Comparative analysis prediction of prostate and testicular cancer mortality using machine learning: accuracy study

BACKGROUND: The mortality rates of prostate and testicular cancer are higher mortality in the northeast region. OBJECTIVE: We aimed to compare the efficacy of machine learning libraries in predicting testicular and prostate cancer mortality. DESIGN AND SETTING: A comparative analysis of the pyMannKe...

Full description

Saved in:
Bibliographic Details
Published inSão Paulo medical journal Vol. 143; no. 2; p. e2024080
Main Authors Albuquerque Neto, Aurélio Gomes de, Nery, David Medeiros, Braz, João Paulo Araújo, Nascimento, Carla Ferreira do, Oliveira, Tiago Almeida de, Barra, Brígida Gabriele Albuquerque, Nobre, Leonardo Thiago Duarte Barreto, Bonfada, Diego, Braz, Janine Karla França da Silva
Format Journal Article
LanguageEnglish
Published Brazil Associação Paulista de Medicina - APM 01.01.2025
Associação Paulista de Medicina
Subjects
Online AccessGet full text
ISSN1516-3180
1806-9460
1806-9460
DOI10.1590/1516-3180.2024.0080.03072024

Cover

Abstract BACKGROUND: The mortality rates of prostate and testicular cancer are higher mortality in the northeast region. OBJECTIVE: We aimed to compare the efficacy of machine learning libraries in predicting testicular and prostate cancer mortality. DESIGN AND SETTING: A comparative analysis of the pyMannKendall and Prophet machine-learning algorithms was conducted to develop predictive models using data from DATASUS (TabNet) to Caicó (Brazil) and Rio Grande do Norte (Brazil). METHODS: Data on prostate and testicular cancer mortality in men from 2000 to 2019 were collected. The prediction accuracy of the Prophet algorithm was evaluated using the mean squared error (MSE), the root mean squared error and analyzed using the pyMannKendall, and Prophet libraries. RESULTS: The research data were made publicly available on GitHub. The machine test confirmed the accuracy of the predictions, with the root MSE (RMSE) values closely matching the observed data for Caicó (RMSE = 2.46) and Rio Grande do Norte (RMSE = 22.85). The Prophet algorithm predicted an increase in prostate cancer mortality by 2030 in Caicó and Rio Grande do Norte. This prediction was corroborated by the pyMannKendall analysis, which indicated a 99% probability of a rising mortality trend in Caicó (P < 0.01; tau = 0.586; intercept = 2.59) and Rio Grande do Norte (P = 2.06; tau = 0.84, and intercept = 119.63). For testicular cancer, no significant mortality trend was identified by Prophet or pyMann-Kendall. CONCLUSIONS: Libraries are reliable tools for predicting mortality, providing support for strategic health planning, and implementing preventive measures to ensure men’s health. Addressing the gender gap in DATASUS is essential.
AbstractList The mortality rates of prostate and testicular cancer are higher mortality in the northeast region.BACKGROUNDThe mortality rates of prostate and testicular cancer are higher mortality in the northeast region.We aimed to compare the efficacy of machine learning libraries in predicting testicular and prostate cancer mortality.OBJECTIVEWe aimed to compare the efficacy of machine learning libraries in predicting testicular and prostate cancer mortality.A comparative analysis of the pyMannKendall and Prophet machine-learning algorithms was conducted to develop predictive models using data from DATASUS (TabNet) to Caicó (Brazil) and Rio Grande do Norte (Brazil).DESIGN AND SETTINGA comparative analysis of the pyMannKendall and Prophet machine-learning algorithms was conducted to develop predictive models using data from DATASUS (TabNet) to Caicó (Brazil) and Rio Grande do Norte (Brazil).Data on prostate and testicular cancer mortality in men from 2000 to 2019 were collected. The prediction accuracy of the Prophet algorithm was evaluated using the mean squared error (MSE), the root mean squared error and analyzed using the pyMannKendall, and Prophet libraries.METHODSData on prostate and testicular cancer mortality in men from 2000 to 2019 were collected. The prediction accuracy of the Prophet algorithm was evaluated using the mean squared error (MSE), the root mean squared error and analyzed using the pyMannKendall, and Prophet libraries.The research data were made publicly available on GitHub. The machine test confirmed the accuracy of the predictions, with the root MSE (RMSE) values closely matching the observed data for Caicó (RMSE = 2.46) and Rio Grande do Norte (RMSE = 22.85). The Prophet algorithm predicted an increase in prostate cancer mortality by 2030 in Caicó and Rio Grande do Norte. This prediction was corroborated by the pyMannKendall analysis, which indicated a 99% probability of a rising mortality trend in Caicó (P < 0.01; tau = 0.586; intercept = 2.59) and Rio Grande do Norte (P = 2.06; tau = 0.84, and intercept = 119.63). For testicular cancer, no significant mortality trend was identified by Prophet or pyMann-Kendall.RESULTSThe research data were made publicly available on GitHub. The machine test confirmed the accuracy of the predictions, with the root MSE (RMSE) values closely matching the observed data for Caicó (RMSE = 2.46) and Rio Grande do Norte (RMSE = 22.85). The Prophet algorithm predicted an increase in prostate cancer mortality by 2030 in Caicó and Rio Grande do Norte. This prediction was corroborated by the pyMannKendall analysis, which indicated a 99% probability of a rising mortality trend in Caicó (P < 0.01; tau = 0.586; intercept = 2.59) and Rio Grande do Norte (P = 2.06; tau = 0.84, and intercept = 119.63). For testicular cancer, no significant mortality trend was identified by Prophet or pyMann-Kendall.Libraries are reliable tools for predicting mortality, providing support for strategic health planning, and implementing preventive measures to ensure men's health. Addressing the gender gap in DATASUS is essential.CONCLUSIONSLibraries are reliable tools for predicting mortality, providing support for strategic health planning, and implementing preventive measures to ensure men's health. Addressing the gender gap in DATASUS is essential.
