VID Join: Mapping Trajectories to Points of Interest to Support Location-Based Services

Variable influence duration (VID) join is a novel spatio-temporal join operation between a set T of trajectories and a set P of spatial points. Here, trajectories are traveling histories of moving objects (e.g., travelers), and spatial points are points of interest (POIs, e.g., restaurants). VID joi...

Full description

Saved in:
Bibliographic Details
Published inJournal of computer science and technology Vol. 30; no. 4; pp. 725 - 744
Main Author 商烁 谢珂心 郑凯 刘家俊 文继荣
Format Journal Article
LanguageEnglish
Published New York Springer US 01.07.2015
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1000-9000
1860-4749
DOI10.1007/s11390-015-1557-7

Cover

Abstract Variable influence duration (VID) join is a novel spatio-temporal join operation between a set T of trajectories and a set P of spatial points. Here, trajectories are traveling histories of moving objects (e.g., travelers), and spatial points are points of interest (POIs, e.g., restaurants). VID join returns all pairs of (τs, p) if τs is spatially close to p for a long period of time, where τs is a segment of trajectory τ ∈ T and p ∈ P. Each returned (τs, p) implies that the moving object associated with τs stayed at p (e.g., having dinner at a restaurant). Such information is useful in many aspects, such as targeted advertising, social security, and social activity analysis. The concepts of influence and influence duration are introduced to measure the spatial closeness between τ and p, and the time spanned, respectively. Compared to the conventional spatio-temporal join, the VID join is more challenging since the join condition varies for different POIs, and the additional temporal requirement cannot be indexed effectively. To process the VID join e?ciently, three algorithms are developed and several optimization techniques are applied, including spatial duplication reuse and time duration based pruning. The performance of the developed algorithms is verified by extensive experiments on real spatial data.
AbstractList Variable influence duration (VID) join is a novel spatio-temporal join operation between a set T of trajectories and a set P of spatial points. Here, trajectories are traveling histories of moving objects (e.g., travelers), and spatial points are points of interest (POIs, e.g., restaurants). VID join returns all pairs of (τs, p) if τs is spatially close to p for a long period of time, where τs is a segment of trajectory τ ∈ T and p ∈ P. Each returned (τs, p) implies that the moving object associated with τs stayed at p (e.g., having dinner at a restaurant). Such information is useful in many aspects, such as targeted advertising, social security, and social activity analysis. The concepts of influence and influence duration are introduced to measure the spatial closeness between τ and p, and the time spanned, respectively. Compared to the conventional spatio-temporal join, the VID join is more challenging since the join condition varies for different POIs, and the additional temporal requirement cannot be indexed effectively. To process the VID join e?ciently, three algorithms are developed and several optimization techniques are applied, including spatial duplication reuse and time duration based pruning. The performance of the developed algorithms is verified by extensive experiments on real spatial data.
Variable influence duration (VID) join is a novel spatio-temporal join operation between a set T of trajectories and a set P of spatial points. Here, trajectories are traveling histories of moving objects (e.g., travelers), and spatial points are points of interest (POIs, e.g., restaurants). VID join returns all pairs of ( τ s , p ) if τ s is spatially close to p for a long period of time, where τ s is a segment of trajectory τ ∈ T and p ∈ P . Each returned ( τ s , p ) implies that the moving object associated with τ s stayed at p (e.g., having dinner at a restaurant). Such information is useful in many aspects, such as targeted advertising, social security, and social activity analysis. The concepts of influence and influence duration are introduced to measure the spatial closeness between τ and p , and the time spanned, respectively. Compared to the conventional spatio-temporal join, the VID join is more challenging since the join condition varies for different POIs, and the additional temporal requirement cannot be indexed effectively. To process the VID join efficiently, three algorithms are developed and several optimization techniques are applied, including spatial duplication reuse and time duration based pruning. The performance of the developed algorithms is verified by extensive experiments on real spatial data.
Variable influence duration (VID) join is a novel spatio-temporal join operation between a set T of trajectories and a set P of spatial points. Here, trajectories are traveling histories of moving objects (e.g., travelers), and spatial points are points of interest (POIs, e.g., restaurants). VID join returns all pairs of (τs, p) if τs is spatially close to p for a long period of time, where τs is a segment of trajectory τ ∈ T and p ∈ P. Each returned (τs, p) implies that the moving object associated with τs stayed at p (e.g., having dinner at a restaurant). Such information is useful in many aspects, such as targeted advertising, social security, and social activity analysis. The concepts of influence and influence duration are introduced to measure the spatial closeness between τ and p, and the time spanned, respectively. Compared to the conventional spatio-temporal join, the VID join is more challenging since the join condition varies for different POIs, and the additional temporal requirement cannot be indexed effectively. To process the VID join e?ciently, three algorithms are developed and several optimization techniques are applied, including spatial duplication reuse and time duration based pruning. The performance of the developed algorithms is verified by extensive experiments on real spatial data.
Variable influence duration (VID) join is a novel spatio-temporal join operation between a set T of trajectories and a set P of spatial points. Here, trajectories are traveling histories of moving objects (e.g., travelers), and spatial points are points of interest (POIs, e.g., restaurants). VID join returns all pairs of ( tau sub( )s p) if tau sub( )sis spatially close to p for a long period of time, where tau sub( )sis a segment of trajectory tau T and p P. Each returned ( tau sub( )s p) implies that the moving object associated with tau sub( )sstayed at p (e.g., having dinner at a restaurant). Such information is useful in many aspects, such as targeted advertising, social security, and social activity analysis. The concepts of influence and influence duration are introduced to measure the spatial closeness between tau and p, and the time spanned, respectively. Compared to the conventional spatio-temporal join, the VID join is more challenging since the join condition varies for different POIs, and the additional temporal requirement cannot be indexed effectively. To process the VID join efficiently, three algorithms are developed and several optimization techniques are applied, including spatial duplication reuse and time duration based pruning. The performance of the developed algorithms is verified by extensive experiments on real spatial data.
