Synchronous inhibitory pathways create both efficiency and diversity in the retina
Sensory receptive fields combine features that originate in different neural pathways. Retinal ganglion cell receptive fields compute intensity changes across space and time using a peripheral region known as the surround, a property that improves information transmission about natural scenes. The v...
        Saved in:
      
    
          | Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 119; no. 4; pp. 1 - 9 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        United States
          National Academy of Sciences
    
        25.01.2022
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0027-8424 1091-6490 1091-6490  | 
| DOI | 10.1073/pnas.2116589119 | 
Cover
| Abstract | Sensory receptive fields combine features that originate in different neural pathways. Retinal ganglion cell receptive fields compute intensity changes across space and time using a peripheral region known as the surround, a property that improves information transmission about natural scenes. The visual features that construct this fundamental property have not been quantitatively assigned to specific interneurons. Here, we describe a generalizable approach using simultaneous intracellular and multielectrode recording to directly measure and manipulate the sensory feature conveyed by a neural pathway to a downstream neuron. By directly controlling the gain of individual interneurons in the circuit, we show that rather than transmitting different temporal features, inhibitory horizontal cells and linear amacrine cells synchronously create the linear surround at different spatial scales and that these two components fully account for the surround. By analyzing a large population of ganglion cells, we observe substantial diversity in the relative contribution of amacrine and horizontal cell visual features while still allowing individual cells to increase information transmission under the statistics of natural scenes. Established theories of efficient coding have shown that optimal information transmission under natural scenes allows a diverse set of receptive fields. Our results give a mechanism for this theory, showing how distinct neural pathways synthesize a sensory computation and how this architecture both generates computational diversity and achieves the objective of high information transmission. | 
    
