Prefrontal Transcranial Direct Current Stimulation Changes Connectivity of Resting-State Networks during fMRI

Transcranial direct current stimulation (tDCS) has been proposed for experimental and therapeutic modulation of regional brain function. Specifically, anodal tDCS of the dorsolateral prefrontal cortex (DLPFC) together with cathodal tDCS of the supraorbital region have been associated with improvemen...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of neuroscience Vol. 31; no. 43; pp. 15284 - 15293
Main Authors Keeser, Daniel, Meindl, Thomas, Bor, Julie, Palm, Ulrich, Pogarell, Oliver, Mulert, Christoph, Brunelin, Jerome, Möller, Hans-Jürgen, Reiser, Maximilian, Padberg, Frank
Format Journal Article
LanguageEnglish
Published United States Society for Neuroscience 26.10.2011
Subjects
Online AccessGet full text
ISSN0270-6474
1529-2401
1529-2401
DOI10.1523/JNEUROSCI.0542-11.2011

Cover

Abstract Transcranial direct current stimulation (tDCS) has been proposed for experimental and therapeutic modulation of regional brain function. Specifically, anodal tDCS of the dorsolateral prefrontal cortex (DLPFC) together with cathodal tDCS of the supraorbital region have been associated with improvement of cognition and mood, and have been suggested for the treatment of several neurological and psychiatric disorders. Although modeled mathematically, the distribution, direction, and extent of tDCS-mediated effects on brain physiology are not well understood. The current study investigates whether tDCS of the human prefrontal cortex modulates resting-state network (RSN) connectivity measured by functional magnetic resonance imaging (fMRI). Thirteen healthy subjects underwent real and sham tDCS in random order on separate days. tDCS was applied for 20 min at 2 mA with the anode positioned over the left DLPFC and the cathode over the right supraorbital region. Patterns of resting-state brain connectivity were assessed before and after tDCS with 3 T fMRI, and changes were analyzed for relevant networks related to the stimulation–electrode localizations. At baseline, four RSNs were detected, corresponding to the default mode network (DMN), the left and right frontal-parietal networks (FPNs) and the self-referential network. After real tDCS and compared with sham tDCS, significant changes of regional brain connectivity were found for the DMN and the FPNs both close to the primary stimulation site and in connected brain regions. These findings show that prefrontal tDCS modulates resting-state functional connectivity in distinct functional networks of the human brain.
AbstractList Transcranial direct current stimulation (tDCS) has been proposed for experimental and therapeutic modulation of regional brain function. Specifically, anodal tDCS of the dorsolateral prefrontal cortex (DLPFC) together with cathodal tDCS of the supraorbital region have been associated with improvement of cognition and mood, and have been suggested for the treatment of several neurological and psychiatric disorders. Although modeled mathematically, the distribution, direction, and extent of tDCS-mediated effects on brain physiology are not well understood. The current study investigates whether tDCS of the human prefrontal cortex modulates resting-state network (RSN) connectivity measured by functional magnetic resonance imaging (fMRI). Thirteen healthy subjects underwent real and sham tDCS in random order on separate days. tDCS was applied for 20 min at 2 mA with the anode positioned over the left DLPFC and the cathode over the right supraorbital region. Patterns of resting-state brain connectivity were assessed before and after tDCS with 3 T fMRI, and changes were analyzed for relevant networks related to the stimulation–electrode localizations. At baseline, four RSNs were detected, corresponding to the default mode network (DMN), the left and right frontal-parietal networks (FPNs) and the self-referential network. After real tDCS and compared with sham tDCS, significant changes of regional brain connectivity were found for the DMN and the FPNs both close to the primary stimulation site and in connected brain regions. These findings show that prefrontal tDCS modulates resting-state functional connectivity in distinct functional networks of the human brain.
Transcranial direct current stimulation (tDCS) has been proposed for experimental and therapeutic modulation of regional brain function. Specifically, anodal tDCS of the dorsolateral prefrontal cortex (DLPFC) together with cathodal tDCS of the supraorbital region have been associated with improvement of cognition and mood, and have been suggested for the treatment of several neurological and psychiatric disorders. Although modeled mathematically, the distribution, direction, and extent of tDCS-mediated effects on brain physiology are not well understood. The current study investigates whether tDCS of the human prefrontal cortex modulates resting-state network (RSN) connectivity measured by functional magnetic resonance imaging (fMRI). Thirteen healthy subjects underwent real and sham tDCS in random order on separate days. tDCS was applied for 20 min at 2 mA with the anode positioned over the left DLPFC and the cathode over the right supraorbital region. Patterns of resting-state brain connectivity were assessed before and after tDCS with 3 T fMRI, and changes were analyzed for relevant networks related to the stimulation-electrode localizations. At baseline, four RSNs were detected, corresponding to the default mode network (DMN), the left and right frontal-parietal networks (FPNs) and the self-referential network. After real tDCS and compared with sham tDCS, significant changes of regional brain connectivity were found for the DMN and the FPNs both close to the primary stimulation site and in connected brain regions. These findings show that prefrontal tDCS modulates resting-state functional connectivity in distinct functional networks of the human brain.Transcranial direct current stimulation (tDCS) has been proposed for experimental and therapeutic modulation of regional brain function. Specifically, anodal tDCS of the dorsolateral prefrontal cortex (DLPFC) together with cathodal tDCS of the supraorbital region have been associated with improvement of cognition and mood, and have been suggested for the treatment of several neurological and psychiatric disorders. Although modeled mathematically, the distribution, direction, and extent of tDCS-mediated effects on brain physiology are not well understood. The current study investigates whether tDCS of the human prefrontal cortex modulates resting-state network (RSN) connectivity measured by functional magnetic resonance imaging (fMRI). Thirteen healthy subjects underwent real and sham tDCS in random order on separate days. tDCS was applied for 20 min at 2 mA with the anode positioned over the left DLPFC and the cathode over the right supraorbital region. Patterns of resting-state brain connectivity were assessed before and after tDCS with 3 T fMRI, and changes were analyzed for relevant networks related to the stimulation-electrode localizations. At baseline, four RSNs were detected, corresponding to the default mode network (DMN), the left and right frontal-parietal networks (FPNs) and the self-referential network. After real tDCS and compared with sham tDCS, significant changes of regional brain connectivity were found for the DMN and the FPNs both close to the primary stimulation site and in connected brain regions. These findings show that prefrontal tDCS modulates resting-state functional connectivity in distinct functional networks of the human brain.