Variable influence duration (VID) join is a novel spatio-temporal join operation between a set T of trajectories and a set P of spatial points. Here, trajectories are traveling histories of moving objects (e.g., travelers), and spatial points are points of interest (POIs, e.g., restaurants). VID join returns all pairs of (τ ^sub s^, p) if τ ^sub s^ is spatially close to p for a long period of time, where τ ^sub s^ is a segment of trajectory τ T and p P. Each returned (τ ^sub s^, p) implies that the moving object associated with τ ^sub s^ stayed at p (e.g., having dinner at a restaurant). Such information is useful in many aspects, such as targeted advertising, social security, and social activity analysis. The concepts of influence and influence duration are introduced to measure the spatial closeness between τ and p, and the time spanned, respectively. Compared to the conventional spatio-temporal join, the VID join is more challenging since the join condition varies for different POIs, and the additional temporal requirement cannot be indexed effectively. To process the VID join efficiently, three algorithms are developed and several optimization techniques are applied, including spatial duplication reuse and time duration based pruning. The performance of the developed algorithms is verified by extensive experiments on real spatial data.
Author 商烁 谢珂心 郑凯 刘家俊 文继荣
AuthorAffiliation Department of Computer Science, China University of Petroleum, Beijing 102249, China School of Information Technology and Electrical Engineering, The University of Queensland Brisbane, QLD 4072, Australia School of Computer Science and Technology, Soochow University, Suzhou 215006, China Commonwealth Scientific and Industrial Research Organisation, Kenmore, QLD 4069, Australia Key Laboratory of Data Engineering and Knowledge Engineering, Renmin University of China, Beijing 100080, China
Author_xml – sequence: 1
  fullname: 商烁 谢珂心 郑凯 刘家俊 文继荣
BookMark eNp9UcFu1DAQjVCRaAsfwM2CCwdMZ2InTo5QoGy1CKSukDhZjuMsDls7tb3Q_grfwj_1F-olVYV66MVjjd-b9_zmoNhz3pmieI7wBgHEUURkLVDAimJVCSoeFfvY1EC54O1evgMAbfPxpDiIcQRgAjjfL75_W7wnp966679_yGc1TdatySqo0ejkgzWRJE--5vcUiR_IwiUTTEy77tl2mnxIZOm1StY7-k5F05MzE35ZbeLT4vGgNtE8u62Hxerjh9XxJ7r8crI4frukmos2UYV1yxEa1XbYNYMZsGr6rml4hVh3FWd13XdCo-ZlyUrWt7l0vOuZ6YdeaXZYvJ7H_lZuUG4tR78NLgvKMY4_L8d42UlT5lyAA9QZ_mqGT8FfbPNP5LmN2mw2yhm_jRIFAyyh5VWGvrwHvRu989wyKBlmFM4oHXyMwQxyCvZchSuJIHerkfNqZLYgd6uRInPEPY626V-GKSi7eZBZzsyYVdzahP88PUB6cSv3w7v1RebdeazrirGyyZneAHTsr8M
CitedBy_id crossref_primary_10_1016_j_neucom_2016_02_085
crossref_primary_10_1016_j_future_2022_07_003
crossref_primary_10_1016_j_compenvurbsys_2018_03_007
crossref_primary_10_1016_j_neucom_2020_03_121
crossref_primary_10_52547_jgit_9_2_105
crossref_primary_10_1007_s11280_018_0563_4
crossref_primary_10_1007_s11390_016_1653_3
crossref_primary_10_1007_s10619_020_07290_2
crossref_primary_10_1007_s11280_022_01092_5
crossref_primary_10_1109_TKDE_2018_2854705
crossref_primary_10_1016_j_bdr_2021_100221
crossref_primary_10_1080_13658816_2020_1778003
Cites_doi 10.1109/ICDE.2008.4497588
10.14778/1453856.1453971
10.1109/ICDE.2008.4497415
10.1145/1247480.1247546
10.1145/1629890.1629898
10.1145/1463434.1463477
10.1145/2370216.2370273
10.1016/B978-155860869-6/50033-0
10.1145/1206049.1206056
10.1145/2247596.2247616
10.1109/ICDE.2008.4497418
10.1145/2020408.2020462
10.1109/ICDE.2002.994759
10.1145/1341012.1341041
10.1145/335191.335427
10.1109/ICDE.2013.6544830
10.1007/s00778-014-0369-7
10.1109/ICDE.2000.839452
10.1007/11535331_21
10.1145/1629890.1629897
10.1109/ICDE.2006.36
10.1007/11535331_16
10.1145/253260.253340
10.1145/235968.233338
10.1007/3-540-63238-7_30
10.1145/1281192.1281230
10.1007/s00778-013-0331-0
10.1145/170035.170075
10.1109/ICDE.2013.6544829
10.1109/ICDE.1993.344078
10.1007/BF01840357
10.3138/FM57-6770-U75U-7727
ContentType Journal Article
Copyright Springer Science+Business Media New York 2015
Springer Science+Business Media New York 2015.