|---|---|
| AbstractList | Sensory receptive fields combine features that originate in different neural pathways. Retinal ganglion cell receptive fields compute intensity changes across space and time using a peripheral region known as the surround, a property that improves information transmission about natural scenes. The visual features that construct this fundamental property have not been quantitatively assigned to specific interneurons. Here, we describe a generalizable approach using simultaneous intracellular and multielectrode recording to directly measure and manipulate the sensory feature conveyed by a neural pathway to a downstream neuron. By directly controlling the gain of individual interneurons in the circuit, we show that rather than transmitting different temporal features, inhibitory horizontal cells and linear amacrine cells synchronously create the linear surround at different spatial scales and that these two components fully account for the surround. By analyzing a large population of ganglion cells, we observe substantial diversity in the relative contribution of amacrine and horizontal cell visual features while still allowing individual cells to increase information transmission under the statistics of natural scenes. Established theories of efficient coding have shown that optimal information transmission under natural scenes allows a diverse set of receptive fields. Our results give a mechanism for this theory, showing how distinct neural pathways synthesize a sensory computation and how this architecture both generates computational diversity and achieves the objective of high information transmission. Complex connections in neural circuits make it difficult to quantitatively assign even the most basic neural computations to the actions of specific neurons. Retinal ganglion cells are most sensitive to changes in intensity across space and over time. This property, caused by a region known as the receptive field surround, improves information transmission about natural scenes. We dynamically manipulated individual interneurons to directly measure their effect on retinal receptive fields, finding that two inhibitory neuron types, horizontal cells and amacrine cells, synchronously create the same contribution to the receptive field surround at different spatial scales. By analyzing large populations of ganglion cells, we show that this arrangement increases diversity in retinal signaling while preserving maximal information transmission about natural scenes. Sensory receptive fields combine features that originate in different neural pathways. Retinal ganglion cell receptive fields compute intensity changes across space and time using a peripheral region known as the surround, a property that improves information transmission about natural scenes. The visual features that construct this fundamental property have not been quantitatively assigned to specific interneurons. Here, we describe a generalizable approach using simultaneous intracellular and multielectrode recording to directly measure and manipulate the sensory feature conveyed by a neural pathway to a downstream neuron. By directly controlling the gain of individual interneurons in the circuit, we show that rather than transmitting different temporal features, inhibitory horizontal cells and linear amacrine cells synchronously create the linear surround at different spatial scales and that these two components fully account for the surround. By analyzing a large population of ganglion cells, we observe substantial diversity in the relative contribution of amacrine and horizontal cell visual features while still allowing individual cells to increase information transmission under the statistics of natural scenes. Established theories of efficient coding have shown that optimal information transmission under natural scenes allows a diverse set of receptive fields. Our results give a mechanism for this theory, showing how distinct neural pathways synthesize a sensory computation and how this architecture both generates computational diversity and achieves the objective of high information transmission. Sensory receptive fields combine features that originate in different neural pathways. Retinal ganglion cell receptive fields compute intensity changes across space and time using a peripheral region known as the surround, a property that improves information transmission about natural scenes. The visual features that construct this fundamental property have not been quantitatively assigned to specific interneurons. Here, we describe a generalizable approach using simultaneous intracellular and multielectrode recording to directly measure and manipulate the sensory feature conveyed by a neural pathway to a downstream neuron. By directly controlling the gain of individual interneurons in the circuit, we show that rather than transmitting different temporal features, inhibitory horizontal cells and linear amacrine cells synchronously create the linear surround at different spatial scales and that these two components fully account for the surround. By analyzing a large population of ganglion cells, we observe substantial diversity in the relative contribution of amacrine and horizontal cell visual features while still allowing individual cells to increase information transmission under the statistics of natural scenes. Established theories of efficient coding have shown that optimal information transmission under natural scenes allows a diverse set of receptive fields. Our results give a mechanism for this theory, showing how distinct neural pathways synthesize a sensory computation and how this architecture both generates computational diversity and achieves the objective of high information transmission.Sensory receptive fields combine features that originate in different neural pathways. Retinal ganglion cell receptive fields compute intensity changes across space and time using a peripheral region known as the surround, a property that improves information transmission about natural scenes. The visual features that construct this fundamental property have not been quantitatively assigned to specific interneurons. Here, we describe a generalizable approach using simultaneous intracellular and multielectrode recording to directly measure and manipulate the sensory feature conveyed by a neural pathway to a downstream neuron. By directly controlling the gain of individual interneurons in the circuit, we show that rather than transmitting different temporal features, inhibitory horizontal cells and linear amacrine cells synchronously create the linear surround at different spatial scales and that these two components fully account for the surround. By analyzing a large population of ganglion cells, we observe substantial diversity in the relative contribution of amacrine and horizontal cell visual features while still allowing individual cells to increase information transmission under the statistics of natural scenes. Established theories of efficient coding have shown that optimal information transmission under natural scenes allows a diverse set of receptive fields. Our results give a mechanism for this theory, showing how distinct neural pathways synthesize a sensory computation and how this architecture both generates computational diversity and achieves the objective of high information transmission. Complex connections in neural circuits make it difficult to quantitatively assign even the most basic neural computations to the actions of specific neurons. Retinal ganglion cells are most sensitive to changes in intensity across space and over time. This property, caused by a region known as the receptive field surround, improves information transmission about natural scenes. We dynamically manipulated individual interneurons to directly measure their effect on retinal receptive fields, finding that two inhibitory neuron types, horizontal cells and amacrine cells, synchronously create the same contribution to the receptive field surround at different spatial scales. By analyzing large populations of ganglion cells, we show that this arrangement increases diversity in retinal signaling while preserving maximal information transmission about natural scenes. Sensory receptive fields combine features that originate in different neural pathways. Retinal ganglion cell receptive fields compute intensity changes across space and time using a peripheral region known as the surround, a property that improves information transmission about natural scenes. The visual features that construct this fundamental property have not been quantitatively assigned to specific interneurons. Here, we describe a generalizable approach using simultaneous intracellular and multielectrode recording to directly measure and manipulate the sensory feature conveyed by a neural pathway to a downstream neuron. By directly controlling the gain of individual interneurons in the circuit, we show that rather than transmitting different temporal features, inhibitory horizontal cells and linear amacrine cells synchronously create the linear surround at different spatial scales and that these two components fully account for the surround. By analyzing a large population of ganglion cells, we observe substantial diversity in the relative contribution of amacrine and horizontal cell visual features while still allowing individual cells to increase information transmission under the statistics of natural scenes. Established theories of efficient coding have shown that optimal information transmission under natural scenes allows a diverse set of receptive fields. Our results give a mechanism for this theory, showing how distinct neural pathways synthesize a sensory computation and how this architecture both generates computational diversity and achieves the objective of high information transmission. SignificanceComplex connections in neural circuits make it difficult to quantitatively assign even the most basic neural computations to the actions of specific neurons. Retinal ganglion cells are most sensitive to changes in intensity across space and over time. This property, caused by a region known as the receptive field surround, improves information transmission about natural scenes. We dynamically manipulated individual interneurons to directly measure their effect on retinal receptive fields, finding that two inhibitory neuron types, horizontal cells and amacrine cells, synchronously create the same contribution to the receptive field surround at different spatial scales. By analyzing large populations of ganglion cells, we show that this arrangement increases diversity in retinal signaling while preserving maximal information transmission about natural scenes. Sensory receptive fields combine features that originate in different neural pathways. Retinal ganglion cell receptive fields compute intensity changes across space and time using a peripheral region known as the surround, a property that improves information transmission about natural scenes. The visual features that construct this fundamental property have not been quantitatively assigned to specific interneurons. Here, we describe a generalizable approach using simultaneous intracellular and multielectrode recording to directly measure and manipulate the sensory feature conveyed by a neural pathway to a downstream neuron. By directly controlling the gain of individual interneurons in the circuit, we show that rather than transmitting different temporal features, inhibitory horizontal cells and linear amacrine cells synchronously create the linear surround at different spatial scales and that these two components fully account for the surround. By analyzing a large population of ganglion cells, we observe substantial diversity in the relative contribution of amacrine and horizontal cell visual features while still allowing individual cells to increase information transmission under the statistics of natural scenes. Established theories of efficient coding have shown that optimal information transmission under natural scenes allows a diverse set of receptive fields. Our results give a mechanism for this theory, showing how distinct neural pathways synthesize a sensory computation and how this architecture both generates computational diversity and achieves the objective of high information transmission. Description  | 
    
| ArticleNumber | e2116589119 | 
    
| Author | Baccus, Stephen A. Naecker, Benjamin N. McIntosh, Lane T. Kastner, David B. Manu, Mihai  | 
    