Author Brunelin, Jerome
Palm, Ulrich
Keeser, Daniel
Meindl, Thomas
Mulert, Christoph
Bor, Julie
Möller, Hans-Jürgen
Padberg, Frank
Pogarell, Oliver
Reiser, Maximilian
Author_xml – sequence: 1
  givenname: Daniel
  surname: Keeser
  fullname: Keeser, Daniel
– sequence: 2
  givenname: Thomas
  surname: Meindl
  fullname: Meindl, Thomas
– sequence: 3
  givenname: Julie
  surname: Bor
  fullname: Bor, Julie
– sequence: 4
  givenname: Ulrich
  surname: Palm
  fullname: Palm, Ulrich
– sequence: 5
  givenname: Oliver
  surname: Pogarell
  fullname: Pogarell, Oliver
– sequence: 6
  givenname: Christoph
  surname: Mulert
  fullname: Mulert, Christoph
– sequence: 7
  givenname: Jerome
  surname: Brunelin
  fullname: Brunelin, Jerome
– sequence: 8
  givenname: Hans-Jürgen
  surname: Möller
  fullname: Möller, Hans-Jürgen
– sequence: 9
  givenname: Maximilian
  surname: Reiser
  fullname: Reiser, Maximilian
– sequence: 10
  givenname: Frank
  surname: Padberg
  fullname: Padberg, Frank
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22031874$$D View this record in MEDLINE/PubMed
BookMark eNqFUV1vFCEUJabGbqt_oeHNp9leGBhmEmNixqpramt222fCzMAWnYEWmJr--7L2I-qLJEDgnnNP7jkHaM95pxE6IrAknJbHX89OLtfnm3a1BM5oQciSAiEv0CJXm4IyIHtoAVRAUTHB9tFBjD8AQAARr9A-pVCSWrAFmr4HbYJ3SY34IigX-3zY_Phog-4TbucQtEt4k-w0jypZ73B7pdxWR9x65zLG3tp0h73Bax2Tddtik1TS-EynXz78jHiYQ_7F5tt69Rq9NGqM-s3jfYguP51ctF-K0_PPq_bDadEz0aSiMbsljFJDyeuK65J0JRhTK06Bca66Shhe9kPHa9aQvCvQ1BA1DLQeOlUeovcPfa_nbtJDnycIapTXwU4q3EmvrPy74uyV3PpbWQkoOeW5wdvHBsHfzHkuOdnY63FUTvs5ygYIZL8rlpFHf0o9azxZnAHvHgB98DFmt2Vv028js7IdJQG5S1Q-Jyp3iUpC5C7RTK_-oT8p_Id4D8K1qWc
CitedBy_id crossref_primary_10_1016_j_neures_2022_05_002
crossref_primary_10_1186_s12967_023_03989_9
crossref_primary_10_1073_pnas_1421435112
crossref_primary_10_3389_fnhum_2021_637071
crossref_primary_10_1007_s00221_019_05685_x
crossref_primary_10_1002_hbm_25310
crossref_primary_10_1016_j_cub_2015_01_055
crossref_primary_10_1016_j_clinph_2013_04_188
crossref_primary_10_1007_s00213_017_4722_6
crossref_primary_10_3389_fpsyg_2016_00380
crossref_primary_10_1523_JNEUROSCI_1140_23_2023
crossref_primary_10_1038_s41598_018_35879_2
crossref_primary_10_1016_j_heliyon_2020_e04912
crossref_primary_10_1055_a_1272_9435
crossref_primary_10_1007_s10072_016_2748_x
crossref_primary_10_1093_cercor_bhy093
crossref_primary_10_1016_j_brs_2023_02_010
crossref_primary_10_1016_j_nicl_2019_101734
crossref_primary_10_1556_2006_2020_00092
crossref_primary_10_1016_j_nicl_2024_103599
crossref_primary_10_1007_s00115_019_00799_7
crossref_primary_10_1016_j_neuropsychologia_2015_04_024
crossref_primary_10_3389_fpsyt_2023_987093
crossref_primary_10_1016_j_nicl_2018_05_023
crossref_primary_10_1016_j_neuroimage_2016_01_037
crossref_primary_10_3389_fnhum_2016_00479
crossref_primary_10_1016_j_neuropsychologia_2014_11_021
crossref_primary_10_1016_j_biopsycho_2017_07_008
crossref_primary_10_1007_s00221_015_4391_9
crossref_primary_10_1016_j_arr_2020_101065
crossref_primary_10_1016_j_neuroimage_2013_11_037
crossref_primary_10_1016_j_neucli_2018_12_003
crossref_primary_10_1509_jmr_13_0560
crossref_primary_10_1080_09540261_2021_1879030
crossref_primary_10_3390_brainsci12070929
crossref_primary_10_3389_fnhum_2022_889023
crossref_primary_10_1093_scan_nst165
crossref_primary_10_1016_j_neuroscience_2016_10_066
crossref_primary_10_1016_j_brs_2018_05_001
crossref_primary_10_1016_j_neuroimage_2018_05_063
crossref_primary_10_3389_fpain_2022_959609
crossref_primary_10_1016_j_jad_2020_11_030
crossref_primary_10_1017_S0033291721004074
crossref_primary_10_3390_brainsci8020037
crossref_primary_10_1371_journal_pone_0269491
crossref_primary_10_3109_15622975_2013_876514
crossref_primary_10_1152_jn_00606_2012
crossref_primary_10_1007_s00406_020_01187_y
crossref_primary_10_1007_s00415_018_8754_6
crossref_primary_10_1016_j_brs_2016_10_013
crossref_primary_10_1016_j_pnpbp_2022_110667
crossref_primary_10_1155_2018_1613402
crossref_primary_10_1016_j_actpsy_2024_104553
crossref_primary_10_1016_j_neuroimage_2019_06_047
crossref_primary_10_1016_j_neuroimage_2019_05_009
crossref_primary_10_1002_ana_24689
crossref_primary_10_3389_fnhum_2018_00441
crossref_primary_10_1093_cercor_bhab432
crossref_primary_10_1007_s40473_018_0138_9
crossref_primary_10_1080_02699052_2016_1274776
crossref_primary_10_1016_j_neuroimage_2024_120792
crossref_primary_10_2139_ssrn_4179155
crossref_primary_10_1007_s00406_018_0894_2
crossref_primary_10_1016_j_cortex_2017_11_008
crossref_primary_10_1016_j_neuropsychologia_2016_07_022
crossref_primary_10_1016_j_neuroscience_2023_01_022
crossref_primary_10_1016_j_dcn_2013_04_001
crossref_primary_10_1186_s13229_017_0152_x
crossref_primary_10_3389_fncel_2016_00072
crossref_primary_10_3758_s13415_016_0450_3
crossref_primary_10_1016_j_neuropsychologia_2014_09_015
crossref_primary_10_1016_j_neubiorev_2021_02_035
crossref_primary_10_3389_fnhum_2020_00064
crossref_primary_10_1371_journal_pone_0118340
crossref_primary_10_1016_j_jpsychires_2024_06_034
crossref_primary_10_3389_fnins_2017_00691
crossref_primary_10_1093_cercor_bht314
crossref_primary_10_1016_j_drugalcdep_2018_08_018
crossref_primary_10_1002_hbm_24405
crossref_primary_10_1002_hbm_25857
crossref_primary_10_1016_j_brs_2018_07_046
crossref_primary_10_3390_jcm12020401
crossref_primary_10_1007_s40473_014_0009_y
crossref_primary_10_1016_j_smrv_2015_12_005
crossref_primary_10_1523_JNEUROSCI_0079_17_2017
crossref_primary_10_3389_fnhum_2020_00179
crossref_primary_10_1016_j_drugalcdep_2018_10_016
crossref_primary_10_1093_brain_aww002
crossref_primary_10_3389_fnhum_2022_929917
crossref_primary_10_1016_j_jpain_2022_01_012
crossref_primary_10_1016_j_brs_2023_11_012
crossref_primary_10_1002_hbm_23101
crossref_primary_10_3389_fpsyt_2017_00259
crossref_primary_10_1109_TBME_2013_2244890