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Springer Science+Business Media New York 2015
– notice: Springer Science+Business Media New York 2015.
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W92
~WA
AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1007/s11390-015-1557-7
DatabaseName 中文期刊服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection (via ProQuest SciTech Premium Collection)
ProQuest One Community College
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database (Proquest)
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
Engineering Database
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
Business Premium Collection (Alumni)
DatabaseTitleList


Computer and Information Systems Abstracts
ABI/INFORM Global (Corporate)
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
DocumentTitleAlternate VID Join: Mapping Trajectories to Points of Interest to Support Location-Based Services
EISSN 1860-4749
EndPage 744
ExternalDocumentID jsjkxjsxb_e201504006
3738089231
10_1007_s11390_015_1557_7
665332822
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GrantInformation_xml – fundername: This work is partly supported by the National Natural Science Foundation of China under Grant No.61402532, the Science Foundation of China University of Petroleum under Grant No.2462013YJRC031, and the Excellent Talents of Beijing Program under Grant No.2013D009051000003
  funderid: (Beijing) under Grant No.2462013YJRC031, and the Excellent Talents of Beijing Program under Grant No.2013D009051000003
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
1SB
2.D
28-
29K
2B.
2C0
2J2
2JN
2JY
2KG
2KM
2LR
2RA
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VR
5VS
67Z
6NX
7WY
8FE
8FG
8FL
8TC
8UJ
92H
92I
92L
92R
93N
95-
95.
95~
96X
AAAVM
AABHQ
AABYN
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AAOBN
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAWWR
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABBXA
ABDZT
ABECU
ABFGW
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBMV
ACBRV
ACBXY
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACTTH
ACVWB
ACWMK
ACZOJ
ADGRI
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEEQQ
AEFIE
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AEYWE
AFEXP
AFGCZ
AFKRA
AFLOW
AFNRJ
AFQWF
AFUIB
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
CAG
CCEZO
CCPQU
CHBEP
COF
CQIGP
CS3
CSCUP
CUBFJ
CW9
D-I
DDRTE
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FA0
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
HCIFZ
HF~
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IAO
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
LAK
LLZTM
M0C
M0N
M4Y
M7S
MA-
N2Q
NB0
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9O
PF0
PQBIZ
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCL
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TCJ
TGT
TSG
TSK
TSV
TUC
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
W92
WK8
YLTOR
Z7R
Z7U
Z7X
Z7Z
Z81
Z83
Z88
Z8R
Z8W
Z92
ZMTXR
~A9
~EX
~WA
-SI
-S~
5XA
5XJ
AACDK
AAJBT
AASML
AAXDM
AAYZH
ABAKF
ABQSL
ACDTI
ACPIV
AEFQL
AEMSY
AFBBN
AGQEE
AGRTI
AIGIU
BSONS
CAJEI
H13
PQBZA
Q--
U1G
U5S
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ICD
IVC
PHGZM
PHGZT
PQGLB
PUEGO
TGMPQ
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L6V
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
4A8
PMFND
PSX
ID FETCH-LOGICAL-c479t-a1694108a9b1b8fef158db8845116b54366db7c1c422323d9223b4bd3edfdac3
IEDL.DBID BENPR
ISSN 1000-9000
IngestDate Thu May 29 04:00:15 EDT 2025
Sun Sep 28 09:16:22 EDT 2025
Fri Jul 25 11:06:41 EDT 2025
Wed Oct 01 02:32:13 EDT 2025
Thu Apr 24 23:01:57 EDT 2025
Fri Feb 21 02:40:05 EST 2025
Wed Feb 14 10:30:21 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords spatial database
trajectory
spatio-temporal join
spatial join
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c479t-a1694108a9b1b8fef158db8845116b54366db7c1c422323d9223b4bd3edfdac3
Notes Variable influence duration (VID) join is a novel spatio-temporal join operation between a set T of trajectories and a set P of spatial points. Here, trajectories are traveling histories of moving objects (e.g., travelers), and spatial points are points of interest (POIs, e.g., restaurants). VID join returns all pairs of (τs, p) if τs is spatially close to p for a long period of time, where τs is a segment of trajectory τ ∈ T and p ∈ P. Each returned (τs, p) implies that the moving object associated with τs stayed at p (e.g., having dinner at a restaurant). Such information is useful in many aspects, such as targeted advertising, social security, and social activity analysis. The concepts of influence and influence duration are introduced to measure the spatial closeness between τ and p, and the time spanned, respectively. Compared to the conventional spatio-temporal join, the VID join is more challenging since the join condition varies for different POIs, and the additional temporal requirement cannot be indexed effectively. To process the VID join e?ciently, three algorithms are developed and several optimization techniques are applied, including spatial duplication reuse and time duration based pruning. The performance of the developed algorithms is verified by extensive experiments on real spatial data.