| Author_xml | – sequence: 1 givenname: Mihai surname: Manu fullname: Manu, Mihai – sequence: 2 givenname: Lane T. surname: McIntosh fullname: McIntosh, Lane T. – sequence: 3 givenname: David B. surname: Kastner fullname: Kastner, David B. – sequence: 4 givenname: Benjamin N. surname: Naecker fullname: Naecker, Benjamin N. – sequence: 5 givenname: Stephen A. surname: Baccus fullname: Baccus, Stephen A.  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35064086$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqNkk1rFTEYhYNU7G117UoZcCOUafM5STaCFLVCQdDuQyaTcXKZm4xJpmX-vRnutdUu1FUW73NOznuSE3Dkg7cAvETwHEFOLiav0zlGqGFCIiSfgA2CEtUNlfAIbCDEvBYU02NwktIWQiiZgM_AMWGwoVA0G_D12-LNEIMPc6qcH1zrcohLNek83OklVSZanW3VhjxUtu-dcdabpdK-qzp3a2NyeSnCKg-2ijY7r5-Dp70ek31xOE_BzccPN5dX9fWXT58v31_XhnKZa0m0aITEVkrSSgZ5D6VhtCW81dDyVujeCMJEL5g2mliK-8ZwYTvRd52g5BTAve3sJ73c6XFUU3Q7HReFoFrbUWs76qGdInm3l0xzu7OdsT5H_SAL2qk_J94N6nu4VYJLRiUrBm8PBjH8mG3KaueSseOovS0FKtxgjAVFEBX0zSN0G-boSyErRZtiSUihXv-e6D7KrwcqwMUeMDGkFG3_H0uyRwrjss4urCu58S-6s0OUdfDvW17t6W0q_-Uexxwh3khEfgL9zM1R | 
    
| CitedBy_id | crossref_primary_10_1162_neco_a_01663 | 
    
| Cites_doi | 10.1016/j.neuron.2018.06.001 10.1038/nrn3171 10.1038/381607a0 10.1073/pnas.1506855112 10.1073/pnas.1107994108 10.1523/JNEUROSCI.5252-03.2004 10.1523/JNEUROSCI.5662-10.2011 10.1113/jphysiol.1991.sp018790 10.1152/jn.1971.34.5.785 10.1126/science.287.5456.1273 10.1038/nn.2927 10.1016/j.neuron.2006.04.034 10.1073/pnas.1418092112 10.1016/j.neuron.2009.12.009 10.1515/znc-1981-9-1040 10.1038/nature16468 10.1162/neco.1992.4.5.691 10.1113/jphysiol.1962.sp006837 10.1523/ENEURO.0022-20.2020 10.1523/JNEUROSCI.4206-07.2008 10.1038/nn.2630 10.1113/jphysiol.2011.209031 10.1038/s41598-017-05543-2 10.1152/jn.1997.78.4.2048 10.1016/0042-6989(65)90033-7 10.1038/333452a0 10.1038/nature06739 10.1038/nature01652 10.1162/neco_a_01158 10.1038/nature16442 10.1038/nrn2338 10.1016/j.tins.2004.02.004 10.1016/S0042-6989(00)00166-8 10.1162/neco.1990.2.3.308 10.1016/0042-6989(93)90163-Q 10.1073/pnas.0908926106 10.1113/jphysiol.2005.083436 10.1016/j.conb.2013.11.012 10.1371/journal.pone.0020409 10.1113/jphysiol.1957.sp005817 10.1038/nn.2906 10.1016/j.neuron.2012.10.002 10.1016/j.tins.2015.01.005 10.1523/JNEUROSCI.4036-12.2012 10.1523/JNEUROSCI.1032-14.2014 10.1113/jphysiol.2013.257352 10.1080/713663221 10.1103/PhysRevLett.108.228102 10.1523/JNEUROSCI.0141-17.2018 10.1038/nature03689  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright © 2022 the Author(s). Published by PNAS. Copyright National Academy of Sciences Jan 25, 2022 Copyright © 2022 the Author(s). Published by PNAS. 2022  | 
    
| Copyright_xml | – notice: Copyright © 2022 the Author(s). Published by PNAS. – notice: Copyright National Academy of Sciences Jan 25, 2022 – notice: Copyright © 2022 the Author(s). Published by PNAS. 2022  | 
    
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM ADTOC UNPAY  | 
    
| DOI | 10.1073/pnas.2116589119 | 
    
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic  | 
    
| DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic Virology and AIDS Abstracts  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Sciences (General) | 
    
| EISSN | 1091-6490 | 
    
| EndPage | 9 | 
    
| ExternalDocumentID | 10.1073/pnas.2116589119 PMC8795495 35064086 10_1073_pnas_2116589119 27117691  | 
    
| Genre | Research Article Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural  | 
    
| GrantInformation_xml | – fundername: HHS | NIH | National Eye Institute (NEI) grantid: R01EY022933 funderid: 100000053 – fundername: HHS | NIH | National Eye Institute (NEI) grantid: R01EY025087 funderid: 100000053 – fundername: NEI NIH HHS grantid: P30 EY026877 – fundername: NEI NIH HHS grantid: R01 EY025087 – fundername: NEI NIH HHS grantid: R01 EY022933 – fundername: HHS | NIH | National Eye Institute (NEI) grantid: R01EY022933 – fundername: HHS | NIH | National Eye Institute (NEI) grantid: R01EY025087  | 
    
| GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2AX 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABBHK ABOCM ABPLY ABPPZ ABTLG ABZEH ACGOD ACIWK ACNCT ACPRK AENEX AEUPB AEXZC AFFNX AFOSN AFRAH ALMA_UNASSIGNED_HOLDINGS BKOMP CS3 D0L DCCCD DIK DU5 E3Z EBS F5P FRP GX1 H13 HH5 HYE IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SA0 SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM AAYXX CITATION CGR CUY CVF ECM EIF NPM RHF VQA YIF YIN 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 5PM .GJ 3O- 692 6TJ 79B AAYJJ ABXSQ ACHIC ACKIV ADQXQ ADTOC ADULT ADXHL AFHIN AFQQW AQVQM AS~ EJD HGD HQ3 HTVGU MVM NEJ NHB P-O UNPAY VOH WHG ZCG  | 
    
| ID | FETCH-LOGICAL-c479t-93a86892e993b9507f09c54b37ba0e7b8afc8358f85aca3e42f6c78ed8fdd843 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 0027-8424 1091-6490  | 
    
| IngestDate | Sun Oct 26 04:10:38 EDT 2025 Tue Sep 30 16:41:38 EDT 2025 Tue Aug 19 13:07:56 EDT 2025 Mon Jun 30 09:54:23 EDT 2025 Wed Feb 19 02:26:25 EST 2025 Thu Apr 24 22:57:27 EDT 2025 Wed Oct 01 01:47:09 EDT 2025 Thu Oct 09 22:07:42 EDT 2025 Thu May 29 08:48:41 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 4 | 
    
| Keywords | computational model efficient coding neural circuit receptive field perturbation  | 
    
| Language | English | 
    
| License | https://creativecommons.org/licenses/by-nc-nd/4.0 Copyright © 2022 the Author(s). Published by PNAS. This article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND). cc-by-nc-nd  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c479t-93a86892e993b9507f09c54b37ba0e7b8afc8358f85aca3e42f6c78ed8fdd843 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 1Present address: Department of Neurosurgery, Cologne-Merheim Medical Center, Witten/Herdecke University School of Medicine, D-51109 Cologne, Germany. 3Present address: Department of Psychiatry, University of California, San Francisco, CA 94143. Edited by Terrence Sejnowski, Computational Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA; received September 8, 2021; accepted December 2, 2021 Author contributions: M.M., L.T.M., and S.A.B. designed research; M.M., D.B.K., and B.N.N. performed research; M.M., L.T.M., D.B.K., and B.N.N. analyzed data; and M.M., L.T.M., D.B.K., and S.A.B. wrote the paper. 2M.M. and L.T.M. contributed equally to this work.  | 
    
| ORCID | 0000-0002-4236-1061 0000-0001-7776-4736 0000-0001-9681-425X  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1073/pnas.2116589119 | 
    
| PMID | 35064086 | 
    
| PQID | 2624687933 | 
    
| PQPubID | 42026 | 
    
| PageCount | 9 | 
    
| ParticipantIDs | unpaywall_primary_10_1073_pnas_2116589119 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8795495 proquest_miscellaneous_2622284101 proquest_journals_2624687933 pubmed_primary_35064086 crossref_primary_10_1073_pnas_2116589119 crossref_citationtrail_10_1073_pnas_2116589119 pnas_primary_10_1073_pnas_2116589119 jstor_primary_27117691  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2022-01-25 | 
    
| PublicationDateYYYYMMDD | 2022-01-25 | 
    
| PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-25 day: 25  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | United States | 
    