crossref_primary_10_1016_j_brs_2017_04_125
crossref_primary_10_1016_j_psychres_2018_11_033
crossref_primary_10_3389_fnhum_2016_00270
crossref_primary_10_3389_fnhum_2018_00128
crossref_primary_10_3389_fnagi_2017_00401
crossref_primary_10_1038_s41467_023_38910_x
crossref_primary_10_1159_000495945
crossref_primary_10_1111_ner_13137
crossref_primary_10_1007_s00406_023_01666_y
crossref_primary_10_3389_fphys_2024_1365530
crossref_primary_10_1093_neuros_nyx482
crossref_primary_10_1016_j_bpsc_2019_12_020
crossref_primary_10_1093_cercor_bhx055
crossref_primary_10_1186_s12984_019_0561_5
crossref_primary_10_1162_jocn_a_01449
crossref_primary_10_1016_j_neuroimage_2021_118438
crossref_primary_10_3389_fnins_2022_771393
crossref_primary_10_1016_j_neures_2014_09_007
crossref_primary_10_1080_17434440_2019_1615440
crossref_primary_10_1016_j_brs_2020_02_019
crossref_primary_10_1016_j_mehy_2013_11_021
crossref_primary_10_21307_ane_2021_016
crossref_primary_10_1159_000507372
crossref_primary_10_1016_j_neuropsychologia_2016_08_017
crossref_primary_10_1016_j_pnpbp_2020_110160
crossref_primary_10_3389_fnins_2015_00440
crossref_primary_10_3389_fnins_2021_641951
crossref_primary_10_1007_s10072_024_07365_3
crossref_primary_10_1016_j_neurol_2012_05_008
crossref_primary_10_1002_hbm_22429
crossref_primary_10_1038_nmeth_2482
crossref_primary_10_3390_brainsci12020198
crossref_primary_10_1002_hbm_24881
crossref_primary_10_1016_j_pnpbp_2020_110177
crossref_primary_10_3389_fnsys_2014_00147
crossref_primary_10_1016_j_tins_2014_08_003
crossref_primary_10_1016_j_cub_2017_09_020
crossref_primary_10_1016_j_psychres_2022_114530
crossref_primary_10_1016_j_exger_2018_11_019
crossref_primary_10_1162_jocn_a_01421
crossref_primary_10_1016_j_pnpbp_2019_109715
crossref_primary_10_1016_j_neubiorev_2017_06_015
crossref_primary_10_1176_appi_ajp_2012_11071091
crossref_primary_10_3389_fnsys_2014_00159
crossref_primary_10_1007_s00429_023_02667_2
crossref_primary_10_1016_j_neulet_2016_06_056
crossref_primary_10_1016_j_ijchp_2023_100374
crossref_primary_10_3758_s13415_018_0582_8
crossref_primary_10_1016_j_comppsych_2021_152257
crossref_primary_10_1016_j_neuroimage_2017_01_061
crossref_primary_10_3389_fnint_2018_00064
crossref_primary_10_1080_20445911_2014_996569
crossref_primary_10_1371_journal_pone_0256100
crossref_primary_10_1177_1550059412444978
crossref_primary_10_1002_hbm_22322
crossref_primary_10_1093_schbul_sbw041
crossref_primary_10_3389_fncel_2015_00460
crossref_primary_10_3389_fnhum_2019_00274
crossref_primary_10_1016_j_bandc_2021_105789
crossref_primary_10_1146_annurev_neuro_110920_013544
crossref_primary_10_1007_s10548_022_00887_z
crossref_primary_10_1152_jn_00074_2020
crossref_primary_10_1212_WNL_0000000000000260
crossref_primary_10_1111_nyas_12985
crossref_primary_10_1016_j_heliyon_2018_e00685
crossref_primary_10_1177_1545968319840285
crossref_primary_10_1080_09540261_2017_1286299
crossref_primary_10_1089_brain_2016_0440
crossref_primary_10_1371_journal_pone_0141417
crossref_primary_10_1016_j_neuroimage_2016_06_003
crossref_primary_10_1038_s41598_018_27502_1
crossref_primary_10_1162_netn_a_00116
crossref_primary_10_1016_j_neuropsychologia_2015_07_013
crossref_primary_10_1038_s41591_024_03305_y
crossref_primary_10_3389_fnins_2023_1208581
crossref_primary_10_3390_brainsci11050662
crossref_primary_10_1007_s00406_020_01177_0
crossref_primary_10_1016_j_neulet_2013_01_047
crossref_primary_10_1523_JNEUROSCI_2637_19_2020
crossref_primary_10_1097_WNR_0000000000000283
crossref_primary_10_1016_j_neuropsychologia_2013_05_018
crossref_primary_10_3389_fpsyg_2017_02033
crossref_primary_10_3389_fnhum_2019_00297
crossref_primary_10_1089_brain_2014_0325
crossref_primary_10_1016_j_schres_2013_08_043
crossref_primary_10_1093_cercor_bhy086
crossref_primary_10_3390_brainsci10070469
crossref_primary_10_1016_j_cortex_2017_07_001
crossref_primary_10_1093_brain_awx170
crossref_primary_10_1016_j_heliyon_2020_e05132
crossref_primary_10_1016_j_tics_2011_11_007
crossref_primary_10_2139_ssrn_4173661
crossref_primary_10_1016_j_neuroimage_2023_120185
crossref_primary_10_3390_biomedicines10102397
crossref_primary_10_3390_brainsci14010066
crossref_primary_10_3389_fncel_2016_00257
crossref_primary_10_1016_j_clinph_2016_10_087
crossref_primary_10_1109_TNSRE_2022_3153353
crossref_primary_10_3389_fnins_2020_00744
crossref_primary_10_1016_j_bandc_2019_03_005
crossref_primary_10_1016_j_neuroimage_2019_116062
crossref_primary_10_1111_desc_12422
crossref_primary_10_1016_j_expneurol_2021_113713
crossref_primary_10_1016_j_psychres_2022_114908
crossref_primary_10_1027_1016_9040_a000248
crossref_primary_10_1007_s11682_019_00195_4
crossref_primary_10_1007_s10545_018_0181_4
crossref_primary_10_1016_j_bandc_2014_09_002
crossref_primary_10_1111_ner_12632
crossref_primary_10_1007_s11910_018_0837_3
crossref_primary_10_1016_j_neuroimage_2013_05_117
crossref_primary_10_3389_fpsyt_2014_00097
crossref_primary_10_1186_s12967_022_03710_2
crossref_primary_10_3389_fnbeh_2018_00016
crossref_primary_10_1016_j_psychres_2019_01_059
crossref_primary_10_1080_00207454_2017_1403440
crossref_primary_10_1111_ejn_13229
crossref_primary_10_1016_j_neurobiolaging_2017_09_017
crossref_primary_10_1111_ejn_12375
crossref_primary_10_1371_journal_pone_0218327
crossref_primary_10_3389_fnsys_2022_956315
crossref_primary_10_1016_j_euroneuro_2018_09_009
crossref_primary_10_1016_j_neubiorev_2016_03_028
crossref_primary_10_1016_j_nlm_2023_107750
crossref_primary_10_1016_j_pnpbp_2014_09_015
crossref_primary_10_3389_fpsyt_2023_1156617
crossref_primary_10_1044_2024_AJSLP_24_00016
crossref_primary_10_1162_jocn_a_00888
crossref_primary_10_1016_j_neurobiolaging_2021_11_005
crossref_primary_10_3389_fnhum_2019_00411
crossref_primary_10_1093_scan_nsy069
crossref_primary_10_1007_s00406_016_0761_y
crossref_primary_10_1001_jamanetworkopen_2020_25839
crossref_primary_10_1007_s41465_016_0005_0
crossref_primary_10_1371_journal_pone_0095984
crossref_primary_10_1016_j_bandc_2016_06_009
crossref_primary_10_1016_j_cortex_2015_03_023
crossref_primary_10_1016_j_brs_2023_06_011
crossref_primary_10_1016_j_neubiorev_2015_09_010
crossref_primary_10_1038_s41598_017_17279_0
crossref_primary_10_3389_fnagi_2017_00033
crossref_primary_10_1016_j_brs_2018_09_002
crossref_primary_10_1162_jocn_a_00979
crossref_primary_10_1007_s00406_016_0674_9
crossref_primary_10_1016_j_jpsychires_2015_07_018
crossref_primary_10_1002_jnr_25378
crossref_primary_10_1016_j_jpsychires_2012_09_025
crossref_primary_10_3389_fnmol_2022_1056966
crossref_primary_10_1093_schbul_sbv114
crossref_primary_10_1007_s12311_018_0967_9
crossref_primary_10_1002_hbm_24908
crossref_primary_10_1016_j_brs_2014_11_008
crossref_primary_10_1088_1741_2552_adb335
crossref_primary_10_3390_brainsci11070948
crossref_primary_10_1002_brb3_922
crossref_primary_10_3389_fnins_2022_984893
crossref_primary_10_1093_cercor_bhac010
crossref_primary_10_1016_j_brs_2015_05_010
crossref_primary_10_3389_fpsyg_2015_00244
crossref_primary_10_1016_j_neuropsychologia_2016_03_008
crossref_primary_10_1016_j_neuroimage_2014_01_016
crossref_primary_10_1016_j_neuroimage_2013_07_038
crossref_primary_10_1016_j_neuroimage_2022_118874
crossref_primary_10_1016_j_nicl_2020_102500
crossref_primary_10_1111_ejn_14347
crossref_primary_10_2217_nmt_2020_0061
crossref_primary_10_2147_NDT_S259499
crossref_primary_10_3233_RNN_150625
crossref_primary_10_1093_cercor_bhaa077
crossref_primary_10_1016_j_bbr_2023_114661
crossref_primary_10_1155_2019_7089543
crossref_primary_10_3390_brainsci12081095
crossref_primary_10_3389_fnbeh_2018_00194
crossref_primary_10_1161_STROKEAHA_121_034200
crossref_primary_10_1016_j_nicl_2023_103329
crossref_primary_10_3389_fnsys_2014_00132
crossref_primary_10_3390_brainsci14111067
crossref_primary_10_1016_j_nicl_2017_01_025
crossref_primary_10_1177_1550059421991688
crossref_primary_10_1093_scan_nsy026
crossref_primary_10_1093_scan_nsx055
crossref_primary_10_1073_pnas_1503093112
crossref_primary_10_3389_fnhum_2023_1229618
crossref_primary_10_1016_j_cortex_2019_08_009
crossref_primary_10_1113_jphysiol_2012_232975
crossref_primary_10_1016_j_neuroscience_2019_04_032
crossref_primary_10_1016_j_neuroimage_2018_07_025
crossref_primary_10_1016_j_schres_2014_10_054
crossref_primary_10_1080_08990220_2017_1292238
crossref_primary_10_1097_j_pain_0000000000000886
crossref_primary_10_1038_s41596_021_00664_5
crossref_primary_10_1016_j_pnpbp_2015_10_001
crossref_primary_10_1177_10538135241296371
crossref_primary_10_3390_biomedicines10102410
crossref_primary_10_1016_j_bbr_2015_04_031
crossref_primary_10_1117_1_JBO_20_4_046007
crossref_primary_10_1016_j_brs_2017_09_005
crossref_primary_10_3389_fnhum_2020_541052
crossref_primary_10_1093_cercor_bhy238
crossref_primary_10_3389_fpsyg_2020_570030
crossref_primary_10_1038_s41598_020_76201_3
crossref_primary_10_3389_fnhum_2014_00601
crossref_primary_10_1016_j_brainres_2014_09_066
crossref_primary_10_1371_journal_pone_0135371
crossref_primary_10_1016_j_neubiorev_2016_03_006
crossref_primary_10_1016_j_neubiorev_2017_11_006
crossref_primary_10_3389_fnhum_2019_00474
crossref_primary_10_1016_j_neuroimage_2021_118100
crossref_primary_10_1080_17470919_2014_946621
crossref_primary_10_1080_02687038_2016_1227425
crossref_primary_10_1007_s00406_017_0769_y
crossref_primary_10_1016_j_brs_2018_04_016
crossref_primary_10_1016_j_nicl_2019_101689
crossref_primary_10_3389_fnins_2020_00152
crossref_primary_10_12677_AP_2019_92038
crossref_primary_10_1038_s41598_021_85749_7
crossref_primary_10_1016_j_pain_2014_07_018
crossref_primary_10_1586_17434440_2016_1153968
crossref_primary_10_1016_j_neulet_2020_134775
crossref_primary_10_1007_s11357_024_01077_4
crossref_primary_10_1038_s41598_018_34098_z
crossref_primary_10_1080_13554794_2017_1319492
crossref_primary_10_1016_j_brs_2019_06_006
crossref_primary_10_1089_brain_2013_0196
crossref_primary_10_1016_j_schres_2015_06_011
crossref_primary_10_1162_jocn_a_00927
crossref_primary_10_1016_j_neubiorev_2016_08_001
crossref_primary_10_3389_fnhum_2017_00512
crossref_primary_10_1007_s41465_024_00315_z
crossref_primary_10_1016_j_neuroscience_2019_08_052
crossref_primary_10_1007_s15006_015_7540_y
crossref_primary_10_3389_fnhum_2014_00378
crossref_primary_10_1007_s41465_017_0007_6
crossref_primary_10_3389_fpsyt_2021_680525
crossref_primary_10_3389_fpsyt_2017_00184
crossref_primary_10_1016_j_neuroimage_2015_09_068
crossref_primary_10_3390_brainsci13020241
crossref_primary_10_1097_j_pain_0000000000000163
crossref_primary_10_3758_s13415_021_00881_1
crossref_primary_10_3389_fnhum_2023_1134632
crossref_primary_10_1103_PhysRevE_108_044402
crossref_primary_10_1016_j_neuroimage_2012_06_063
crossref_primary_10_3389_fnhum_2014_00486
crossref_primary_10_1155_2021_5594305
crossref_primary_10_1016_j_nlm_2019_107037
crossref_primary_10_1016_j_cortex_2014_05_003
crossref_primary_10_1016_j_smrv_2021_101438
crossref_primary_10_1016_j_ijpsycho_2021_11_001
crossref_primary_10_1016_j_biopsych_2013_01_006
crossref_primary_10_1016_j_brs_2015_07_024
crossref_primary_10_3724_SP_J_1041_2020_01048
crossref_primary_10_1093_scan_nsv057
crossref_primary_10_1016_j_jpsychires_2022_09_011
crossref_primary_10_1080_23279095_2017_1357037
crossref_primary_10_1016_j_schres_2013_03_003
crossref_primary_10_1001_jamapsychiatry_2018_2172
crossref_primary_10_1016_j_brainres_2016_11_008
crossref_primary_10_1097_CCO_0000000000000126
crossref_primary_10_1016_j_cortex_2014_07_011
crossref_primary_10_1371_journal_pone_0102834
crossref_primary_10_1159_000502149
crossref_primary_10_1364_BOE_402047
crossref_primary_10_1093_sleep_zsab275
crossref_primary_10_1186_s12984_024_01481_z
