative analysis prediction of prostate and testicular cancer mortality using machine learning: accuracy study
BACKGROUND: The mortality rates of prostate and testicular cancer are higher mortality in the northeast region. OBJECTIVE: We aimed to compare the efficacy of machine learning libraries in predicting testicular and prostate cancer mortality. DESIGN AND SETTING: A comparative analysis of the pyMannKe...
Saved in:
| Published in | São Paulo medical journal Vol. 143; no. 2; p. e2024080 |
|---|---|
| Main Authors | , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Brazil
Associação Paulista de Medicina - APM
01.01.2025
Associação Paulista de Medicina |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1516-3180 1806-9460 1806-9460 |
| DOI | 10.1590/1516-3180.2024.0080.03072024 |
Cover
| Abstract | BACKGROUND: The mortality rates of prostate and testicular cancer are higher mortality in the northeast region. OBJECTIVE: We aimed to compare the efficacy of machine learning libraries in predicting testicular and prostate cancer mortality. DESIGN AND SETTING: A comparative analysis of the pyMannKendall and Prophet machine-learning algorithms was conducted to develop predictive models using data from DATASUS (TabNet) to Caicó (Brazil) and Rio Grande do Norte (Brazil). METHODS: Data on prostate and testicular cancer mortality in men from 2000 to 2019 were collected. The prediction accuracy of the Prophet algorithm was evaluated using the mean squared error (MSE), the root mean squared error and analyzed using the pyMannKendall, and Prophet libraries. RESULTS: The research data were made publicly available on GitHub. The machine test confirmed the accuracy of the predictions, with the root MSE (RMSE) values closely matching the observed data for Caicó (RMSE = 2.46) and Rio Grande do Norte (RMSE = 22.85). The Prophet algorithm predicted an increase in prostate cancer mortality by 2030 in Caicó and Rio Grande do Norte. This prediction was corroborated by the pyMannKendall analysis, which indicated a 99% probability of a rising mortality trend in Caicó (P < 0.01; tau = 0.586; intercept = 2.59) and Rio Grande do Norte (P = 2.06; tau = 0.84, and intercept = 119.63). For testicular cancer, no significant mortality trend was identified by Prophet or pyMann-Kendall. CONCLUSIONS: Libraries are reliable tools for predicting mortality, providing support for strategic health planning, and implementing preventive measures to ensure men’s health. Addressing the gender gap in DATASUS is essential. |
|---|---|
| AbstractList | The mortality rates of prostate and testicular cancer are higher mortality in the northeast region.BACKGROUNDThe mortality rates of prostate and testicular cancer are higher mortality in the northeast region.We aimed to compare the efficacy of machine learning libraries in predicting testicular and prostate cancer mortality.OBJECTIVEWe aimed to compare the efficacy of machine learning libraries in predicting testicular and prostate cancer mortality.A comparative analysis of the pyMannKendall and Prophet machine-learning algorithms was conducted to develop predictive models using data from DATASUS (TabNet) to Caicó (Brazil) and Rio Grande do Norte (Brazil).DESIGN AND SETTINGA comparative analysis of the pyMannKendall and Prophet machine-learning algorithms was conducted to develop predictive models using data from DATASUS (TabNet) to Caicó (Brazil) and Rio Grande do Norte (Brazil).Data on prostate and testicular cancer mortality in men from 2000 to 2019 were collected. The prediction accuracy of the Prophet algorithm was evaluated using the mean squared error (MSE), the root mean squared error and analyzed using the pyMannKendall, and Prophet libraries.METHODSData on prostate and testicular cancer mortality in men from 2000 to 2019 were collected. The prediction accuracy of the Prophet algorithm was evaluated using the mean squared error (MSE), the root mean squared error and analyzed using the pyMannKendall, and Prophet libraries.The research data were made publicly available on GitHub. The machine test confirmed the accuracy of the predictions, with the root MSE (RMSE) values closely matching the observed data for Caicó (RMSE = 2.46) and Rio Grande do Norte (RMSE = 22.85). The Prophet algorithm predicted an increase in prostate cancer mortality by 2030 in Caicó and Rio Grande do Norte. This prediction was corroborated by the pyMannKendall analysis, which indicated a 99% probability of a rising mortality trend in Caicó (P < 0.01; tau = 0.586; intercept = 2.59) and Rio Grande do Norte (P = 2.06; tau = 0.84, and intercept = 119.63). For testicular cancer, no significant mortality trend was identified by Prophet or pyMann-Kendall.RESULTSThe research data were made publicly available on GitHub. The machine test confirmed the accuracy of the predictions, with the root MSE (RMSE) values closely matching the observed data for Caicó (RMSE = 2.46) and Rio Grande do Norte (RMSE = 22.85). The Prophet algorithm predicted an increase in prostate cancer mortality by 2030 in Caicó and Rio Grande do Norte. This prediction was corroborated by the pyMannKendall analysis, which indicated a 99% probability of a