trajectory, spatial database, spatial join, spatio-temporal join
11-2296/TP
Shuo Shang, Kexin Xie, Kai Zheng,Jiajun Liu,Ji-Rong Wen( 1Department of Computer Science, China University of Petroleum, Beijing 102249, China ;2School of Information Technology and Electrical Engineering, The University of Queensland Brisbane, QLD 4072, Australia ;3School of Computer Science and Technology, Soochow University, Suzhou 215006, China; 4 Commonwealth Scientific and Industrial Research Organisation, Kenmore, QLD 4069, Australia; 5Key Laboratory of Data Engineering and Knowledge Engineering, Renmin University of China, Beijing 100080, China)
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1694930231
PQPubID 326258
PageCount 20
ParticipantIDs wanfang_journals_jsjkxjsxb_e201504006
proquest_miscellaneous_1730120945
proquest_journals_1694930231
crossref_primary_10_1007_s11390_015_1557_7
crossref_citationtrail_10_1007_s11390_015_1557_7
springer_journals_10_1007_s11390_015_1557_7
chongqing_primary_665332822
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-07-01
PublicationDateYYYYMMDD 2015-07-01
PublicationDate_xml – month: 07
  year: 2015
  text: 2015-07-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Beijing
PublicationTitle Journal of computer science and technology
PublicationTitleAbbrev J. Comput. Sci. Technol
PublicationTitleAlternate Journal of Computer Science and Technology
PublicationTitle_FL Journal of Computer Science & Technology
PublicationYear 2015
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Li Q, Zheng Y, Xie X, Chen Y, Liu W, Ma W Y. Mining user similarity based on location history. In Proc. the 16th ACM SIGSPATIAL GIS, November 2008, pp. 34:1–34:10.
Günther O. Efficient computation of spatial joins. In Proc. the 9th ICDE, April 1993, pp. 50–59.
Yiu M L, Mamoulis N, Karras P. Common influence join: A natural join operation for spatial pointsets. In Proc. the 24th ICDE, April 2008, pp. 100–109.
Jeung H, Liu Q, Shen H T, Zhou X. A hybrid prediction model for moving objects. In Proc. the 24th ICDE, April 2008, pp. 70–79.
Dittrich J P, Seeger B. Data redundancy and duplicate detection in spatial join processing. In Proc. the 16th ICDE, February 28–March 3, 2000, pp. 535–546.
Xue A Y, Qi J, Xie X, Zhang R, Huang J, Li Y. Solving the data sparsity problem in destination prediction. VLDB J., 2015, 24(2): 219–243.
Xue A Y, Zhang R, Zheng Y, Xie X, Huang J, Xu Z. Destination prediction by sub-trajectory synthesis and privacy protection against such prediction. In Proc. the 29th ICDE, April 2013, pp. 254–265.
Zheng Y, Xie X, Ma W Y. Geolife: A collaborative social networking service among user, location and trajectory. IEEE Data Engineering Bulletin, 2010, 33(2): 32–39.
Zhou X, Abel D J, Truffet D. Data partitioning for parallel spatial join processing. In Proc. the 5th SSTD, July 1997, pp. 178–196.
Kim S W, Cho W S, Lee M J, Whang K Y. A new algorithm for processing joins using the multilevel grid file. In Proc. the 4th DASFAA, April 1995, pp. 115–123.
Alvares L O, Bogorny V, Kuijpers B, de Macêdo J A F, Moelans B, Vaisman A A. A model for enriching trajectories with semantic geographical information. In Proc. the 15th ACM GIS, Nov. 2007, pp. 22:1–22:8.
Šaltenis S, Jensen C S, Leutenegger S T, Lopez M A. Indexing the positions of continuously moving objects. ACM SIGMOD Record, 2000, 29(2): 331–342.
Jeung H, Yiu M L, Zhou X, Jensen C S, Shen H T. Discovery of convoys in trajectory databases. Proceedings of the VLDB Endowment, 2008, 1(1): 1068–1080.
Pfoser D, Jensen C S, Theodoridis Y. Novel approaches in query processing for moving object trajectories. In Proc. the 26th VLDB, September 2000, pp. 395–406.
Cao H, Mamoulis N, Cheung D W. Mining frequent spatio-temporal sequential patterns. In Proc. the 5th ICDM, November 2005, pp. 82–89.
Chakka V P, Everspaugh A, Patel J M. Indexing large trajectory data sets with SETI. In Proc. the 1st CIDR, January 2003.
Shang S, Ding R, Yuan B, Xie K, Zheng K, Kalnis P. User oriented trajectory search for trip recommendation. In Proc. the 15th EDBT, March 2012, pp. 156–167.
Douglas D H, Peucker T K. Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. Cartographica: The International Journal for Geographic Information and Geovisualization, 1973, 10(2): 112–122.
Giannotti F, Nanni M, Pinelli F, Pedreschi D. Trajectory pattern mining. In Proc. the 13th KDD, August 2007, pp. 330–339.
Kalnis P, Mamoulis N, Bakiras S. On discovering moving clusters in spatio-temporal data. In Proc. the 9th SSTD, August 2005, pp. 364–381.
Lee J G, Han J, Whang K Y. Trajectory clustering: A partition-and-group framework. In Proc. ACM SIGMOD, June 2007, pp. 593–604.
Arumugam S, Jermaine C. Closest-point-of-approach join for moving object histories. In Proc. the 22nd ICDE, April 2006, Article No. 86.
Patel J M, DeWitt D J. Partition based spatial-merge join. ACM SIGMOD Record, 1996, 25(2): 259–270.
Tao Y, Papadias D, Shen Q. Continuous nearest neighbor search. In Proc. the 28th VLDB, August 2002, pp. 287–298.
Brinkhoff T, Kriegel H P, Seeger B. Efficient processing of spatial joins using R-trees. In Proc. ACM SIGMOD, May 1993, pp. 237–246.
Horvitz E, Krumm J. Some help on the way: Opportunistic routing under uncertainty. In Proc. the 14th ACM Ubicomp, September 2012, pp. 371–380.
Shang S, Ding R, Zheng K, Jensen C S, Kalnis P, Zhou X. Personalized trajectory matching in spatial networks. VLDB J., 2014, 23(3): 449–468.
Yuan J, Zheng Y, Xie X, Sun G. Driving with knowledge from the physical world. In Proc. the 17th SIGKDD, August 2011, pp. 316–324.
Arge L, Procopiuc O, Ramaswamy S, Suel T, Vitter J S. Scalable sweeping-based spatial join. In Proc. the 24th VLDB, Aug. 1998, pp. 570–581.
Šaltenis S, Jensen C S. Indexing of moving objects for location-based services. In Proc. the 18th ICDE, February 26-March 1, 2002, pp. 463–472.
Jeung H, Shen H T, Zhou X. Convoy queries in spatio-temporal databases. In Proc. the 24th ICDE, April 2008, pp. 1457–1459.
Huang Y W, Jing N, Rundensteiner E A. Spatial joins using R-trees: Breadth-first traversal with global optimizations. In Proc. the 23rd VLDB, August 1997, pp. 396–405.
Koudas N, Sevcik K C. Size separation spatial join. In Proc. ACM SIGMOD, May 1997, pp. 324–335.
Chen Y, Jiang K, Zheng Y, Li C, Yu N. Trajectory simplification method for location-based social networking services. In Proc. LBSN, November 2009, pp. 33–40.
Zheng K, Zheng Y, Yuan N J, Shang S. On discovery of gathering patterns from trajectories. In Proc. the 29th ICDE, April 2013, pp. 242–253.
Li F, Cheng D, Hadjieleftheriou M, Kollios G, Teng S H. On trip planning queries in spatial databases. In Proc. the 9th SSTD, August 2005, pp. 273–290.
Jacox E H, Samet H. Spatial join techniques. ACM Trans. Database Syst., 2007, 32(1): Article No. 7.
Xie K, Deng K, Zhou X. From trajectories to activities: A spatio-temporal join approach. In Proc. LBSN, November 2009, pp. 25–32.
Fortune S. A sweepline algorithm for Voronoi diagrams. Algorithmica, 1987, 2: 153–174.
1557_CR7
1557_CR6
1557_CR5
1557_CR4
1557_CR3
1557_CR2
1557_CR1
1557_CR20
1557_CR21
1557_CR9
1557_CR8
1557_CR28
1557_CR29
1557_CR26
1557_CR27
1557_CR24
1557_CR25
1557_CR22
1557_CR23
1557_CR19
1557_CR31
1557_CR10
1557_CR32
1557_CR30
1557_CR17
1557_CR39
1557_CR18
1557_CR15
1557_CR37
1557_CR16
1557_CR38
1557_CR13
1557_CR35
1557_CR14
1557_CR36
1557_CR11
1557_CR33
1557_CR12
1557_CR34
References_xml – reference: Šaltenis S, Jensen C S. Indexing of moving objects for location-based services. In Proc. the 18th ICDE, February 26-March 1, 2002, pp. 463–472.
– reference: Chen Y, Jiang K, Zheng Y, Li C, Yu N. Trajectory simplification method for location-based social networking services. In Proc. LBSN, November 2009, pp. 33–40.
– reference: Zheng Y, Xie X, Ma W Y. Geolife: A collaborative social networking service among user, location and trajectory. IEEE Data Engineering Bulletin, 2010, 33(2): 32–39.
– reference: Brinkhoff T, Kriegel H P, Seeger B. Efficient processing of spatial joins using R-trees. In Proc. ACM SIGMOD, May 1993, pp. 237–246.
– reference: Li F, Cheng D, Hadjieleftheriou M, Kollios G, Teng S H. On trip planning queries in spatial databases. In Proc. the 9th SSTD, August 2005, pp. 273–290.
– reference: Yiu M L, Mamoulis N, Karras P. Common influence join: A natural join operation for spatial pointsets. In Proc. the 24th ICDE, April 2008, pp. 100–109.
– reference: Giannotti F, Nanni M, Pinelli F, Pedreschi D. Trajectory pattern mining. In Proc. the 13th KDD, August 2007, pp. 330–339.
– reference: Li Q, Zheng Y, Xie X, Chen Y, Liu W, Ma W Y. Mining user similarity based on location history. In Proc. the 16th ACM SIGSPATIAL GIS, November 2008, pp. 34:1–34:10.
– reference: Arumugam S, Jermaine C. Closest-point-of-approach join for moving object histories. In Proc. the 22nd ICDE, April 2006, Article No. 86.
– reference: Lee J G, Han J, Whang K Y. Trajectory clustering: A partition-and-group framework. In Proc. ACM SIGMOD, June 2007, pp. 593–604.
– reference: Jeung H, Liu Q, Shen H T, Zhou X. A hybrid prediction model for moving objects. In Proc. the 24th ICDE, April 2008, pp. 70–79.
– reference: Xue A Y, Qi J, Xie X, Zhang R, Huang J, Li Y. Solving the data sparsity problem in destination prediction. VLDB J., 2015, 24(2): 219–243.
– reference: Cao H, Mamoulis N, Cheung D W. Mining frequent spatio-temporal sequential patterns. In Proc. the 5th ICDM, November 2005, pp. 82–89.
– reference: Kalnis P, Mamoulis N, Bakiras S. On discovering moving clusters in spatio-temporal data. In Proc. the 9th SSTD, August 2005, pp. 364–381.
– reference: Yuan J, Zheng Y, Xie X, Sun G. Driving with knowledge from the physical world. In Proc. the 17th SIGKDD, August 2011, pp. 316–324.
– reference: Jeung H, Shen H T, Zhou X. Convoy queries in spatio-temporal databases. In Proc. the 24th ICDE, April 2008, pp. 1457–1459.
– reference: Chakka V P, Everspaugh A, Patel J M. Indexing large trajectory data sets with SETI. In Proc. the 1st CIDR, January 2003.
– reference: Zhou X, Abel D J, Truffet D. Data partitioning for parallel spatial join processing. In Proc. the 5th SSTD, July 1997, pp. 178–196.
– reference: Jeung H, Yiu M L, Zhou X, Jensen C S, Shen H T. Discovery of convoys in trajectory databases. Proceedings of the VLDB Endowment, 2008, 1(1): 1068–1080.
– reference: Jacox E H, Samet H. Spatial join techniques. ACM Trans. Database Syst., 2007, 32(1): Article No. 7.
– reference: Arge L, Procopiuc O, Ramaswamy S, Suel T, Vitter J S. Scalable sweeping-based spatial join. In Proc. the 24th VLDB, Aug. 1998, pp. 570–581.
– reference: Xie K, Deng K, Zhou X. From trajectories to activities: A spatio-temporal join approach. In Proc. LBSN, November 2009, pp. 25–32.
– reference: Alvares L O, Bogorny V, Kuijpers B, de Macêdo J A F, Moelans B, Vaisman A A. A model for enriching trajectories with semantic geographical information. In Proc. the 15th ACM GIS, Nov. 2007, pp. 22:1–22:8.
– reference: Šaltenis S, Jensen C S, Leutenegger S T, Lopez M A. Indexing the positions of continuously moving objects. ACM SIGMOD Record, 2000, 29(2): 331–342.
– reference: Pfoser D, Jensen C S, Theodoridis Y. Novel approaches in query processing for moving object trajectories. In Proc. the 26th VLDB, September 2000, pp. 395–406.
– reference: Shang S, Ding R, Yuan B, Xie K, Zheng K, Kalnis P. User oriented trajectory search for trip recommendation. In Proc. the 15th EDBT, March 2012, pp. 156–167.
– reference: Xue A Y, Zhang R, Zheng Y, Xie X, Huang J, Xu Z. Destination prediction by sub-trajectory synthesis and privacy protection against such prediction. In Proc. the 29th ICDE, April 2013, pp. 254–265.
– reference: Dittrich J P, Seeger B. Data redundancy and duplicate detection in spatial join processing. In Proc. the 16th ICDE, February 28–March 3, 2000, pp. 535–546.
– reference: Günther O. Efficient computation of spatial joins. In Proc. the 9th ICDE, April 1993, pp. 50–59.
– reference: Shang S, Ding R, Zheng K, Jensen C S, Kalnis P, Zhou X. Personalized trajectory matching in spatial networks. VLDB J., 2014, 23(3): 449–468.
– reference: Kim S W, Cho W S, Lee M J, Whang K Y. A new algorithm for processing joins using the multilevel grid file. In Proc. the 4th DASFAA, April 1995, pp. 115–123.
– reference: Huang Y W, Jing N, Rundensteiner E A. Spatial joins using R-trees: Breadth-first traversal with global optimizations. In Proc. the 23rd VLDB, August 1997, pp. 396–405.
– reference: Patel J M, DeWitt D J. Partition based spatial-merge join. ACM SIGMOD Record, 1996, 25(2): 259–270.
– reference: Zheng K, Zheng Y, Yuan N J, Shang S. On discovery of gathering patterns from trajectories. In Proc. the 29th ICDE, April 2013, pp. 242–253.
– reference: Douglas D H, Peucker T K. Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. Cartographica: The International Journal for Geographic Information and Geovisualization, 1973, 10(2): 112–122.
– reference: Tao Y, Papadias D, Shen Q. Continuous nearest neighbor search. In Proc. the 28th VLDB, August 2002, pp. 287–298.
– reference: Fortune S. A sweepline algorithm for Voronoi diagrams. Algorithmica, 1987, 2: 153–174.
– reference: Horvitz E, Krumm J. Some help on the way: Opportunistic routing under uncertainty. In Proc. the 14th ACM Ubicomp, September 2012, pp. 371–380.
– reference: Koudas N, Sevcik K C. Size separation spatial join. In Proc. ACM SIGMOD, May 1997, pp. 324–335.
– ident: 1557_CR5
  doi: 10.1109/ICDE.2008.4497588
– ident: 1557_CR7
  doi: 10.14778/1453856.1453971
– ident: 1557_CR28
– ident: 1557_CR6
  doi: 10.1109/ICDE.2008.4497415
– ident: 1557_CR8
  doi: 10.1145/1247480.1247546
– ident: 1557_CR1
– ident: 1557_CR39
  doi: 10.1145/1629890.1629898
– ident: 1557_CR3
  doi: 10.1145/1463434.1463477
– ident: 1557_CR36
  doi: 10.1145/2370216.2370273
– ident: 1557_CR17
  doi: 10.1016/B978-155860869-6/50033-0
– ident: 1557_CR20
  doi: 10.1145/1206049.1206056
– ident: 1557_CR23
– ident: 1557_CR10
  doi: 10.1145/2247596.2247616
– ident: 1557_CR2
  doi: 10.1109/ICDE.2008.4497418
– ident: 1557_CR15
– ident: 1557_CR30
– ident: 1557_CR35
  doi: 10.1145/2020408.2020462
– ident: 1557_CR13
  doi: 10.1109/ICDE.2002.994759
– ident: 1557_CR32
  doi: 10.1145/1341012.1341041
– ident: 1557_CR12
  doi: 10.1145/335191.335427
– ident: 1557_CR34
  doi: 10.1109/ICDE.2013.6544830
– ident: 1557_CR33
  doi: 10.1007/s00778-014-0369-7
– ident: 1557_CR27
  doi: 10.1109/ICDE.2000.839452
– ident: 1557_CR31
  doi: 10.1007/11535331_21
– ident: 1557_CR19
  doi: 10.1145/1629890.1629897
– ident: 1557_CR16
  doi: 10.1109/ICDE.2006.36
– ident: 1557_CR38
  doi: 10.1007/11535331_16
– ident: 1557_CR26
  doi: 10.1145/253260.253340
– ident: 1557_CR18
  doi: 10.1145/235968.233338
– ident: 1557_CR25
  doi: 10.1007/3-540-63238-7_30
– ident: 1557_CR4
  doi: 10.1145/1281192.1281230
– ident: 1557_CR24
– ident: 1557_CR9
  doi: 10.1007/s00778-013-0331-0
– ident: 1557_CR22
  doi: 10.1145/170035.170075
– ident: 1557_CR11
  doi: 10.1109/ICDE.2013.6544829
– ident: 1557_CR14
– ident: 1557_CR21
  doi: 10.1109/ICDE.1993.344078
– ident: 1557_CR37
  doi: 10.1007/BF01840357
– ident: 1557_CR29
  doi: 10.3138/FM57-6770-U75U-7727
SSID ssj0037044
Score 2.0859
Snippet Variable influence duration (VID) join is a novel spatio-temporal join operation between a set T of trajectories and a set P of spatial points. Here,...
Variable influence duration (VID) join is a novel spatio-temporal join operation between a set T of trajectories and a set P of spatial points. Here,...
Variable influence duration (VID) join is a novel spatio-temporal join operation between a set T of trajectories and a set P of spatial points. Here,...
SourceID wanfang
proquest
crossref
springer
chongqing
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 725
SubjectTerms Advertising
Algorithms
Artificial Intelligence
Computer engineering
Computer Science
Data Structures and Information Theory
Fast food
Information Systems Applications (incl.Internet)
Location based services
Mapping
Object motion
Optimization
Optimization techniques
Regular Paper
Restaurants
Segments
Social security
Software Engineering
Spatial data
Studies
Supermarkets
Theory of Computation
Trajectories
兴趣点
基于位置的服务
持续时间
映射
移动对象
空连接
空间点
视频
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB7a9JJLHn0Qd5OgQntJMfghS3ZueZIuTekhr5uQLHnTbbHT2oH9-ZnxWrsJpIVebLDkka2RZkaj0XwAH610sYuEC1E5F3iRZVhYnI86djrWpXW8R1E4_ybOLvn4JrsZznG3Ptrdb0n2knp52A2NFQqiykLUgTKUL-FVRtm8cBBfJgde_KYy6hFcyW8dEiKm38p8jgQlVLht6slvbO6pYlpam4sN0v5YT13pevJIA51uwNpgOrKDOa834YWrX8O6h2Vgwyx9A9dXX47ZuPlR77NzTekXJgw10rR3z-O6mHUN-46lXcuaivUeQfwCekoIn2iNs6_N3I8XHqKKs8yLk7dwcXpycXQWDvgJYcll0WF_0ynVKNeFiU1euSrOcmvynFKSCZPxVAhrZBmXHG2EJLUF3gw3NnW2srpM38FK3dRuC5guKW9XFBmu0RyQvIgrmRiOa0OdJk6YAEaLflR38zQZSgg0JSlKNYDI96wqh8zjBIDxSy1zJhNjFDJGEWOUDGBv8Yqn94_K255dapiBraJ_LwgRKQ7gw6IY5w5tiOjaNfdYh8RbggvcLIDPns2PSPy9wU_DSFhWnrbTn7NpOzPKJeRFwt4S7_-L6ghW6c15LPA2rHR_7t0OWjyd2e1H-APZrfS7
  priority: 102
  providerName: Springer Nature
Title VID Join: Mapping Trajectories to Points of Interest to Support Location-Based Services
URI http://lib.cqvip.com/qk/85226X/201504/665332822.html
https://link.springer.com/article/10.1007/s11390-015-1557-7
https://www.proquest.com/docview/1694930231
https://www.proquest.com/docview/1730120945
https://d.wanfangdata.com.cn/periodical/jsjkxjsxb-e201504006
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1860-4749
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0037044
  issn: 1000-9000
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1860-4749
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0037044
  issn: 1000-9000
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1860-4749
  dateEnd: 20181130
  omitProxy: true
  ssIdentifier: ssj0037044
  issn: 1000-9000
  databaseCode: 8FG
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1860-4749
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0037044
  issn: 1000-9000
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1860-4749
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0037044
  issn: 1000-9000
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED9t7QsvfCPCRmUkeAFF5MOxEySEOmg3BqsmtMF4suzYKRSUbDST9udzl8bteGAviWQ7juWz785n-_cDeG6li10kXIjGucCHLMPC4nzUsdOxLq3jHYvC0UwcnPLDs-xsC2b-Lgwdq_Q6sVPUtikpRv46FgUviOEmfnd-ERJrFO2uegoN3VMr2LcdxNg2DBNCxhrAcG8yO_7idXMqo47elYLaIdFl-n3O7jIdOkN0SCsLsQ4ZSkJb-NHU8wu0If9arY0rut497e781JWu59fM0_Qu3O79SjZeDYR7sOXq-3DHczawfgo_gG9fP35gh83P-g070oTNMGdorhZd7B4Xzaxt2DHmtkvWVKwLF2ILKJXoP9FVZ5-bVZAv3EP7Z5nXNQ_hZDo5eX8Q9uQKYcll0aIw6AprlOvCxCavXBVnuTV5TnhlwmQ8FcIaWcYlRwciSW2BL8ONTZ2trC7TRzCom9o9BqZLAvWKIsM1-gqSF3ElE8Nx4ajTxAkTwM66H9X5CkNDCYF-Jh1hDSDyPavKHpac2DF-qw2gMglGoWAUCUbJAF6uP_H13VB414tL9dNzqTaDKYBn62ycWLRbomvXXGIZ0n0Jrn6zAF55MV-r4v8_fNGPhE3hxXLx62qxvDLKJRRiwt4ST25u2A7coqKrk8G7MGj_XLqn6P-0ZgTb-XR_BMPx_vdPk1E_xDH1NBn_BQS2AiM
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9gAX3ojQAkaiF1BEHk6cIFWI0la77e6qQgv0Ztmxs7CgpCWpKD-O_8ZMNt4tB3rrJZESx7E89jw98wG8NMKGNkitj8I5x4so_NzgflShVaEqjOUdisJ4kg4-8cOT5GQN_rhcGDpW6Xhix6hNXZCP_E2Y5jwnhJvw3emZT6hRFF11EBqqh1YwO12JsT6x48j-_oUmXLMz3EN6b0fRwf70w8DvUQb8gou8xVFRLmeQqVyHOittGSaZ0VlGhbtSnfA4TY0WRVhwlKRRbHK8aa5NbE1pVBFjtzdgg8c8R9tvY3d_cvzRiYJYBB2aLPnQfULndGHVLncPdS86E5b4OGThCyru8LWuZmcosv4VkivNdxms7VKMqlJVs0vS8OAu3O7VWPZ-se7uwZqt7sMdBxHBeo7xAL58Hu6xw_pb9ZaNFZWCmDGUjvMuVIA2Omtrdoxv24bVJeu8kzgCekpoo2gZsFG98Cn6uyhuDXOs7SFMr2OWH8F6VVf2MTBVUA2xINBcoWoieB6WItIc7VQVRzbVHmwu51GeLkp2yDRFtZZOzHoQuJmVRV8FncA4fshV_WYijETCSCKMFB68Wn7i-rui8ZYjl-y5QSNXa9eDF8vXuI8pOKMqW59jG2K1ERrbiQevHZkvdfH_H273K2HVeN7Mv1_MmwstbUQeLZyt9MnVA3sONwfT8UiOhpOjTbhFny0OJW_Bevvz3D5F1avVz_oFzkBe85b6CxW-Owg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BkRAX3ojQAkaCCyhqHo6dcCuUVVvaqocWerPs2FnYVk4hqdSfz0wS7xYJkLgkUuyME4_tGY_t7wN4baVLXSJcjMa5wous48pif9Sp06mureMDi8LBodg54XunxenEc9qF3e5hSXI800AoTb7fvLDN5urgGzoutKGqiNEeyljehFuccBKwQZ9kW2EozmUysLlSDDsmdsywrPknEQSu8K318x9Y9O9GauV5LhdLhyM-vtF-fs0aze7D3cmNZFuj3h_ADecfwr1A0cCmHvsIvn7Z3WZ77Xf_nh1ogmKYM7ROiyFUj3Nk1rfsCFP7jrUNG6KD-AX0lNg-0TNn--0Y04s_oLmzLAwtj-F49un44048cSnENZdVj3VPJ1aTUlcmNWXjmrQorSlLgicTpuC5ENbIOq05-gtZbiu8GW5s7mxjdZ0_gTXfevcUmK4JwytJDNfoGkhepY3MDMd5os4zJ0wE68t6VBcjZIYSAt1K2rEaQRJqVtUTCjmRYZyrFX4yKUahYhQpRskI3i5fCfL-kXkjqEtNvbFT9O8VsSOlEbxaJmM_osUR7V17iXloqMtwsltE8C6o-ZqIvxf4ZmoJq8yLbnF2teiujHIZRZSwtsSz_5L6Em4fbc_U_u7h53W4Q0LGLcIbsNb_vHTP0RHqzYuhsf8C0yv74w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=VID+Join%EF%BC%9A+Mapping+Trajectories+to+Points+of+Interest+to+Support+Location-Based+Services&rft.jtitle=%E8%AE%A1%E7%AE%97%E6%9C%BA%E7%A7%91%E5%AD%A6%E6%8A%80%E6%9C%AF%E5%AD%A6%E6%8A%A5%EF%BC%9A%E8%8B%B1%E6%96%87%E7%89%88&rft.au=%E5%95%86%E7%83%81+%E8%B0%A2%E7%8F%82%E5%BF%83+%E9%83%91%E5%87%AF+%E5%88%98%E5%AE%B6%E4%BF%8A+%E6%96%87%E7%BB%A7%E8%8D%A3&rft.date=2015-07-01&rft.issn=1000-9000&rft.eissn=1860-4749&rft.issue=4&rft.spage=725&rft.epage=744&rft_id=info:doi/10.1007%2Fs11390-015-1557-7&rft.externalDocID=665332822
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F85226X%2F85226X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjkxjsxb-e%2Fjsjkxjsxb-e.jpg