crossref_primary_10_1016_j_tine_2013_04_001
crossref_primary_10_1016_j_jad_2024_01_050
crossref_primary_10_1007_s10548_017_0552_4
crossref_primary_10_1080_17434440_2020_1816168
crossref_primary_10_1016_j_expneurol_2015_02_002
crossref_primary_10_3389_fnins_2019_01440
crossref_primary_10_3389_fnhum_2014_00665
crossref_primary_10_1523_ENEURO_0084_17_2017
crossref_primary_10_1111_ejn_16255
crossref_primary_10_1038_s41598_020_80279_0
crossref_primary_10_1016_j_schres_2019_11_011
crossref_primary_10_1002_hbm_24285
crossref_primary_10_1016_j_neuroimage_2017_03_001
crossref_primary_10_1097_WNN_0000000000000098
crossref_primary_10_1016_j_neucli_2018_11_001
crossref_primary_10_1371_journal_pone_0197192
crossref_primary_10_3389_fneur_2014_00080
crossref_primary_10_1016_j_psc_2018_05_002
crossref_primary_10_3233_JAD_190888
crossref_primary_10_1016_j_jad_2022_12_007
crossref_primary_10_1148_radiol_2016160938
crossref_primary_10_1371_journal_pone_0098503
crossref_primary_10_3389_fnhum_2017_00649
crossref_primary_10_3389_fnhum_2021_730134
crossref_primary_10_3389_fnins_2024_1389651
crossref_primary_10_1016_j_arr_2015_11_004
crossref_primary_10_1007_s00115_016_0169_y
crossref_primary_10_1093_scan_nsaa066
crossref_primary_10_1162_jocn_a_01077
crossref_primary_10_2478_s13380_013_0104_7
crossref_primary_10_1016_j_brs_2023_01_1672
crossref_primary_10_1016_j_jad_2018_02_077
crossref_primary_10_1016_j_neuropsychologia_2021_107880
crossref_primary_10_3389_fnhum_2020_583730
crossref_primary_10_3390_brainsci15030317
crossref_primary_10_1097_WCO_0000000000000353
crossref_primary_10_1007_s00115_012_3573_y
crossref_primary_10_1016_j_jpsychires_2019_10_013
crossref_primary_10_1007_s00221_023_06695_6
crossref_primary_10_1016_j_neuroimage_2017_04_052
Cites_doi 10.1016/j.neuron.2007.02.013
10.1038/nrn2213
10.1002/hbm.10062
10.1073/pnas.0911855107
10.1016/j.jad.2009.02.015
10.1111/j.1399-5618.2006.00291.x
10.1523/JNEUROSCI.2964-08.2008
10.1038/nrn755
10.1097/PHM.0b013e3181a0e4cb
10.1016/0028-3932(71)90067-4
10.1002/hbm.20602
10.1162/jocn.2008.21143
10.1073/pnas.0901435106
10.1016/j.neuroimage.2008.03.061
10.1016/j.neuroimage.2009.10.044
10.1016/j.concog.2008.03.013
10.1523/JNEUROSCI.0065-09.2009
10.1162/0898929042568532
10.1016/S1053-8119(02)91132-8
10.1016/j.jns.2006.05.062
10.1016/j.neulet.2009.05.037
10.1002/hbm.20600
10.1523/JNEUROSCI.3408-06.2006
10.1038/nature05758
10.1109/TMI.2003.822821
10.1073/pnas.0504136102
10.1016/j.neuroimage.2005.08.035
10.1093/cercor/bhn010
10.1212/01.WNL.0000152986.07469.E9
10.1016/j.neulet.2008.02.012
10.1016/j.tics.2005.09.001
10.1016/j.neuropsychologia.2011.03.026
10.1016/j.neuroimage.2004.07.051
10.1073/pnas.1831638100
10.1002/hbm.20022
10.1002/1522-2594(200102)45:2<196::AID-MRM1026>3.0.CO;2-1
10.1126/science.1117256
10.1073/pnas.0902071106
10.1113/jphysiol.1964.sp007425
10.1016/j.bbr.2009.10.030
10.1371/journal.pbio.0060159
10.1097/00004728-199803000-00032
10.1073/pnas.0811879106
10.1111/j.1469-7793.2000.t01-1-00633.x
10.1162/jocn.2010.21579
10.1016/j.neuropsychologia.2007.07.009
10.1371/journal.pcbi.1000334
10.1186/1744-9081-5-29
10.1073/pnas.98.2.676
10.1016/j.neuroimage.2010.09.085
10.1016/j.neuropsychologia.2008.07.022
10.1073/pnas.0902455106
10.1111/j.1460-9568.2005.04233.x
10.1016/j.neuroimage.2006.08.041
10.1073/pnas.0913008107
10.1093/cercor/bhp090
10.1073/pnas.0601417103
10.1093/cercor/bhn059
10.1016/j.neuroimage.2007.08.008
10.1073/pnas.071043098
10.1016/j.neuroimage.2010.12.004
10.1016/j.clinph.2009.03.023
10.1016/j.clinph.2006.04.009
10.1016/j.neuroimage.2010.10.039
10.1016/j.bbr.2010.03.024
10.1016/j.brainresbull.2009.06.021
10.1523/JNEUROSCI.2924-09.2010
10.1016/j.neuroimage.2009.10.080
10.1017/S1461145707007833
10.1002/hbm.20479
10.1038/378279a0
10.1111/j.1460-9568.2009.06937.x
10.1002/hbm.20113
10.1073/pnas.172399499
10.1006/nimg.1996.0247
10.1073/pnas.0807010105
10.1016/j.neuroimage.2007.01.027
10.1002/hbm.1058
10.1016/j.neuroimage.2008.03.057
10.1016/S1388-2457(02)00412-1
10.1016/j.eurpsy.2007.09.006
10.1002/hbm.20737
10.1016/j.clinph.2005.12.003
10.1073/pnas.0135058100
10.1016/j.neuroimage.2010.03.052
ContentType Journal Article
Copyright Copyright © 2011 the authors 0270-6474/11/3115284-10$15.00/0 2011
Copyright_xml – notice: Copyright © 2011 the authors 0270-6474/11/3115284-10$15.00/0 2011
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1523/JNEUROSCI.0542-11.2011
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1529-2401
EndPage 15293
ExternalDocumentID PMC6703525
22031874
10_1523_JNEUROSCI_0542_11_2011
Genre Randomized Controlled Trial
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-DZ
-~X
.55
18M
2WC
34G
39C
3O-
53G
5GY
5RE
5VS
AAFWJ
AAJMC
AAYXX
ABBAR
ABIVO
ACGUR
ACNCT
ADBBV
ADCOW
ADHGD
AENEX
AETEA
AFCFT
AFFNX
AFOSN
AFSQR
AHWXS
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BTFSW
CITATION
CS3
DIK
DU5
E3Z
EBS
EJD
F5P
GX1
H13
HYE
H~9
KQ8
L7B
MVM
OK1
P0W
P2P
QZG
R.V
RHI
RPM
TFN
TR2
W8F
WH7
WOQ
X7M
XJT
YBU
YHG
YKV
YNH
YSK
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c479t-9fffff7faad35865e31b30ff8a520455ab67f53cdb5849184960e2f1add28dba3
ISSN 0270-6474
1529-2401
IngestDate Thu Aug 21 18:31:22 EDT 2025
Fri Sep 05 07:55:55 EDT 2025
Thu Apr 03 07:00:01 EDT 2025
Tue Jul 01 02:59:29 EDT 2025
Thu Apr 24 23:04:37 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 43
Language English
License https://creativecommons.org/licenses/by-nc-sa/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c479t-9fffff7faad35865e31b30ff8a520455ab67f53cdb5849184960e2f1add28dba3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Undefined-3
Author contributions: T.M., H.-J.M., M.R., and F.P. designed research; D.K., J. Bor, U.P., and O.P. performed research; D.K., T.M., J. Bor, C.M., and J. Brunelin analyzed data; D.K., T.M., and F.P. wrote the paper.