| PublicationPlace_xml | – name: United States – name: Washington  | 
    
| PublicationTitle | Proceedings of the National Academy of Sciences - PNAS | 
    
| PublicationTitleAbbrev | Proc Natl Acad Sci USA | 
    
| PublicationTitleAlternate | Proc Natl Acad Sci U S A | 
    
| PublicationYear | 2022 | 
    
| Publisher | National Academy of Sciences | 
    
| Publisher_xml | – name: National Academy of Sciences | 
    
| References | Kim, Zhang, Yamagata, Meister, Sanes 2008; 452 de Vries, Baccus, Meister 2011; 31 Chichilnisky 2001; 12 DeVries, Li, Saszik 2006; 50 Protti 2014; 592 Chaya 2017; 7 Baccus, Olveczky, Manu, Meister 2008; 28 Barlow, Fitzhugh, Kuffler 1957; 137 Karklin, Simoncelli 2011; 24 Rodieck 1965; 5 Kastner, Baccus, Sharpee 2015; 112 McMahon, Packer, Dacey 2004; 24 Laughlin 1981; 36 Doi 2012; 32 Naka, Nye 1971; 34 Masland 2012; 76 Berry Ii, Lebois, Ziskind, da Silveira 2019; 31 Gjorgjieva, Sompolinsky, Meister 2014; 34 Tadmor, Tolhurst 2000; 40 Ströh 2018; 38 Hubel, Wiesel 1962; 160 Kastner, Baccus 2014; 25 Olveczky, Baccus, Meister 2003; 423 Vinje, Gallant 2000; 287 Atick, Redlich 1990; 2 Palmer, Marre, Berry, Bialek 2015; 112 Drinnenberg 2018; 99 Ala-Laurila, Greschner, Chichilnisky, Rieke 2011; 14 Beckwith-Cohen, Holzhausen, Nawy, Kramer 2020; 7 Gollisch, Meister 2010; 65 Tye, Deisseroth 2012; 13 Otchy 2015; 528 Martinez 2011; 589 Linsker 2008; 4 Liu, Stevens, Sharpee 2009; 106 Manu, Baccus 2011; 108 Van Hateren 1993; 33 Rucci, Victor 2015; 38 Prinz, Abbott, Marder 2004; 27 Mejias, Longtin 2012; 108 Tkačik 2011; 6 Olshausen, Field 1996; 381 Lehky, Sejnowski 1988; 333 Baden 2016; 529 Mangel 1991; 442 Padmanabhan, Urban 2010; 13 Kastner, Baccus 2011; 14 Hosoya, Baccus, Meister 2005; 436 Kerr, Denk 2008; 9 Ichinose, Lukasiewicz 2005; 565 Devries, Baylor 1997; 78 e_1_3_4_3_2 e_1_3_4_1_2 e_1_3_4_9_2 e_1_3_4_7_2 e_1_3_4_40_2 e_1_3_4_5_2 e_1_3_4_23_2 e_1_3_4_44_2 e_1_3_4_21_2 e_1_3_4_42_2 e_1_3_4_27_2 e_1_3_4_48_2 e_1_3_4_25_2 e_1_3_4_46_2 e_1_3_4_30_2 e_1_3_4_51_2 e_1_3_4_11_2 e_1_3_4_34_2 e_1_3_4_32_2 e_1_3_4_15_2 e_1_3_4_38_2 e_1_3_4_13_2 e_1_3_4_36_2 e_1_3_4_19_2 e_1_3_4_17_2 e_1_3_4_2_2 e_1_3_4_8_2 e_1_3_4_41_2 e_1_3_4_6_2 e_1_3_4_4_2 e_1_3_4_22_2 e_1_3_4_45_2 e_1_3_4_20_2 e_1_3_4_43_2 e_1_3_4_26_2 e_1_3_4_49_2 e_1_3_4_24_2 e_1_3_4_47_2 e_1_3_4_28_2 Karklin Y. (e_1_3_4_29_2) 2011; 24 e_1_3_4_50_2 e_1_3_4_12_2 e_1_3_4_33_2 e_1_3_4_10_2 e_1_3_4_31_2 e_1_3_4_16_2 e_1_3_4_37_2 e_1_3_4_14_2 e_1_3_4_35_2 e_1_3_4_18_2 e_1_3_4_39_2  | 
    
