VID Join: Mapping Trajectories to Points of Interest to Support Location-Based Services
Variable influence duration (VID) join is a novel spatio-temporal join operation between a set T of trajectories and a set P of spatial points. Here, trajectories are traveling histories of moving objects (e.g., travelers), and spatial points are points of interest (POIs, e.g., restaurants). VID joi...
        Saved in:
      
    
          | Published in | Journal of computer science and technology Vol. 30; no. 4; pp. 725 - 744 | 
|---|---|
| Main Author | |
| Format | Journal Article | 
| Language | English | 
| Published | 
        New York
          Springer US
    
        01.07.2015
     Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1000-9000 1860-4749  | 
| DOI | 10.1007/s11390-015-1557-7 | 
Cover
| Abstract | Variable influence duration (VID) join is a novel spatio-temporal join operation between a set T of trajectories and a set P of spatial points. Here, trajectories are traveling histories of moving objects (e.g., travelers), and spatial points are points of interest (POIs, e.g., restaurants). VID join returns all pairs of (τs, p) if τs is spatially close to p for a long period of time, where τs is a segment of trajectory τ ∈ T and p ∈ P. Each returned (τs, p) implies that the moving object associated with τs stayed at p (e.g., having dinner at a restaurant). Such information is useful in many aspects, such as targeted advertising, social security, and social activity analysis. The concepts of influence and influence duration are introduced to measure the spatial closeness between τ and p, and the time spanned, respectively. Compared to the conventional spatio-temporal join, the VID join is more challenging since the join condition varies for different POIs, and the additional temporal requirement cannot be indexed effectively. To process the VID join e?ciently, three algorithms are developed and several optimization techniques are applied, including spatial duplication reuse and time duration based pruning. The performance of the developed algorithms is verified by extensive experiments on real spatial data. | 
    
|---|---|
| AbstractList | Variable influence duration (VID) join is a novel spatio-temporal join operation between a set T of trajectories and a set P of spatial points. Here, trajectories are traveling histories of moving objects (e.g., travelers), and spatial points are points of interest (POIs, e.g., restaurants). VID join returns all pairs of (τs, p) if τs is spatially close to p for a long period of time, where τs is a segment of trajectory τ ∈ T and p ∈ P. Each returned (τs, p) implies that the moving object associated with τs stayed at p (e.g., having dinner at a restaurant). Such information is useful in many aspects, such as targeted advertising, social security, and social activity analysis. The concepts of influence and influence duration are introduced to measure the spatial closeness between τ and p, and the time spanned, respectively. Compared to the conventional spatio-temporal join, the VID join is more challenging since the join condition varies for different POIs, and the additional temporal requirement cannot be indexed effectively. To process the VID join e?ciently, three algorithms are developed and several optimization techniques are applied, including spatial duplication reuse and time duration based pruning. The performance of the developed algorithms is verified by extensive experiments on real spatial data. Variable influence duration (VID) join is a novel spatio-temporal join operation between a set T of trajectories and a set P of spatial points. Here, trajectories are traveling histories of moving objects (e.g., travelers), and spatial points are points of interest (POIs, e.g., restaurants). VID join returns all pairs of ( τ s , p ) if τ s is spatially close to p for a long period of time, where τ s is a segment of trajectory τ ∈ T and p ∈ P . Each returned ( τ s , p ) implies that the moving object associated with τ s stayed at p (e.g., having dinner at a restaurant). Such information is useful in many aspects, such as targeted advertising, social security, and social activity analysis. The concepts of influence and influence duration are introduced to measure the spatial closeness between τ and p , and the time spanned, respectively. Compared to the conventional spatio-temporal join, the VID join is more challenging since the join condition varies for different POIs, and the additional temporal requirement cannot be indexed effectively. To process the VID join efficiently, three algorithms are developed and several optimization techniques are applied, including spatial duplication reuse and time duration based pruning. The performance of the developed algorithms is verified by extensive experiments on real spatial data. Variable influence duration (VID) join is a novel spatio-temporal join operation between a set T of trajectories and a set P of spatial points. Here, trajectories are traveling histories of moving objects (e.g., travelers), and spatial points are points of interest (POIs, e.g., restaurants). VID join returns all pairs of (τs, p) if τs is spatially close to p for a long period of time, where τs is a segment of trajectory τ ∈ T and p ∈ P. Each returned (τs, p) implies that the moving object associated with τs stayed at p (e.g., having dinner at a restaurant). Such information is useful in many aspects, such as targeted advertising, social security, and social activity analysis. The concepts of influence and influence duration are introduced to measure the spatial closeness between τ and p, and the time spanned, respectively. Compared to the conventional spatio-temporal join, the VID join is more challenging since the join condition varies for different POIs, and the additional temporal requirement cannot be indexed effectively. To process the VID join e?ciently, three algorithms are developed and several optimization techniques are applied, including spatial duplication reuse and time duration based pruning. The performance of the developed algorithms is verified by extensive experiments on real spatial data. Variable influence duration (VID) join is a novel spatio-temporal join operation between a set T of trajectories and a set P of spatial points. Here, trajectories are traveling histories of moving objects (e.g., travelers), and spatial points are points of interest (POIs, e.g., restaurants). VID join returns all pairs of ( tau sub( )s p) if tau sub( )sis spatially close to p for a long period of time, where tau sub( )sis a segment of trajectory tau T and p P. Each returned ( tau sub( )s p) implies that the moving object associated with tau sub( )sstayed at p (e.g., having dinner at a restaurant). Such information is useful in many aspects, such as targeted advertising, social security, and social activity analysis. The concepts of influence and influence duration are introduced to measure the spatial closeness between tau and p, and the time spanned, respectively. Compared to the conventional spatio-temporal join, the VID join is more challenging since the join condition varies for different POIs, and the additional temporal requirement cannot be indexed effectively. To process the VID join efficiently, three algorithms are developed and several optimization techniques are applied, including spatial duplication reuse and time duration based pruning. The performance of the developed algorithms is verified by extensive experiments on real spatial data. Variable influence duration (VID) join is a novel spatio-temporal join operation between a set T of trajectories and a set P of spatial points. Here, trajectories are traveling histories of moving objects (e.g., travelers), and spatial points are points of interest (POIs, e.g., restaurants). VID join returns all pairs of (τ ^sub s^, p) if τ ^sub s^ is spatially close to p for a long period of time, where τ ^sub s^ is a segment of trajectory τ T and p P. Each returned (τ ^sub s^, p) implies that the moving object associated with τ ^sub s^ stayed at p (e.g., having dinner at a restaurant). Such information is useful in many aspects, such as targeted advertising, social security, and social activity analysis. The concepts of influence and influence duration are introduced to measure the spatial closeness between τ and p, and the time spanned, respectively. Compared to the conventional spatio-temporal join, the VID join is more challenging since the join condition varies for different POIs, and the additional temporal requirement cannot be indexed effectively. To process the VID join efficiently, three algorithms are developed and several optimization techniques are applied, including spatial duplication reuse and time duration based pruning. The performance of the developed algorithms is verified by extensive experiments on real spatial data.  | 
    