D.K. and T.M. contributed equally to this work.
OpenAccessLink https://www.jneurosci.org/content/jneuro/31/43/15284.full.pdf
PMID 22031874
PQID 901001164
PQPubID 23479
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6703525
proquest_miscellaneous_901001164
pubmed_primary_22031874
crossref_citationtrail_10_1523_JNEUROSCI_0542_11_2011
crossref_primary_10_1523_JNEUROSCI_0542_11_2011
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-10-26
2011-Oct-26
20111026
PublicationDateYYYYMMDD 2011-10-26
PublicationDate_xml – month: 10
  year: 2011
  text: 2011-10-26
  day: 26
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of neuroscience
PublicationTitleAlternate J Neurosci
PublicationYear 2011
Publisher Society for Neuroscience
Publisher_xml – name: Society for Neuroscience
References Oostendorp (2023041303531500000_31.43.15284.65) 2008; 2008
2023041303531500000_31.43.15284.19
2023041303531500000_31.43.15284.17
2023041303531500000_31.43.15284.18
2023041303531500000_31.43.15284.59
2023041303531500000_31.43.15284.16
Suh (2023041303531500000_31.43.15284.78) 2010; 2010
2023041303531500000_31.43.15284.60
2023041303531500000_31.43.15284.61
2023041303531500000_31.43.15284.24
2023041303531500000_31.43.15284.68
2023041303531500000_31.43.15284.25
2023041303531500000_31.43.15284.69
2023041303531500000_31.43.15284.22
2023041303531500000_31.43.15284.66
2023041303531500000_31.43.15284.23
2023041303531500000_31.43.15284.67
2023041303531500000_31.43.15284.20
2023041303531500000_31.43.15284.64
2023041303531500000_31.43.15284.21
2023041303531500000_31.43.15284.62
2023041303531500000_31.43.15284.63
Cordes (2023041303531500000_31.43.15284.14) 2000; 21
2023041303531500000_31.43.15284.48
2023041303531500000_31.43.15284.49
2023041303531500000_31.43.15284.50
2023041303531500000_31.43.15284.13
2023041303531500000_31.43.15284.57
2023041303531500000_31.43.15284.58
2023041303531500000_31.43.15284.11
2023041303531500000_31.43.15284.55
2023041303531500000_31.43.15284.12
2023041303531500000_31.43.15284.56
2023041303531500000_31.43.15284.53
2023041303531500000_31.43.15284.10
2023041303531500000_31.43.15284.54
2023041303531500000_31.43.15284.51
2023041303531500000_31.43.15284.52
Bindman (2023041303531500000_31.43.15284.4) 1964; 172
2023041303531500000_31.43.15284.39
2023041303531500000_31.43.15284.37
2023041303531500000_31.43.15284.38
2023041303531500000_31.43.15284.82
2023041303531500000_31.43.15284.83
2023041303531500000_31.43.15284.80
2023041303531500000_31.43.15284.81
2023041303531500000_31.43.15284.1
2023041303531500000_31.43.15284.2
2023041303531500000_31.43.15284.3
2023041303531500000_31.43.15284.46
2023041303531500000_31.43.15284.5
2023041303531500000_31.43.15284.47
2023041303531500000_31.43.15284.6
2023041303531500000_31.43.15284.44
2023041303531500000_31.43.15284.88
2023041303531500000_31.43.15284.7
2023041303531500000_31.43.15284.45
2023041303531500000_31.43.15284.89
2023041303531500000_31.43.15284.8
2023041303531500000_31.43.15284.42
2023041303531500000_31.43.15284.86
2023041303531500000_31.43.15284.9
2023041303531500000_31.43.15284.43
2023041303531500000_31.43.15284.87
2023041303531500000_31.43.15284.40
2023041303531500000_31.43.15284.84
2023041303531500000_31.43.15284.41
2023041303531500000_31.43.15284.85
2023041303531500000_31.43.15284.28
2023041303531500000_31.43.15284.29
2023041303531500000_31.43.15284.26
2023041303531500000_31.43.15284.27
Cordes (2023041303531500000_31.43.15284.15) 2001; 22
2023041303531500000_31.43.15284.71
2023041303531500000_31.43.15284.72
2023041303531500000_31.43.15284.70
2023041303531500000_31.43.15284.35
2023041303531500000_31.43.15284.79
2023041303531500000_31.43.15284.36
2023041303531500000_31.43.15284.33
2023041303531500000_31.43.15284.77
2023041303531500000_31.43.15284.34
2023041303531500000_31.43.15284.31
2023041303531500000_31.43.15284.75
2023041303531500000_31.43.15284.32
2023041303531500000_31.43.15284.76
2023041303531500000_31.43.15284.73
2023041303531500000_31.43.15284.30
2023041303531500000_31.43.15284.74
References_xml – ident: 2023041303531500000_31.43.15284.37
  doi: 10.1016/j.neuron.2007.02.013
– ident: 2023041303531500000_31.43.15284.71
  doi: 10.1038/nrn2213
– ident: 2023041303531500000_31.43.15284.73
  doi: 10.1002/hbm.10062
– ident: 2023041303531500000_31.43.15284.5
  doi: 10.1073/pnas.0911855107
– ident: 2023041303531500000_31.43.15284.23
  doi: 10.1016/j.jad.2009.02.015
– ident: 2023041303531500000_31.43.15284.29
  doi: 10.1111/j.1399-5618.2006.00291.x
– ident: 2023041303531500000_31.43.15284.81
  doi: 10.1523/JNEUROSCI.2964-08.2008
– ident: 2023041303531500000_31.43.15284.13
  doi: 10.1038/nrn755
– volume: 2008
  start-page: 4226
  year: 2008
  ident: 2023041303531500000_31.43.15284.65
  article-title: Modeling transcranial DC stimulation
  publication-title: Conf Proc IEEE Eng Med Biol Soc
– volume: 21
  start-page: 1636
  year: 2000
  ident: 2023041303531500000_31.43.15284.14
  article-title: Mapping functionally related regions of brain with functional connectivity MR imaging