| References_xml | – volume: 14 start-page: 1309 year: 2011 end-page: 1316 article-title: Cone photoreceptor contributions to noise and correlations in the retinal output publication-title: Nat. Neurosci. – volume: 565 start-page: 517 year: 2005 end-page: 535 article-title: Inner and outer retinal pathways both contribute to surround inhibition of salamander ganglion cells publication-title: J. Physiol. – volume: 76 start-page: 266 year: 2012 end-page: 280 article-title: The neuronal organization of the retina publication-title: Neuron – volume: 137 start-page: 338 year: 1957 end-page: 354 article-title: Change of organization in the receptive fields of the cat’s retina during dark adaptation publication-title: J. Physiol. – volume: 160 start-page: 106 year: 1962 end-page: 154 article-title: Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex publication-title: J. Physiol. – volume: 106 start-page: 16499 year: 2009 end-page: 16504 article-title: Predictable irregularities in retinal receptive fields publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 13 start-page: 1276 year: 2010 end-page: 1282 article-title: Intrinsic biophysical diversity decorrelates neuronal firing while increasing information content publication-title: Nat. Neurosci. – volume: 112 start-page: 2533 year: 2015 end-page: 2538 article-title: Critical and maximally informative encoding between neural populations in the retina publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 12 start-page: 199 year: 2001 end-page: 213 article-title: A simple white noise analysis of neuronal light responses publication-title: Network – volume: 32 start-page: 16256 year: 2012 end-page: 16264 article-title: Efficient coding of spatial information in the primate retina publication-title: J. Neurosci. – volume: 38 start-page: 2015 year: 2018 end-page: 2028 article-title: Eliminating glutamatergic input onto horizontal cells changes the dynamic range and receptive field organization of mouse retinal ganglion cells publication-title: J. Neurosci. – volume: 9 start-page: 195 year: 2008 end-page: 205 article-title: Imaging in vivo: Watching the brain in action publication-title: Nat. Rev. Neurosci. – volume: 529 start-page: 345 year: 2016 end-page: 350 article-title: The functional diversity of retinal ganglion cells in the mouse publication-title: Nature – volume: 436 start-page: 71 year: 2005 end-page: 77 article-title: Dynamic predictive coding by the retina publication-title: Nature – volume: 112 start-page: 6908 year: 2015 end-page: 6913 article-title: Predictive information in a sensory population publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 33 start-page: 257 year: 1993 end-page: 267 article-title: Spatiotemporal contrast sensitivity of early vision publication-title: Vision Res. – volume: 6 start-page: e20409 year: 2011 article-title: Natural images from the birthplace of the human eye publication-title: PLoS One – volume: 13 start-page: 251 year: 2012 end-page: 266 article-title: Optogenetic investigation of neural circuits underlying brain disease in animal models publication-title: Nat. Rev. Neurosci. – volume: 7 start-page: 5540 year: 2017 end-page: 15 article-title: Versatile functional roles of horizontal cells in the retinal circuit publication-title: Sci. Rep. – volume: 27 start-page: 218 year: 2004 end-page: 224 article-title: The dynamic clamp comes of age publication-title: Trends Neurosci. – volume: 333 start-page: 452 year: 1988 end-page: 454 article-title: Network model of shape-from-shading: Neural function arises from both receptive and projective fields publication-title: Nature – volume: 442 start-page: 211 year: 1991 end-page: 234 article-title: Analysis of the horizontal cell contribution to the receptive field surround of ganglion cells in the rabbit retina publication-title: J. Physiol. – volume: 108 start-page: 18447 year: 2011 end-page: 18452 article-title: Disinhibitory gating of retinal output by transmission from an amacrine cell publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 589 start-page: 2921 year: 2011 end-page: 2922 article-title: A new angle on the role of feedfoward inputs in the generation of orientation selectivity in primary visual cortex publication-title: J. Physiol. – volume: 108 start-page: 228102 year: 2012 article-title: Optimal heterogeneity for coding in spiking neural networks publication-title: Phys. Rev. Lett. – volume: 287 start-page: 1273 year: 2000 end-page: 1276 article-title: Sparse coding and decorrelation in primary visual cortex during natural vision publication-title: Science – volume: 4 start-page: 691 year: 2008 end-page: 702 article-title: Local synaptic learning rules suffice to maximize mutual information in a linear network publication-title: Neural Comput. – volume: 65 start-page: 150 year: 2010 end-page: 164 article-title: Eye smarter than scientists believed: Neural computations in circuits of the retina publication-title: Neuron – volume: 2 start-page: 308 year: 1990 end-page: 320 article-title: Towards a theory of early visual processing publication-title: Neural Comput. – volume: 14 start-page: 1317 year: 2011 end-page: 1322 article-title: Coordinated dynamic encoding in the retina using opposing forms of plasticity publication-title: Nat. Neurosci. – volume: 34 start-page: 12127 year: 2014 end-page: 12144 article-title: Benefits of pathway splitting in sensory coding publication-title: J. Neurosci. – volume: 34 start-page: 785 year: 1971 end-page: 801 article-title: Role of horizontal cells in organization of the catfish retinal receptive field publication-title: J. Neurophysiol. – volume: 31 start-page: 270 year: 2019 end-page: 311 article-title: Functional diversity in the retina improves the population code publication-title: Neural Comput. – volume: 24 start-page: 3736 year: 2004 end-page: 3745 article-title: The classical receptive field surround of primate parasol ganglion cells is