rising mortality trend in Caicó (P < 0.01; tau = 0.586; intercept = 2.59) and Rio Grande do Norte (P = 2.06; tau = 0.84, and intercept = 119.63). For testicular cancer, no significant mortality trend was identified by Prophet or pyMann-Kendall.Libraries are reliable tools for predicting mortality, providing support for strategic health planning, and implementing preventive measures to ensure men's health. Addressing the gender gap in DATASUS is essential.CONCLUSIONSLibraries are reliable tools for predicting mortality, providing support for strategic health planning, and implementing preventive measures to ensure men's health. Addressing the gender gap in DATASUS is essential. BACKGROUND: The mortality rates of prostate and testicular cancer are higher mortality in the northeast region. OBJECTIVE: We aimed to compare the efficacy of machine learning libraries in predicting testicular and prostate cancer mortality. DESIGN AND SETTING: A comparative analysis of the pyMannKendall and Prophet machine-learning algorithms was conducted to develop predictive models using data from DATASUS (TabNet) to Caicó (Brazil) and Rio Grande do Norte (Brazil). METHODS: Data on prostate and testicular cancer mortality in men from 2000 to 2019 were collected. The prediction accuracy of the Prophet algorithm was evaluated using the mean squared error (MSE), the root mean squared error and analyzed using the pyMannKendall, and Prophet libraries. RESULTS: The research data were made publicly available on GitHub. The machine test confirmed the accuracy of the predictions, with the root MSE (RMSE) values closely matching the observed data for Caicó (RMSE = 2.46) and Rio Grande do Norte (RMSE = 22.85). The Prophet algorithm predicted an increase in prostate cancer mortality by 2030 in Caicó and Rio Grande do Norte. This prediction was corroborated by the pyMannKendall analysis, which indicated a 99% probability of a rising mortality trend in Caicó (P < 0.01; tau = 0.586; intercept = 2.59) and Rio Grande do Norte (P = 2.06; tau = 0.84, and intercept = 119.63). For testicular cancer, no significant mortality trend was identified by Prophet or pyMann-Kendall. CONCLUSIONS: Libraries are reliable tools for predicting mortality, providing support for strategic health planning, and implementing preventive measures to ensure men’s health. Addressing the gender gap in DATASUS is essential. The mortality rates of prostate and testicular cancer are higher mortality in the northeast region. We aimed to compare the efficacy of machine learning libraries in predicting testicular and prostate cancer mortality. A comparative analysis of the pyMannKendall and Prophet machine-learning algorithms was conducted to develop predictive models using data from DATASUS (TabNet) to Caicó (Brazil) and Rio Grande do Norte (Brazil). Data on prostate and testicular cancer mortality in men from 2000 to 2019 were collected. The prediction accuracy of the Prophet algorithm was evaluated using the mean squared error (MSE), the root mean squared error and analyzed using the pyMannKendall, and Prophet libraries. The research data were made publicly available on GitHub. The machine test confirmed the accuracy of the predictions, with the root MSE (RMSE) values closely matching the observed data for Caicó (RMSE = 2.46) and Rio Grande do Norte (RMSE = 22.85). The Prophet algorithm predicted an increase in prostate cancer mortality by 2030 in Caicó and Rio Grande do Norte. This prediction was corroborated by the pyMannKendall analysis, which indicated a 99% probability of a rising mortality trend in Caicó (P < 0.01; tau = 0.586; intercept = 2.59) and Rio Grande do Norte (P = 2.06; tau = 0.84, and intercept = 119.63). For testicular cancer, no significant mortality trend was identified by Prophet or pyMann-Kendall. Libraries are reliable tools for predicting mortality, providing support for strategic health planning, and implementing preventive measures to ensure men's health. Addressing the gender gap in DATASUS is essential. |
| Author | Braz, João Paulo Araújo Albuquerque Neto, Aurélio Gomes de Oliveira, Tiago Almeida de Nascimento, Carla Ferreira do Barra, Brígida Gabriele Albuquerque Nobre, Leonardo Thiago Duarte Barreto Bonfada, Diego Nery, David Medeiros Braz, Janine Karla França da Silva |
| AuthorAffiliation | I Escola Multicampi de Ciências Médicas do Rio Grande do Norte, Universidade Federal do Rio Grande do Norte (UFRN), Caicó (RN), Brazil III Pharmaceutical, Information analyst, Department of Central Pharmacy, Hospital Giselda Trigueiro, Natal (RN), Brazil VI Postgraduate Program in Collective Health, Universidade Federal do Rio Grande do Norte (UFRN), Natal (RN), Brazil VIII Adjunct Professor, Escola Multicampi de Ciências Médicas do Rio Grande do Norte, Universidade Federal do Rio Grande do Norte (UFRN), Caicó (RN), Brazil II Escola Multicampi de Ciências Médicas do Rio Grande do Norte, Universidade Federal do Rio Grande do Norte (UFRN), Caicó (RN), Brazil IX Adjunct Professor, Escola Multicampi de Ciências Médicas do Rio Grande do Norte, Universidade Federal do Rio Grande do Norte (UFRN), Caicó (RN), Brazil VII Adjunct Professor, Escola Multicampi de Ciências Médicas do Rio Grande do Norte, Universidade Federal do Rio Grande do Norte (UFRN), Caicó (RN), Brazil V Statistical and Associate Pro |
| AuthorAffiliation_xml | – name: IX Adjunct Professor, Escola Multicampi de Ciências Médicas do Rio Grande do Norte, Universidade Federal do Rio Grande do Norte (UFRN), Caicó (RN), Brazil – name: IV Universidade do Estado da Bahia (UNEB), Salvador (BA), Brazil – name: II Escola Multicampi de Ciências Médicas do Rio Grande do Norte, Universidade Federal do Rio Grande do Norte (UFRN), Caicó (RN), Brazil – name: VI Postgraduate Program in Collective Health, Universidade Federal do Rio Grande do Norte (UFRN), Natal (RN), Brazil – name: VII Adjunct Professor, Escola Multicampi de Ciências Médicas do Rio Grande do Norte, Universidade Federal do Rio Grande do Norte (UFRN), Caicó (RN), Brazil – name: III Pharmaceutical, Information analyst, Department of Central Pharmacy, Hospital Giselda Trigueiro, Natal (RN), Brazil – name: VIII Adjunct Professor, Escola Multicampi de Ciências Médicas do Rio Grande do Norte, Universidade Federal do Rio Grande do Norte (UFRN), Caicó (RN), Brazil – name: V Statistical and Associate Professor, Departament of Statistic, Universidade Estadual da Paraíba (UEPB), Campina Grande (PB), Brazil – name: I Escola Multicampi de Ciências Médicas do Rio Grande do Norte, Universidade Federal do Rio Grande do Norte (UFRN), Caicó (RN), Brazil – name: Universidade do Estado da Bahia (UNEB) – name: Universidade Federal do Rio Grande do Norte (UFRN) – name: Universidade Estadual da Paraíba (UEPB) – name: Hospital Giselda Trigueiro |
| Author_xml | – sequence: 1 givenname: Aurélio Gomes de orcidid: 0000-0002-6891-1930 surname: Albuquerque Neto fullname: Albuquerque Neto, Aurélio Gomes de organization: Universidade Federal do Rio Grande do Norte (UFRN), Brazil – sequence: 2 givenname: David Medeiros orcidid: 0000-0001-7541-7175 surname: Nery fullname: Nery, David Medeiros organization: Universidade Federal do Rio Grande do Norte (UFRN), Brazil – sequence: 3 givenname: João Paulo Araújo orcidid: 0000-0001-8802-0214 surname: Braz fullname: Braz, João Paulo Araújo organization: Hospital Giselda Trigueiro, Brazil – sequence: 4 givenname: Carla Ferreira do orcidid: 0000-0002-0054-277X surname: Nascimento fullname: Nascimento, Carla Ferreira do organization: Universidade do Estado da Bahia (UNEB), Brazil – sequence: 5 givenname: Tiago Almeida de orcidid: 0000-0003-4147-7721 surname: Oliveira fullname: Oliveira, Tiago Almeida de organization: Universidade Estadual da Paraíba (UEPB), Brazil – sequence: 6 givenname: Brígida Gabriele Albuquerque orcidid: 0000-0002-3902-6043 surname: Barra fullname: Barra, Brígida Gabriele Albuquerque organization: Universidade Federal do Rio Grande do Norte (UFRN), Brazil – sequence: 7 givenname: Leonardo Thiago Duarte Barreto orcidid: 0000-0002-4728-8035 surname: Nobre fullname: Nobre, Leonardo Thiago Duarte Barreto organization: Universidade Federal do Rio Grande do Norte (UFRN), Brazil – sequence: 8 givenname: Diego orcidid: 0000-0001-9725-9446 surname: Bonfada fullname: Bonfada, Diego organization: Universidade Federal do Rio Grande do Norte (UFRN), Brazil – sequence: 9 givenname: Janine Karla França da Silva orcidid: 0000-0002-9570-6465 surname: Braz fullname: Braz, Janine Karla França da Silva organization: Universidade Federal do Rio Grande do Norte (UFRN), Brazil |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40008749$$D View this record in MEDLINE/PubMed |
| BookMark | eNqVUk1v1DAQtVARbRf-AsqBA5dd_BUnQSCEVnxUqsSB3q2J7d165diL7RTl3-OQ7ooekSzZ43nvjWeer9GFD94g9IbgDak7_I7URKwZafGGYso3GJcTZriZo2foqiTEuuMCX5TzCXqJrlM6YExbQegLdMlxoTW8u0JxG4YjRMj2wVTgwU3JpuoYjbYq2-CrsCtRSBnynNdVNilbNTqIlQKvTKyGEDM4m6dqTNbvqwHUvfWmcgaiLxfvK1BqjKCmKuVRTy_R8x24ZF497it09_XL3fb7-vbHt5vt59u14k2X133TiB6YwNwQ1nUtJYw1hum-VowZToFCSWjCGbSdaTmtcbNTbcN6XgtN2QrdLLI6wEEeox0gTjKAlX8vQtxLiKUVZ2StwdCaY6NKNUxJy42gO8pxI-qeaV20Pi5aoz_C9BucOwsSLGdb5DxrOc9azkbI2RZ5sqXwNws_KWtckIcwxjLrJH-eaQVXF1fovObHf1oIx7EfjFbG5wjuSRdPM97ey314kIS0gnVlCiv09lEhhl9jMU0ONinjHHgTxlRqNoS1XHQz9PW_xc5VTr-kAD4sAFV-Qopm93_d_wFMUM_v |
| Cites_doi | 10.14740/wjon1191 10.1590/1980-549720190004.supl.1 10.21105/joss.01556 10.1002/ijc.31937 10.1016/S0933-3657(01)00077-X 10.1038/s41598-020-78381-4 10.3390/atmos10110689 10.3322/caac.21492 10.1016/j.asoc.2022.109181 10.1007/s00521-015-2103-9 10.1186/s12894-019-0487-z 10.7189/jogh.07.010306 10.26633/RPSP.2022.113 10.1590/1413-81232014192.05802013 10.1371/journal.pone.0249009 10.1016/j.amepre.2017.11.009 10.1186/s12939-016-0444-3 10.34119/bjhrv4n1-038 10.1590/interface.220369 10.1016/j.imu.2021.100538 10.17566/ciads.v9i3.702 10.1590/0102-311xen065423 10.1111/1471-0528.15258 10.1080/00031305.2017.1380080 10.3389/fbioe.2018.00075 10.1186/s12961-022-00865-8 |
| ContentType | Journal Article |
| Copyright | Copyright © 2025 by Associação Paulista de Medicina 2025 Associação Paulista de Medicina This work is licensed under a Creative Commons Attribution 4.0 International License. |
| Copyright_xml | – notice: Copyright © 2025 by Associação Paulista de Medicina 2025 Associação Paulista de Medicina – notice: This work is licensed under a Creative Commons Attribution 4.0 International License. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM GPN ADTOC UNPAY DOA |