  publication-title: AJNR Am J Neuroradiol
– ident: 2023041303531500000_31.43.15284.45
  doi: 10.1097/PHM.0b013e3181a0e4cb
– ident: 2023041303531500000_31.43.15284.64
  doi: 10.1016/0028-3932(71)90067-4
– ident: 2023041303531500000_31.43.15284.10
  doi: 10.1002/hbm.20602
– ident: 2023041303531500000_31.43.15284.12
  doi: 10.1162/jocn.2008.21143
– ident: 2023041303531500000_31.43.15284.41
  doi: 10.1073/pnas.0901435106
– ident: 2023041303531500000_31.43.15284.74
  doi: 10.1016/j.neuroimage.2008.03.061
– ident: 2023041303531500000_31.43.15284.57
  doi: 10.1016/j.neuroimage.2009.10.044
– ident: 2023041303531500000_31.43.15284.72
  doi: 10.1016/j.concog.2008.03.013
– ident: 2023041303531500000_31.43.15284.20
  doi: 10.1523/JNEUROSCI.0065-09.2009
– ident: 2023041303531500000_31.43.15284.31
  doi: 10.1162/0898929042568532
– ident: 2023041303531500000_31.43.15284.44
  doi: 10.1016/S1053-8119(02)91132-8
– ident: 2023041303531500000_31.43.15284.6
  doi: 10.1016/j.jns.2006.05.062
– ident: 2023041303531500000_31.43.15284.43
  doi: 10.1016/j.neulet.2009.05.037
– ident: 2023041303531500000_31.43.15284.51
  doi: 10.1002/hbm.20600
– ident: 2023041303531500000_31.43.15284.36
  doi: 10.1523/JNEUROSCI.3408-06.2006
– ident: 2023041303531500000_31.43.15284.84
  doi: 10.1038/nature05758
– ident: 2023041303531500000_31.43.15284.3
  doi: 10.1109/TMI.2003.822821
– ident: 2023041303531500000_31.43.15284.27
  doi: 10.1073/pnas.0504136102
– ident: 2023041303531500000_31.43.15284.17
  doi: 10.1016/j.neuroimage.2005.08.035
– ident: 2023041303531500000_31.43.15284.85
  doi: 10.1093/cercor/bhn010
– ident: 2023041303531500000_31.43.15284.42
  doi: 10.1212/01.WNL.0000152986.07469.E9
– ident: 2023041303531500000_31.43.15284.49
  doi: 10.1016/j.neulet.2008.02.012
– ident: 2023041303531500000_31.43.15284.87
  doi: 10.1016/j.tics.2005.09.001
– ident: 2023041303531500000_31.43.15284.1
  doi: 10.1016/j.neuropsychologia.2011.03.026
– ident: 2023041303531500000_31.43.15284.75
  doi: 10.1016/j.neuroimage.2004.07.051
– ident: 2023041303531500000_31.43.15284.52
  doi: 10.1073/pnas.1831638100
– ident: 2023041303531500000_31.43.15284.82
  doi: 10.1002/hbm.20022
– ident: 2023041303531500000_31.43.15284.2
  doi: 10.1002/1522-2594(200102)45:2<196::AID-MRM1026>3.0.CO;2-1
– ident: 2023041303531500000_31.43.15284.55
  doi: 10.1126/science.1117256
– ident: 2023041303531500000_31.43.15284.58
  doi: 10.1073/pnas.0902071106
– volume: 172
  start-page: 369
  year: 1964
  ident: 2023041303531500000_31.43.15284.4
  article-title: The Action of Brief Polarizing Currents on the Cerebral Cortex of the Rat (1) During Current Flow and (2) in the Production of Long-Lasting after-Effects
  publication-title: J Physiol
  doi: 10.1113/jphysiol.1964.sp007425
– ident: 2023041303531500000_31.43.15284.24
  doi: 10.1016/j.bbr.2009.10.030
– ident: 2023041303531500000_31.43.15284.35
  doi: 10.1371/journal.pbio.0060159
– ident: 2023041303531500000_31.43.15284.40
  doi: 10.1097/00004728-199803000-00032
– ident: 2023041303531500000_31.43.15284.25
  doi: 10.1073/pnas.0811879106
– ident: 2023041303531500000_31.43.15284.62
  doi: 10.1111/j.1469-7793.2000.t01-1-00633.x
– ident: 2023041303531500000_31.43.15284.26
  doi: 10.1162/jocn.2010.21579
– ident: 2023041303531500000_31.43.15284.76
  doi: 10.1016/j.neuropsychologia.2007.07.009
– volume: 22
  start-page: 1326
  year: 2001
  ident: 2023041303531500000_31.43.15284.15
  article-title: Frequencies contributing to functional connectivity in the cerebral cortex in “resting-state” data
  publication-title: AJNR Am J Neuroradiol
– ident: 2023041303531500000_31.43.15284.9
  doi: 10.1371/journal.pcbi.1000334
– ident: 2023041303531500000_31.43.15284.21
  doi: 10.1186/1744-9081-5-29
– ident: 2023041303531500000_31.43.15284.68
  doi: 10.1073/pnas.98.2.676
– ident: 2023041303531500000_31.43.15284.66
  doi: 10.1016/j.neuroimage.2010.09.085
– ident: 2023041303531500000_31.43.15284.8
  doi: 10.1016/j.neuropsychologia.2008.07.022
– ident: 2023041303531500000_31.43.15284.53
  doi: 10.1073/pnas.0902455106
– ident: 2023041303531500000_31.43.15284.50
  doi: 10.1111/j.1460-9568.2005.04233.x
– ident: 2023041303531500000_31.43.15284.18
  doi: 10.1016/j.neuroimage.2006.08.041
– ident: 2023041303531500000_31.43.15284.22
  doi: 10.1073/pnas.0913008107
– volume: 2010
  start-page: 2053
  year: 2010
  ident: 2023041303531500000_31.43.15284.78
  article-title: Reduced spatial focality of electrical field in tDCS with ring electrodes due to tissue anisotropy
  publication-title: Conf Proc IEEE Eng Med Biol Soc
– ident: 2023041303531500000_31.43.15284.46
  doi: 10.1093/cercor/bhp090
– ident: 2023041303531500000_31.43.15284.16
  doi: 10.1073/pnas.0601417103
– ident: 2023041303531500000_31.43.15284.33
  doi: 10.1093/cercor/bhn059
– ident: 2023041303531500000_31.43.15284.48
  doi: 10.1016/j.neuroimage.2007.08.008
– ident: 2023041303531500000_31.43.15284.34
  doi: 10.1073/pnas.071043098
– ident: 2023041303531500000_31.43.15284.47
