Prefrontal Transcranial Direct Current Stimulation Changes Connectivity of Resting-State Networks during fMRI
Transcranial direct current stimulation (tDCS) has been proposed for experimental and therapeutic modulation of regional brain function. Specifically, anodal tDCS of the dorsolateral prefrontal cortex (DLPFC) together with cathodal tDCS of the supraorbital region have been associated with improvemen...
Saved in:
Published in | The Journal of neuroscience Vol. 31; no. 43; pp. 15284 - 15293 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Society for Neuroscience
26.10.2011
|
Subjects | |
Online Access | Get full text |
ISSN | 0270-6474 1529-2401 1529-2401 |
DOI | 10.1523/JNEUROSCI.0542-11.2011 |
Cover
Abstract | Transcranial direct current stimulation (tDCS) has been proposed for experimental and therapeutic modulation of regional brain function. Specifically, anodal tDCS of the dorsolateral prefrontal cortex (DLPFC) together with cathodal tDCS of the supraorbital region have been associated with improvement of cognition and mood, and have been suggested for the treatment of several neurological and psychiatric disorders. Although modeled mathematically, the distribution, direction, and extent of tDCS-mediated effects on brain physiology are not well understood. The current study investigates whether tDCS of the human prefrontal cortex modulates resting-state network (RSN) connectivity measured by functional magnetic resonance imaging (fMRI). Thirteen healthy subjects underwent real and sham tDCS in random order on separate days. tDCS was applied for 20 min at 2 mA with the anode positioned over the left DLPFC and the cathode over the right supraorbital region. Patterns of resting-state brain connectivity were assessed before and after tDCS with 3 T fMRI, and changes were analyzed for relevant networks related to the stimulation–electrode localizations. At baseline, four RSNs were detected, corresponding to the default mode network (DMN), the left and right frontal-parietal networks (FPNs) and the self-referential network. After real tDCS and compared with sham tDCS, significant changes of regional brain connectivity were found for the DMN and the FPNs both close to the primary stimulation site and in connected brain regions. These findings show that prefrontal tDCS modulates resting-state functional connectivity in distinct functional networks of the human brain. |
---|---|
AbstractList | Transcranial direct current stimulation (tDCS) has been proposed for experimental and therapeutic modulation of regional brain function. Specifically, anodal tDCS of the dorsolateral prefrontal cortex (DLPFC) together with cathodal tDCS of the supraorbital region have been associated with improvement of cognition and mood, and have been suggested for the treatment of several neurological and psychiatric disorders. Although modeled mathematically, the distribution, direction, and extent of tDCS-mediated effects on brain physiology are not well understood. The current study investigates whether tDCS of the human prefrontal cortex modulates resting-state network (RSN) connectivity measured by functional magnetic resonance imaging (fMRI). Thirteen healthy subjects underwent real and sham tDCS in random order on separate days. tDCS was applied for 20 min at 2 mA with the anode positioned over the left DLPFC and the cathode over the right supraorbital region. Patterns of resting-state brain connectivity were assessed before and after tDCS with 3 T fMRI, and changes were analyzed for relevant networks related to the stimulation–electrode localizations. At baseline, four RSNs were detected, corresponding to the default mode network (DMN), the left and right frontal-parietal networks (FPNs) and the self-referential network. After real tDCS and compared with sham tDCS, significant changes of regional brain connectivity were found for the DMN and the FPNs both close to the primary stimulation site and in connected brain regions. These findings show that prefrontal tDCS modulates resting-state functional connectivity in distinct functional networks of the human brain. Transcranial direct current stimulation (tDCS) has been proposed for experimental and therapeutic modulation of regional brain function. Specifically, anodal tDCS of the dorsolateral prefrontal cortex (DLPFC) together with cathodal tDCS of the supraorbital region have been associated with improvement of cognition and mood, and have been suggested for the treatment of several neurological and psychiatric disorders. Although modeled mathematically, the distribution, direction, and extent of tDCS-mediated effects on brain physiology are not well understood. The current study investigates whether tDCS of the human prefrontal cortex modulates resting-state network (RSN) connectivity measured by functional magnetic resonance imaging (fMRI). Thirteen healthy subjects underwent real and sham tDCS in random order on separate days. tDCS was applied for 20 min at 2 mA with the anode positioned over the left DLPFC and the cathode over the right supraorbital region. Patterns of resting-state brain connectivity were assessed before and after tDCS with 3 T fMRI, and changes were analyzed for relevant networks related to the stimulation-electrode localizations. At baseline, four RSNs were detected, corresponding to the default mode network (DMN), the left and right frontal-parietal networks (FPNs) and the self-referential network. After real tDCS and compared with sham tDCS, significant changes of regional brain connectivity were found for the DMN and the FPNs both close to the primary stimulation site and in connected brain regions. These findings show that prefrontal tDCS modulates resting-state functional connectivity in distinct functional networks of the human brain.Transcranial direct current stimulation (tDCS) has been proposed for experimental and therapeutic modulation of regional brain function. Specifically, anodal tDCS of the dorsolateral prefrontal cortex (DLPFC) together with cathodal tDCS of the supraorbital region have been associated with improvement of cognition and mood, and have been suggested for the treatment of several neurological and psychiatric disorders. Although modeled mathematically, the distribution, direction, and extent of tDCS-mediated effects on brain physiology are not well understood. The current study investigates whether tDCS of the human prefrontal cortex modulates resting-state network (RSN) connectivity measured by functional magnetic resonance imaging (fMRI). Thirteen healthy subjects underwent real and sham tDCS in random order on separate days. tDCS was applied for 20 min at 2 mA with the anode positioned over the left DLPFC and the cathode over the right supraorbital region. Patterns of resting-state brain connectivity were assessed before and after tDCS with 3 T fMRI, and changes were analyzed for relevant networks related to the stimulation-electrode localizations. At baseline, four RSNs were detected, corresponding to the default mode network (DMN), the left and right frontal-parietal networks (FPNs) and the self-referential network. After real tDCS and compared with sham tDCS, significant changes of regional brain connectivity were found for the DMN and the FPNs both close to the primary stimulation site and in connected brain regions. These findings show that prefrontal tDCS modulates resting-state functional connectivity in distinct functional networks of the human brain. |
Author | Brunelin, Jerome Palm, Ulrich Keeser, Daniel Meindl, Thomas Mulert, Christoph Bor, Julie Möller, Hans-Jürgen Padberg, Frank Pogarell, Oliver Reiser, Maximilian |
Author_xml | – sequence: 1 givenname: Daniel surname: Keeser fullname: Keeser, Daniel – sequence: 2 givenname: Thomas surname: Meindl fullname: Meindl, Thomas – sequence: 3 givenname: Julie surname: Bor fullname: Bor, Julie – sequence: 4 givenname: Ulrich surname: Palm fullname: Palm, Ulrich – sequence: 5 givenname: Oliver surname: Pogarell fullname: Pogarell, Oliver – sequence: 6 givenname: Christoph surname: Mulert fullname: Mulert, Christoph – sequence: 7 givenname: Jerome surname: Brunelin fullname: Brunelin, Jerome – sequence: 8 givenname: Hans-Jürgen surname: Möller fullname: Möller, Hans-Jürgen – sequence: 9 givenname: Maximilian surname: Reiser fullname: Reiser, Maximilian – sequence: 10 givenname: Frank surname: Padberg fullname: Padberg, Frank |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/22031874$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUV1vFCEUJabGbqt_oeHNp9leGBhmEmNixqpramt222fCzMAWnYEWmJr--7L2I-qLJEDgnnNP7jkHaM95pxE6IrAknJbHX89OLtfnm3a1BM5oQciSAiEv0CJXm4IyIHtoAVRAUTHB9tFBjD8AQAARr9A-pVCSWrAFmr4HbYJ3SY34IigX-3zY_Phog-4TbucQtEt4k-w0jypZ73B7pdxWR9x65zLG3tp0h73Bax2Tddtik1TS-EynXz78jHiYQ_7F5tt69Rq9NGqM-s3jfYguP51ctF-K0_PPq_bDadEz0aSiMbsljFJDyeuK65J0JRhTK06Bca66Shhe9kPHa9aQvCvQ1BA1DLQeOlUeovcPfa_nbtJDnycIapTXwU4q3EmvrPy74uyV3PpbWQkoOeW5wdvHBsHfzHkuOdnY63FUTvs5ygYIZL8rlpFHf0o9azxZnAHvHgB98DFmt2Vv028js7IdJQG5S1Q-Jyp3iUpC5C7RTK_-oT8p_Id4D8K1qWc |
CitedBy_id | crossref_primary_10_1016_j_neures_2022_05_002 crossref_primary_10_1186_s12967_023_03989_9 crossref_primary_10_1073_pnas_1421435112 crossref_primary_10_3389_fnhum_2021_637071 crossref_primary_10_1007_s00221_019_05685_x crossref_primary_10_1002_hbm_25310 crossref_primary_10_1016_j_cub_2015_01_055 crossref_primary_10_1016_j_clinph_2013_04_188 crossref_primary_10_1007_s00213_017_4722_6 crossref_primary_10_3389_fpsyg_2016_00380 crossref_primary_10_1523_JNEUROSCI_1140_23_2023 crossref_primary_10_1038_s41598_018_35879_2 crossref_primary_10_1016_j_heliyon_2020_e04912 crossref_primary_10_1055_a_1272_9435 crossref_primary_10_1007_s10072_016_2748_x crossref_primary_10_1093_cercor_bhy093 crossref_primary_10_1016_j_brs_2023_02_010 crossref_primary_10_1016_j_nicl_2019_101734 crossref_primary_10_1556_2006_2020_00092 crossref_primary_10_1016_j_nicl_2024_103599 crossref_primary_10_1007_s00115_019_00799_7 crossref_primary_10_1016_j_neuropsychologia_2015_04_024 crossref_primary_10_3389_fpsyt_2023_987093 crossref_primary_10_1016_j_nicl_2018_05_023 crossref_primary_10_1016_j_neuroimage_2016_01_037 crossref_primary_10_3389_fnhum_2016_00479 crossref_primary_10_1016_j_neuropsychologia_2014_11_021 crossref_primary_10_1016_j_biopsycho_2017_07_008 crossref_primary_10_1007_s00221_015_4391_9 crossref_primary_10_1016_j_arr_2020_101065 crossref_primary_10_1016_j_neuroimage_2013_11_037 crossref_primary_10_1016_j_neucli_2018_12_003 crossref_primary_10_1509_jmr_13_0560 crossref_primary_10_1080_09540261_2021_1879030 crossref_primary_10_3390_brainsci12070929 crossref_primary_10_3389_fnhum_2022_889023 crossref_primary_10_1093_scan_nst165 crossref_primary_10_1016_j_neuroscience_2016_10_066 crossref_primary_10_1016_j_brs_2018_05_001 crossref_primary_10_1016_j_neuroimage_2018_05_063 crossref_primary_10_3389_fpain_2022_959609 crossref_primary_10_1016_j_jad_2020_11_030 crossref_primary_10_1017_S0033291721004074 crossref_primary_10_3390_brainsci8020037 crossref_primary_10_1371_journal_pone_0269491 crossref_primary_10_3109_15622975_2013_876514 crossref_primary_10_1152_jn_00606_2012 crossref_primary_10_1007_s00406_020_01187_y crossref_primary_10_1007_s00415_018_8754_6 crossref_primary_10_1016_j_brs_2016_10_013 crossref_primary_10_1016_j_pnpbp_2022_110667 crossref_primary_10_1155_2018_1613402 crossref_primary_10_1016_j_actpsy_2024_104553 crossref_primary_10_1016_j_neuroimage_2019_06_047 crossref_primary_10_1016_j_neuroimage_2019_05_009 crossref_primary_10_1002_ana_24689 crossref_primary_10_3389_fnhum_2018_00441 crossref_primary_10_1093_cercor_bhab432 crossref_primary_10_1007_s40473_018_0138_9 crossref_primary_10_1080_02699052_2016_1274776 crossref_primary_10_1016_j_neuroimage_2024_120792 crossref_primary_10_2139_ssrn_4179155 crossref_primary_10_1007_s00406_018_0894_2 crossref_primary_10_1016_j_cortex_2017_11_008 crossref_primary_10_1016_j_neuropsychologia_2016_07_022 crossref_primary_10_1016_j_neuroscience_2023_01_022 crossref_primary_10_1016_j_dcn_2013_04_001 crossref_primary_10_1186_s13229_017_0152_x crossref_primary_10_3389_fncel_2016_00072 crossref_primary_10_3758_s13415_016_0450_3 crossref_primary_10_1016_j_neuropsychologia_2014_09_015 crossref_primary_10_1016_j_neubiorev_2021_02_035 crossref_primary_10_3389_fnhum_2020_00064 crossref_primary_10_1371_journal_pone_0118340 crossref_primary_10_1016_j_jpsychires_2024_06_034 crossref_primary_10_3389_fnins_2017_00691 crossref_primary_10_1093_cercor_bht314 crossref_primary_10_1016_j_drugalcdep_2018_08_018 crossref_primary_10_1002_hbm_24405 crossref_primary_10_1002_hbm_25857 crossref_primary_10_1016_j_brs_2018_07_046 crossref_primary_10_3390_jcm12020401 crossref_primary_10_1007_s40473_014_0009_y crossref_primary_10_1016_j_smrv_2015_12_005 crossref_primary_10_1523_JNEUROSCI_0079_17_2017 crossref_primary_10_3389_fnhum_2020_00179 crossref_primary_10_1016_j_drugalcdep_2018_10_016 crossref_primary_10_1093_brain_aww002 crossref_primary_10_3389_fnhum_2022_929917 crossref_primary_10_1016_j_jpain_2022_01_012 crossref_primary_10_1016_j_brs_2023_11_012 crossref_primary_10_1002_hbm_23101 crossref_primary_10_3389_fpsyt_2017_00259 crossref_primary_10_1109_TBME_2013_2244890 crossref_primary_10_1016_j_brs_2017_04_125 crossref_primary_10_1016_j_psychres_2018_11_033 crossref_primary_10_3389_fnhum_2016_00270 crossref_primary_10_3389_fnhum_2018_00128 crossref_primary_10_3389_fnagi_2017_00401 crossref_primary_10_1038_s41467_023_38910_x crossref_primary_10_1159_000495945 crossref_primary_10_1111_ner_13137 crossref_primary_10_1007_s00406_023_01666_y crossref_primary_10_3389_fphys_2024_1365530 crossref_primary_10_1093_neuros_nyx482 crossref_primary_10_1016_j_bpsc_2019_12_020 crossref_primary_10_1093_cercor_bhx055 crossref_primary_10_1186_s12984_019_0561_5 crossref_primary_10_1162_jocn_a_01449 crossref_primary_10_1016_j_neuroimage_2021_118438 crossref_primary_10_3389_fnins_2022_771393 crossref_primary_10_1016_j_neures_2014_09_007 crossref_primary_10_1080_17434440_2019_1615440 crossref_primary_10_1016_j_brs_2020_02_019 crossref_primary_10_1016_j_mehy_2013_11_021 crossref_primary_10_21307_ane_2021_016 crossref_primary_10_1159_000507372 crossref_primary_10_1016_j_neuropsychologia_2016_08_017 crossref_primary_10_1016_j_pnpbp_2020_110160 crossref_primary_10_3389_fnins_2015_00440 crossref_primary_10_3389_fnins_2021_641951 crossref_primary_10_1007_s10072_024_07365_3 crossref_primary_10_1016_j_neurol_2012_05_008 crossref_primary_10_1002_hbm_22429 crossref_primary_10_1038_nmeth_2482 crossref_primary_10_3390_brainsci12020198 crossref_primary_10_1002_hbm_24881 crossref_primary_10_1016_j_pnpbp_2020_110177 crossref_primary_10_3389_fnsys_2014_00147 crossref_primary_10_1016_j_tins_2014_08_003 crossref_primary_10_1016_j_cub_2017_09_020 crossref_primary_10_1016_j_psychres_2022_114530 crossref_primary_10_1016_j_exger_2018_11_019 crossref_primary_10_1162_jocn_a_01421 crossref_primary_10_1016_j_pnpbp_2019_109715 crossref_primary_10_1016_j_neubiorev_2017_06_015 crossref_primary_10_1176_appi_ajp_2012_11071091 crossref_primary_10_3389_fnsys_2014_00159 crossref_primary_10_1007_s00429_023_02667_2 crossref_primary_10_1016_j_neulet_2016_06_056 crossref_primary_10_1016_j_ijchp_2023_100374 crossref_primary_10_3758_s13415_018_0582_8 crossref_primary_10_1016_j_comppsych_2021_152257 crossref_primary_10_1016_j_neuroimage_2017_01_061 crossref_primary_10_3389_fnint_2018_00064 crossref_primary_10_1080_20445911_2014_996569 crossref_primary_10_1371_journal_pone_0256100 crossref_primary_10_1177_1550059412444978 crossref_primary_10_1002_hbm_22322 crossref_primary_10_1093_schbul_sbw041 crossref_primary_10_3389_fncel_2015_00460 crossref_primary_10_3389_fnhum_2019_00274 crossref_primary_10_1016_j_bandc_2021_105789 crossref_primary_10_1146_annurev_neuro_110920_013544 crossref_primary_10_1007_s10548_022_00887_z crossref_primary_10_1152_jn_00074_2020 crossref_primary_10_1212_WNL_0000000000000260 crossref_primary_10_1111_nyas_12985 crossref_primary_10_1016_j_heliyon_2018_e00685 crossref_primary_10_1177_1545968319840285 crossref_primary_10_1080_09540261_2017_1286299 crossref_primary_10_1089_brain_2016_0440 crossref_primary_10_1371_journal_pone_0141417 crossref_primary_10_1016_j_neuroimage_2016_06_003 crossref_primary_10_1038_s41598_018_27502_1 crossref_primary_10_1162_netn_a_00116 crossref_primary_10_1016_j_neuropsychologia_2015_07_013 crossref_primary_10_1038_s41591_024_03305_y crossref_primary_10_3389_fnins_2023_1208581 crossref_primary_10_3390_brainsci11050662 crossref_primary_10_1007_s00406_020_01177_0 crossref_primary_10_1016_j_neulet_2013_01_047 crossref_primary_10_1523_JNEUROSCI_2637_19_2020 crossref_primary_10_1097_WNR_0000000000000283 crossref_primary_10_1016_j_neuropsychologia_2013_05_018 crossref_primary_10_3389_fpsyg_2017_02033 crossref_primary_10_3389_fnhum_2019_00297 crossref_primary_10_1089_brain_2014_0325 crossref_primary_10_1016_j_schres_2013_08_043 crossref_primary_10_1093_cercor_bhy086 crossref_primary_10_3390_brainsci10070469 crossref_primary_10_1016_j_cortex_2017_07_001 crossref_primary_10_1093_brain_awx170 crossref_primary_10_1016_j_heliyon_2020_e05132 crossref_primary_10_1016_j_tics_2011_11_007 crossref_primary_10_2139_ssrn_4173661 crossref_primary_10_1016_j_neuroimage_2023_120185 crossref_primary_10_3390_biomedicines10102397 crossref_primary_10_3390_brainsci14010066 crossref_primary_10_3389_fncel_2016_00257 crossref_primary_10_1016_j_clinph_2016_10_087 crossref_primary_10_1109_TNSRE_2022_3153353 crossref_primary_10_3389_fnins_2020_00744 crossref_primary_10_1016_j_bandc_2019_03_005 crossref_primary_10_1016_j_neuroimage_2019_116062 crossref_primary_10_1111_desc_12422 crossref_primary_10_1016_j_expneurol_2021_113713 crossref_primary_10_1016_j_psychres_2022_114908 crossref_primary_10_1027_1016_9040_a000248 crossref_primary_10_1007_s11682_019_00195_4 crossref_primary_10_1007_s10545_018_0181_4 crossref_primary_10_1016_j_bandc_2014_09_002 crossref_primary_10_1111_ner_12632 crossref_primary_10_1007_s11910_018_0837_3 crossref_primary_10_1016_j_neuroimage_2013_05_117 crossref_primary_10_3389_fpsyt_2014_00097 crossref_primary_10_1186_s12967_022_03710_2 crossref_primary_10_3389_fnbeh_2018_00016 crossref_primary_10_1016_j_psychres_2019_01_059 crossref_primary_10_1080_00207454_2017_1403440 crossref_primary_10_1111_ejn_13229 crossref_primary_10_1016_j_neurobiolaging_2017_09_017 crossref_primary_10_1111_ejn_12375 crossref_primary_10_1371_journal_pone_0218327 crossref_primary_10_3389_fnsys_2022_956315 crossref_primary_10_1016_j_euroneuro_2018_09_009 crossref_primary_10_1016_j_neubiorev_2016_03_028 crossref_primary_10_1016_j_nlm_2023_107750 crossref_primary_10_1016_j_pnpbp_2014_09_015 crossref_primary_10_3389_fpsyt_2023_1156617 crossref_primary_10_1044_2024_AJSLP_24_00016 crossref_primary_10_1162_jocn_a_00888 crossref_primary_10_1016_j_neurobiolaging_2021_11_005 crossref_primary_10_3389_fnhum_2019_00411 crossref_primary_10_1093_scan_nsy069 crossref_primary_10_1007_s00406_016_0761_y crossref_primary_10_1001_jamanetworkopen_2020_25839 crossref_primary_10_1007_s41465_016_0005_0 crossref_primary_10_1371_journal_pone_0095984 crossref_primary_10_1016_j_bandc_2016_06_009 crossref_primary_10_1016_j_cortex_2015_03_023 crossref_primary_10_1016_j_brs_2023_06_011 crossref_primary_10_1016_j_neubiorev_2015_09_010 crossref_primary_10_1038_s41598_017_17279_0 crossref_primary_10_3389_fnagi_2017_00033 crossref_primary_10_1016_j_brs_2018_09_002 crossref_primary_10_1162_jocn_a_00979 crossref_primary_10_1007_s00406_016_0674_9 crossref_primary_10_1016_j_jpsychires_2015_07_018 crossref_primary_10_1002_jnr_25378 crossref_primary_10_1016_j_jpsychires_2012_09_025 crossref_primary_10_3389_fnmol_2022_1056966 crossref_primary_10_1093_schbul_sbv114 crossref_primary_10_1007_s12311_018_0967_9 crossref_primary_10_1002_hbm_24908 crossref_primary_10_1016_j_brs_2014_11_008 crossref_primary_10_1088_1741_2552_adb335 crossref_primary_10_3390_brainsci11070948 crossref_primary_10_1002_brb3_922 crossref_primary_10_3389_fnins_2022_984893 crossref_primary_10_1093_cercor_bhac010 crossref_primary_10_1016_j_brs_2015_05_010 crossref_primary_10_3389_fpsyg_2015_00244 crossref_primary_10_1016_j_neuropsychologia_2016_03_008 crossref_primary_10_1016_j_neuroimage_2014_01_016 crossref_primary_10_1016_j_neuroimage_2013_07_038 crossref_primary_10_1016_j_neuroimage_2022_118874 crossref_primary_10_1016_j_nicl_2020_102500 crossref_primary_10_1111_ejn_14347 crossref_primary_10_2217_nmt_2020_0061 crossref_primary_10_2147_NDT_S259499 crossref_primary_10_3233_RNN_150625 crossref_primary_10_1093_cercor_bhaa077 crossref_primary_10_1016_j_bbr_2023_114661 crossref_primary_10_1155_2019_7089543 crossref_primary_10_3390_brainsci12081095 crossref_primary_10_3389_fnbeh_2018_00194 crossref_primary_10_1161_STROKEAHA_121_034200 crossref_primary_10_1016_j_nicl_2023_103329 crossref_primary_10_3389_fnsys_2014_00132 crossref_primary_10_3390_brainsci14111067 crossref_primary_10_1016_j_nicl_2017_01_025 crossref_primary_10_1177_1550059421991688 crossref_primary_10_1093_scan_nsy026 crossref_primary_10_1093_scan_nsx055 crossref_primary_10_1073_pnas_1503093112 crossref_primary_10_3389_fnhum_2023_1229618 crossref_primary_10_1016_j_cortex_2019_08_009 crossref_primary_10_1113_jphysiol_2012_232975 crossref_primary_10_1016_j_neuroscience_2019_04_032 crossref_primary_10_1016_j_neuroimage_2018_07_025 crossref_primary_10_1016_j_schres_2014_10_054 crossref_primary_10_1080_08990220_2017_1292238 crossref_primary_10_1097_j_pain_0000000000000886 crossref_primary_10_1038_s41596_021_00664_5 crossref_primary_10_1016_j_pnpbp_2015_10_001 crossref_primary_10_1177_10538135241296371 crossref_primary_10_3390_biomedicines10102410 crossref_primary_10_1016_j_bbr_2015_04_031 crossref_primary_10_1117_1_JBO_20_4_046007 crossref_primary_10_1016_j_brs_2017_09_005 crossref_primary_10_3389_fnhum_2020_541052 crossref_primary_10_1093_cercor_bhy238 crossref_primary_10_3389_fpsyg_2020_570030 crossref_primary_10_1038_s41598_020_76201_3 crossref_primary_10_3389_fnhum_2014_00601 crossref_primary_10_1016_j_brainres_2014_09_066 crossref_primary_10_1371_journal_pone_0135371 crossref_primary_10_1016_j_neubiorev_2016_03_006 crossref_primary_10_1016_j_neubiorev_2017_11_006 crossref_primary_10_3389_fnhum_2019_00474 crossref_primary_10_1016_j_neuroimage_2021_118100 crossref_primary_10_1080_17470919_2014_946621 crossref_primary_10_1080_02687038_2016_1227425 crossref_primary_10_1007_s00406_017_0769_y crossref_primary_10_1016_j_brs_2018_04_016 crossref_primary_10_1016_j_nicl_2019_101689 crossref_primary_10_3389_fnins_2020_00152 crossref_primary_10_12677_AP_2019_92038 crossref_primary_10_1038_s41598_021_85749_7 crossref_primary_10_1016_j_pain_2014_07_018 crossref_primary_10_1586_17434440_2016_1153968 crossref_primary_10_1016_j_neulet_2020_134775 crossref_primary_10_1007_s11357_024_01077_4 crossref_primary_10_1038_s41598_018_34098_z crossref_primary_10_1080_13554794_2017_1319492 crossref_primary_10_1016_j_brs_2019_06_006 crossref_primary_10_1089_brain_2013_0196 crossref_primary_10_1016_j_schres_2015_06_011 crossref_primary_10_1162_jocn_a_00927 crossref_primary_10_1016_j_neubiorev_2016_08_001 crossref_primary_10_3389_fnhum_2017_00512 crossref_primary_10_1007_s41465_024_00315_z crossref_primary_10_1016_j_neuroscience_2019_08_052 crossref_primary_10_1007_s15006_015_7540_y crossref_primary_10_3389_fnhum_2014_00378 crossref_primary_10_1007_s41465_017_0007_6 crossref_primary_10_3389_fpsyt_2021_680525 crossref_primary_10_3389_fpsyt_2017_00184 crossref_primary_10_1016_j_neuroimage_2015_09_068 crossref_primary_10_3390_brainsci13020241 crossref_primary_10_1097_j_pain_0000000000000163 crossref_primary_10_3758_s13415_021_00881_1 crossref_primary_10_3389_fnhum_2023_1134632 crossref_primary_10_1103_PhysRevE_108_044402 crossref_primary_10_1016_j_neuroimage_2012_06_063 crossref_primary_10_3389_fnhum_2014_00486 crossref_primary_10_1155_2021_5594305 crossref_primary_10_1016_j_nlm_2019_107037 crossref_primary_10_1016_j_cortex_2014_05_003 crossref_primary_10_1016_j_smrv_2021_101438 crossref_primary_10_1016_j_ijpsycho_2021_11_001 crossref_primary_10_1016_j_biopsych_2013_01_006 crossref_primary_10_1016_j_brs_2015_07_024 crossref_primary_10_3724_SP_J_1041_2020_01048 crossref_primary_10_1093_scan_nsv057 crossref_primary_10_1016_j_jpsychires_2022_09_011 crossref_primary_10_1080_23279095_2017_1357037 crossref_primary_10_1016_j_schres_2013_03_003 crossref_primary_10_1001_jamapsychiatry_2018_2172 crossref_primary_10_1016_j_brainres_2016_11_008 crossref_primary_10_1097_CCO_0000000000000126 crossref_primary_10_1016_j_cortex_2014_07_011 crossref_primary_10_1371_journal_pone_0102834 crossref_primary_10_1159_000502149 crossref_primary_10_1364_BOE_402047 crossref_primary_10_1093_sleep_zsab275 crossref_primary_10_1186_s12984_024_01481_z crossref_primary_10_1016_j_tine_2013_04_001 crossref_primary_10_1016_j_jad_2024_01_050 crossref_primary_10_1007_s10548_017_0552_4 crossref_primary_10_1080_17434440_2020_1816168 crossref_primary_10_1016_j_expneurol_2015_02_002 crossref_primary_10_3389_fnins_2019_01440 crossref_primary_10_3389_fnhum_2014_00665 crossref_primary_10_1523_ENEURO_0084_17_2017 crossref_primary_10_1111_ejn_16255 crossref_primary_10_1038_s41598_020_80279_0 crossref_primary_10_1016_j_schres_2019_11_011 crossref_primary_10_1002_hbm_24285 crossref_primary_10_1016_j_neuroimage_2017_03_001 crossref_primary_10_1097_WNN_0000000000000098 crossref_primary_10_1016_j_neucli_2018_11_001 crossref_primary_10_1371_journal_pone_0197192 crossref_primary_10_3389_fneur_2014_00080 crossref_primary_10_1016_j_psc_2018_05_002 crossref_primary_10_3233_JAD_190888 crossref_primary_10_1016_j_jad_2022_12_007 crossref_primary_10_1148_radiol_2016160938 crossref_primary_10_1371_journal_pone_0098503 crossref_primary_10_3389_fnhum_2017_00649 crossref_primary_10_3389_fnhum_2021_730134 crossref_primary_10_3389_fnins_2024_1389651 crossref_primary_10_1016_j_arr_2015_11_004 crossref_primary_10_1007_s00115_016_0169_y crossref_primary_10_1093_scan_nsaa066 crossref_primary_10_1162_jocn_a_01077 crossref_primary_10_2478_s13380_013_0104_7 crossref_primary_10_1016_j_brs_2023_01_1672 crossref_primary_10_1016_j_jad_2018_02_077 crossref_primary_10_1016_j_neuropsychologia_2021_107880 crossref_primary_10_3389_fnhum_2020_583730 crossref_primary_10_3390_brainsci15030317 crossref_primary_10_1097_WCO_0000000000000353 crossref_primary_10_1007_s00115_012_3573_y crossref_primary_10_1016_j_jpsychires_2019_10_013 crossref_primary_10_1007_s00221_023_06695_6 crossref_primary_10_1016_j_neuroimage_2017_04_052 |
Cites_doi | 10.1016/j.neuron.2007.02.013 10.1038/nrn2213 10.1002/hbm.10062 10.1073/pnas.0911855107 10.1016/j.jad.2009.02.015 10.1111/j.1399-5618.2006.00291.x 10.1523/JNEUROSCI.2964-08.2008 10.1038/nrn755 10.1097/PHM.0b013e3181a0e4cb 10.1016/0028-3932(71)90067-4 10.1002/hbm.20602 10.1162/jocn.2008.21143 10.1073/pnas.0901435106 10.1016/j.neuroimage.2008.03.061 10.1016/j.neuroimage.2009.10.044 10.1016/j.concog.2008.03.013 10.1523/JNEUROSCI.0065-09.2009 10.1162/0898929042568532 10.1016/S1053-8119(02)91132-8 10.1016/j.jns.2006.05.062 10.1016/j.neulet.2009.05.037 10.1002/hbm.20600 10.1523/JNEUROSCI.3408-06.2006 10.1038/nature05758 10.1109/TMI.2003.822821 10.1073/pnas.0504136102 10.1016/j.neuroimage.2005.08.035 10.1093/cercor/bhn010 10.1212/01.WNL.0000152986.07469.E9 10.1016/j.neulet.2008.02.012 10.1016/j.tics.2005.09.001 10.1016/j.neuropsychologia.2011.03.026 10.1016/j.neuroimage.2004.07.051 10.1073/pnas.1831638100 10.1002/hbm.20022 10.1002/1522-2594(200102)45:2<196::AID-MRM1026>3.0.CO;2-1 10.1126/science.1117256 10.1073/pnas.0902071106 10.1113/jphysiol.1964.sp007425 10.1016/j.bbr.2009.10.030 10.1371/journal.pbio.0060159 10.1097/00004728-199803000-00032 10.1073/pnas.0811879106 10.1111/j.1469-7793.2000.t01-1-00633.x 10.1162/jocn.2010.21579 10.1016/j.neuropsychologia.2007.07.009 10.1371/journal.pcbi.1000334 10.1186/1744-9081-5-29 10.1073/pnas.98.2.676 10.1016/j.neuroimage.2010.09.085 10.1016/j.neuropsychologia.2008.07.022 10.1073/pnas.0902455106 10.1111/j.1460-9568.2005.04233.x 10.1016/j.neuroimage.2006.08.041 10.1073/pnas.0913008107 10.1093/cercor/bhp090 10.1073/pnas.0601417103 10.1093/cercor/bhn059 10.1016/j.neuroimage.2007.08.008 10.1073/pnas.071043098 10.1016/j.neuroimage.2010.12.004 10.1016/j.clinph.2009.03.023 10.1016/j.clinph.2006.04.009 10.1016/j.neuroimage.2010.10.039 10.1016/j.bbr.2010.03.024 10.1016/j.brainresbull.2009.06.021 10.1523/JNEUROSCI.2924-09.2010 10.1016/j.neuroimage.2009.10.080 10.1017/S1461145707007833 10.1002/hbm.20479 10.1038/378279a0 10.1111/j.1460-9568.2009.06937.x 10.1002/hbm.20113 10.1073/pnas.172399499 10.1006/nimg.1996.0247 10.1073/pnas.0807010105 10.1016/j.neuroimage.2007.01.027 10.1002/hbm.1058 10.1016/j.neuroimage.2008.03.057 10.1016/S1388-2457(02)00412-1 10.1016/j.eurpsy.2007.09.006 10.1002/hbm.20737 10.1016/j.clinph.2005.12.003 10.1073/pnas.0135058100 10.1016/j.neuroimage.2010.03.052 |
ContentType | Journal Article |
Copyright | Copyright © 2011 the authors 0270-6474/11/3115284-10$15.00/0 2011 |
Copyright_xml | – notice: Copyright © 2011 the authors 0270-6474/11/3115284-10$15.00/0 2011 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1523/JNEUROSCI.0542-11.2011 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1529-2401 |
EndPage | 15293 |
ExternalDocumentID | PMC6703525 22031874 10_1523_JNEUROSCI_0542_11_2011 |
Genre | Randomized Controlled Trial Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -DZ -~X .55 18M 2WC 34G 39C 3O- 53G 5GY 5RE 5VS AAFWJ AAJMC AAYXX ABBAR ABIVO ACGUR ACNCT ADBBV ADCOW ADHGD AENEX AETEA AFCFT AFFNX AFOSN AFSQR AHWXS ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BTFSW CITATION CS3 DIK DU5 E3Z EBS EJD F5P GX1 H13 HYE H~9 KQ8 L7B MVM OK1 P0W P2P QZG R.V RHI RPM TFN TR2 W8F WH7 WOQ X7M XJT YBU YHG YKV YNH YSK CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c479t-9fffff7faad35865e31b30ff8a520455ab67f53cdb5849184960e2f1add28dba3 |
ISSN | 0270-6474 1529-2401 |
IngestDate | Thu Aug 21 18:31:22 EDT 2025 Fri Sep 05 07:55:55 EDT 2025 Thu Apr 03 07:00:01 EDT 2025 Tue Jul 01 02:59:29 EDT 2025 Thu Apr 24 23:04:37 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 43 |
Language | English |
License | https://creativecommons.org/licenses/by-nc-sa/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c479t-9fffff7faad35865e31b30ff8a520455ab67f53cdb5849184960e2f1add28dba3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Undefined-3 Author contributions: T.M., H.-J.M., M.R., and F.P. designed research; D.K., J. Bor, U.P., and O.P. performed research; D.K., T.M., J. Bor, C.M., and J. Brunelin analyzed data; D.K., T.M., and F.P. wrote the paper. D.K. and T.M. contributed equally to this work. |
OpenAccessLink | https://www.jneurosci.org/content/jneuro/31/43/15284.full.pdf |
PMID | 22031874 |
PQID | 901001164 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6703525 proquest_miscellaneous_901001164 pubmed_primary_22031874 crossref_citationtrail_10_1523_JNEUROSCI_0542_11_2011 crossref_primary_10_1523_JNEUROSCI_0542_11_2011 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-10-26 2011-Oct-26 20111026 |
PublicationDateYYYYMMDD | 2011-10-26 |
PublicationDate_xml | – month: 10 year: 2011 text: 2011-10-26 day: 26 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The Journal of neuroscience |
PublicationTitleAlternate | J Neurosci |
PublicationYear | 2011 |
Publisher | Society for Neuroscience |
Publisher_xml | – name: Society for Neuroscience |
References | Oostendorp (2023041303531500000_31.43.15284.65) 2008; 2008 2023041303531500000_31.43.15284.19 2023041303531500000_31.43.15284.17 2023041303531500000_31.43.15284.18 2023041303531500000_31.43.15284.59 2023041303531500000_31.43.15284.16 Suh (2023041303531500000_31.43.15284.78) 2010; 2010 2023041303531500000_31.43.15284.60 2023041303531500000_31.43.15284.61 2023041303531500000_31.43.15284.24 2023041303531500000_31.43.15284.68 2023041303531500000_31.43.15284.25 2023041303531500000_31.43.15284.69 2023041303531500000_31.43.15284.22 2023041303531500000_31.43.15284.66 2023041303531500000_31.43.15284.23 2023041303531500000_31.43.15284.67 2023041303531500000_31.43.15284.20 2023041303531500000_31.43.15284.64 2023041303531500000_31.43.15284.21 2023041303531500000_31.43.15284.62 2023041303531500000_31.43.15284.63 Cordes (2023041303531500000_31.43.15284.14) 2000; 21 2023041303531500000_31.43.15284.48 2023041303531500000_31.43.15284.49 2023041303531500000_31.43.15284.50 2023041303531500000_31.43.15284.13 2023041303531500000_31.43.15284.57 2023041303531500000_31.43.15284.58 2023041303531500000_31.43.15284.11 2023041303531500000_31.43.15284.55 2023041303531500000_31.43.15284.12 2023041303531500000_31.43.15284.56 2023041303531500000_31.43.15284.53 2023041303531500000_31.43.15284.10 2023041303531500000_31.43.15284.54 2023041303531500000_31.43.15284.51 2023041303531500000_31.43.15284.52 Bindman (2023041303531500000_31.43.15284.4) 1964; 172 2023041303531500000_31.43.15284.39 2023041303531500000_31.43.15284.37 2023041303531500000_31.43.15284.38 2023041303531500000_31.43.15284.82 2023041303531500000_31.43.15284.83 2023041303531500000_31.43.15284.80 2023041303531500000_31.43.15284.81 2023041303531500000_31.43.15284.1 2023041303531500000_31.43.15284.2 2023041303531500000_31.43.15284.3 2023041303531500000_31.43.15284.46 2023041303531500000_31.43.15284.5 2023041303531500000_31.43.15284.47 2023041303531500000_31.43.15284.6 2023041303531500000_31.43.15284.44 2023041303531500000_31.43.15284.88 2023041303531500000_31.43.15284.7 2023041303531500000_31.43.15284.45 2023041303531500000_31.43.15284.89 2023041303531500000_31.43.15284.8 2023041303531500000_31.43.15284.42 2023041303531500000_31.43.15284.86 2023041303531500000_31.43.15284.9 2023041303531500000_31.43.15284.43 2023041303531500000_31.43.15284.87 2023041303531500000_31.43.15284.40 2023041303531500000_31.43.15284.84 2023041303531500000_31.43.15284.41 2023041303531500000_31.43.15284.85 2023041303531500000_31.43.15284.28 2023041303531500000_31.43.15284.29 2023041303531500000_31.43.15284.26 2023041303531500000_31.43.15284.27 Cordes (2023041303531500000_31.43.15284.15) 2001; 22 2023041303531500000_31.43.15284.71 2023041303531500000_31.43.15284.72 2023041303531500000_31.43.15284.70 2023041303531500000_31.43.15284.35 2023041303531500000_31.43.15284.79 2023041303531500000_31.43.15284.36 2023041303531500000_31.43.15284.33 2023041303531500000_31.43.15284.77 2023041303531500000_31.43.15284.34 2023041303531500000_31.43.15284.31 2023041303531500000_31.43.15284.75 2023041303531500000_31.43.15284.32 2023041303531500000_31.43.15284.76 2023041303531500000_31.43.15284.73 2023041303531500000_31.43.15284.30 2023041303531500000_31.43.15284.74 |
References_xml | – ident: 2023041303531500000_31.43.15284.37 doi: 10.1016/j.neuron.2007.02.013 – ident: 2023041303531500000_31.43.15284.71 doi: 10.1038/nrn2213 – ident: 2023041303531500000_31.43.15284.73 doi: 10.1002/hbm.10062 – ident: 2023041303531500000_31.43.15284.5 doi: 10.1073/pnas.0911855107 – ident: 2023041303531500000_31.43.15284.23 doi: 10.1016/j.jad.2009.02.015 – ident: 2023041303531500000_31.43.15284.29 doi: 10.1111/j.1399-5618.2006.00291.x – ident: 2023041303531500000_31.43.15284.81 doi: 10.1523/JNEUROSCI.2964-08.2008 – ident: 2023041303531500000_31.43.15284.13 doi: 10.1038/nrn755 – volume: 2008 start-page: 4226 year: 2008 ident: 2023041303531500000_31.43.15284.65 article-title: Modeling transcranial DC stimulation publication-title: Conf Proc IEEE Eng Med Biol Soc – volume: 21 start-page: 1636 year: 2000 ident: 2023041303531500000_31.43.15284.14 article-title: Mapping functionally related regions of brain with functional connectivity MR imaging publication-title: AJNR Am J Neuroradiol – ident: 2023041303531500000_31.43.15284.45 doi: 10.1097/PHM.0b013e3181a0e4cb – ident: 2023041303531500000_31.43.15284.64 doi: 10.1016/0028-3932(71)90067-4 – ident: 2023041303531500000_31.43.15284.10 doi: 10.1002/hbm.20602 – ident: 2023041303531500000_31.43.15284.12 doi: 10.1162/jocn.2008.21143 – ident: 2023041303531500000_31.43.15284.41 doi: 10.1073/pnas.0901435106 – ident: 2023041303531500000_31.43.15284.74 doi: 10.1016/j.neuroimage.2008.03.061 – ident: 2023041303531500000_31.43.15284.57 doi: 10.1016/j.neuroimage.2009.10.044 – ident: 2023041303531500000_31.43.15284.72 doi: 10.1016/j.concog.2008.03.013 – ident: 2023041303531500000_31.43.15284.20 doi: 10.1523/JNEUROSCI.0065-09.2009 – ident: 2023041303531500000_31.43.15284.31 doi: 10.1162/0898929042568532 – ident: 2023041303531500000_31.43.15284.44 doi: 10.1016/S1053-8119(02)91132-8 – ident: 2023041303531500000_31.43.15284.6 doi: 10.1016/j.jns.2006.05.062 – ident: 2023041303531500000_31.43.15284.43 doi: 10.1016/j.neulet.2009.05.037 – ident: 2023041303531500000_31.43.15284.51 doi: 10.1002/hbm.20600 – ident: 2023041303531500000_31.43.15284.36 doi: 10.1523/JNEUROSCI.3408-06.2006 – ident: 2023041303531500000_31.43.15284.84 doi: 10.1038/nature05758 – ident: 2023041303531500000_31.43.15284.3 doi: 10.1109/TMI.2003.822821 – ident: 2023041303531500000_31.43.15284.27 doi: 10.1073/pnas.0504136102 – ident: 2023041303531500000_31.43.15284.17 doi: 10.1016/j.neuroimage.2005.08.035 – ident: 2023041303531500000_31.43.15284.85 doi: 10.1093/cercor/bhn010 – ident: 2023041303531500000_31.43.15284.42 doi: 10.1212/01.WNL.0000152986.07469.E9 – ident: 2023041303531500000_31.43.15284.49 doi: 10.1016/j.neulet.2008.02.012 – ident: 2023041303531500000_31.43.15284.87 doi: 10.1016/j.tics.2005.09.001 – ident: 2023041303531500000_31.43.15284.1 doi: 10.1016/j.neuropsychologia.2011.03.026 – ident: 2023041303531500000_31.43.15284.75 doi: 10.1016/j.neuroimage.2004.07.051 – ident: 2023041303531500000_31.43.15284.52 doi: 10.1073/pnas.1831638100 – ident: 2023041303531500000_31.43.15284.82 doi: 10.1002/hbm.20022 – ident: 2023041303531500000_31.43.15284.2 doi: 10.1002/1522-2594(200102)45:2<196::AID-MRM1026>3.0.CO;2-1 – ident: 2023041303531500000_31.43.15284.55 doi: 10.1126/science.1117256 – ident: 2023041303531500000_31.43.15284.58 doi: 10.1073/pnas.0902071106 – volume: 172 start-page: 369 year: 1964 ident: 2023041303531500000_31.43.15284.4 article-title: The Action of Brief Polarizing Currents on the Cerebral Cortex of the Rat (1) During Current Flow and (2) in the Production of Long-Lasting after-Effects publication-title: J Physiol doi: 10.1113/jphysiol.1964.sp007425 – ident: 2023041303531500000_31.43.15284.24 doi: 10.1016/j.bbr.2009.10.030 – ident: 2023041303531500000_31.43.15284.35 doi: 10.1371/journal.pbio.0060159 – ident: 2023041303531500000_31.43.15284.40 doi: 10.1097/00004728-199803000-00032 – ident: 2023041303531500000_31.43.15284.25 doi: 10.1073/pnas.0811879106 – ident: 2023041303531500000_31.43.15284.62 doi: 10.1111/j.1469-7793.2000.t01-1-00633.x – ident: 2023041303531500000_31.43.15284.26 doi: 10.1162/jocn.2010.21579 – ident: 2023041303531500000_31.43.15284.76 doi: 10.1016/j.neuropsychologia.2007.07.009 – volume: 22 start-page: 1326 year: 2001 ident: 2023041303531500000_31.43.15284.15 article-title: Frequencies contributing to functional connectivity in the cerebral cortex in “resting-state” data publication-title: AJNR Am J Neuroradiol – ident: 2023041303531500000_31.43.15284.9 doi: 10.1371/journal.pcbi.1000334 – ident: 2023041303531500000_31.43.15284.21 doi: 10.1186/1744-9081-5-29 – ident: 2023041303531500000_31.43.15284.68 doi: 10.1073/pnas.98.2.676 – ident: 2023041303531500000_31.43.15284.66 doi: 10.1016/j.neuroimage.2010.09.085 – ident: 2023041303531500000_31.43.15284.8 doi: 10.1016/j.neuropsychologia.2008.07.022 – ident: 2023041303531500000_31.43.15284.53 doi: 10.1073/pnas.0902455106 – ident: 2023041303531500000_31.43.15284.50 doi: 10.1111/j.1460-9568.2005.04233.x – ident: 2023041303531500000_31.43.15284.18 doi: 10.1016/j.neuroimage.2006.08.041 – ident: 2023041303531500000_31.43.15284.22 doi: 10.1073/pnas.0913008107 – volume: 2010 start-page: 2053 year: 2010 ident: 2023041303531500000_31.43.15284.78 article-title: Reduced spatial focality of electrical field in tDCS with ring electrodes due to tissue anisotropy publication-title: Conf Proc IEEE Eng Med Biol Soc – ident: 2023041303531500000_31.43.15284.46 doi: 10.1093/cercor/bhp090 – ident: 2023041303531500000_31.43.15284.16 doi: 10.1073/pnas.0601417103 – ident: 2023041303531500000_31.43.15284.33 doi: 10.1093/cercor/bhn059 – ident: 2023041303531500000_31.43.15284.48 doi: 10.1016/j.neuroimage.2007.08.008 – ident: 2023041303531500000_31.43.15284.34 doi: 10.1073/pnas.071043098 – ident: 2023041303531500000_31.43.15284.47 doi: 10.1016/j.neuroimage.2010.12.004 – ident: 2023041303531500000_31.43.15284.60 doi: 10.1016/j.clinph.2009.03.023 – ident: 2023041303531500000_31.43.15284.59 doi: 10.1016/j.clinph.2006.04.009 – ident: 2023041303531500000_31.43.15284.88 doi: 10.1016/j.neuroimage.2010.10.039 – ident: 2023041303531500000_31.43.15284.54 doi: 10.1016/j.bbr.2010.03.024 – ident: 2023041303531500000_31.43.15284.56 doi: 10.1016/j.brainresbull.2009.06.021 – ident: 2023041303531500000_31.43.15284.39 doi: 10.1523/JNEUROSCI.2924-09.2010 – ident: 2023041303531500000_31.43.15284.89 doi: 10.1016/j.neuroimage.2009.10.080 – ident: 2023041303531500000_31.43.15284.7 doi: 10.1017/S1461145707007833 – ident: 2023041303531500000_31.43.15284.83 doi: 10.1002/hbm.20479 – ident: 2023041303531500000_31.43.15284.19 doi: 10.1038/378279a0 – ident: 2023041303531500000_31.43.15284.77 doi: 10.1111/j.1460-9568.2009.06937.x – ident: 2023041303531500000_31.43.15284.28 doi: 10.1002/hbm.20113 – ident: 2023041303531500000_31.43.15284.67 doi: 10.1073/pnas.172399499 – ident: 2023041303531500000_31.43.15284.11 doi: 10.1006/nimg.1996.0247 – ident: 2023041303531500000_31.43.15284.38 doi: 10.1073/pnas.0807010105 – ident: 2023041303531500000_31.43.15284.86 doi: 10.1016/j.neuroimage.2007.01.027 – ident: 2023041303531500000_31.43.15284.61 doi: 10.1002/hbm.1058 – ident: 2023041303531500000_31.43.15284.79 doi: 10.1016/j.neuroimage.2008.03.057 – ident: 2023041303531500000_31.43.15284.63 doi: 10.1016/S1388-2457(02)00412-1 – ident: 2023041303531500000_31.43.15284.69 doi: 10.1016/j.eurpsy.2007.09.006 – ident: 2023041303531500000_31.43.15284.80 doi: 10.1002/hbm.20737 – ident: 2023041303531500000_31.43.15284.30 doi: 10.1016/j.clinph.2005.12.003 – ident: 2023041303531500000_31.43.15284.32 doi: 10.1073/pnas.0135058100 – ident: 2023041303531500000_31.43.15284.70 doi: 10.1016/j.neuroimage.2010.03.052 |
SSID | ssj0007017 |
Score | 2.564528 |
Snippet | Transcranial direct current stimulation (tDCS) has been proposed for experimental and therapeutic modulation of regional brain function. Specifically, anodal... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 15284 |
SubjectTerms | Adult Brain Mapping Double-Blind Method Humans Image Processing, Computer-Assisted Magnetic Resonance Imaging Male Neural Pathways - blood supply Oxygen - blood Prefrontal Cortex - blood supply Prefrontal Cortex - physiology Principal Component Analysis Reaction Time Rest - physiology Transcranial Magnetic Stimulation Young Adult |
Title | Prefrontal Transcranial Direct Current Stimulation Changes Connectivity of Resting-State Networks during fMRI |
URI | https://www.ncbi.nlm.nih.gov/pubmed/22031874 https://www.proquest.com/docview/901001164 https://pubmed.ncbi.nlm.nih.gov/PMC6703525 |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1529-2401 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007017 issn: 0270-6474 databaseCode: KQ8 dateStart: 19810101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1529-2401 dateEnd: 20250330 omitProxy: true ssIdentifier: ssj0007017 issn: 0270-6474 databaseCode: DIK dateStart: 19810101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1529-2401 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007017 issn: 0270-6474 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1529-2401 dateEnd: 20250330 omitProxy: true ssIdentifier: ssj0007017 issn: 0270-6474 databaseCode: RPM dateStart: 19810101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZZ97KXsa27ZOuGHsZeitvYsiT7sZSNtqNllwb6ZmxZooHEKY37sP76niPJtpJ27BKICbIlQ77PR0fWOd8h5GNqX-bXeTQxXEap1mkEs6KIjOLC5CzTrMbk5NMzcTRNTy74xWh0G2aXtNWeun0wr-R_UIU2wBWzZP8B2X5QaIDfgC8cAWE4_hXG32B6QwECGzAOc46Cw8zuuqAd21Veewme4oWv0uUTfVcYbd5YW-dDMrBEB8xikU0w2m1ccPiqy2I0pz-OQzd2SCizrmwgiqkHC65Xjg4ui71HVs-aer4Rm2TjFa-7fO1-DCzugo3TOVjry_AFhYuQS7y8tTeqid3FiUOr622_Y1fKAhsKl7uqcfesO7cqEydnGOT48_B4D9zNJIpjK8QadgCUrhYW8yRBo-XqAG3oanenHpHHiRQCq198_T4ozUswVT6jHG67__BNUUraD7Pu19xbrGzG3AZOzPkz8tRDRg8clZ6TkW5ekO2DpmyXi1_0E7XxwHajZZssBnbRkF3UsYt6dtGAXdSzi4bsoktD19hFO3ZRxy6K7HpJpl8-nx8eRb44R6RSmbdRbvAjTVnWjGeCaxZXbGJMVnKscMDLSkjDmaorcHHzGL5iohMTw3yaZHVVsldkq1k2-g2htVaiYkqWTCWprKpSGAYDGVhbaJXFYkx499cWyivXYwGVeYErWECn6NEpEB1Y1RaIzpjs9_2unHbLH3vQDrkCzCzunZWNXt6sCoxiwj3LdExeOyD7ITsGjIlcg7i_ABXc1880s0ur5C6klSN--9sx35EnwyO1Q7ba6xv9Hrzgtvpg6XoHhFa3hw |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prefrontal+transcranial+direct+current+stimulation+changes+connectivity+of+resting-state+networks+during+fMRI&rft.jtitle=The+Journal+of+neuroscience&rft.au=Keeser%2C+Daniel&rft.au=Meindl%2C+Thomas&rft.au=Bor%2C+Julie&rft.au=Palm%2C+Ulrich&rft.date=2011-10-26&rft.eissn=1529-2401&rft.volume=31&rft.issue=43&rft.spage=15284&rft_id=info:doi/10.1523%2FJNEUROSCI.0542-11.2011&rft_id=info%3Apmid%2F22031874&rft.externalDocID=22031874 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-6474&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-6474&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-6474&client=summon |