BACKGROUND: The mortality rates of prostate and testicular cancer are higher mortality in the northeast region. OBJECTIVE: We aimed to compare the efficacy of machine learning libraries in predicting testicular and prostate cancer mortality. DESIGN AND SETTING: A comparative analysis of the pyMannKendall and Prophet machine-learning algorithms was conducted to develop predictive models using data from DATASUS (TabNet) to Caicó (Brazil) and Rio Grande do Norte (Brazil). METHODS: Data on prostate and testicular cancer mortality in men from 2000 to 2019 were collected. The prediction accuracy of the Prophet algorithm was evaluated using the mean squared error (MSE), the root mean squared error and analyzed using the pyMannKendall, and Prophet libraries. RESULTS: The research data were made publicly available on GitHub. The machine test confirmed the accuracy of the predictions, with the root MSE (RMSE) values closely matching the observed data for Caicó (RMSE = 2.46) and Rio Grande do Norte (RMSE = 22.85). The Prophet algorithm predicted an increase in prostate cancer mortality by 2030 in Caicó and Rio Grande do Norte. This prediction was corroborated by the pyMannKendall analysis, which indicated a 99% probability of a rising mortality trend in Caicó (P < 0.01; tau = 0.586; intercept = 2.59) and Rio Grande do Norte (P = 2.06; tau = 0.84, and intercept = 119.63). For testicular cancer, no significant mortality trend was identified by Prophet or pyMann-Kendall. CONCLUSIONS: Libraries are reliable tools for predicting mortality, providing support for strategic health planning, and implementing preventive measures to ensure men’s health. Addressing the gender gap in DATASUS is essential.
The mortality rates of prostate and testicular cancer are higher mortality in the northeast region. We aimed to compare the efficacy of machine learning libraries in predicting testicular and prostate cancer mortality. A comparative analysis of the pyMannKendall and Prophet machine-learning algorithms was conducted to develop predictive models using data from DATASUS (TabNet) to Caicó (Brazil) and Rio Grande do Norte (Brazil). Data on prostate and testicular cancer mortality in men from 2000 to 2019 were collected. The prediction accuracy of the Prophet algorithm was evaluated using the mean squared error (MSE), the root mean squared error and analyzed using the pyMannKendall, and Prophet libraries. The research data were made publicly available on GitHub. The machine test confirmed the accuracy of the predictions, with the root MSE (RMSE) values closely matching the observed data for Caicó (RMSE = 2.46) and Rio Grande do Norte (RMSE = 22.85). The Prophet algorithm predicted an increase in prostate cancer mortality by 2030 in Caicó and Rio Grande do Norte. This prediction was corroborated by the pyMannKendall analysis, which indicated a 99% probability of a rising mortality trend in Caicó (P < 0.01; tau = 0.586; intercept = 2.59) and Rio Grande do Norte (P = 2.06; tau = 0.84, and intercept = 119.63). For testicular cancer, no significant mortality trend was identified by Prophet or pyMann-Kendall. Libraries are reliable tools for predicting mortality, providing support for strategic health planning, and implementing preventive measures to ensure men's health. Addressing the gender gap in DATASUS is essential.
Author Braz, João Paulo Araújo
Albuquerque Neto, Aurélio Gomes de
Oliveira, Tiago Almeida de
Nascimento, Carla Ferreira do
Barra, Brígida Gabriele Albuquerque
Nobre, Leonardo Thiago Duarte Barreto
Bonfada, Diego
Nery, David Medeiros
Braz, Janine Karla França da Silva
AuthorAffiliation I Escola Multicampi de Ciências Médicas do Rio Grande do Norte, Universidade Federal do Rio Grande do Norte (UFRN), Caicó (RN), Brazil
III Pharmaceutical, Information analyst, Department of Central Pharmacy, Hospital Giselda Trigueiro, Natal (RN), Brazil
VI Postgraduate Program in Collective Health, Universidade Federal do Rio Grande do Norte (UFRN), Natal (RN), Brazil
VIII Adjunct Professor, Escola Multicampi de Ciências Médicas do Rio Grande do Norte, Universidade Federal do Rio Grande do Norte (UFRN), Caicó (RN), Brazil
II Escola Multicampi de Ciências Médicas do Rio Grande do Norte, Universidade Federal do Rio Grande do Norte (UFRN), Caicó (RN), Brazil
IX Adjunct Professor, Escola Multicampi de Ciências Médicas do Rio Grande do Norte, Universidade Federal do Rio Grande do Norte (UFRN), Caicó (RN), Brazil
VII Adjunct Professor, Escola Multicampi de Ciências Médicas do Rio Grande do Norte, Universidade Federal do Rio Grande do Norte (UFRN), Caicó (RN), Brazil
V Statistical and Associate Pro
AuthorAffiliation_xml – name: IX Adjunct Professor, Escola Multicampi de Ciências Médicas do Rio Grande do Norte, Universidade Federal do Rio Grande do Norte (UFRN), Caicó (RN), Brazil
– name: IV Universidade do Estado da Bahia (UNEB), Salvador (BA), Brazil
– name: II Escola Multicampi de Ciências Médicas do Rio Grande do Norte, Universidade Federal do Rio Grande do Norte (UFRN), Caicó (RN), Brazil
– name: VI Postgraduate Program in Collective Health, Universidade Federal do Rio Grande do Norte (UFRN), Natal (RN), Brazil
– name: VII Adjunct Professor, Escola Multicampi de Ciências Médicas do Rio Grande do Norte, Universidade Federal do Rio Grande do Norte (UFRN), Caicó (RN), Brazil
– name: III Pharmaceutical, Information analyst, Department of Central Pharmacy, Hospital Giselda Trigueiro, Natal (RN), Brazil
– name: VIII Adjunct Professor, Escola Multicampi de Ciências Médicas do Rio Grande do Norte, Universidade Federal do Rio Grande do Norte (UFRN), Caicó (RN), Brazil
– name: V Statistical and Associate Professor, Departament of Statistic, Universidade Estadual da Paraíba (UEPB), Campina Grande (PB), Brazil
– name: I Escola Multicampi de Ciências Médicas do Rio Grande do Norte, Universidade Federal do Rio Grande do Norte (UFRN), Caicó (RN), Brazil
– name: Universidade do Estado da Bahia (UNEB)
– name: Universidade Federal do Rio Grande do Norte (UFRN)
– name: Universidade Estadual da Paraíba (UEPB)
– name: Hospital Giselda Trigueiro
Author_xml – sequence: 1
  givenname: Aurélio Gomes de
  orcidid: 0000-0002-6891-1930
  surname: Albuquerque Neto
  fullname: Albuquerque Neto, Aurélio Gomes de
  organization: Universidade Federal do Rio Grande do Norte (UFRN), Brazil
– sequence: 2
  givenname: David Medeiros
  orcidid: 0000-0001-7541-7175
  surname: Nery
  fullname: Nery, David Medeiros
  organization: Universidade Federal do Rio Grande do Norte (UFRN), Brazil
– sequence: 3
  givenname: João Paulo Araújo
  orcidid: 0000-0001-8802-0214
  surname: Braz
  fullname: Braz, João Paulo Araújo
  organization: Hospital Giselda Trigueiro, Brazil
– sequence: 4
  givenname: Carla Ferreira do
  orcidid: 0000-0002-0054-277X
  surname: Nascimento
  fullname: Nascimento, Carla Ferreira do
  organization: Universidade do Estado da Bahia (UNEB), Brazil
– sequence: 5
  givenname: Tiago Almeida de
  orcidid: 0000-0003-4147-7721
  surname: Oliveira
  fullname: Oliveira, Tiago Almeida de
  organization: Universidade Estadual da Paraíba (UEPB), Brazil
– sequence: 6
  givenname: Brígida Gabriele Albuquerque
  orcidid: 0000-0002-3902-6043
  surname: Barra
  fullname: Barra, Brígida Gabriele Albuquerque
  organization: Universidade Federal do Rio Grande do Norte (UFRN), Brazil
– sequence: 7
  givenname: Leonardo Thiago Duarte Barreto
  orcidid: 0000-0002-4728-8035
  surname: Nobre
  fullname: Nobre, Leonardo Thiago Duarte Barreto
  organization: Universidade Federal do Rio Grande do Norte (UFRN), Brazil
– sequence: 8
  givenname: Diego
  orcidid: 0000-0001-9725-9446
  surname: Bonfada
  fullname: Bonfada, Diego
  organization: Universidade Federal do Rio Grande do Norte (UFRN), Brazil
– sequence: 9
  givenname: Janine Karla França da Silva
  orcidid: 0000-0002-9570-6465
  surname: Braz
  fullname: Braz, Janine Karla França da Silva
  organization: Universidade Federal do Rio Grande do Norte (UFRN), Brazil
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40008749$$D View this record in MEDLINE/PubMed
BookMark eNqVUk1v1DAQtVARbRf-AsqBA5dd_BUnQSCEVnxUqsSB3q2J7d165diL7RTl3-OQ7ooekSzZ43nvjWeer9GFD94g9IbgDak7_I7URKwZafGGYso3GJcTZriZo2foqiTEuuMCX5TzCXqJrlM6YExbQegLdMlxoTW8u0JxG4YjRMj2wVTgwU3JpuoYjbYq2-CrsCtRSBnynNdVNilbNTqIlQKvTKyGEDM4m6dqTNbvqwHUvfWmcgaiLxfvK1BqjKCmKuVRTy_R8x24ZF497it09_XL3fb7-vbHt5vt59u14k2X133TiB6YwNwQ1nUtJYw1hum-VowZToFCSWjCGbSdaTmtcbNTbcN6XgtN2QrdLLI6wEEeox0gTjKAlX8vQtxLiKUVZ2StwdCaY6NKNUxJy42gO8pxI-qeaV20Pi5aoz_C9BucOwsSLGdb5DxrOc9azkbI2RZ5sqXwNws_KWtckIcwxjLrJH-eaQVXF1fovObHf1oIx7EfjFbG5wjuSRdPM97ey314kIS0gnVlCiv09lEhhl9jMU0ONinjHHgTxlRqNoS1XHQz9PW_xc5VTr-kAD4sAFV-Qopm93_d_wFMUM_v
Cites_doi 10.14740/wjon1191
10.1590/1980-549720190004.supl.1
10.21105/joss.01556
10.1002/ijc.31937
10.1016/S0933-3657(01)00077-X
10.1038/s41598-020-78381-4
10.3390/atmos10110689
10.3322/caac.21492
10.1016/j.asoc.2022.109181
10.1007/s00521-015-2103-9
10.1186/s12894-019-0487-z
10.7189/jogh.07.010306
10.26633/RPSP.2022.113
10.1590/1413-81232014192.05802013
10.1371/journal.pone.0249009
10.1016/j.amepre.2017.11.009
10.1186/s12939-016-0444-3
10.34119/bjhrv4n1-038
10.1590/interface.220369
10.1016/j.imu.2021.100538
10.17566/ciads.v9i3.702
10.1590/0102-311xen065423
10.1111/1471-0528.15258
10.1080/00031305.2017.1380080
10.3389/fbioe.2018.00075
10.1186/s12961-022-00865-8
ContentType Journal Article
Copyright Copyright © 2025 by Associação Paulista de Medicina 2025 Associação Paulista de Medicina
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright_xml – notice: Copyright © 2025 by Associação Paulista de Medicina 2025 Associação Paulista de Medicina
– notice: This work is licensed under a Creative Commons Attribution 4.0 International License.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
GPN
ADTOC
UNPAY
DOA
DOI 10.1590/1516-3180.2024.0080.03072024
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
SciELO
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
MEDLINE


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
EISSN 1806-9460
ExternalDocumentID oai_doaj_org_article_5dae2540ec60402184e62f240765b3dd
10.1590/1516-3180.2024.0080.03072024
S1516_31802025000200202
PMC11863987
40008749
10_1590_1516_3180_2024_0080_03072024
Genre Journal Article
Comparative Study
GeographicLocations Brazil
GeographicLocations_xml – name: Brazil
GroupedDBID ---
123
29P
2WC
36B
53G
5VS
AAYXX
ABXHO
ADBBV
AENEX
ALMA_UNASSIGNED_HOLDINGS
APOWU
AZFZN
BAWUL
BCNDV
CITATION
CS3
DIK
DU5
E3Z
EBD
EMB
EMOBN
F5P
GROUPED_DOAJ
IPNFZ
KQ8
MK0
M~E
OK1
OVT
P2P
PGMZT
RIG
RPM
RSC
SCD
SV3
TR2
XSB
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
GPN
ADTOC
UNPAY
ID FETCH-LOGICAL-c479t-b776ba3604e1399821337e3db5c33e42a2ae13d143a89e842507fc873b456d23
IEDL.DBID UNPAY
ISSN 1516-3180
1806-9460
IngestDate Fri Oct 03 12:51:38 EDT 2025
Sun Oct 26 03:32:54 EDT 2025
Tue Sep 16 21:15:18 EDT 2025
Thu Aug 21 18:27:36 EDT 2025
Thu Sep 04 16:51:09 EDT 2025
Sun May 11 01:41:48 EDT 2025
Wed Oct 01 06:51:53 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Prostatic neoplasm
Protastic cancer
Python library
Artificial intelligence
Testicular cancer
Testicular neoplasm
Language English
License http://creativecommons.org/licenses/by/4.0
This is an open access article distributed under the terms of the Creative Commons license.
This work is licensed under a Creative Commons Attribution 4.0 International License. http://creativecommons.org/licenses/by/4.0
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c479t-b776ba3604e1399821337e3db5c33e42a2ae13d143a89e842507fc873b456d23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Conflicts of interest: None
Editor responsible for the evaluation: Marianne Yumi Nakai MD, PhD (AE)
Paulo Manoel Pêgo-Fernandes MD PhD (EIC)
Escola Multicampi de Ciências Médicas do Rio Grande do Norte, Universidade Federal do Rio Grande do Norte (UFRN), Caicó, RN, Brazil
ORCID 0000-0001-7541-7175
0000-0002-3902-6043
0000-0002-9570-6465
0000-0002-0054-277X
0000-0003-4147-7721
0000-0002-4728-8035
0000-0001-9725-9446
0000-0002-6891-1930
0000-0001-8802-0214
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1590/1516-3180.2024.0080.03072024
PMID 40008749
PQID 3171384697
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_5dae2540ec60402184e62f240765b3dd
unpaywall_primary_10_1590_1516_3180_2024_0080_03072024
scielo_journals_S1516_31802025000200202
pubmedcentral_primary_oai_pubmedcentral_nih_gov_11863987
proquest_miscellaneous_3171384697
pubmed_primary_40008749
crossref_primary_10_1590_1516_3180_2024_0080_03072024
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Brazil
PublicationPlace_xml – name: Brazil
PublicationTitle São Paulo medical journal
PublicationTitleAlternate Sao Paulo Med J
PublicationYear 2025
Publisher Associação Paulista de Medicina - APM
Associação Paulista de Medicina
Publisher_xml – name: Associação Paulista de Medicina - APM
– name: Associação Paulista de Medicina
References (ref6) 2009
Alickovic E (ref12) 2017; 28
Hussain Md (ref20) 2019; 4
Belikov D (ref22) 2019; 10
Cavalcanti J da RD (ref32) 2014; 18
Jesus MKMRD (ref36) 2023; 27
Kendall M (ref24) 2015; 19
Lima MS (ref7) 2020; 10
Cruz JA (ref13) 2007; 2
Taylor SJ (ref18) 2017; 72
Cabitza F (ref16) 2018; 6
Tabaac AR (ref5) 2018; 54
Correia LO (ref27) 2014; 19
Ferlay J (ref3) 2019; 144
Chollet F (ref14) 2021
Novaes MT (ref11) 2021; 23
Baker P (ref29) 2017; 7
Moura EC (ref33) 2014; 19
(ref2) 2019
Massato Harayama R (ref10) 2020; 9
Vásquez P (ref17) 2022; 46
Lima CA (ref25) 2021; 16
Müller N (ref30) 2021; 4
Lego VD (ref35) 2023; 39
McKinney W (ref23) 2011; 14
Borges D (ref19) 2022; 125
Kononenko I (ref9) 2001; 23
Breneol S (ref31) 2022; 20
Joint R (ref4) 2018; 125
Rawla P (ref8) 2019; 10
Boccolini CS (ref26) 2016; 15
Soares SCM (ref28) 2019; 19
Krüger A (ref37) 2019; 22
Balaraman S (ref21) 2020
Cawley GC (ref15) 2010; 11
Santos HGD (ref34) 2019; 35
Bray F (ref1) 2018; 68
Joint, R; Chen, ZE; Cameron, S 2018; 125
Breneol, S; Curran, JA; Marten, R 2022; 20
Kononenko, I 2001; 23
Vásquez, P; Sanchez, F; Barboza, LA 2022; 46
Chollet, F 2021
Rawla, P 2019; 10
2009
Massato Harayama, R 2020; 9
Taylor, SJ; Letham, B 2017; 72
Hussain, Md; Mahmud, I 2019; 4
Moura, EC; Santos, WD; Neves, AC; Gomes, R; Schwarz, E 2014; 19
Bray, F; Ferlay, J; Soerjomataram, I 2018; 68
Cawley, GC; Talbot, NL 2010; 11
Lima, CA; da Silva, BEB; Hora, EC 2021; 16
McKinney, W 2011; 14
Müller, N; Hortelan MP da, SM; Gentil, DF; Calças, IRR; Reis, CB; Machado, AAV 2021; 4
Ferlay, J; Colombet, M; Soerjomataram, I 2019; 144
Kendall, M 2015; 19
Alickovic, E; Subasi, A 2017; 28
Soares, SCM; Dos Santos, KMR; de Morais Fernandes, FCG; Barbosa, IR; de Souza, DLB 2019; 19
Lima, MS; Siqueira, HFF; Moura, AR 2020; 10
Cruz, JA; Wishart, DS 2007; 2
Cabitza, F; Locoro, A; Banfi, G 2018; 6
Boccolini, CS; de Souza Junior, PR 2016; 15
Lego, VD 2023; 39
Santos, HGD; Nascimento, CFD; Izbicki, R; Duarte, YAO; Porto Chiavegatto Filho, AD 2019; 35
Baker, P; Shand, T 2017; 7
2019
Balaraman, S 2020
Correia, LO; Padilha, BM; Vasconcelos, SM 2014; 19
Krüger, A; Sperandei, S; Bermudez, XPCD; Merchán-Hamann, E 2019; 22
Novaes, MT; Ferreira de Carvalho, OL; Guimarães Ferreira, PH 2021; 23
Borges, D; Nascimento, MCV 2022; 125
Jesus, MKMRD; Moré, IAA; Querino, RA; Oliveira, VHD 2023; 27
Belikov, D; Arshinov, M; Belan, B 2019; 10
Tabaac, AR; Sutter, ME; Wall, CSJ; Baker, KE 2018; 54
Cavalcanti J da, RD; Ferreira J de, A; Henriques, AHB; Morais GS da, N; Trigueiro, JVS; Torquato, IMB 2014; 18
References_xml – volume: 10
  start-page: 63
  issue: 2
  year: 2019
  ident: ref8
  article-title: Epidemiology of Prostate Cancer
  publication-title: World J Oncol
  doi: 10.14740/wjon1191
– volume: 22
  start-page: e190004
  issue: Suppl 1
  year: 2019
  ident: ref37
  article-title: Characteristics of hormone use by travestis and transgender women of the Brazilian Federal District
  publication-title: Rev Bras Epidemiol
  doi: 10.1590/1980-549720190004.supl.1
– volume: 4
  start-page: 1556
  issue: 39
  year: 2019
  ident: ref20
  article-title: pyMannKendall: a python package for non parametric Mann Kendall family of trend tests
  publication-title: JOSS
  doi: 10.21105/joss.01556
– volume: 144
  start-page: 1941
  issue: 8
  year: 2019
  ident: ref3
  article-title: Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods
  publication-title: Int J Cancer
  doi: 10.1002/ijc.31937
– volume: 11
  start-page: 2079
  year: 2010
  ident: ref15
  article-title: On over-fitting in model selection and subsequent selection bias in performance evaluation
  publication-title: JMLR
– year: 2019
  ident: ref2
– year: 2009
  ident: ref6
– volume: 23
  start-page: 89
  issue: 1
  year: 2001
  ident: ref9
  article-title: Machine learning for medical diagnosis: history, state of the art and perspective
  publication-title: Artif Intell Med
  doi: 10.1016/S0933-3657(01)00077-X
– volume: 10
  start-page: 21384
  issue: 1
  year: 2020
  ident: ref7
  article-title: Temporal trend of cancer mortality in a Brazilian state with a medium Human Development Index (1980-2018)
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-78381-4
– volume: 10
  start-page: 689
  issue: 11
  year: 2019
  ident: ref22
  article-title: Analysis of the diurnal, weekly, and seasonal cycles and annual trends in atmospheric CO2 and CH4 at Tower Network in Siberia from 2005 to 2016
  publication-title: Atmosphere
  doi: 10.3390/atmos10110689
– volume: 68
  start-page: 394
  issue: 6
  year: 2018
  ident: ref1
  article-title: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries
  publication-title: CA Cancer J Clin
  doi: 10.3322/caac.21492
– volume: 125
  start-page: 109181
  year: 2022
  ident: ref19
  article-title: COVID-19 ICU demand forecasting: A two-stage Prophet-LSTM approach
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2022.109181
– volume: 28
  start-page: 753
  issue: 4
  year: 2017
  ident: ref12
  article-title: Breast cancer diagnosis using GA feature selection and Rotation Forest
  publication-title: Neural Comput Applic
  doi: 10.1007/s00521-015-2103-9
– volume: 19
  start-page: 59
  issue: 1
  year: 2019
  ident: ref28
  article-title: Testicular Cancer mortality in Brazil: trends and predictions until 2030
  publication-title: BMC Urol
  doi: 10.1186/s12894-019-0487-z
– volume: 7
  start-page: 010306
  issue: 1
  year: 2017
  ident: ref29
  article-title: Men’s health: time for a new approach to policy and practice?
  publication-title: J Glob Health
  doi: 10.7189/jogh.07.010306
– volume: 46
  start-page: e113
  year: 2022
  ident: ref17
  article-title: Mathematical and statistical models for the control of mosquito-borne diseases: the experience of Costa Rica
  publication-title: Rev Panam Salud Publica
  doi: 10.26633/RPSP.2022.113
– year: 2021
  ident: ref14
– volume: 19
  start-page: 1327
  year: 2015
  ident: ref24
  article-title: Trend analysis of pahang river using non-parametric analysis: Mann Kendall’s trend test
  publication-title: Malays J Anal Sci
– volume: 19
  start-page: 429
  issue: 2
  year: 2014
  ident: ref33
  article-title: Atenção à saúde dos homens no âmbito da Estratégia Saúde da Família [Men’s health care in the scope of the Family Health Strategy]
  publication-title: Cien Saude Colet
  doi: 10.1590/1413-81232014192.05802013
– volume: 16
  start-page: e0249009
  issue: 3
  year: 2021
  ident: ref25
  article-title: Trends in prostate cancer incidence and mortality to monitor control policies in a northeastern Brazilian state
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0249009
– volume: 54
  start-page: 385
  issue: 3
  year: 2018
  ident: ref5
  article-title: Gender Identity Disparities in Cancer Screening Behaviors
  publication-title: Am J Prev Med
  doi: 10.1016/j.amepre.2017.11.009
– volume: 15
  start-page: 150
  issue: 1
  year: 2016
  ident: ref26
  article-title: Inequities in Healthcare utilization: results of the Brazilian National Health Survey, 2013
  publication-title: Int J Equity Health
  doi: 10.1186/s12939-016-0444-3
– volume: 4
  start-page: 475
  issue: 1
  year: 2021
  ident: ref30
  article-title: Strategic planning in health and continuing education in health: grounds for changes in the assistance profile
  publication-title: BJHR
  doi: 10.34119/bjhrv4n1-038
– volume: 27
  start-page: e220369
  year: 2023
  ident: ref36
  article-title: Experiências de mulheres transexuais no sistema de saúde: visibilidade em direção à equidade
  publication-title: Interface
  doi: 10.1590/interface.220369
– volume: 2
  start-page: 59
  year: 2007
  ident: ref13
  article-title: Applications of machine learning in cancer prediction and prognosis
  publication-title: Cancer Inform
– volume: 14
  start-page: 1
  issue: 9
  year: 2011
  ident: ref23
  article-title: pandas: a foundational Python library for data analysis and statistics
  publication-title: Python for high performance and scientific computing
– volume: 18
  start-page: 628
  year: 2014
  ident: ref32
  article-title: Assistência Integral a Saúde do Homem: necessidades, obstáculos e estratégias de enfrentamento
  publication-title: Esc Anna Nery Rev de Enferm
– volume: 23
  start-page: 100538
  year: 2021
  ident: ref11
  article-title: Prediction of secondary testosterone deficiency using machine learning: a comparative analysis of ensemble and base classifiers, probability calibration, and sampling strategies in a slightly imbalanced dataset
  publication-title: Inform Med Unlocked
  doi: 10.1016/j.imu.2021.100538
– volume: 35
  start-page: e00050818
  issue: 7
  year: 2019
  ident: ref34
  article-title: Machine learning for predictive analyses in health: an example of an application to predict death in the elderly in São Paulo, Brazil
  publication-title: Cad Saude Publica
– year: 2020
  ident: ref21
  article-title: Comparison of classification models for breast cancer identification using Google Colab
  publication-title: Math Comput Sci
– volume: 9
  start-page: 153
  issue: 3
  year: 2020
  ident: ref10
  article-title: Reflexões sobre o uso do big data em modelos preditivos de vigilância epidemiológica no Brasil
  publication-title: Cad Ibero Am Direito Sanit
  doi: 10.17566/ciads.v9i3.702
– volume: 39
  start-page: e00065423
  issue: 7
  year: 2023
  ident: ref35
  article-title: Uncovering the gender health data gap
  publication-title: Cad Saude Publica
  doi: 10.1590/0102-311xen065423
– volume: 125
  start-page: 1505
  issue: 12
  year: 2018
  ident: ref4
  article-title: Breast and reproductive cancers in the transgender population: a systematic review
  publication-title: BJOG
  doi: 10.1111/1471-0528.15258
– volume: 72
  start-page: 37
  issue: 1
  year: 2017
  ident: ref18
  article-title: Forecasting at Scale
  publication-title: Am Stat
  doi: 10.1080/00031305.2017.1380080
– volume: 6
  start-page: 75
  year: 2018
  ident: ref16
  article-title: Machine Learning in Orthopedics: A Literature Review
  publication-title: Front Bioeng Biotechnol
  doi: 10.3389/fbioe.2018.00075
– volume: 20
  start-page: 64
  issue: 1
  year: 2022
  ident: ref31
  article-title: Strategies to adapt and implement health system guidelines and recommendations: a scoping review
  publication-title: Health Res Policy Syst
  doi: 10.1186/s12961-022-00865-8
– volume: 19
  start-page: 4467
  issue: 11
  year: 2014
  ident: ref27
  article-title: Methods for assessing the completeness of data in health information systems in Brazil: a systematic review
  publication-title: Cien Saude Colet
– volume: 2
  start-page: 59
  year: 2007
  end-page: 77
  article-title: Applications of machine learning in cancer prediction and prognosis
  publication-title: Cancer Inform
– volume: 10
  start-page: 21384
  issue: 1
  year: 2020
  article-title: Temporal trend of cancer mortality in a Brazilian state with a medium Human Development Index (1980-2018)
  publication-title: Sci Rep
– volume: 14
  start-page: 1
  issue: 9
  year: 2011
  end-page: 9
  article-title: pandas: a foundational Python library for data analysis and statistics
  publication-title: Python for high performance and scientific computing
– volume: 19
  start-page: 4467
  issue: 11
  year: 2014
  end-page: 78
  article-title: Methods for assessing the completeness of data in health information systems in Brazil: a systematic review
  publication-title: Cien Saude Colet
– volume: 125
  start-page: 109181
  year: 2022
  article-title: COVID-19 ICU demand forecasting: A two-stage Prophet-LSTM approach
  publication-title: Appl Soft Comput
– volume: 20
  start-page: 64
  issue: 1
  year: 2022
  article-title: Strategies to adapt and implement health system guidelines and recommendations: a scoping review
  publication-title: Health Res Policy Syst
– year: 2020
  article-title: Comparison of classification models for breast cancer identification using Google Colab
  publication-title: Math Comput Sci
– volume: 23
  start-page: 100538
  year: 2021
  article-title: Prediction of secondary testosterone deficiency using machine learning: a comparative analysis of ensemble and base classifiers, probability calibration, and sampling strategies in a slightly imbalanced dataset
  publication-title: Inform Med Unlocked
– volume: 28
  start-page: 753
  issue: 4
  year: 2017
  end-page: 63
  article-title: Breast cancer diagnosis using GA feature selection and Rotation Forest
  publication-title: Neural Comput Applic
– year: 2021
  publication-title: Deep learning with Python. Simon and Schuster
– volume: 16
  start-page: e0249009
  issue: 3
  year: 2021
  article-title: Trends in prostate cancer incidence and mortality to monitor control policies in a northeastern Brazilian state
  publication-title: PLoS One
– volume: 7
  start-page: 010306
  issue: 1
  year: 2017
  article-title: Men’s health: time for a new approach to policy and practice?
  publication-title: J Glob Health
– volume: 46
  start-page: e113
  year: 2022
  article-title: Mathematical and statistical models for the control of mosquito-borne diseases: the experience of Costa Rica
  publication-title: Rev Panam Salud Publica
– volume: 39
  start-page: e00065423
  issue: 7
  year: 2023
  article-title: Uncovering the gender health data gap
  publication-title: Cad Saude Publica
– volume: 54
  start-page: 385
  issue: 3
  year: 2018
  end-page: 93
  article-title: Gender Identity Disparities in Cancer Screening Behaviors
  publication-title: Am J Prev Med
– volume: 27
  start-page: e220369
  year: 2023
  article-title: Experiências de mulheres transexuais no sistema de saúde: visibilidade em direção à equidade
  publication-title: Interface
– volume: 72
  start-page: 37
  issue: 1
  year: 2017
  end-page: 45
  article-title: Forecasting at Scale
  publication-title: Am Stat
– year: 2019
  publication-title: Estimativa 2020: incidência de câncer no Brasil
– volume: 125
  start-page: 1505
  issue: 12
  year: 2018
  end-page: 12
  article-title: Breast and reproductive cancers in the transgender population: a systematic review
  publication-title: BJOG
– volume: 144
  start-page: 1941
  issue: 8
  year: 2019
  end-page: 53
  article-title: Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods
  publication-title: Int J Cancer
– volume: 4
  start-page: 1556
  issue: 39
  year: 2019
  article-title: pyMannKendall: a python package for non parametric Mann Kendall family of trend tests
  publication-title: JOSS
– volume: 18
  start-page: 628
  year: 2014
  end-page: 34
  article-title: Assistência Integral a Saúde do Homem: necessidades, obstáculos e estratégias de enfrentamento
  publication-title: Esc Anna Nery Rev de Enferm
– volume: 10
  start-page: 689
  issue: 11
  year: 2019
  article-title: Analysis of the diurnal, weekly, and seasonal cycles and annual trends in atmospheric CO2 and CH4 at Tower Network in Siberia from 2005 to 2016
  publication-title: Atmosphere
– volume: 15
  start-page: 150
  issue: 1
  year: 2016
  article-title: Inequities in Healthcare utilization: results of the Brazilian National Health Survey, 2013
  publication-title: Int J Equity Health
– volume: 68
  start-page: 394
  issue: 6
  year: 2018
  end-page: 424
  article-title: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries
  publication-title: CA Cancer J Clin
– volume: 11
  start-page: 2079
  year: 2010
  end-page: 107
  article-title: On over-fitting in model selection and subsequent selection bias in performance evaluation
  publication-title: JMLR
– volume: 19
  start-page: 59
  issue: 1
  year: 2019
  article-title: Testicular Cancer mortality in Brazil: trends and predictions until 2030
  publication-title: BMC Urol
– volume: 9
  start-page: 153
  issue: 3
  year: 2020
  end-page: 65
  article-title: Reflexões sobre o uso do big data em modelos preditivos de vigilância epidemiológica no Brasil
  publication-title: Cad Ibero Am Direito Sanit
– volume: 19
  start-page: 429
  issue: 2
  year: 2014
  end-page: 38
  article-title: Atenção à saúde dos homens no âmbito da Estratégia Saúde da Família [Men’s health care in the scope of the Family Health Strategy]
  publication-title: Cien Saude Colet
– year: 2009
  publication-title: Brasília: Ministério da Saúde
– volume: 10
  start-page: 63
  issue: 2
  year: 2019
  end-page: 89
  article-title: Epidemiology of Prostate Cancer
  publication-title: World J Oncol
– volume: 23
  start-page: 89
  issue: 1
  year: 2001
  end-page: 109
  article-title: Machine learning for medical diagnosis: history, state of the art and perspective
  publication-title: Artif Intell Med
– volume: 35
  start-page: e00050818
  issue: 7
  year: 2019
  article-title: Machine learning for predictive analyses in health: an example of an application to predict death in the elderly in São Paulo, Brazil
  publication-title: Cad Saude Publica
– volume: 19
  start-page: 1327
  year: 2015
  end-page: 34
  article-title: Trend analysis of pahang river using non-parametric analysis: Mann Kendall’s trend test
  publication-title: Malays J Anal Sci
– volume: 6
  start-page: 75
  year: 2018
  article-title: Machine Learning in Orthopedics: A Literature Review
  publication-title: Front Bioeng Biotechnol
– volume: 4
  start-page: 475
  issue: 1
  year: 2021
  end-page: 84
  article-title: Strategic planning in health and continuing education in health: grounds for changes in the assistance profile
  publication-title: BJHR
– volume: 22
  start-page: e190004
  issue: Suppl 1
  year: 2019
  article-title: Characteristics of hormone use by travestis and transgender women of the Brazilian Federal District
  publication-title: Rev Bras Epidemiol
SSID ssj0028612
Score 2.3470454
Snippet BACKGROUND: The mortality rates of prostate and testicular cancer are higher mortality in the northeast region. OBJECTIVE: We aimed to compare the efficacy of...
The mortality rates of prostate and testicular cancer are higher mortality in the northeast region. We aimed to compare the efficacy of machine learning...
The mortality rates of prostate and testicular cancer are higher mortality in the northeast region.BACKGROUNDThe mortality rates of prostate and testicular...
SourceID doaj
unpaywall
scielo
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage e2024080
SubjectTerms Algorithms
Artificial intelligence
Brazil - epidemiology
Humans
Machine Learning
Male
MEDICINE, GENERAL & INTERNAL
Original
Prostatic neoplasm
Prostatic Neoplasms - mortality
Protastic cancer
Python library
Testicular cancer
Testicular neoplasm
Testicular Neoplasms - mortality
SummonAdditionalLinks – databaseName: DOAJ Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ba9VAEB6kiJcHUbylXlih4FNoyG720jctliLoixX6tkx2N1U4TQ7pOUj_vTObnGMPCiL4lmRznZlkvm938i3AQdNZJBwcS9RNUypTYenQdKUJOhGcVdEG7of89FmfflUfz5vzG1N9cU3YJA88Ge6wiZiIxFQpaIo3JiRJ1x3zEN20Mkb--lbWbcjUTLUsJe47cJDn93HVIaU1zf8JV0QIa5bLpiWObl7bSUhZt_9PYPP3msnbnKIWw324u-6XeP0DF4sbmenkITyYIaV4Nz3KI7iV-scwHv-S9RY4K4-I5cjjMuwLMXS0NuT_iag9ihXLbeSiVBE4EkZxmZE5oXTBxfEX4jLXXSYxTzRxcSQwhPWI4VpkkdoncHby4ez4tJznVyiDMm5VtsboFiXZNREOdLYmvmqSjG0TpEyqxhqpIRKiQusSj9dVpgvWyJZQV6zlU9jrhz49B6EDUuaXrk1dp5yRLkYCQtpxB2uFrSqg2djYLycVDc_sg3zj2Tee9_PsDV9lwdLZNwW8Z4dsj2Et7LyBIsTPEeL_FiEFvNm409O7wwMi2KdhfUVXJYpOAMyZAp5N7t1eSjE6MsoVYHccv3Mvuy39929Zn5s4G-E-Syd9O8WIn78LV_7L9mlrBp8M1nmpAL0Non8y0P7_MNALuMd3M3UsvYS91bhOrwhqrdrX-a36CdxCHpM
  priority: 102
  providerName: Directory of Open Access Journals
Title Comparative analysis prediction of prostate and testicular cancer mortality using machine learning: accuracy study
URI https://www.ncbi.nlm.nih.gov/pubmed/40008749
https://www.proquest.com/docview/3171384697
https://pubmed.ncbi.nlm.nih.gov/PMC11863987
http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1516-31802025000200202&lng=en&tlng=en
https://doi.org/10.1590/1516-3180.2024.0080.03072024
https://doaj.org/article/5dae2540ec60402184e62f240765b3dd
UnpaywallVersion publishedVersion
Volume 143
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1806-9460
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0028612
  issn: 1806-9460
  databaseCode: KQ8
  dateStart: 19940301
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1806-9460
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0028612
  issn: 1806-9460
  databaseCode: DOA
  dateStart: 19940101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVBFR
  databaseName: Free Medical Journals - Free Access to All
  customDbUrl:
  eissn: 1806-9460
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0028612
  issn: 1806-9460
  databaseCode: DIK
  dateStart: 19940101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1806-9460
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0028612
  issn: 1806-9460
  databaseCode: M~E
  dateStart: 19940101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1806-9460
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0028612
  issn: 1806-9460
  databaseCode: RPM
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7BFvE48BCv8FgZqRKnlBA7dsytVFQVEhUSXamcLMd2CmKbrLaJUPn1zDjZpQscKDdnnZfH4_X3jcdfALaLurSIg31qZVGkQmU21VbVqXIyIJwVvnQUh_xwKA9m4v1xcTxuCqO9MBfX7wudvcIJSdIO3wypXE5C11giv6Sjq7AlC0TgE9iaHX7c_RylUcfTqVwiWdZCZtdh-19utzEzRQH_v6HOP5Mnr9FcNW9vwY2-Wdjz73Y-vzBF7d-B2apxQ2bKt52-q3bcj990Hy_b-rtwe8SsbHdwsntwJTT3Ybn3Szec2VHahC2WtPBDnc3aGo_auGEJ6z3rSM8jZr0yR662ZKcR-iMNYJR9f8JOY2JnYOOXLE7eMOtcv7TunEUV3AdwtP_uaO8gHT_gkDqhdJdWSsnKcpmJgEBTlzkSYhW4rwrHeRC5zS1WeIRsttSBFgQzVbtS8Qphnc_5Q5g0bRMeA5POIrTgugp1LbTi2ntEWlJTBDezlUigWPWdWQwyHYboDRrRkBENnWfIbCaLiqijERN4Sx29vobEtuMP2AtmHLum8DYgj86Cw5ZEThxkXhMVlkXFvU_gxcpNDA5OWnGxTWj7M3yqes0R4WmVwKPBbdaPEgS_lNAJlBsOtfEumzXN1y9RABxJIQLLEm_6cvA9M_7xnJlP69bmhG6JDVApAbl2zksZ6Mn_XvgUbtIbDNGqZzDpln14jvitq6Yx7jGNgbXpOHR_AjflMUA
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7BFvE48BAUwktGqsQpbRo7dsytVFQVEhUSXamcLMd2CmKbrNKNUPn1zDjZpQscKDcnTuJ4PI6_zx5_Adgq6tIiDvaplUWRCpXZVFtVp8rJgHBW-NLRPOSHI3k4Fe9PipNxUxjthbm8fl_obAcHJEk7fDOkcjkJXWOK_JKOrsOGLBCBT2BjevRx73OURh0vp3SJZFkLmd2ErX953NrIFAX8_4Y6_wyevEFj1ay9A7f6Zm4vvtvZ7NIQdXAPpsvKDZEp37b7RbXtfvym-3jV2t-HuyNmZXuDkz2Aa6F5CN3-L91wZkdpEzbvaOGHGpu1NR61ccMS5nu2ID2PGPXKHLlax84i9EcawCj6_pSdxcDOwMY_WZy-Yda5vrPugkUV3EdwfPDueP8wHX_gkDqh9CKtlJKV5TITAYGmLnMkxCpwXxWO8yBym1vM8AjZbKkDLQhmqnal4hXCOp_zTZg0bROeAJPOIrTgugp1LbTi2ntEWlLTDG5mK5FAsWw7Mx9kOgzRGzSiISMaus6Q2UwWFVFHIybwlhp6dQ-JbccT2Apm7Lum8DYgj86Cw5pEThxkXhMVlkXFvU_g1dJNDHZOWnGxTWj7cyxV7XJEeFol8Hhwm1VRguCXEjqBcs2h1t5lPaf5-iUKgCMpRGBZ4kNfD75nxg_Pufm0qm1O6JbYAKUSkCvnvJKBnv7vjc_gNr3BMFv1HCaLrg8vEL8tqpdjd_0J-kAvOw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparative+analysis+prediction+of+prostate+and+testicular+cancer+mortality+using+machine+learning%3A+accuracy+study&rft.jtitle=S%C3%A3o+Paulo+medical+journal&rft.au=Albuquerque+Neto%2C+Aur%C3%A9lio+Gomes+de&rft.au=Nery%2C+David+Medeiros&rft.au=Braz%2C+Jo%C3%A3o+Paulo+Ara%C3%BAjo&rft.au=Nascimento%2C+Carla+Ferreira+do&rft.date=2025-01-01&rft.eissn=1806-9460&rft.volume=143&rft.issue=2&rft.spage=e2024080&rft_id=info:doi/10.1590%2F1516-3180.2024.0080.03072024&rft_id=info%3Apmid%2F40008749&rft.externalDocID=40008749
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1516-3180&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1516-3180&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1516-3180&client=summon