| Author | 商烁 谢珂心 郑凯 刘家俊 文继荣 | 
    
| AuthorAffiliation | Department of Computer Science, China University of Petroleum, Beijing 102249, China School of Information Technology and Electrical Engineering, The University of Queensland Brisbane, QLD 4072, Australia School of Computer Science and Technology, Soochow University, Suzhou 215006, China Commonwealth Scientific and Industrial Research Organisation, Kenmore, QLD 4069, Australia Key Laboratory of Data Engineering and Knowledge Engineering, Renmin University of China, Beijing 100080, China | 
    
| Author_xml | – sequence: 1 fullname: 商烁 谢珂心 郑凯 刘家俊 文继荣  | 
    
| BookMark | eNp9UcFu1DAQjVCRaAsfwM2CCwdMZ2InTo5QoGy1CKSukDhZjuMsDls7tb3Q_grfwj_1F-olVYV66MVjjd-b9_zmoNhz3pmieI7wBgHEUURkLVDAimJVCSoeFfvY1EC54O1evgMAbfPxpDiIcQRgAjjfL75_W7wnp966679_yGc1TdatySqo0ejkgzWRJE--5vcUiR_IwiUTTEy77tl2mnxIZOm1StY7-k5F05MzE35ZbeLT4vGgNtE8u62Hxerjh9XxJ7r8crI4frukmos2UYV1yxEa1XbYNYMZsGr6rml4hVh3FWd13XdCo-ZlyUrWt7l0vOuZ6YdeaXZYvJ7H_lZuUG4tR78NLgvKMY4_L8d42UlT5lyAA9QZ_mqGT8FfbPNP5LmN2mw2yhm_jRIFAyyh5VWGvrwHvRu989wyKBlmFM4oHXyMwQxyCvZchSuJIHerkfNqZLYgd6uRInPEPY626V-GKSi7eZBZzsyYVdzahP88PUB6cSv3w7v1RebdeazrirGyyZneAHTsr8M | 
    
| CitedBy_id | crossref_primary_10_1016_j_neucom_2016_02_085 crossref_primary_10_1016_j_future_2022_07_003 crossref_primary_10_1016_j_compenvurbsys_2018_03_007 crossref_primary_10_1016_j_neucom_2020_03_121 crossref_primary_10_52547_jgit_9_2_105 crossref_primary_10_1007_s11280_018_0563_4 crossref_primary_10_1007_s11390_016_1653_3 crossref_primary_10_1007_s10619_020_07290_2 crossref_primary_10_1007_s11280_022_01092_5 crossref_primary_10_1109_TKDE_2018_2854705 crossref_primary_10_1016_j_bdr_2021_100221 crossref_primary_10_1080_13658816_2020_1778003  | 
    
| Cites_doi | 10.1109/ICDE.2008.4497588 10.14778/1453856.1453971 10.1109/ICDE.2008.4497415 10.1145/1247480.1247546 10.1145/1629890.1629898 10.1145/1463434.1463477 10.1145/2370216.2370273 10.1016/B978-155860869-6/50033-0 10.1145/1206049.1206056 10.1145/2247596.2247616 10.1109/ICDE.2008.4497418 10.1145/2020408.2020462 10.1109/ICDE.2002.994759 10.1145/1341012.1341041 10.1145/335191.335427 10.1109/ICDE.2013.6544830 10.1007/s00778-014-0369-7 10.1109/ICDE.2000.839452 10.1007/11535331_21 10.1145/1629890.1629897 10.1109/ICDE.2006.36 10.1007/11535331_16 10.1145/253260.253340 10.1145/235968.233338 10.1007/3-540-63238-7_30 10.1145/1281192.1281230 10.1007/s00778-013-0331-0 10.1145/170035.170075 10.1109/ICDE.2013.6544829 10.1109/ICDE.1993.344078 10.1007/BF01840357 10.3138/FM57-6770-U75U-7727  | 
    
| ContentType | Journal Article | 
    
| Copyright | Springer Science+Business Media New York 2015 Springer Science+Business Media New York 2015. Copyright © Wanfang Data Co. Ltd. All Rights Reserved.  | 
    
| Copyright_xml | – notice: Springer Science+Business Media New York 2015 – notice: Springer Science+Business Media New York 2015. – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.  | 
    
| DBID | 2RA 92L CQIGP W92 ~WA AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8FD 8FE 8FG 8FK 8FL ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L6V L7M L~C L~D M0C M0N M7S P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U 2B. 4A8 92I 93N PSX TCJ  | 
    
| DOI | 10.1007/s11390-015-1557-7 | 
    
| DatabaseName | 中文期刊服务平台 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库-工程技术 中文科技期刊数据库- 镜像站点 CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection Technology Collection (via ProQuest SciTech Premium Collection) ProQuest One Community College ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database (Proquest) ABI/INFORM Professional Advanced ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ)  | 
    
| DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing Engineering Database ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) Business Premium Collection (Alumni)  | 
    
| DatabaseTitleList | Computer and Information Systems Abstracts ABI/INFORM Global (Corporate)  | 
    
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Computer Science | 
    
| DocumentTitleAlternate | VID Join: Mapping Trajectories to Points of Interest to Support Location-Based Services | 
    
| EISSN | 1860-4749 | 
    
| EndPage | 744 | 
    
| ExternalDocumentID | jsjkxjsxb_e201504006 3738089231 10_1007_s11390_015_1557_7 665332822  | 
    
| GeographicLocations | United States--US | 
    
| GeographicLocations_xml | – name: United States--US | 
    
| GrantInformation_xml | – fundername: This work is partly supported by the National Natural Science Foundation of China under Grant No.61402532, the Science Foundation of China University of Petroleum under Grant No.2462013YJRC031, and the Excellent Talents of Beijing Program under Grant No.2013D009051000003 funderid: (Beijing) under Grant No.2462013YJRC031, and the Excellent Talents of Beijing Program under Grant No.2013D009051000003  | 
    
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 1SB 2.D 28- 29K 2B. 2C0 2J2 2JN 2JY 2KG 2KM 2LR 2RA 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VR 5VS 67Z 6NX 7WY 8FE 8FG 8FL 8TC 8UJ 92H 92I 92L 92R 93N 95- 95. 95~ 96X AAAVM AABHQ AABYN AAFGU AAHNG AAIAL AAJKR AANZL AAOBN AARHV AARTL AATNV AATVU AAUYE AAWCG AAWWR AAYFA AAYIU AAYQN AAYTO ABBBX ABBXA ABDZT ABECU ABFGW ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBMV ACBRV ACBXY ACGFS ACHSB ACHXU ACIGE ACIPQ ACKNC ACMDZ ACMLO ACOKC ACOMO ACSNA ACTTH ACVWB ACWMK ACZOJ ADGRI ADHHG ADHIR ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEEQQ AEFIE AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AEYWE AFEXP AFGCZ AFKRA AFLOW AFNRJ AFQWF AFUIB AFWTZ AFZKB AGAYW AGDGC AGGBP AGGDS AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ CAG CCEZO CCPQU CHBEP COF CQIGP CS3 CSCUP CUBFJ CW9 D-I DDRTE DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG F5P FA0 FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS HCIFZ HF~ HG6 HMJXF HQYDN HRMNR HVGLF HZ~ IAO IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV LAK LLZTM M0C M0N M4Y M7S MA- N2Q NB0 NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P P62 P9O PF0 PQBIZ PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCL SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TCJ TGT TSG TSK TSV TUC U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 W92 WK8 YLTOR Z7R Z7U Z7X Z7Z Z81 Z83 Z88 Z8R Z8W Z92 ZMTXR ~A9 ~EX ~WA -SI -S~ 5XA 5XJ AACDK AAJBT AASML AAXDM AAYZH ABAKF ABQSL ACDTI ACPIV AEFQL AEMSY AFBBN AGQEE AGRTI AIGIU BSONS CAJEI H13 PQBZA Q-- U1G U5S AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ICD IVC PHGZM PHGZT PQGLB PUEGO TGMPQ 7SC 7XB 8AL 8FD 8FK JQ2 L.- L6V L7M L~C L~D PKEHL PQEST PQUKI PRINS Q9U 4A8 PMFND PSX  | 
    
| ID | FETCH-LOGICAL-c479t-a1694108a9b1b8fef158db8845116b54366db7c1c422323d9223b4bd3edfdac3 | 
    
| IEDL.DBID | BENPR | 
    
| ISSN | 1000-9000 | 
    
| IngestDate | Thu May 29 04:00:15 EDT 2025 Sun Sep 28 09:16:22 EDT 2025 Fri Jul 25 11:06:41 EDT 2025 Wed Oct 01 02:32:13 EDT 2025 Thu Apr 24 23:01:57 EDT 2025 Fri Feb 21 02:40:05 EST 2025 Wed Feb 14 10:30:21 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 4 | 
    
| Keywords | spatial database trajectory spatio-temporal join spatial join  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c479t-a1694108a9b1b8fef158db8845116b54366db7c1c422323d9223b4bd3edfdac3 | 
    
| Notes | Variable influence duration (VID) join is a novel spatio-temporal join operation between a set T of trajectories and a set P of spatial points. Here, trajectories are traveling histories of moving objects (e.g., travelers), and spatial points are points of interest (POIs, e.g., restaurants). VID join returns all pairs of (τs, p) if τs is spatially close to p for a long period of time, where τs is a segment of trajectory τ ∈ T and p ∈ P. Each returned (τs, p) implies that the moving object associated with τs stayed at p (e.g., having dinner at a restaurant). Such information is useful in many aspects, such as targeted advertising, social security, and social activity analysis. The concepts of influence and influence duration are introduced to measure the spatial closeness between τ and p, and the time spanned, respectively. Compared to the conventional spatio-temporal join, the VID join is more challenging since the join condition varies for different POIs, and the additional temporal requirement cannot be indexed effectively. To process the VID join e?ciently, three algorithms are developed and several optimization techniques are applied, including spatial duplication reuse and time duration based pruning. The performance of the developed algorithms is verified by extensive experiments on real spatial data. trajectory, spatial database, spatial join, spatio-temporal join 11-2296/TP Shuo Shang, Kexin Xie, Kai Zheng,Jiajun Liu,Ji-Rong Wen( 1Department of Computer Science, China University of Petroleum, Beijing 102249, China ;2School of Information Technology and Electrical Engineering, The University of Queensland Brisbane, QLD 4072, Australia ;3School of Computer Science and Technology, Soochow University, Suzhou 215006, China; 4 Commonwealth Scientific and Industrial Research Organisation, Kenmore, QLD 4069, Australia; 5Key Laboratory of Data Engineering and Knowledge Engineering, Renmin University of China, Beijing 100080, China) ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| PQID | 1694930231 | 
    
| PQPubID | 326258 | 
    
| PageCount | 20 | 
    
| ParticipantIDs | wanfang_journals_jsjkxjsxb_e201504006 proquest_miscellaneous_1730120945 proquest_journals_1694930231 crossref_primary_10_1007_s11390_015_1557_7 crossref_citationtrail_10_1007_s11390_015_1557_7 springer_journals_10_1007_s11390_015_1557_7 chongqing_primary_665332822  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2015-07-01 | 
    
| PublicationDateYYYYMMDD | 2015-07-01 | 
    
| PublicationDate_xml | – month: 07 year: 2015 text: 2015-07-01 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | New York | 
    
| PublicationPlace_xml | – name: New York – name: Beijing  | 
    
| PublicationTitle | Journal of computer science and technology | 
    
| PublicationTitleAbbrev | J. Comput. Sci. Technol | 
    
| PublicationTitleAlternate | Journal of Computer Science and Technology | 
    
| PublicationTitle_FL | Journal of Computer Science & Technology | 
    
| PublicationYear | 2015 | 
    
| Publisher | Springer US Springer Nature B.V  | 
    
| Publisher_xml | – name: Springer US – name: Springer Nature B.V  | 
    
| References | Li Q, Zheng Y, Xie X, Chen Y, Liu W, Ma W Y. Mining user similarity based on location history. In Proc. the 16th ACM SIGSPATIAL GIS, November 2008, pp. 34:1–34:10. Günther O. Efficient computation of spatial joins. In Proc. the 9th ICDE, April 1993, pp. 50–59. Yiu M L, Mamoulis N, Karras P. Common influence join: A natural join operation for spatial pointsets. In Proc. the 24th ICDE, April 2008, pp. 100–109. Jeung H, Liu Q, Shen H T, Zhou X. A hybrid prediction model for moving objects. In Proc. the 24th ICDE, April 2008, pp. 70–79. Dittrich J P, Seeger B. Data redundancy and duplicate detection in spatial join processing. In Proc. the 16th ICDE, February 28–March 3, 2000, pp. 535–546. Xue A Y, Qi J, Xie X, Zhang R, Huang J, Li Y. Solving the data sparsity problem in destination prediction. VLDB J., 2015, 24(2): 219–243. Xue A Y, Zhang R, Zheng Y, Xie X, Huang J, Xu Z. Destination prediction by sub-trajectory synthesis and privacy protection against such prediction. In Proc. the 29th ICDE, April 2013, pp. 254–265. Zheng Y, Xie X, Ma W Y. Geolife: A collaborative social networking service among user, location and trajectory. IEEE Data Engineering Bulletin, 2010, 33(2): 32–39. Zhou X, Abel D J, Truffet D. Data partitioning for parallel spatial join processing. In Proc. the 5th SSTD, July 1997, pp. 178–196. Kim S W, Cho W S, Lee M J, Whang K Y. A new algorithm for processing joins using the multilevel grid file. In Proc. the 4th DASFAA, April 1995, pp. 115–123. Alvares L O, Bogorny V, Kuijpers B, de Macêdo J A F, Moelans B, Vaisman A A. A model for enriching trajectories with semantic geographical information. In Proc. the 15th ACM GIS, Nov. 2007, pp. 22:1–22:8. Šaltenis S, Jensen C S, Leutenegger S T, Lopez M A. Indexing the positions of continuously moving objects. ACM SIGMOD Record, 2000, 29(2): 331–342. Jeung H, Yiu M L, Zhou X, Jensen C S, Shen H T. Discovery of convoys in trajectory databases. Proceedings of the VLDB Endowment, 2008, 1(1): 1068–1080. Pfoser D, Jensen C S, Theodoridis Y. Novel approaches in query processing for moving object trajectories. In Proc. the 26th VLDB, September 2000, pp. 395–406. Cao H, Mamoulis N, Cheung D W. Mining frequent spatio-temporal sequential patterns. In Proc. the 5th ICDM, November 2005, pp. 82–89. Chakka V P, Everspaugh A, Patel J M. Indexing large trajectory data sets with SETI. In Proc. the 1st CIDR, January 2003. Shang S, Ding R, Yuan B, Xie K, Zheng K, Kalnis P. User oriented trajectory search for trip recommendation. In Proc. the 15th EDBT, March 2012, pp. 156–167. Douglas D H, Peucker T K. Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. Cartographica: The International Journal for Geographic Information and Geovisualization, 1973, 10(2): 112–122. Giannotti F, Nanni M, Pinelli F, Pedreschi D. Trajectory pattern mining. In Proc. the 13th KDD, August 2007, pp. 330–339. Kalnis P, Mamoulis N, Bakiras S. On discovering moving clusters in spatio-temporal data. In Proc. the 9th SSTD, August 2005, pp. 364–381. Lee J G, Han J, Whang K Y. Trajectory clustering: A partition-and-group framework. In Proc. ACM SIGMOD, June 2007, pp. 593–604. Arumugam S, Jermaine C. Closest-point-of-approach join for moving object histories. In Proc. the 22nd ICDE, April 2006, Article No. 86. Patel J M, DeWitt D J. Partition based spatial-merge join. ACM SIGMOD Record, 1996, 25(2): 259–270. Tao Y, Papadias D, Shen Q. Continuous nearest neighbor search. In Proc. the 28th VLDB, August 2002, pp. 287–298. Brinkhoff T, Kriegel H P, Seeger B. Efficient processing of spatial joins using R-trees. In Proc. ACM SIGMOD, May 1993, pp. 237–246. Horvitz E, Krumm J. Some help on the way: Opportunistic routing under uncertainty. In Proc. the 14th ACM Ubicomp, September 2012, pp. 371–380. Shang S, Ding R, Zheng K, Jensen C S, Kalnis P, Zhou X. Personalized trajectory matching in spatial networks. VLDB J., 2014, 23(3): 449–468. Yuan J, Zheng Y, Xie X, Sun G. Driving with knowledge from the physical world. In Proc. the 17th SIGKDD, August 2011, pp. 316–324. Arge L, Procopiuc O, Ramaswamy S, Suel T, Vitter J S. Scalable sweeping-based spatial join. In Proc. the 24th VLDB, Aug. 1998, pp. 570–581. Šaltenis S, Jensen C S. Indexing of moving objects for location-based services. In Proc. the 18th ICDE, February 26-March 1, 2002, pp. 463–472. Jeung H, Shen H T, Zhou X. Convoy queries in spatio-temporal databases. In Proc. the 24th ICDE, April 2008, pp. 1457–1459. Huang Y W, Jing N, Rundensteiner E A. Spatial joins using R-trees: Breadth-first traversal with global optimizations. In Proc. the 23rd VLDB, August 1997, pp. 396–405. Koudas N, Sevcik K C. Size separation spatial join. In Proc. ACM SIGMOD, May 1997, pp. 324–335. Chen Y, Jiang K, Zheng Y, Li C, Yu N. Trajectory simplification method for location-based social networking services. In Proc. LBSN, November 2009, pp. 33–40. Zheng K, Zheng Y, Yuan N J, Shang S. On discovery of gathering patterns from trajectories. In Proc. the 29th ICDE, April 2013, pp. 242–253. Li F, Cheng D, Hadjieleftheriou M, Kollios G, Teng S H. On trip planning queries in spatial databases. In Proc. the 9th SSTD, August 2005, pp. 273–290. Jacox E H, Samet H. Spatial join techniques. ACM Trans. Database Syst., 2007, 32(1): Article No. 7. Xie K, Deng K, Zhou X. From trajectories to activities: A spatio-temporal join approach. In Proc. LBSN, November 2009, pp. 25–32. Fortune S. A sweepline algorithm for Voronoi diagrams. Algorithmica, 1987, 2: 153–174. 1557_CR7 1557_CR6 1557_CR5 1557_CR4 1557_CR3 1557_CR2 1557_CR1 1557_CR20 1557_CR21 1557_CR9 1557_CR8 1557_CR28 1557_CR29 1557_CR26 1557_CR27 1557_CR24 1557_CR25 1557_CR22 1557_CR23 1557_CR19 1557_CR31 1557_CR10 1557_CR32 1557_CR30 1557_CR17 1557_CR39 1557_CR18 1557_CR15 1557_CR37 1557_CR16 1557_CR38 1557_CR13 1557_CR35 1557_CR14 1557_CR36 1557_CR11 1557_CR33 1557_CR12 1557_CR34  | 
    
| References_xml | – reference: Šaltenis S, Jensen C S. Indexing of moving objects for location-based services. In Proc. the 18th ICDE, February 26-March 1, 2002, pp. 463–472. – reference: Chen Y, Jiang K, Zheng Y, Li C, Yu N. Trajectory simplification method for location-based social networking services. In Proc. LBSN, November 2009, pp. 33–40. – reference: Zheng Y, Xie X, Ma W Y. Geolife: A collaborative social networking service among user, location and trajectory. IEEE Data Engineering Bulletin, 2010, 33(2): 32–39. – reference: Brinkhoff T, Kriegel H P, Seeger B. Efficient processing of spatial joins using R-trees. In Proc. ACM SIGMOD, May 1993, pp. 237–246. – reference: Li F, Cheng D, Hadjieleftheriou M, Kollios G, Teng S H. On trip planning queries in spatial databases. In Proc. the 9th SSTD, August 2005, pp. 273–290. – reference: Yiu M L, Mamoulis N, Karras P. Common influence join: A natural join operation for spatial pointsets. In Proc. the 24th ICDE, April 2008, pp. 100–109. – reference: Giannotti F, Nanni M, Pinelli F, Pedreschi D. Trajectory pattern mining. In Proc. the 13th KDD, August 2007, pp. 330–339. – reference: Li Q, Zheng Y, Xie X, Chen Y, Liu W, Ma W Y. Mining user similarity based on location history. In Proc. the 16th ACM SIGSPATIAL GIS, November 2008, pp. 34:1–34:10. – reference: Arumugam S, Jermaine C. Closest-point-of-approach join for moving object histories. In Proc. the 22nd ICDE, April 2006, Article No. 86. – reference: Lee J G, Han J, Whang K Y. Trajectory clustering: A partition-and-group framework. In Proc. ACM SIGMOD, June 2007, pp. 593–604. – reference: Jeung H, Liu Q, Shen H T, Zhou X. A hybrid prediction model for moving objects. In Proc. the 24th ICDE, April 2008, pp. 70–79. – reference: Xue A Y, Qi J, Xie X, Zhang R, Huang J, Li Y. Solving the data sparsity problem in destination prediction. VLDB J., 2015, 24(2): 219–243. – reference: Cao H, Mamoulis N, Cheung D W. Mining frequent spatio-temporal sequential patterns. In Proc. the 5th ICDM, November 2005, pp. 82–89. – reference: Kalnis P, Mamoulis N, Bakiras S. On discovering moving clusters in spatio-temporal data. In Proc. the 9th SSTD, August 2005, pp. 364–381. – reference: Yuan J, Zheng Y, Xie X, Sun G. Driving with knowledge from the physical world. In Proc. the 17th SIGKDD, August 2011, pp. 316–324. – reference: Jeung H, Shen H T, Zhou X. Convoy queries in spatio-temporal databases. In Proc. the 24th ICDE, April 2008, pp. 1457–1459. – reference: Chakka V P, Everspaugh A, Patel J M. Indexing large trajectory data sets with SETI. In Proc. the 1st CIDR, January 2003. – reference: Zhou X, Abel D J, Truffet D. Data partitioning for parallel spatial join processing. In Proc. the 5th SSTD, July 1997, pp. 178–196. – reference: Jeung H, Yiu M L, Zhou X, Jensen C S, Shen H T. Discovery of convoys in trajectory databases. Proceedings of the VLDB Endowment, 2008, 1(1): 1068–1080. – reference: Jacox E H, Samet H. Spatial join techniques. ACM Trans. Database Syst., 2007, 32(1): Article No. 7. – reference: Arge L, Procopiuc O, Ramaswamy S, Suel T, Vitter J S. Scalable sweeping-based spatial join. In Proc. the 24th VLDB, Aug. 1998, pp. 570–581. – reference: Xie K, Deng K, Zhou X. From trajectories to activities: A spatio-temporal join approach. In Proc. LBSN, November 2009, pp. 25–32. – reference: Alvares L O, Bogorny V, Kuijpers B, de Macêdo J A F, Moelans B, Vaisman A A. A model for enriching trajectories with semantic geographical information. In Proc. the 15th ACM GIS, Nov. 2007, pp. 22:1–22:8. – reference: Šaltenis S, Jensen C S, Leutenegger S T, Lopez M A. Indexing the positions of continuously moving objects. ACM SIGMOD Record, 2000, 29(2): 331–342. – reference: Pfoser D, Jensen C S, Theodoridis Y. Novel approaches in query processing for moving object trajectories. In Proc. the 26th VLDB, September 2000, pp. 395–406. – reference: Shang S, Ding R, Yuan B, Xie K, Zheng K, Kalnis P. User oriented trajectory search for trip recommendation. In Proc. the 15th EDBT, March 2012, pp. 156–167. – reference: Xue A Y, Zhang R, Zheng Y, Xie X, Huang J, Xu Z. Destination prediction by sub-trajectory synthesis and privacy protection against such prediction. In Proc. the 29th ICDE, April 2013, pp. 254–265. – reference: Dittrich J P, Seeger B. Data redundancy and duplicate detection in spatial join processing. In Proc. the 16th ICDE, February 28–March 3, 2000, pp. 535–546. – reference: Günther O. Efficient computation of spatial joins. In Proc. the 9th ICDE, April 1993, pp. 50–59. – reference: Shang S, Ding R, Zheng K, Jensen C S, Kalnis P, Zhou X. Personalized trajectory matching in spatial networks. VLDB J., 2014, 23(3): 449–468. – reference: Kim S W, Cho W S, Lee M J, Whang K Y. A new algorithm for processing joins using the multilevel grid file. In Proc. the 4th DASFAA, April 1995, pp. 115–123. – reference: Huang Y W, Jing N, Rundensteiner E A. Spatial joins using R-trees: Breadth-first traversal with global optimizations. In Proc. the 23rd VLDB, August 1997, pp. 396–405. – reference: Patel J M, DeWitt D J. Partition based spatial-merge join. ACM SIGMOD Record, 1996, 25(2): 259–270. – reference: Zheng K, Zheng Y, Yuan N J, Shang S. On discovery of gathering patterns from trajectories. In Proc. the 29th ICDE, April 2013, pp. 242–253. – reference: Douglas D H, Peucker T K. Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. Cartographica: The International Journal for Geographic Information and Geovisualization, 1973, 10(2): 112–122. – reference: Tao Y, Papadias D, Shen Q. Continuous nearest neighbor search. In Proc. the 28th VLDB, August 2002, pp. 287–298. – reference: Fortune S. A sweepline algorithm for Voronoi diagrams. Algorithmica, 1987, 2: 153–174. – reference: Horvitz E, Krumm J. Some help on the way: Opportunistic routing under uncertainty. In Proc. the 14th ACM Ubicomp, September 2012, pp. 371–380. – reference: Koudas N, Sevcik K C. Size separation spatial join. In Proc. ACM SIGMOD, May 1997, pp. 324–335. – ident: 1557_CR5 doi: 10.1109/ICDE.2008.4497588 – ident: 1557_CR7 doi: 10.14778/1453856.1453971 – ident: 1557_CR28 – ident: 1557_CR6 doi: 10.1109/ICDE.2008.4497415 – ident: 1557_CR8 doi: 10.1145/1247480.1247546 – ident: 1557_CR1 – ident: 1557_CR39 doi: 10.1145/1629890.1629898 – ident: 1557_CR3 doi: 10.1145/1463434.1463477 – ident: 1557_CR36 doi: 10.1145/2370216.2370273 – ident: 1557_CR17 doi: 10.1016/B978-155860869-6/50033-0 – ident: 1557_CR20 doi: 10.1145/1206049.1206056 – ident: 1557_CR23 – ident: 1557_CR10 doi: 10.1145/2247596.2247616 – ident: 1557_CR2 doi: 10.1109/ICDE.2008.4497418 – ident: 1557_CR15 – ident: 1557_CR30 – ident: 1557_CR35 doi: 10.1145/2020408.2020462 – ident: 1557_CR13 doi: 10.1109/ICDE.2002.994759 – ident: 1557_CR32 doi: 10.1145/1341012.1341041 – ident: 1557_CR12 doi: 10.1145/335191.335427 – ident: 1557_CR34 doi: 10.1109/ICDE.2013.6544830 – ident: 1557_CR33 doi: 10.1007/s00778-014-0369-7 – ident: 1557_CR27 doi: 10.1109/ICDE.2000.839452 – ident: 1557_CR31 doi: 10.1007/11535331_21 – ident: 1557_CR19 doi: 10.1145/1629890.1629897 – ident: 1557_CR16 doi: 10.1109/ICDE.2006.36 – ident: 1557_CR38 doi: 10.1007/11535331_16 – ident: 1557_CR26 doi: 10.1145/253260.253340 – ident: 1557_CR18 doi: 10.1145/235968.233338 – ident: 1557_CR25 doi: 10.1007/3-540-63238-7_30 – ident: 1557_CR4 doi: 10.1145/1281192.1281230 – ident: 1557_CR24 – ident: 1557_CR9 doi: 10.1007/s00778-013-0331-0 – ident: 1557_CR22 doi: 10.1145/170035.170075 – ident: 1557_CR11 doi: 10.1109/ICDE.2013.6544829 – ident: 1557_CR14 – ident: 1557_CR21 doi: 10.1109/ICDE.1993.344078 – ident: 1557_CR37 doi: 10.1007/BF01840357 – ident: 1557_CR29 doi: 10.3138/FM57-6770-U75U-7727  | 
    
| SSID | ssj0037044 | 
    
| Score | 2.0859 | 
    
| Snippet | Variable influence duration (VID) join is a novel spatio-temporal join operation between a set T of trajectories and a set P of spatial points. Here,... Variable influence duration (VID) join is a novel spatio-temporal join operation between a set T of trajectories and a set P of spatial points. Here,... Variable influence duration (VID) join is a novel spatio-temporal join operation between a set T of trajectories and a set P of spatial points. Here,...  | 
    
| SourceID | wanfang proquest crossref springer chongqing  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 725 | 
    
| SubjectTerms | Advertising Algorithms Artificial Intelligence Computer engineering Computer Science Data Structures and Information Theory Fast food Information Systems Applications (incl.Internet) Location based services Mapping Object motion Optimization Optimization techniques Regular Paper Restaurants Segments Social security Software Engineering Spatial data Studies Supermarkets Theory of Computation Trajectories 兴趣点 基于位置的服务 持续时间 映射 移动对象 空连接 空间点 视频  | 
    
| SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB7a9JJLHn0Qd5OgQntJMfghS3ZueZIuTekhr5uQLHnTbbHT2oH9-ZnxWrsJpIVebLDkka2RZkaj0XwAH610sYuEC1E5F3iRZVhYnI86djrWpXW8R1E4_ybOLvn4JrsZznG3Ptrdb0n2knp52A2NFQqiykLUgTKUL-FVRtm8cBBfJgde_KYy6hFcyW8dEiKm38p8jgQlVLht6slvbO6pYlpam4sN0v5YT13pevJIA51uwNpgOrKDOa834YWrX8O6h2Vgwyx9A9dXX47ZuPlR77NzTekXJgw10rR3z-O6mHUN-46lXcuaivUeQfwCekoIn2iNs6_N3I8XHqKKs8yLk7dwcXpycXQWDvgJYcll0WF_0ynVKNeFiU1euSrOcmvynFKSCZPxVAhrZBmXHG2EJLUF3gw3NnW2srpM38FK3dRuC5guKW9XFBmu0RyQvIgrmRiOa0OdJk6YAEaLflR38zQZSgg0JSlKNYDI96wqh8zjBIDxSy1zJhNjFDJGEWOUDGBv8Yqn94_K255dapiBraJ_LwgRKQ7gw6IY5w5tiOjaNfdYh8RbggvcLIDPns2PSPy9wU_DSFhWnrbTn7NpOzPKJeRFwt4S7_-L6ghW6c15LPA2rHR_7t0OWjyd2e1H-APZrfS7 priority: 102 providerName: Springer Nature  | 
    
| Title | VID Join: Mapping Trajectories to Points of Interest to Support Location-Based Services | 
    
| URI | http://lib.cqvip.com/qk/85226X/201504/665332822.html https://link.springer.com/article/10.1007/s11390-015-1557-7 https://www.proquest.com/docview/1694930231 https://www.proquest.com/docview/1730120945 https://d.wanfangdata.com.cn/periodical/jsjkxjsxb-e201504006  | 
    
| Volume | 30 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1860-4749 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0037044 issn: 1000-9000 databaseCode: AFBBN dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1860-4749 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0037044 issn: 1000-9000 databaseCode: BENPR dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1860-4749 dateEnd: 20181130 omitProxy: true ssIdentifier: ssj0037044 issn: 1000-9000 databaseCode: 8FG dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1860-4749 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0037044 issn: 1000-9000 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1860-4749 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0037044 issn: 1000-9000 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED9t7QsvfCPCRmUkeAFF5MOxEySEOmg3BqsmtMF4suzYKRSUbDST9udzl8bteGAviWQ7juWz785n-_cDeG6li10kXIjGucCHLMPC4nzUsdOxLq3jHYvC0UwcnPLDs-xsC2b-Lgwdq_Q6sVPUtikpRv46FgUviOEmfnd-ERJrFO2uegoN3VMr2LcdxNg2DBNCxhrAcG8yO_7idXMqo47elYLaIdFl-n3O7jIdOkN0SCsLsQ4ZSkJb-NHU8wu0If9arY0rut497e781JWu59fM0_Qu3O79SjZeDYR7sOXq-3DHczawfgo_gG9fP35gh83P-g070oTNMGdorhZd7B4Xzaxt2DHmtkvWVKwLF2ILKJXoP9FVZ5-bVZAv3EP7Z5nXNQ_hZDo5eX8Q9uQKYcll0aIw6AprlOvCxCavXBVnuTV5TnhlwmQ8FcIaWcYlRwciSW2BL8ONTZ2trC7TRzCom9o9BqZLAvWKIsM1-gqSF3ElE8Nx4ajTxAkTwM66H9X5CkNDCYF-Jh1hDSDyPavKHpac2DF-qw2gMglGoWAUCUbJAF6uP_H13VB414tL9dNzqTaDKYBn62ycWLRbomvXXGIZ0n0Jrn6zAF55MV-r4v8_fNGPhE3hxXLx62qxvDLKJRRiwt4ST25u2A7coqKrk8G7MGj_XLqn6P-0ZgTb-XR_BMPx_vdPk1E_xDH1NBn_BQS2AiM | 
    
| linkProvider | ProQuest | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9gAX3ojQAkaiF1BEHk6cIFWI0la77e6qQgv0Ztmxs7CgpCWpKD-O_8ZMNt4tB3rrJZESx7E89jw98wG8NMKGNkitj8I5x4so_NzgflShVaEqjOUdisJ4kg4-8cOT5GQN_rhcGDpW6Xhix6hNXZCP_E2Y5jwnhJvw3emZT6hRFF11EBqqh1YwO12JsT6x48j-_oUmXLMz3EN6b0fRwf70w8DvUQb8gou8xVFRLmeQqVyHOittGSaZ0VlGhbtSnfA4TY0WRVhwlKRRbHK8aa5NbE1pVBFjtzdgg8c8R9tvY3d_cvzRiYJYBB2aLPnQfULndGHVLncPdS86E5b4OGThCyru8LWuZmcosv4VkivNdxms7VKMqlJVs0vS8OAu3O7VWPZ-se7uwZqt7sMdBxHBeo7xAL58Hu6xw_pb9ZaNFZWCmDGUjvMuVIA2Omtrdoxv24bVJeu8kzgCekpoo2gZsFG98Cn6uyhuDXOs7SFMr2OWH8F6VVf2MTBVUA2xINBcoWoieB6WItIc7VQVRzbVHmwu51GeLkp2yDRFtZZOzHoQuJmVRV8FncA4fshV_WYijETCSCKMFB68Wn7i-rui8ZYjl-y5QSNXa9eDF8vXuI8pOKMqW59jG2K1ERrbiQevHZkvdfH_H273K2HVeN7Mv1_MmwstbUQeLZyt9MnVA3sONwfT8UiOhpOjTbhFny0OJW_Bevvz3D5F1avVz_oFzkBe85b6CxW-Owg | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BkRAX3ojQAkaCCyhqHo6dcCuUVVvaqocWerPs2FnYVk4hqdSfz0wS7xYJkLgkUuyME4_tGY_t7wN4baVLXSJcjMa5wous48pif9Sp06mureMDi8LBodg54XunxenEc9qF3e5hSXI800AoTb7fvLDN5urgGzoutKGqiNEeyljehFuccBKwQZ9kW2EozmUysLlSDDsmdsywrPknEQSu8K318x9Y9O9GauV5LhdLhyM-vtF-fs0aze7D3cmNZFuj3h_ADecfwr1A0cCmHvsIvn7Z3WZ77Xf_nh1ogmKYM7ROiyFUj3Nk1rfsCFP7jrUNG6KD-AX0lNg-0TNn--0Y04s_oLmzLAwtj-F49un44048cSnENZdVj3VPJ1aTUlcmNWXjmrQorSlLgicTpuC5ENbIOq05-gtZbiu8GW5s7mxjdZ0_gTXfevcUmK4JwytJDNfoGkhepY3MDMd5os4zJ0wE68t6VBcjZIYSAt1K2rEaQRJqVtUTCjmRYZyrFX4yKUahYhQpRskI3i5fCfL-kXkjqEtNvbFT9O8VsSOlEbxaJmM_osUR7V17iXloqMtwsltE8C6o-ZqIvxf4ZmoJq8yLbnF2teiujHIZRZSwtsSz_5L6Em4fbc_U_u7h53W4Q0LGLcIbsNb_vHTP0RHqzYuhsf8C0yv74w | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=VID+Join%EF%BC%9A+Mapping+Trajectories+to+Points+of+Interest+to+Support+Location-Based+Services&rft.jtitle=%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%A7%91%E5%AD%A6%E6%8A%80%E6%9C%AF%E5%AD%A6%E6%8A%A5%EF%BC%9A%E8%8B%B1%E6%96%87%E7%89%88&rft.au=%E5%95%86%E7%83%81+%E8%B0%A2%E7%8F%82%E5%BF%83+%E9%83%91%E5%87%AF+%E5%88%98%E5%AE%B6%E4%BF%8A+%E6%96%87%E7%BB%A7%E8%8D%A3&rft.date=2015-07-01&rft.issn=1000-9000&rft.eissn=1860-4749&rft.issue=4&rft.spage=725&rft.epage=744&rft_id=info:doi/10.1007%2Fs11390-015-1557-7&rft.externalDocID=665332822 | 
    
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F85226X%2F85226X.jpg http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjkxjsxb-e%2Fjsjkxjsxb-e.jpg  |