| DOI | 10.1590/1516-3180.2024.0080.03072024 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) SciELO Unpaywall for CDI: Periodical Content Unpaywall DOAJ Open Access Journals |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 1806-9460 |
| ExternalDocumentID | oai_doaj_org_article_5dae2540ec60402184e62f240765b3dd 10.1590/1516-3180.2024.0080.03072024 S1516_31802025000200202 PMC11863987 40008749 10_1590_1516_3180_2024_0080_03072024 |
| Genre | Journal Article Comparative Study |
| GeographicLocations | Brazil |
| GeographicLocations_xml | – name: Brazil |
| GroupedDBID | --- 123 29P 2WC 36B 53G 5VS AAYXX ABXHO ADBBV AENEX ALMA_UNASSIGNED_HOLDINGS APOWU AZFZN BAWUL BCNDV CITATION CS3 DIK DU5 E3Z EBD EMB EMOBN F5P GROUPED_DOAJ IPNFZ KQ8 MK0 M~E OK1 OVT P2P PGMZT RIG RPM RSC SCD SV3 TR2 XSB CGR CUY CVF ECM EIF NPM 7X8 5PM GPN ADTOC UNPAY |
| ID | FETCH-LOGICAL-c479t-b776ba3604e1399821337e3db5c33e42a2ae13d143a89e842507fc873b456d23 |
| IEDL.DBID | UNPAY |
| ISSN | 1516-3180 1806-9460 |
| IngestDate | Fri Oct 03 12:51:38 EDT 2025 Sun Oct 26 03:32:54 EDT 2025 Tue Sep 16 21:15:18 EDT 2025 Thu Aug 21 18:27:36 EDT 2025 Thu Sep 04 16:51:09 EDT 2025 Sun May 11 01:41:48 EDT 2025 Wed Oct 01 06:51:53 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Prostatic neoplasm Protastic cancer Python library Artificial intelligence Testicular cancer Testicular neoplasm |
| Language | English |
| License | http://creativecommons.org/licenses/by/4.0 This is an open access article distributed under the terms of the Creative Commons license. This work is licensed under a Creative Commons Attribution 4.0 International License. http://creativecommons.org/licenses/by/4.0 cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c479t-b776ba3604e1399821337e3db5c33e42a2ae13d143a89e842507fc873b456d23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Conflicts of interest: None Editor responsible for the evaluation: Marianne Yumi Nakai MD, PhD (AE) Paulo Manoel Pêgo-Fernandes MD PhD (EIC) Escola Multicampi de Ciências Médicas do Rio Grande do Norte, Universidade Federal do Rio Grande do Norte (UFRN), Caicó, RN, Brazil |
| ORCID | 0000-0001-7541-7175 0000-0002-3902-6043 0000-0002-9570-6465 0000-0002-0054-277X 0000-0003-4147-7721 0000-0002-4728-8035 0000-0001-9725-9446 0000-0002-6891-1930 0000-0001-8802-0214 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1590/1516-3180.2024.0080.03072024 |
| PMID | 40008749 |
| PQID | 3171384697 |
| PQPubID | 23479 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_5dae2540ec60402184e62f240765b3dd unpaywall_primary_10_1590_1516_3180_2024_0080_03072024 scielo_journals_S1516_31802025000200202 pubmedcentral_primary_oai_pubmedcentral_nih_gov_11863987 proquest_miscellaneous_3171384697 pubmed_primary_40008749 crossref_primary_10_1590_1516_3180_2024_0080_03072024 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-01-01 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Brazil |
| PublicationPlace_xml | – name: Brazil |
| PublicationTitle | São Paulo medical journal |
| PublicationTitleAlternate | Sao Paulo Med J |
| PublicationYear | 2025 |
| Publisher | Associação Paulista de Medicina - APM Associação Paulista de Medicina |
| Publisher_xml | – name: Associação Paulista de Medicina - APM – name: Associação Paulista de Medicina |
| References | (ref6) 2009 Alickovic E (ref12) 2017; 28 Hussain Md (ref20) 2019; 4 Belikov D (ref22) 2019; 10 Cavalcanti J da RD (ref32) 2014; 18 Jesus MKMRD (ref36) 2023; 27 Kendall M (ref24) 2015; 19 Lima MS (ref7) 2020; 10 Cruz JA (ref13) 2007; 2 Taylor SJ (ref18) 2017; 72 Cabitza F (ref16) 2018; 6 Tabaac AR (ref5) 2018; 54 Correia LO (ref27) 2014; 19 Ferlay J (ref3) 2019; 144 Chollet F (ref14) 2021 Novaes MT (ref11) 2021; 23 Baker P (ref29) 2017; 7 Moura EC (ref33) 2014; 19 (ref2) 2019 Massato Harayama R (ref10) 2020; 9 Vásquez P (ref17) 2022; 46 Lima CA (ref25) 2021; 16 Müller N (ref30) 2021; 4 Lego VD (ref35) 2023; 39 McKinney W (ref23) 2011; 14 Borges D (ref19) 2022; 125 Kononenko I (ref9) 2001; 23 Breneol S (ref31) 2022; 20 Joint R (ref4) 2018; 125 Rawla P (ref8) 2019; 10 Boccolini CS (ref26) 2016; 15 Soares SCM (ref28) 2019; 19 Krüger A (ref37) 2019; 22 Balaraman S (ref21) 2020 Cawley GC (ref15) 2010; 11 Santos HGD (ref34) 2019; 35 Bray F (ref1) 2018; 68 Joint, R; Chen, ZE; Cameron, S 2018; 125 Breneol, S; Curran, JA; Marten, R 2022; 20 Kononenko, I 2001; 23 Vásquez, P; Sanchez, F; Barboza, LA 2022; 46 Chollet, F 2021 Rawla, P 2019; 10 2009 Massato Harayama, R 2020; 9 Taylor, SJ; Letham, B 2017; 72 Hussain, Md; Mahmud, I 2019; 4 Moura, EC; Santos, WD; Neves, AC; Gomes, R; Schwarz, E 2014; 19 Bray, F; Ferlay, J; Soerjomataram, I 2018; 68 Cawley, GC; Talbot, NL 2010; 11 Lima, CA; da Silva, BEB; Hora, EC 2021; 16 McKinney, W 2011; 14 Müller, N; Hortelan MP da, SM; Gentil, DF; Calças, IRR; Reis, CB; Machado, AAV 2021; 4 Ferlay, J; Colombet, M; Soerjomataram, I 2019; 144 Kendall, M 2015; 19 Alickovic, E; Subasi, A 2017; 28 Soares, SCM; Dos Santos, KMR; de Morais Fernandes, FCG; Barbosa, IR; de Souza, DLB 2019; 19 Lima, MS; Siqueira, HFF; Moura, AR 2020; 10 Cruz, JA; Wishart, DS 2007; 2 Cabitza, F; Locoro, A; Banfi, G 2018; 6 Boccolini, CS; de Souza Junior, PR 2016; 15 Lego, VD 2023; 39 Santos, HGD; Nascimento, CFD; Izbicki, R; Duarte, YAO; Porto Chiavegatto Filho, AD 2019; 35 Baker, P; Shand, T 2017; 7 2019 Balaraman, S 2020 Correia, LO; Padilha, BM; Vasconcelos, SM 2014; 19 Krüger, A; Sperandei, S; Bermudez, XPCD; Merchán-Hamann, E 2019; 22 Novaes, MT; Ferreira de Carvalho, OL; Guimarães Ferreira, PH 2021; 23 Borges, D; Nascimento, MCV 2022; 125 Jesus, MKMRD; Moré, IAA; Querino, RA; Oliveira, VHD 2023; 27 Belikov, D; Arshinov, M; Belan, B 2019; 10 Tabaac, AR; Sutter, ME; Wall, CSJ; Baker, KE 2018; 54 Cavalcanti J da, RD; Ferreira J de, A; Henriques, AHB; Morais GS da, N; Trigueiro, JVS; Torquato, IMB 2014; 18 |
| References_xml | – volume: 10 start-page: 63 issue: 2 year: 2019 ident: ref8 article-title: Epidemiology of Prostate Cancer publication-title: World J Oncol doi: 10.14740/wjon1191 – volume: 22 start-page: e190004 issue: Suppl 1 year: 2019 ident: ref37 article-title: Characteristics of hormone use by travestis and transgender women of the Brazilian Federal District publication-title: Rev Bras Epidemiol doi: 10.1590/1980-549720190004.supl.1 – volume: 4 start-page: 1556 issue: 39 year: 2019 ident: ref20 article-title: pyMannKendall: a python package for non parametric Mann Kendall family of trend tests publication-title: JOSS doi: 10.21105/joss.01556 – volume: 144 start-page: 1941 issue: 8 year: 2019 ident: ref3 article-title: Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods publication-title: Int J Cancer doi: 10.1002/ijc.31937 – volume: 11 start-page: 2079 year: 2010 ident: ref15 article-title: On over-fitting in model selection and subsequent selection bias in performance evaluation publication-title: JMLR – year: 2019 ident: ref2 – year: 2009 ident: ref6 – volume: 23 start-page: 89 issue: 1 year: 2001 ident: ref9 article-title: Machine learning for medical diagnosis: history, state of the art and perspective publication-title: Artif Intell Med doi: 10.1016/S0933-3657(01)00077-X – volume: 10 start-page: 21384 issue: 1 year: 2020 ident: ref7 article-title: Temporal trend of cancer mortality in a Brazilian state with a medium Human Development Index (1980-2018) publication-title: Sci Rep doi: 10.1038/s41598-020-78381-4 – volume: 10 start-page: 689 issue: 11 year: 2019 ident: ref22 article-title: Analysis of the diurnal, weekly, and seasonal cycles and annual trends in atmospheric CO2 and CH4 at Tower Network in Siberia from 2005 to 2016 publication-title: Atmosphere doi: 10.3390/atmos10110689 – volume: 68 start-page: 394 issue: 6 year: 2018 ident: ref1 article-title: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries publication-title: CA Cancer J Clin doi: 10.3322/caac.21492 – volume: 125 start-page: 109181 year: 2022 ident: ref19 article-title: COVID-19 ICU demand forecasting: A two-stage Prophet-LSTM approach publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2022.109181 – volume: 28 start-page: 753 issue: 4 year: 2017 ident: ref12 article-title: Breast cancer diagnosis using GA feature selection and Rotation Forest publication-title: Neural Comput Applic doi: 10.1007/s00521-015-2103-9 – volume: 19 start-page: 59 issue: 1 year: 2019 ident: ref28 article-title: Testicular Cancer mortality in Brazil: trends and predictions until 2030 publication-title: BMC Urol doi: 10.1186/s12894-019-0487-z – volume: 7 start-page: 010306 issue: 1 year: 2017 ident: ref29 article-title: Men’s health: time for a new approach to policy and practice? publication-title: J Glob Health doi: 10.7189/jogh.07.010306 – volume: 46 start-page: e113 year: 2022 ident: ref17 article-title: Mathematical and statistical models for the control of mosquito-borne diseases: the experience of Costa Rica publication-title: Rev Panam Salud Publica doi: 10.26633/RPSP.2022.113 – year: 2021 ident: ref14 – volume: 19 start-page: 1327 year: 2015 ident: ref24 article-title: Trend analysis of pahang river using non-parametric analysis: Mann Kendall’s trend test publication-title: Malays J Anal Sci – volume: 19 start-page: 429 issue: 2 year: 2014 ident: ref33 article-title: Atenção à saúde dos homens no âmbito da Estratégia Saúde da Família [Men’s health care in the scope of the Family Health Strategy] publication-title: Cien Saude Colet doi: 10.1590/1413-81232014192.05802013 – volume: 16 start-page: e0249009 issue: 3 year: 2021 ident: ref25 article-title: Trends in prostate cancer incidence and mortality to monitor control policies in a northeastern Brazilian state publication-title: PLoS One doi: 10.1371/journal.pone.0249009 – volume: 54 start-page: 385 issue: 3 year: 2018 ident: ref5 article-title: Gender Identity Disparities in Cancer Screening Behaviors publication-title: Am J Prev Med doi: 10.1016/j.amepre.2017.11.009 – volume: 15 start-page: 150 issue: 1 year: 2016 ident: ref26 article-title: Inequities in Healthcare utilization: results of the Brazilian National Health Survey, 2013 publication-title: Int J Equity Health doi: 10.1186/s12939-016-0444-3 – volume: 4 start-page: 475 issue: 1 year: 2021 ident: ref30 article-title: Strategic planning in health and continuing education in health: grounds for changes in the assistance profile publication-title: BJHR doi: 10.34119/bjhrv4n1-038 – volume: 27 start-page: e220369 year: 2023 ident: ref36 article-title: Experiências de mulheres transexuais no sistema de saúde: visibilidade em direção à equidade publication-title: Interface doi: 10.1590/interface.220369 – volume: 2 start-page: 59 year: 2007 ident: ref13 article-title: Applications of machine learning in cancer prediction and prognosis publication-title: Cancer Inform – volume: 14 start-page: 1 issue: 9 year: 2011 ident: ref23 article-title: pandas: a foundational Python library for data analysis and statistics publication-title: Python for high performance and scientific computing – volume: 18 start-page: 628 year: 2014 ident: ref32 article-title: Assistência Integral a Saúde do Homem: necessidades, obstáculos e estratégias de enfrentamento publication-title: Esc Anna Nery Rev de Enferm – volume: 23 start-page: 100538 year: 2021 ident: ref11 article-title: Prediction of secondary testosterone deficiency using machine learning: a comparative analysis of ensemble and base classifiers, probability calibration, and sampling strategies in a slightly imbalanced dataset publication-title: Inform Med Unlocked doi: 10.1016/j.imu.2021.100538 – volume: 35 start-page: e00050818 issue: 7 year: 2019 ident: ref34 article-title: Machine learning for predictive analyses in health: an example of an application to predict death in the elderly in São Paulo, Brazil publication-title: Cad Saude Publica – year: 2020 ident: ref21 article-title: Comparison of classification models for breast cancer identification using Google Colab publication-title: Math Comput Sci – volume: 9 start-page: 153 issue: 3 year: 2020 ident: ref10 article-title: Reflexões sobre o uso do big data em modelos preditivos de vigilância epidemiológica no Brasil publication-title: Cad Ibero Am Direito Sanit doi: 10.17566/ciads.v9i3.702 – volume: 39 start-page: e00065423 issue: 7 year: 2023 ident: ref35 article-title: Uncovering the gender health data gap publication-title: Cad Saude Publica doi: 10.1590/0102-311xen065423 – volume: 125 start-page: 1505 issue: 12 year: 2018 ident: ref4 article-title: Breast and reproductive cancers in the transgender population: a systematic review publication-title: BJOG doi: 10.1111/1471-0528.15258 – volume: 72 start-page: 37 issue: 1 year: 2017 ident: ref18 article-title: Forecasting at Scale publication-title: Am Stat doi: 10.1080/00031305.2017.1380080 – volume: 6 start-page: 75 year: 2018 ident: ref16 article-title: Machine Learning in Orthopedics: A Literature Review publication-title: Front Bioeng Biotechnol doi: 10.3389/fbioe.2018.00075 – volume: 20 start-page: 64 issue: 1 year: 2022 ident: ref31 article-title: Strategies to adapt and implement health system guidelines and recommendations: a scoping review publication-title: Health Res Policy Syst doi: 10.1186/s12961-022-00865-8 – volume: 19 start-page: 4467 issue: 11 year: 2014 ident: ref27 article-title: Methods for assessing the completeness of data in health information systems in Brazil: a systematic review publication-title: Cien Saude Colet – volume: 2 start-page: 59 year: 2007 end-page: 77 article-title: Applications of machine learning in cancer prediction and prognosis publication-title: Cancer Inform – volume: 10 start-page: 21384 issue: 1 year: 2020 article-title: Temporal trend of cancer mortality in a Brazilian state with a medium Human Development Index (1980-2018) publication-title: Sci Rep – volume: 14 start-page: 1 issue: 9 year: 2011 end-page: 9 article-title: pandas: a foundational Python library for data analysis and statistics publication-title: Python for high performance and scientific computing – volume: 19 start-page: 4467 issue: 11 year: 2014 end-page: 78 article-title: Methods for assessing the completeness of data in health information systems in Brazil: a systematic review publication-title: Cien Saude Colet – volume: 125 start-page: 109181 year: 2022 article-title: COVID-19 ICU demand forecasting: A two-stage Prophet-LSTM approach publication-title: Appl Soft Comput – volume: 20 start-page: 64 issue: 1 year: 2022 article-title: Strategies to adapt and implement health system guidelines and recommendations: a scoping review publication-title: Health Res Policy Syst – year: 2020 article-title: Comparison of classification models for breast cancer identification using Google Colab publication-title: Math Comput Sci – volume: 23 start-page: 100538 year: 2021 article-title: Prediction of secondary testosterone deficiency using machine learning: a comparative analysis of ensemble and base classifiers, probability calibration, and sampling strategies in a slightly imbalanced dataset publication-title: Inform Med Unlocked – volume: 28 start-page: 753 issue: 4 year: 2017 end-page: 63 article-title: Breast cancer diagnosis using GA feature selection and Rotation Forest publication-title: Neural Comput Applic – year: 2021 publication-title: Deep learning with Python. Simon and Schuster – volume: 16 start-page: e0249009 issue: 3 year: 2021 article-title: Trends in prostate cancer incidence and mortality to monitor control policies in a northeastern Brazilian state publication-title: PLoS One – volume: 7 start-page: 010306 issue: 1 year: 2017 article-title: Men’s health: time for a new approach to policy and practice? publication-title: J Glob Health – volume: 46 start-page: e113 year: 2022 article-title: Mathematical and statistical models for the control of mosquito-borne diseases: the experience of Costa Rica publication-title: Rev Panam Salud Publica – volume: 39 start-page: e00065423 issue: 7 year: 2023 article-title: Uncovering the gender health data gap publication-title: Cad Saude Publica – volume: 54 start-page: 385 issue: 3 year: 2018 end-page: 93 article-title: Gender Identity Disparities in Cancer Screening Behaviors publication-title: Am J Prev Med – volume: 27 start-page: e220369 year: 2023 article-title: Experiências de mulheres transexuais no sistema de saúde: visibilidade em direção à equidade publication-title: Interface – volume: 72 start-page: 37 issue: 1 year: 2017 end-page: 45 article-title: Forecasting at Scale publication-title: Am Stat – year: 2019 publication-title: Estimativa 2020: incidência de câncer no Brasil – volume: 125 start-page: 1505 issue: 12 year: 2018 end-page: 12 article-title: Breast and reproductive cancers in the transgender population: a systematic review publication-title: BJOG – volume: 144 start-page: 1941 issue: 8 year: 2019 end-page: 53 article-title: Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods publication-title: Int J Cancer – volume: 4 start-page: 1556 issue: 39 year: 2019 article-title: pyMannKendall: a python package for non parametric Mann Kendall family of trend tests publication-title: JOSS – volume: 18 start-page: 628 year: 2014 end-page: 34 article-title: Assistência Integral a Saúde do Homem: necessidades, obstáculos e estratégias de enfrentamento publication-title: Esc Anna Nery Rev de Enferm – volume: 10 start-page: 689 issue: 11 year: 2019 article-title: Analysis of the diurnal, weekly, and seasonal cycles and annual trends in atmospheric CO2 and CH4 at Tower Network in Siberia from 2005 to 2016 publication-title: Atmosphere – volume: 15 start-page: 150 issue: 1 year: 2016 article-title: Inequities in Healthcare utilization: results of the Brazilian National Health Survey, 2013 publication-title: Int J Equity Health – volume: 68 start-page: 394 issue: 6 year: 2018 end-page: 424 article-title: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries publication-title: CA Cancer J Clin – volume: 11 start-page: 2079 year: 2010 end-page: 107 article-title: On over-fitting in model selection and subsequent selection bias in performance evaluation publication-title: JMLR – volume: 19 start-page: 59 issue: 1 year: 2019 article-title: Testicular Cancer mortality in Brazil: trends and predictions until 2030 publication-title: BMC Urol – volume: 9 start-page: 153 issue: 3 year: 2020 end-page: 65 article-title: Reflexões sobre o uso do big data em modelos preditivos de vigilância epidemiológica no Brasil publication-title: Cad Ibero Am Direito Sanit – volume: 19 start-page: 429 issue: 2 year: 2014 end-page: 38 article-title: Atenção à saúde dos homens no âmbito da Estratégia Saúde da Família [Men’s health care in the scope of the Family Health Strategy] publication-title: Cien Saude Colet – year: 2009 publication-title: Brasília: Ministério da Saúde – volume: 10 start-page: 63 issue: 2 year: 2019 end-page: 89 article-title: Epidemiology of Prostate Cancer publication-title: World J Oncol – volume: 23 start-page: 89 issue: 1 year: 2001 end-page: 109 article-title: Machine learning for medical diagnosis: history, state of the art and perspective publication-title: Artif Intell Med – volume: 35 start-page: e00050818 issue: 7 year: 2019 article-title: Machine learning for predictive analyses in health: an example of an application to predict death in the elderly in São Paulo, Brazil publication-title: Cad Saude Publica – volume: 19 start-page: 1327 year: 2015 end-page: 34 article-title: Trend analysis of pahang river using non-parametric analysis: Mann Kendall’s trend test publication-title: Malays J Anal Sci – volume: 6 start-page: 75 year: 2018 article-title: Machine Learning in Orthopedics: A Literature Review publication-title: Front Bioeng Biotechnol – volume: 4 start-page: 475 issue: 1 year: 2021 end-page: 84 article-title: Strategic planning in health and continuing education in health: grounds for changes in the assistance profile publication-title: BJHR – volume: 22 start-page: e190004 issue: Suppl 1 year: 2019 article-title: Characteristics of hormone use by travestis and transgender women of the Brazilian Federal District publication-title: Rev Bras Epidemiol |
| SSID | ssj0028612 |
| Score | 2.3470454 |
| Snippet | BACKGROUND: The mortality rates of prostate and testicular cancer are higher mortality in the northeast region. OBJECTIVE: We aimed to compare the efficacy of... The mortality rates of prostate and testicular cancer are higher mortality in the northeast region. We aimed to compare the efficacy of machine learning... The mortality rates of prostate and testicular cancer are higher mortality in the northeast region.BACKGROUNDThe mortality rates of prostate and testicular... |