mediated primarily by a non-GABAergic pathway publication-title: J. Neurosci. – volume: 99 start-page: 117 year: 2018 end-page: 134 article-title: How diverse retinal functions arise from feedback at the first visual synapse publication-title: Neuron – volume: 381 start-page: 607 year: 1996 end-page: 609 article-title: Emergence of simple-cell receptive field properties by learning a sparse code for natural images publication-title: Nature – volume: 31 start-page: 8595 year: 2011 end-page: 8604 article-title: The projective field of a retinal amacrine cell publication-title: J. Neurosci. – volume: 28 start-page: 6807 year: 2008 end-page: 6817 article-title: A retinal circuit that computes object motion publication-title: J. Neurosci. – volume: 7 start-page: ENEURO.0022-20.2020 year: 2020 article-title: Controlling horizontal cell-mediated lateral inhibition in transgenic zebrafish retina with chemogenetic tools publication-title: eNeuro – volume: 592 start-page: 49 year: 2014 end-page: 65 article-title: Inner retinal inhibition shapes the receptive field of retinal ganglion cells in primate publication-title: J. Physiol. – volume: 423 start-page: 401 year: 2003 end-page: 408 article-title: Segregation of object and background motion in the retina publication-title: Nature – volume: 528 start-page: 358 year: 2015 end-page: 363 article-title: Acute off-target effects of neural circuit manipulations publication-title: Nature – volume: 36 start-page: 910 year: 1981 end-page: 912 article-title: A simple coding procedure enhances a neuron’s information capacity publication-title: Z Naturforsch C Biosci – volume: 40 start-page: 3145 year: 2000 end-page: 3157 article-title: Calculating the contrasts that retinal ganglion cells and LGN neurones encounter in natural scenes publication-title: Vision Res. – volume: 24 start-page: 999 year: 2011 end-page: 1007 article-title: Efficient coding of natural images with a population of noisy Linear-Nonlinear neurons publication-title: Adv. Neural Inf. Process. Syst. – volume: 38 start-page: 195 year: 2015 end-page: 206 article-title: The unsteady eye: An information-processing stage, not a bug publication-title: Trends Neurosci. – volume: 50 start-page: 735 year: 2006 end-page: 748 article-title: Parallel processing in two transmitter microenvironments at the cone photoreceptor synapse publication-title: Neuron – volume: 78 start-page: 2048 year: 1997 end-page: 2060 article-title: Mosaic arrangement of ganglion cell receptive fields in rabbit retina publication-title: J. Neurophysiol. – volume: 5 start-page: 583 year: 1965 end-page: 601 article-title: Quantitative analysis of cat retinal ganglion cell response to visual stimuli publication-title: Vision Res. – volume: 452 start-page: 478 year: 2008 end-page: 482 article-title: Molecular identification of a retinal cell type that responds to upward motion publication-title: Nature – volume: 25 start-page: 63 year: 2014 end-page: 69 article-title: Insights from the retina into the diverse and general computations of adaptation, detection, and prediction publication-title: Curr. Opin. Neurobiol. – ident: e_1_3_4_17_2 doi: 10.1016/j.neuron.2018.06.001 – ident: e_1_3_4_2_2 doi: 10.1038/nrn3171 – ident: e_1_3_4_8_2 doi: 10.1038/381607a0 – ident: e_1_3_4_44_2 doi: 10.1073/pnas.1506855112 – ident: e_1_3_4_20_2 doi: 10.1073/pnas.1107994108 – ident: e_1_3_4_13_2 doi: 10.1523/JNEUROSCI.5252-03.2004 – ident: e_1_3_4_26_2 doi: 10.1523/JNEUROSCI.5662-10.2011 – ident: e_1_3_4_12_2 doi: 10.1113/jphysiol.1991.sp018790 – ident: e_1_3_4_11_2 doi: 10.1152/jn.1971.34.5.785 – ident: e_1_3_4_22_2 doi: 10.1126/science.287.5456.1273 – ident: e_1_3_4_51_2 doi: 10.1038/nn.2927 – ident: e_1_3_4_49_2 doi: 10.1016/j.neuron.2006.04.034 – ident: e_1_3_4_35_2 doi: 10.1073/pnas.1418092112 – ident: e_1_3_4_6_2 doi: 10.1016/j.neuron.2009.12.009 – ident: e_1_3_4_41_2 doi: 10.1515/znc-1981-9-1040 – ident: e_1_3_4_36_2 doi: 10.1038/nature16468 – ident: e_1_3_4_38_2 doi: 10.1162/neco.1992.4.5.691 – ident: e_1_3_4_3_2 doi: 10.1113/jphysiol.1962.sp006837 – ident: e_1_3_4_16_2 doi: 10.1523/ENEURO.0022-20.2020 – ident: e_1_3_4_32_2 doi: 10.1523/JNEUROSCI.4206-07.2008 – ident: e_1_3_4_23_2 doi: 10.1038/nn.2630 – ident: e_1_3_4_5_2 doi: 10.1113/jphysiol.2011.209031 – ident: e_1_3_4_18_2 doi: 10.1038/s41598-017-05543-2 – ident: e_1_3_4_30_2 doi: 10.1152/jn.1997.78.4.2048 – ident: e_1_3_4_4_2 doi: 10.1016/0042-6989(65)90033-7 – ident: e_1_3_4_25_2 doi: 10.1038/333452a0 – ident: e_1_3_4_31_2 doi: 10.1038/nature06739 – ident: e_1_3_4_42_2 doi: 10.1038/nature01652 – ident: e_1_3_4_43_2 doi: 10.1162/neco_a_01158 – ident: e_1_3_4_45_2 doi: 10.1038/nature16442 – ident: e_1_3_4_1_2 doi: 10.1038/nrn2338 – ident: e_1_3_4_37_2 doi: 10.1016/j.tins.2004.02.004 – ident: e_1_3_4_50_2 doi: 10.1016/S0042-6989(00)00166-8 – ident: e_1_3_4_9_2 doi: 10.1162/neco.1990.2.3.308 – ident: e_1_3_4_10_2 doi: 10.1016/0042-6989(93)90163-Q – ident: e_1_3_4_24_2 doi: 10.1073/pnas.0908926106 – ident: e_1_3_4_14_2 doi: 10.1113/jphysiol.2005.083436 – ident: e_1_3_4_7_2 doi: 10.1016/j.conb.2013.11.012 – ident: e_1_3_4_48_2 doi: 10.1371/journal.pone.0020409 – ident: e_1_3_4_39_2 doi: 10.1113/jphysiol.1957.sp005817 – ident: e_1_3_4_27_2 doi: 10.1038/nn.2906 – ident: e_1_3_4_28_2 doi: 10.1016/j.neuron.2012.10.002 – ident: e_1_3_4_40_2 doi: 10.1016/j.tins.2015.01.005 – ident: e_1_3_4_21_2 doi: 10.1523/JNEUROSCI.4036-12.2012 – ident: e_1_3_4_34_2 doi: 10.1523/JNEUROSCI.1032-14.2014 – ident: e_1_3_4_15_2 doi: 10.1113/jphysiol.2013.257352 – ident: e_1_3_4_47_2 doi: 10.1080/713663221 – ident: e_1_3_4_33_2 doi: 10.1103/PhysRevLett.108.228102 – ident: e_1_3_4_19_2 doi: 10.1523/JNEUROSCI.0141-17.2018 – volume: 24 start-page: 999 year: 2011 ident: e_1_3_4_29_2 article-title: Efficient coding of natural images with a population of noisy Linear-Nonlinear neurons publication-title: Adv. Neural Inf. Process. Syst. – ident: e_1_3_4_46_2 doi: 10.1038/nature03689  | 
    