  doi: 10.1016/j.neuroimage.2010.12.004
– ident: 2023041303531500000_31.43.15284.60
  doi: 10.1016/j.clinph.2009.03.023
– ident: 2023041303531500000_31.43.15284.59
  doi: 10.1016/j.clinph.2006.04.009
– ident: 2023041303531500000_31.43.15284.88
  doi: 10.1016/j.neuroimage.2010.10.039
– ident: 2023041303531500000_31.43.15284.54
  doi: 10.1016/j.bbr.2010.03.024
– ident: 2023041303531500000_31.43.15284.56
  doi: 10.1016/j.brainresbull.2009.06.021
– ident: 2023041303531500000_31.43.15284.39
  doi: 10.1523/JNEUROSCI.2924-09.2010
– ident: 2023041303531500000_31.43.15284.89
  doi: 10.1016/j.neuroimage.2009.10.080
– ident: 2023041303531500000_31.43.15284.7
  doi: 10.1017/S1461145707007833
– ident: 2023041303531500000_31.43.15284.83
  doi: 10.1002/hbm.20479
– ident: 2023041303531500000_31.43.15284.19
  doi: 10.1038/378279a0
– ident: 2023041303531500000_31.43.15284.77
  doi: 10.1111/j.1460-9568.2009.06937.x
– ident: 2023041303531500000_31.43.15284.28
  doi: 10.1002/hbm.20113
– ident: 2023041303531500000_31.43.15284.67
  doi: 10.1073/pnas.172399499
– ident: 2023041303531500000_31.43.15284.11
  doi: 10.1006/nimg.1996.0247
– ident: 2023041303531500000_31.43.15284.38
  doi: 10.1073/pnas.0807010105
– ident: 2023041303531500000_31.43.15284.86
  doi: 10.1016/j.neuroimage.2007.01.027
– ident: 2023041303531500000_31.43.15284.61
  doi: 10.1002/hbm.1058
– ident: 2023041303531500000_31.43.15284.79
  doi: 10.1016/j.neuroimage.2008.03.057
– ident: 2023041303531500000_31.43.15284.63
  doi: 10.1016/S1388-2457(02)00412-1
– ident: 2023041303531500000_31.43.15284.69
  doi: 10.1016/j.eurpsy.2007.09.006
– ident: 2023041303531500000_31.43.15284.80
  doi: 10.1002/hbm.20737
– ident: 2023041303531500000_31.43.15284.30
  doi: 10.1016/j.clinph.2005.12.003
– ident: 2023041303531500000_31.43.15284.32
  doi: 10.1073/pnas.0135058100
– ident: 2023041303531500000_31.43.15284.70
  doi: 10.1016/j.neuroimage.2010.03.052
SSID ssj0007017
Score 2.564528
Snippet Transcranial direct current stimulation (tDCS) has been proposed for experimental and therapeutic modulation of regional brain function. Specifically, anodal...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 15284
SubjectTerms Adult
Brain Mapping
Double-Blind Method
Humans
Image Processing, Computer-Assisted
Magnetic Resonance Imaging
Male
Neural Pathways - blood supply
Oxygen - blood
Prefrontal Cortex - blood supply
Prefrontal Cortex - physiology
Principal Component Analysis
Reaction Time
Rest - physiology
Transcranial Magnetic Stimulation
Young Adult
Title Prefrontal Transcranial Direct Current Stimulation Changes Connectivity of Resting-State Networks during fMRI
URI https://www.ncbi.nlm.nih.gov/pubmed/22031874
https://www.proquest.com/docview/901001164
https://pubmed.ncbi.nlm.nih.gov/PMC6703525
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1529-2401
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007017
  issn: 0270-6474
  databaseCode: KQ8
  dateStart: 19810101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1529-2401
  dateEnd: 20250330
  omitProxy: true
  ssIdentifier: ssj0007017
  issn: 0270-6474
  databaseCode: DIK
  dateStart: 19810101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1529-2401
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007017
  issn: 0270-6474
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1529-2401
  dateEnd: 20250330
  omitProxy: true
  ssIdentifier: ssj0007017
  issn: 0270-6474
  databaseCode: RPM
  dateStart: 19810101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZZ97KXsa27ZOuGHsZeitvYsiT7sZSNtqNllwb6ZmxZooHEKY37sP76niPJtpJ27BKICbIlQ77PR0fWOd8h5GNqX-bXeTQxXEap1mkEs6KIjOLC5CzTrMbk5NMzcTRNTy74xWh0G2aXtNWeun0wr-R_UIU2wBWzZP8B2X5QaIDfgC8cAWE4_hXG32B6QwECGzAOc46Cw8zuuqAd21Veewme4oWv0uUTfVcYbd5YW-dDMrBEB8xikU0w2m1ccPiqy2I0pz-OQzd2SCizrmwgiqkHC65Xjg4ui71HVs-aer4Rm2TjFa-7fO1-DCzugo3TOVjry_AFhYuQS7y8tTeqid3FiUOr622_Y1fKAhsKl7uqcfesO7cqEydnGOT48_B4D9zNJIpjK8QadgCUrhYW8yRBo-XqAG3oanenHpHHiRQCq198_T4ozUswVT6jHG67__BNUUraD7Pu19xbrGzG3AZOzPkz8tRDRg8clZ6TkW5ekO2DpmyXi1_0E7XxwHajZZssBnbRkF3UsYt6dtGAXdSzi4bsoktD19hFO3ZRxy6K7HpJpl8-nx8eRb44R6RSmbdRbvAjTVnWjGeCaxZXbGJMVnKscMDLSkjDmaorcHHzGL5iohMTw3yaZHVVsldkq1k2-g2htVaiYkqWTCWprKpSGAYDGVhbaJXFYkx499cWyivXYwGVeYErWECn6NEpEB1Y1RaIzpjs9_2unHbLH3vQDrkCzCzunZWNXt6sCoxiwj3LdExeOyD7ITsGjIlcg7i_ABXc1880s0ur5C6klSN--9sx35EnwyO1Q7ba6xv9Hrzgtvpg6XoHhFa3hw
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prefrontal+transcranial+direct+current+stimulation+changes+connectivity+of+resting-state+networks+during+fMRI&rft.jtitle=The+Journal+of+neuroscience&rft.au=Keeser%2C+Daniel&rft.au=Meindl%2C+Thomas&rft.au=Bor%2C+Julie&rft.au=Palm%2C+Ulrich&rft.date=2011-10-26&rft.eissn=1529-2401&rft.volume=31&rft.issue=43&rft.spage=15284&rft_id=info:doi/10.1523%2FJNEUROSCI.0542-11.2011&rft_id=info%3Apmid%2F22031874&rft.externalDocID=22031874
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-6474&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-6474&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-6474&client=summon