| SourceID | doaj unpaywall scielo pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database |
| StartPage | e2024080 |
| SubjectTerms | Algorithms Artificial intelligence Brazil - epidemiology Humans Machine Learning Male MEDICINE, GENERAL & INTERNAL Original Prostatic neoplasm Prostatic Neoplasms - mortality Protastic cancer Python library Testicular cancer Testicular neoplasm Testicular Neoplasms - mortality |
| SummonAdditionalLinks | – databaseName: DOAJ Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ba9VAEB6kiJcHUbylXlih4FNoyG720jctliLoixX6tkx2N1U4TQ7pOUj_vTObnGMPCiL4lmRznZlkvm938i3AQdNZJBwcS9RNUypTYenQdKUJOhGcVdEG7of89FmfflUfz5vzG1N9cU3YJA88Ge6wiZiIxFQpaIo3JiRJ1x3zEN20Mkb--lbWbcjUTLUsJe47cJDn93HVIaU1zf8JV0QIa5bLpiWObl7bSUhZt_9PYPP3msnbnKIWw324u-6XeP0DF4sbmenkITyYIaV4Nz3KI7iV-scwHv-S9RY4K4-I5cjjMuwLMXS0NuT_iag9ihXLbeSiVBE4EkZxmZE5oXTBxfEX4jLXXSYxTzRxcSQwhPWI4VpkkdoncHby4ez4tJznVyiDMm5VtsboFiXZNREOdLYmvmqSjG0TpEyqxhqpIRKiQusSj9dVpgvWyJZQV6zlU9jrhz49B6EDUuaXrk1dp5yRLkYCQtpxB2uFrSqg2djYLycVDc_sg3zj2Tee9_PsDV9lwdLZNwW8Z4dsj2Et7LyBIsTPEeL_FiEFvNm409O7wwMi2KdhfUVXJYpOAMyZAp5N7t1eSjE6MsoVYHccv3Mvuy39929Zn5s4G-E-Syd9O8WIn78LV_7L9mlrBp8M1nmpAL0Non8y0P7_MNALuMd3M3UsvYS91bhOrwhqrdrX-a36CdxCHpM priority: 102 providerName: Directory of Open Access Journals |
| Title | Comparative analysis prediction of prostate and testicular cancer mortality using machine learning: accuracy study |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/40008749 https://www.proquest.com/docview/3171384697 https://pubmed.ncbi.nlm.nih.gov/PMC11863987 http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1516-31802025000200202&lng=en&tlng=en https://doi.org/10.1590/1516-3180.2024.0080.03072024 https://doaj.org/article/5dae2540ec60402184e62f240765b3dd |
| UnpaywallVersion | publishedVersion |
| Volume | 143 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1806-9460 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0028612 issn: 1806-9460 databaseCode: KQ8 dateStart: 19940301 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1806-9460 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0028612 issn: 1806-9460 databaseCode: DOA dateStart: 19940101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVBFR databaseName: Free Medical Journals - Free Access to All customDbUrl: eissn: 1806-9460 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0028612 issn: 1806-9460 databaseCode: DIK dateStart: 19940101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1806-9460 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0028612 issn: 1806-9460 databaseCode: M~E dateStart: 19940101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1806-9460 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0028612 issn: 1806-9460 databaseCode: RPM dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7BFvE48BCv8FgZqRKnlBA7dsytVFQVEhUSXamcLMd2CmKbrLaJUPn1zDjZpQscKDdnnZfH4_X3jcdfALaLurSIg31qZVGkQmU21VbVqXIyIJwVvnQUh_xwKA9m4v1xcTxuCqO9MBfX7wudvcIJSdIO3wypXE5C11giv6Sjq7AlC0TgE9iaHX7c_RylUcfTqVwiWdZCZtdh-19utzEzRQH_v6HOP5Mnr9FcNW9vwY2-Wdjz73Y-vzBF7d-B2apxQ2bKt52-q3bcj990Hy_b-rtwe8SsbHdwsntwJTT3Ybn3Szec2VHahC2WtPBDnc3aGo_auGEJ6z3rSM8jZr0yR662ZKcR-iMNYJR9f8JOY2JnYOOXLE7eMOtcv7TunEUV3AdwtP_uaO8gHT_gkDqhdJdWSsnKcpmJgEBTlzkSYhW4rwrHeRC5zS1WeIRsttSBFgQzVbtS8Qphnc_5Q5g0bRMeA5POIrTgugp1LbTi2ntEWlJTBDezlUigWPWdWQwyHYboDRrRkBENnWfIbCaLiqijERN4Sx29vobEtuMP2AtmHLum8DYgj86Cw5ZEThxkXhMVlkXFvU_gxcpNDA5OWnGxTWj7M3yqes0R4WmVwKPBbdaPEgS_lNAJlBsOtfEumzXN1y9RABxJIQLLEm_6cvA9M_7xnJlP69bmhG6JDVApAbl2zksZ6Mn_XvgUbtIbDNGqZzDpln14jvitq6Yx7jGNgbXpOHR_AjflMUA |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7BFvE48BAUwktGqsQpbRo7dsytVFQVEhUSXamcLMd2CmKbrNKNUPn1zDjZpQscKDcnTuJ4PI6_zx5_Adgq6tIiDvaplUWRCpXZVFtVp8rJgHBW-NLRPOSHI3k4Fe9PipNxUxjthbm8fl_obAcHJEk7fDOkcjkJXWOK_JKOrsOGLBCBT2BjevRx73OURh0vp3SJZFkLmd2ErX953NrIFAX8_4Y6_wyevEFj1ay9A7f6Zm4vvtvZ7NIQdXAPpsvKDZEp37b7RbXtfvym-3jV2t-HuyNmZXuDkz2Aa6F5CN3-L91wZkdpEzbvaOGHGpu1NR61ccMS5nu2ID2PGPXKHLlax84i9EcawCj6_pSdxcDOwMY_WZy-Yda5vrPugkUV3EdwfPDueP8wHX_gkDqh9CKtlJKV5TITAYGmLnMkxCpwXxWO8yBym1vM8AjZbKkDLQhmqnal4hXCOp_zTZg0bROeAJPOIrTgugp1LbTi2ntEWlLTDG5mK5FAsWw7Mx9kOgzRGzSiISMaus6Q2UwWFVFHIybwlhp6dQ-JbccT2Apm7Lum8DYgj86Cw5pEThxkXhMVlkXFvU_g1dJNDHZOWnGxTWj7cyxV7XJEeFol8Hhwm1VRguCXEjqBcs2h1t5lPaf5-iUKgCMpRGBZ4kNfD75nxg_Pufm0qm1O6JbYAKUSkCvnvJKBnv7vjc_gNr3BMFv1HCaLrg8vEL8tqpdjd_0J-kAvOw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparative+analysis+prediction+of+prostate+and+testicular+cancer+mortality+using+machine+learning%3A+accuracy+study&rft.jtitle=S%C3%A3o+Paulo+medical+journal&rft.au=Albuquerque+Neto%2C+Aur%C3%A9lio+Gomes+de&rft.au=Nery%2C+David+Medeiros&rft.au=Braz%2C+Jo%C3%A3o+Paulo+Ara%C3%BAjo&rft.au=Nascimento%2C+Carla+Ferreira+do&rft.date=2025-01-01&rft.eissn=1806-9460&rft.volume=143&rft.issue=2&rft.spage=e2024080&rft_id=info:doi/10.1590%2F1516-3180.2024.0080.03072024&rft_id=info%3Apmid%2F40008749&rft.externalDocID=40008749 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1516-3180&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1516-3180&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1516-3180&client=summon |