| SSID | ssj0009580 | 
    
| Score | 2.4030807 | 
    
| Snippet | Sensory receptive fields combine features that originate in different neural pathways. Retinal ganglion cell receptive fields compute intensity changes across... SignificanceComplex connections in neural circuits make it difficult to quantitatively assign even the most basic neural computations to the actions of... Complex connections in neural circuits make it difficult to quantitatively assign even the most basic neural computations to the actions of specific neurons....  | 
    
| SourceID | unpaywall pubmedcentral proquest pubmed crossref pnas jstor  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 1 | 
    
| SubjectTerms | Algorithms Amacrine cells Amacrine Cells - metabolism Biological Sciences Circuits Horizontal cells Information processing Interneurons Interneurons - metabolism Models, Biological Neural coding Neuroscience Retina Retina - physiology Retinal ganglion cells Retinal Ganglion Cells - metabolism Retinal Horizontal Cells - metabolism Synaptic Transmission Temporal variations Visual Pathways  | 
    
| Title | Synchronous inhibitory pathways create both efficiency and diversity in the retina | 
    
| URI | https://www.jstor.org/stable/27117691 https://www.pnas.org/doi/10.1073/pnas.2116589119 https://www.ncbi.nlm.nih.gov/pubmed/35064086 https://www.proquest.com/docview/2624687933 https://www.proquest.com/docview/2622284101 https://pubmed.ncbi.nlm.nih.gov/PMC8795495 https://doi.org/10.1073/pnas.2116589119  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 119 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1091-6490 dateEnd: 20250502 omitProxy: true ssIdentifier: ssj0009580 issn: 0027-8424 databaseCode: HH5 dateStart: 19150101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1091-6490 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009580 issn: 0027-8424 databaseCode: KQ8 dateStart: 19150101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1091-6490 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009580 issn: 0027-8424 databaseCode: KQ8 dateStart: 19150115 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1091-6490 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009580 issn: 0027-8424 databaseCode: DIK dateStart: 19150101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1091-6490 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009580 issn: 0027-8424 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1091-6490 dateEnd: 20250502 omitProxy: true ssIdentifier: ssj0009580 issn: 0027-8424 databaseCode: RPM dateStart: 19150101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxEB7R9ACXQoHShVIZqYf2sGEfXj-OVUWJkKgQtFI4rWyvrUZEbtQkqtJfz3hfJRRUuOzF4115Z8b-rJn5BuAAEWsRqLhizRIR0zR1gfIWb602VdoUlWA1HcPnMza6oJ_GxbglSQq1MGvxe56_n3k1H2aBI0agW8oN2GQFgu4BbF6cfTn-3iRw4D5Lm_a1ePrFjMqkI_G5_4a186dJQQy8pij0J4x5P1Xy8dLP1OpGTae_nEOnT2HUraBJP_kxXC700Nz-Ru74D0t8BlstFiXHjfFswyPrn8N26-1zcthSUh-9gK_fVt4EGt2r5ZxM_OVET0JwnoR-xjdqNSc19rREo96JrVkpQkknUb4iVZf5gRMJwk0S6ia9egnnpx_OT0Zx240hNpTLRSxzhYqTmUVEoyXCSJdIU1Cdc60Sy7VQziCcE04Uyqjc0swxw4WthKsqQfMdGPgrb3eBIGjLK1dkiZOWojbx6RB5SKudYYmsIhh2KipNy1QeGmZMyzpizvMy_LLy7pdFcNhPmDUkHX8X3al13stlPE05k2kEB7Xog_P3OiMpW2_HYZZRJnCnyyN41w-jn4bgi_IWdRNkMoQCuANG8Kqxqf5beWANxLtlBHzN2nqBwAG-PuInlzUXeOgVj3fcCI56u3xoCa__Q_YNPMlCvUeSxlmxB4PF9dK-RRS20Puw8XGc7rd--BPBDCoX | 
    
| linkProvider | Unpaywall | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7B9gAXoEAhUJCRemgPWRLH8eNYIaoVEhWCViqnyHZsddWVu2J3VW1_fcd5wVJQ4ZKLx4mcmbE_a2a-AdhDxFpGKq7U8EymLM99pLzFW6vLtbFlLXlDx_D5mE9O2aez8qwjSYq1MBvxe1G8nwe9GNPIESPRLdV92OIlgu4RbJ0efzn83iZw4D7L2va1ePqlnKmsJ_G5_YaN86dNQYy8pij0J4x5O1XywSrM9fpKz2a_nENHj2HSr6BNP7kYr5ZmbK9_I3f8hyU-gUcdFiWHrfFswz0XnsJ25-0Lst9RUh88g6_f1sFGGt3L1YJMw_nUTGNwnsR-xld6vSAN9nTEoN6Ja1gpYkkn0aEmdZ_5gRMJwk0S6yaDfg4nRx9PPkzSrhtDaplQy1QVGhWnqENEYxTCSJ8pWzJTCKMzJ4zU3iKck16W2urCMeq5FdLV0te1ZMUOjMJlcC-BIGgral_SzCvHUJv49Ig8lDPe8kzVCYx7FVW2YyqPDTNmVRMxF0UVf1n185clsD9MmLckHX8X3Wl0PshRkeeCqzyBvUb0zvm7vZFUnbfjMKeMS9zpigTeDcPopzH4ooND3UQZilAAd8AEXrQ2NXyriKyBeLdMQGxY2yAQOcA3R8L0vOECj73i8Y6bwMFgl3ct4dV_yL6GhzTWe2R5SstdGC1_rNwbRGFL87bzwBvKOykm | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synchronous+inhibitory+pathways+create+both+efficiency+and+diversity+in+the+retina&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Manu%2C+Mihai&rft.au=McIntosh%2C+Lane+T.&rft.au=Kastner%2C+David+B.&rft.au=Naecker%2C+Benjamin+N.&rft.date=2022-01-25&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=119&rft.issue=4&rft_id=info:doi/10.1073%2Fpnas.2116589119&rft.externalDocID=10.1073%2Fpnas.2116589119 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |