Synchronous inhibitory pathways create both efficiency and diversity in the retina

Sensory receptive fields combine features that originate in different neural pathways. Retinal ganglion cell receptive fields compute intensity changes across space and time using a peripheral region known as the surround, a property that improves information transmission about natural scenes. The v...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 119; no. 4; pp. 1 - 9
Main Authors Manu, Mihai, McIntosh, Lane T., Kastner, David B., Naecker, Benjamin N., Baccus, Stephen A.
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 25.01.2022
Subjects
Online AccessGet full text
ISSN0027-8424
1091-6490
1091-6490
DOI10.1073/pnas.2116589119

Cover

Abstract Sensory receptive fields combine features that originate in different neural pathways. Retinal ganglion cell receptive fields compute intensity changes across space and time using a peripheral region known as the surround, a property that improves information transmission about natural scenes. The visual features that construct this fundamental property have not been quantitatively assigned to specific interneurons. Here, we describe a generalizable approach using simultaneous intracellular and multielectrode recording to directly measure and manipulate the sensory feature conveyed by a neural pathway to a downstream neuron. By directly controlling the gain of individual interneurons in the circuit, we show that rather than transmitting different temporal features, inhibitory horizontal cells and linear amacrine cells synchronously create the linear surround at different spatial scales and that these two components fully account for the surround. By analyzing a large population of ganglion cells, we observe substantial diversity in the relative contribution of amacrine and horizontal cell visual features while still allowing individual cells to increase information transmission under the statistics of natural scenes. Established theories of efficient coding have shown that optimal information transmission under natural scenes allows a diverse set of receptive fields. Our results give a mechanism for this theory, showing how distinct neural pathways synthesize a sensory computation and how this architecture both generates computational diversity and achieves the objective of high information transmission.
AbstractList Sensory receptive fields combine features that originate in different neural pathways. Retinal ganglion cell receptive fields compute intensity changes across space and time using a peripheral region known as the surround, a property that improves information transmission about natural scenes. The visual features that construct this fundamental property have not been quantitatively assigned to specific interneurons. Here, we describe a generalizable approach using simultaneous intracellular and multielectrode recording to directly measure and manipulate the sensory feature conveyed by a neural pathway to a downstream neuron. By directly controlling the gain of individual interneurons in the circuit, we show that rather than transmitting different temporal features, inhibitory horizontal cells and linear amacrine cells synchronously create the linear surround at different spatial scales and that these two components fully account for the surround. By analyzing a large population of ganglion cells, we observe substantial diversity in the relative contribution of amacrine and horizontal cell visual features while still allowing individual cells to increase information transmission under the statistics of natural scenes. Established theories of efficient coding have shown that optimal information transmission under natural scenes allows a diverse set of receptive fields. Our results give a mechanism for this theory, showing how distinct neural pathways synthesize a sensory computation and how this architecture both generates computational diversity and achieves the objective of high information transmission.
Complex connections in neural circuits make it difficult to quantitatively assign even the most basic neural computations to the actions of specific neurons. Retinal ganglion cells are most sensitive to changes in intensity across space and over time. This property, caused by a region known as the receptive field surround, improves information transmission about natural scenes. We dynamically manipulated individual interneurons to directly measure their effect on retinal receptive fields, finding that two inhibitory neuron types, horizontal cells and amacrine cells, synchronously create the same contribution to the receptive field surround at different spatial scales. By analyzing large populations of ganglion cells, we show that this arrangement increases diversity in retinal signaling while preserving maximal information transmission about natural scenes. Sensory receptive fields combine features that originate in different neural pathways. Retinal ganglion cell receptive fields compute intensity changes across space and time using a peripheral region known as the surround, a property that improves information transmission about natural scenes. The visual features that construct this fundamental property have not been quantitatively assigned to specific interneurons. Here, we describe a generalizable approach using simultaneous intracellular and multielectrode recording to directly measure and manipulate the sensory feature conveyed by a neural pathway to a downstream neuron. By directly controlling the gain of individual interneurons in the circuit, we show that rather than transmitting different temporal features, inhibitory horizontal cells and linear amacrine cells synchronously create the linear surround at different spatial scales and that these two components fully account for the surround. By analyzing a large population of ganglion cells, we observe substantial diversity in the relative contribution of amacrine and horizontal cell visual features while still allowing individual cells to increase information transmission under the statistics of natural scenes. Established theories of efficient coding have shown that optimal information transmission under natural scenes allows a diverse set of receptive fields. Our results give a mechanism for this theory, showing how distinct neural pathways synthesize a sensory computation and how this architecture both generates computational diversity and achieves the objective of high information transmission.
Sensory receptive fields combine features that originate in different neural pathways. Retinal ganglion cell receptive fields compute intensity changes across space and time using a peripheral region known as the surround, a property that improves information transmission about natural scenes. The visual features that construct this fundamental property have not been quantitatively assigned to specific interneurons. Here, we describe a generalizable approach using simultaneous intracellular and multielectrode recording to directly measure and manipulate the sensory feature conveyed by a neural pathway to a downstream neuron. By directly controlling the gain of individual interneurons in the circuit, we show that rather than transmitting different temporal features, inhibitory horizontal cells and linear amacrine cells synchronously create the linear surround at different spatial scales and that these two components fully account for the surround. By analyzing a large population of ganglion cells, we observe substantial diversity in the relative contribution of amacrine and horizontal cell visual features while still allowing individual cells to increase information transmission under the statistics of natural scenes. Established theories of efficient coding have shown that optimal information transmission under natural scenes allows a diverse set of receptive fields. Our results give a mechanism for this theory, showing how distinct neural pathways synthesize a sensory computation and how this architecture both generates computational diversity and achieves the objective of high information transmission.Sensory receptive fields combine features that originate in different neural pathways. Retinal ganglion cell receptive fields compute intensity changes across space and time using a peripheral region known as the surround, a property that improves information transmission about natural scenes. The visual features that construct this fundamental property have not been quantitatively assigned to specific interneurons. Here, we describe a generalizable approach using simultaneous intracellular and multielectrode recording to directly measure and manipulate the sensory feature conveyed by a neural pathway to a downstream neuron. By directly controlling the gain of individual interneurons in the circuit, we show that rather than transmitting different temporal features, inhibitory horizontal cells and linear amacrine cells synchronously create the linear surround at different spatial scales and that these two components fully account for the surround. By analyzing a large population of ganglion cells, we observe substantial diversity in the relative contribution of amacrine and horizontal cell visual features while still allowing individual cells to increase information transmission under the statistics of natural scenes. Established theories of efficient coding have shown that optimal information transmission under natural scenes allows a diverse set of receptive fields. Our results give a mechanism for this theory, showing how distinct neural pathways synthesize a sensory computation and how this architecture both generates computational diversity and achieves the objective of high information transmission.
Complex connections in neural circuits make it difficult to quantitatively assign even the most basic neural computations to the actions of specific neurons. Retinal ganglion cells are most sensitive to changes in intensity across space and over time. This property, caused by a region known as the receptive field surround, improves information transmission about natural scenes. We dynamically manipulated individual interneurons to directly measure their effect on retinal receptive fields, finding that two inhibitory neuron types, horizontal cells and amacrine cells, synchronously create the same contribution to the receptive field surround at different spatial scales. By analyzing large populations of ganglion cells, we show that this arrangement increases diversity in retinal signaling while preserving maximal information transmission about natural scenes. Sensory receptive fields combine features that originate in different neural pathways. Retinal ganglion cell receptive fields compute intensity changes across space and time using a peripheral region known as the surround, a property that improves information transmission about natural scenes. The visual features that construct this fundamental property have not been quantitatively assigned to specific interneurons. Here, we describe a generalizable approach using simultaneous intracellular and multielectrode recording to directly measure and manipulate the sensory feature conveyed by a neural pathway to a downstream neuron. By directly controlling the gain of individual interneurons in the circuit, we show that rather than transmitting different temporal features, inhibitory horizontal cells and linear amacrine cells synchronously create the linear surround at different spatial scales and that these two components fully account for the surround. By analyzing a large population of ganglion cells, we observe substantial diversity in the relative contribution of amacrine and horizontal cell visual features while still allowing individual cells to increase information transmission under the statistics of natural scenes. Established theories of efficient coding have shown that optimal information transmission under natural scenes allows a diverse set of receptive fields. Our results give a mechanism for this theory, showing how distinct neural pathways synthesize a sensory computation and how this architecture both generates computational diversity and achieves the objective of high information transmission.
SignificanceComplex connections in neural circuits make it difficult to quantitatively assign even the most basic neural computations to the actions of specific neurons. Retinal ganglion cells are most sensitive to changes in intensity across space and over time. This property, caused by a region known as the receptive field surround, improves information transmission about natural scenes. We dynamically manipulated individual interneurons to directly measure their effect on retinal receptive fields, finding that two inhibitory neuron types, horizontal cells and amacrine cells, synchronously create the same contribution to the receptive field surround at different spatial scales. By analyzing large populations of ganglion cells, we show that this arrangement increases diversity in retinal signaling while preserving maximal information transmission about natural scenes. Sensory receptive fields combine features that originate in different neural pathways. Retinal ganglion cell receptive fields compute intensity changes across space and time using a peripheral region known as the surround, a property that improves information transmission about natural scenes. The visual features that construct this fundamental property have not been quantitatively assigned to specific interneurons. Here, we describe a generalizable approach using simultaneous intracellular and multielectrode recording to directly measure and manipulate the sensory feature conveyed by a neural pathway to a downstream neuron. By directly controlling the gain of individual interneurons in the circuit, we show that rather than transmitting different temporal features, inhibitory horizontal cells and linear amacrine cells synchronously create the linear surround at different spatial scales and that these two components fully account for the surround. By analyzing a large population of ganglion cells, we observe substantial diversity in the relative contribution of amacrine and horizontal cell visual features while still allowing individual cells to increase information transmission under the statistics of natural scenes. Established theories of efficient coding have shown that optimal information transmission under natural scenes allows a diverse set of receptive fields. Our results give a mechanism for this theory, showing how distinct neural pathways synthesize a sensory computation and how this architecture both generates computational diversity and achieves the objective of high information transmission. Description
ArticleNumber e2116589119
Author Baccus, Stephen A.
Naecker, Benjamin N.
McIntosh, Lane T.
Kastner, David B.
Manu, Mihai
Author_xml – sequence: 1
  givenname: Mihai
  surname: Manu
  fullname: Manu, Mihai
– sequence: 2
  givenname: Lane T.
  surname: McIntosh
  fullname: McIntosh, Lane T.
– sequence: 3
  givenname: David B.
  surname: Kastner
  fullname: Kastner, David B.
– sequence: 4
  givenname: Benjamin N.
  surname: Naecker
  fullname: Naecker, Benjamin N.
– sequence: 5
  givenname: Stephen A.
  surname: Baccus
  fullname: Baccus, Stephen A.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35064086$$D View this record in MEDLINE/PubMed
BookMark eNqNkk1rFTEYhYNU7G117UoZcCOUafM5STaCFLVCQdDuQyaTcXKZm4xJpmX-vRnutdUu1FUW73NOznuSE3Dkg7cAvETwHEFOLiav0zlGqGFCIiSfgA2CEtUNlfAIbCDEvBYU02NwktIWQiiZgM_AMWGwoVA0G_D12-LNEIMPc6qcH1zrcohLNek83OklVSZanW3VhjxUtu-dcdabpdK-qzp3a2NyeSnCKg-2ijY7r5-Dp70ek31xOE_BzccPN5dX9fWXT58v31_XhnKZa0m0aITEVkrSSgZ5D6VhtCW81dDyVujeCMJEL5g2mliK-8ZwYTvRd52g5BTAve3sJ73c6XFUU3Q7HReFoFrbUWs76qGdInm3l0xzu7OdsT5H_SAL2qk_J94N6nu4VYJLRiUrBm8PBjH8mG3KaueSseOovS0FKtxgjAVFEBX0zSN0G-boSyErRZtiSUihXv-e6D7KrwcqwMUeMDGkFG3_H0uyRwrjss4urCu58S-6s0OUdfDvW17t6W0q_-Uexxwh3khEfgL9zM1R
CitedBy_id crossref_primary_10_1162_neco_a_01663
Cites_doi 10.1016/j.neuron.2018.06.001
10.1038/nrn3171
10.1038/381607a0
10.1073/pnas.1506855112
10.1073/pnas.1107994108
10.1523/JNEUROSCI.5252-03.2004
10.1523/JNEUROSCI.5662-10.2011
10.1113/jphysiol.1991.sp018790
10.1152/jn.1971.34.5.785
10.1126/science.287.5456.1273
10.1038/nn.2927
10.1016/j.neuron.2006.04.034
10.1073/pnas.1418092112
10.1016/j.neuron.2009.12.009
10.1515/znc-1981-9-1040
10.1038/nature16468
10.1162/neco.1992.4.5.691
10.1113/jphysiol.1962.sp006837
10.1523/ENEURO.0022-20.2020
10.1523/JNEUROSCI.4206-07.2008
10.1038/nn.2630
10.1113/jphysiol.2011.209031
10.1038/s41598-017-05543-2
10.1152/jn.1997.78.4.2048
10.1016/0042-6989(65)90033-7
10.1038/333452a0
10.1038/nature06739
10.1038/nature01652
10.1162/neco_a_01158
10.1038/nature16442
10.1038/nrn2338
10.1016/j.tins.2004.02.004
10.1016/S0042-6989(00)00166-8
10.1162/neco.1990.2.3.308
10.1016/0042-6989(93)90163-Q
10.1073/pnas.0908926106
10.1113/jphysiol.2005.083436
10.1016/j.conb.2013.11.012
10.1371/journal.pone.0020409
10.1113/jphysiol.1957.sp005817
10.1038/nn.2906
10.1016/j.neuron.2012.10.002
10.1016/j.tins.2015.01.005
10.1523/JNEUROSCI.4036-12.2012
10.1523/JNEUROSCI.1032-14.2014
10.1113/jphysiol.2013.257352
10.1080/713663221
10.1103/PhysRevLett.108.228102
10.1523/JNEUROSCI.0141-17.2018
10.1038/nature03689
ContentType Journal Article
Copyright Copyright © 2022 the Author(s). Published by PNAS.
Copyright National Academy of Sciences Jan 25, 2022
Copyright © 2022 the Author(s). Published by PNAS. 2022
Copyright_xml – notice: Copyright © 2022 the Author(s). Published by PNAS.
– notice: Copyright National Academy of Sciences Jan 25, 2022
– notice: Copyright © 2022 the Author(s). Published by PNAS. 2022
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
ADTOC
UNPAY
DOI 10.1073/pnas.2116589119
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE
MEDLINE - Academic
Virology and AIDS Abstracts


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage 9
ExternalDocumentID 10.1073/pnas.2116589119
PMC8795495
35064086
10_1073_pnas_2116589119
27117691
Genre Research Article
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: HHS | NIH | National Eye Institute (NEI)
  grantid: R01EY022933
  funderid: 100000053
– fundername: HHS | NIH | National Eye Institute (NEI)
  grantid: R01EY025087
  funderid: 100000053
– fundername: NEI NIH HHS
  grantid: P30 EY026877
– fundername: NEI NIH HHS
  grantid: R01 EY025087
– fundername: NEI NIH HHS
  grantid: R01 EY022933
– fundername: HHS | NIH | National Eye Institute (NEI)
  grantid: R01EY022933
– fundername: HHS | NIH | National Eye Institute (NEI)
  grantid: R01EY025087
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2AX
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABBHK
ABOCM
ABPLY
ABPPZ
ABTLG
ABZEH
ACGOD
ACIWK
ACNCT
ACPRK
AENEX
AEUPB
AEXZC
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BKOMP
CS3
D0L
DCCCD
DIK
DU5
E3Z
EBS
F5P
FRP
GX1
H13
HH5
HYE
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SA0
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
RHF
VQA
YIF
YIN
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
5PM
.GJ
3O-
692
6TJ
79B
AAYJJ
ABXSQ
ACHIC
ACKIV
ADQXQ
ADTOC
ADULT
ADXHL
AFHIN
AFQQW
AQVQM
AS~
EJD
HGD
HQ3
HTVGU
MVM
NEJ
NHB
P-O
UNPAY
VOH
WHG
ZCG
ID FETCH-LOGICAL-c479t-93a86892e993b9507f09c54b37ba0e7b8afc8358f85aca3e42f6c78ed8fdd843
IEDL.DBID UNPAY
ISSN 0027-8424
1091-6490
IngestDate Sun Oct 26 04:10:38 EDT 2025
Tue Sep 30 16:41:38 EDT 2025
Tue Aug 19 13:07:56 EDT 2025
Mon Jun 30 09:54:23 EDT 2025
Wed Feb 19 02:26:25 EST 2025
Thu Apr 24 22:57:27 EDT 2025
Wed Oct 01 01:47:09 EDT 2025
Thu Oct 09 22:07:42 EDT 2025
Thu May 29 08:48:41 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords computational model
efficient coding
neural circuit
receptive field
perturbation
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
Copyright © 2022 the Author(s). Published by PNAS.
This article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c479t-93a86892e993b9507f09c54b37ba0e7b8afc8358f85aca3e42f6c78ed8fdd843
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
1Present address: Department of Neurosurgery, Cologne-Merheim Medical Center, Witten/Herdecke University School of Medicine, D-51109 Cologne, Germany.
3Present address: Department of Psychiatry, University of California, San Francisco, CA 94143.
Edited by Terrence Sejnowski, Computational Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA; received September 8, 2021; accepted December 2, 2021
Author contributions: M.M., L.T.M., and S.A.B. designed research; M.M., D.B.K., and B.N.N. performed research; M.M., L.T.M., D.B.K., and B.N.N. analyzed data; and M.M., L.T.M., D.B.K., and S.A.B. wrote the paper.
2M.M. and L.T.M. contributed equally to this work.
ORCID 0000-0002-4236-1061
0000-0001-7776-4736
0000-0001-9681-425X
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1073/pnas.2116589119
PMID 35064086
PQID 2624687933
PQPubID 42026
PageCount 9
ParticipantIDs unpaywall_primary_10_1073_pnas_2116589119
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8795495
proquest_miscellaneous_2622284101
proquest_journals_2624687933
pubmed_primary_35064086
crossref_primary_10_1073_pnas_2116589119
crossref_citationtrail_10_1073_pnas_2116589119
pnas_primary_10_1073_pnas_2116589119
jstor_primary_27117691
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-01-25
PublicationDateYYYYMMDD 2022-01-25
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-25
  day: 25
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAbbrev Proc Natl Acad Sci USA
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2022
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References Kim, Zhang, Yamagata, Meister, Sanes 2008; 452
de Vries, Baccus, Meister 2011; 31
Chichilnisky 2001; 12
DeVries, Li, Saszik 2006; 50
Protti 2014; 592
Chaya 2017; 7
Baccus, Olveczky, Manu, Meister 2008; 28
Barlow, Fitzhugh, Kuffler 1957; 137
Karklin, Simoncelli 2011; 24
Rodieck 1965; 5
Kastner, Baccus, Sharpee 2015; 112
McMahon, Packer, Dacey 2004; 24
Laughlin 1981; 36
Doi 2012; 32
Naka, Nye 1971; 34
Masland 2012; 76
Berry Ii, Lebois, Ziskind, da Silveira 2019; 31
Gjorgjieva, Sompolinsky, Meister 2014; 34
Tadmor, Tolhurst 2000; 40
Ströh 2018; 38
Hubel, Wiesel 1962; 160
Kastner, Baccus 2014; 25
Olveczky, Baccus, Meister 2003; 423
Vinje, Gallant 2000; 287
Atick, Redlich 1990; 2
Palmer, Marre, Berry, Bialek 2015; 112
Drinnenberg 2018; 99
Ala-Laurila, Greschner, Chichilnisky, Rieke 2011; 14
Beckwith-Cohen, Holzhausen, Nawy, Kramer 2020; 7
Gollisch, Meister 2010; 65
Tye, Deisseroth 2012; 13
Otchy 2015; 528
Martinez 2011; 589
Linsker 2008; 4
Liu, Stevens, Sharpee 2009; 106
Manu, Baccus 2011; 108
Van Hateren 1993; 33
Rucci, Victor 2015; 38
Prinz, Abbott, Marder 2004; 27
Mejias, Longtin 2012; 108
Tkačik 2011; 6
Olshausen, Field 1996; 381
Lehky, Sejnowski 1988; 333
Baden 2016; 529
Mangel 1991; 442
Padmanabhan, Urban 2010; 13
Kastner, Baccus 2011; 14
Hosoya, Baccus, Meister 2005; 436
Kerr, Denk 2008; 9
Ichinose, Lukasiewicz 2005; 565
Devries, Baylor 1997; 78
e_1_3_4_3_2
e_1_3_4_1_2
e_1_3_4_9_2
e_1_3_4_7_2
e_1_3_4_40_2
e_1_3_4_5_2
e_1_3_4_23_2
e_1_3_4_44_2
e_1_3_4_21_2
e_1_3_4_42_2
e_1_3_4_27_2
e_1_3_4_48_2
e_1_3_4_25_2
e_1_3_4_46_2
e_1_3_4_30_2
e_1_3_4_51_2
e_1_3_4_11_2
e_1_3_4_34_2
e_1_3_4_32_2
e_1_3_4_15_2
e_1_3_4_38_2
e_1_3_4_13_2
e_1_3_4_36_2
e_1_3_4_19_2
e_1_3_4_17_2
e_1_3_4_2_2
e_1_3_4_8_2
e_1_3_4_41_2
e_1_3_4_6_2
e_1_3_4_4_2
e_1_3_4_22_2
e_1_3_4_45_2
e_1_3_4_20_2
e_1_3_4_43_2
e_1_3_4_26_2
e_1_3_4_49_2
e_1_3_4_24_2
e_1_3_4_47_2
e_1_3_4_28_2
Karklin Y. (e_1_3_4_29_2) 2011; 24
e_1_3_4_50_2
e_1_3_4_12_2
e_1_3_4_33_2
e_1_3_4_10_2
e_1_3_4_31_2
e_1_3_4_16_2
e_1_3_4_37_2
e_1_3_4_14_2
e_1_3_4_35_2
e_1_3_4_18_2
e_1_3_4_39_2
References_xml – volume: 14
  start-page: 1309
  year: 2011
  end-page: 1316
  article-title: Cone photoreceptor contributions to noise and correlations in the retinal output
  publication-title: Nat. Neurosci.
– volume: 565
  start-page: 517
  year: 2005
  end-page: 535
  article-title: Inner and outer retinal pathways both contribute to surround inhibition of salamander ganglion cells
  publication-title: J. Physiol.
– volume: 76
  start-page: 266
  year: 2012
  end-page: 280
  article-title: The neuronal organization of the retina
  publication-title: Neuron
– volume: 137
  start-page: 338
  year: 1957
  end-page: 354
  article-title: Change of organization in the receptive fields of the cat’s retina during dark adaptation
  publication-title: J. Physiol.
– volume: 160
  start-page: 106
  year: 1962
  end-page: 154
  article-title: Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex
  publication-title: J. Physiol.
– volume: 106
  start-page: 16499
  year: 2009
  end-page: 16504
  article-title: Predictable irregularities in retinal receptive fields
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 13
  start-page: 1276
  year: 2010
  end-page: 1282
  article-title: Intrinsic biophysical diversity decorrelates neuronal firing while increasing information content
  publication-title: Nat. Neurosci.
– volume: 112
  start-page: 2533
  year: 2015
  end-page: 2538
  article-title: Critical and maximally informative encoding between neural populations in the retina
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 12
  start-page: 199
  year: 2001
  end-page: 213
  article-title: A simple white noise analysis of neuronal light responses
  publication-title: Network
– volume: 32
  start-page: 16256
  year: 2012
  end-page: 16264
  article-title: Efficient coding of spatial information in the primate retina
  publication-title: J. Neurosci.
– volume: 38
  start-page: 2015
  year: 2018
  end-page: 2028
  article-title: Eliminating glutamatergic input onto horizontal cells changes the dynamic range and receptive field organization of mouse retinal ganglion cells
  publication-title: J. Neurosci.
– volume: 9
  start-page: 195
  year: 2008
  end-page: 205
  article-title: Imaging in vivo: Watching the brain in action
  publication-title: Nat. Rev. Neurosci.
– volume: 529
  start-page: 345
  year: 2016
  end-page: 350
  article-title: The functional diversity of retinal ganglion cells in the mouse
  publication-title: Nature
– volume: 436
  start-page: 71
  year: 2005
  end-page: 77
  article-title: Dynamic predictive coding by the retina
  publication-title: Nature
– volume: 112
  start-page: 6908
  year: 2015
  end-page: 6913
  article-title: Predictive information in a sensory population
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 33
  start-page: 257
  year: 1993
  end-page: 267
  article-title: Spatiotemporal contrast sensitivity of early vision
  publication-title: Vision Res.
– volume: 6
  start-page: e20409
  year: 2011
  article-title: Natural images from the birthplace of the human eye
  publication-title: PLoS One
– volume: 13
  start-page: 251
  year: 2012
  end-page: 266
  article-title: Optogenetic investigation of neural circuits underlying brain disease in animal models
  publication-title: Nat. Rev. Neurosci.
– volume: 7
  start-page: 5540
  year: 2017
  end-page: 15
  article-title: Versatile functional roles of horizontal cells in the retinal circuit
  publication-title: Sci. Rep.
– volume: 27
  start-page: 218
  year: 2004
  end-page: 224
  article-title: The dynamic clamp comes of age
  publication-title: Trends Neurosci.
– volume: 333
  start-page: 452
  year: 1988
  end-page: 454
  article-title: Network model of shape-from-shading: Neural function arises from both receptive and projective fields
  publication-title: Nature
– volume: 442
  start-page: 211
  year: 1991
  end-page: 234
  article-title: Analysis of the horizontal cell contribution to the receptive field surround of ganglion cells in the rabbit retina
  publication-title: J. Physiol.
– volume: 108
  start-page: 18447
  year: 2011
  end-page: 18452
  article-title: Disinhibitory gating of retinal output by transmission from an amacrine cell
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 589
  start-page: 2921
  year: 2011
  end-page: 2922
  article-title: A new angle on the role of feedfoward inputs in the generation of orientation selectivity in primary visual cortex
  publication-title: J. Physiol.
– volume: 108
  start-page: 228102
  year: 2012
  article-title: Optimal heterogeneity for coding in spiking neural networks
  publication-title: Phys. Rev. Lett.
– volume: 287
  start-page: 1273
  year: 2000
  end-page: 1276
  article-title: Sparse coding and decorrelation in primary visual cortex during natural vision
  publication-title: Science
– volume: 4
  start-page: 691
  year: 2008
  end-page: 702
  article-title: Local synaptic learning rules suffice to maximize mutual information in a linear network
  publication-title: Neural Comput.
– volume: 65
  start-page: 150
  year: 2010
  end-page: 164
  article-title: Eye smarter than scientists believed: Neural computations in circuits of the retina
  publication-title: Neuron
– volume: 2
  start-page: 308
  year: 1990
  end-page: 320
  article-title: Towards a theory of early visual processing
  publication-title: Neural Comput.
– volume: 14
  start-page: 1317
  year: 2011
  end-page: 1322
  article-title: Coordinated dynamic encoding in the retina using opposing forms of plasticity
  publication-title: Nat. Neurosci.
– volume: 34
  start-page: 12127
  year: 2014
  end-page: 12144
  article-title: Benefits of pathway splitting in sensory coding
  publication-title: J. Neurosci.
– volume: 34
  start-page: 785
  year: 1971
  end-page: 801
  article-title: Role of horizontal cells in organization of the catfish retinal receptive field
  publication-title: J. Neurophysiol.
– volume: 31
  start-page: 270
  year: 2019
  end-page: 311
  article-title: Functional diversity in the retina improves the population code
  publication-title: Neural Comput.
– volume: 24
  start-page: 3736
  year: 2004
  end-page: 3745
  article-title: The classical receptive field surround of primate parasol ganglion cells is mediated primarily by a non-GABAergic pathway
  publication-title: J. Neurosci.
– volume: 99
  start-page: 117
  year: 2018
  end-page: 134
  article-title: How diverse retinal functions arise from feedback at the first visual synapse
  publication-title: Neuron
– volume: 381
  start-page: 607
  year: 1996
  end-page: 609
  article-title: Emergence of simple-cell receptive field properties by learning a sparse code for natural images
  publication-title: Nature
– volume: 31
  start-page: 8595
  year: 2011
  end-page: 8604
  article-title: The projective field of a retinal amacrine cell
  publication-title: J. Neurosci.
– volume: 28
  start-page: 6807
  year: 2008
  end-page: 6817
  article-title: A retinal circuit that computes object motion
  publication-title: J. Neurosci.
– volume: 7
  start-page: ENEURO.0022-20.2020
  year: 2020
  article-title: Controlling horizontal cell-mediated lateral inhibition in transgenic zebrafish retina with chemogenetic tools
  publication-title: eNeuro
– volume: 592
  start-page: 49
  year: 2014
  end-page: 65
  article-title: Inner retinal inhibition shapes the receptive field of retinal ganglion cells in primate
  publication-title: J. Physiol.
– volume: 423
  start-page: 401
  year: 2003
  end-page: 408
  article-title: Segregation of object and background motion in the retina
  publication-title: Nature
– volume: 528
  start-page: 358
  year: 2015
  end-page: 363
  article-title: Acute off-target effects of neural circuit manipulations
  publication-title: Nature
– volume: 36
  start-page: 910
  year: 1981
  end-page: 912
  article-title: A simple coding procedure enhances a neuron’s information capacity
  publication-title: Z Naturforsch C Biosci
– volume: 40
  start-page: 3145
  year: 2000
  end-page: 3157
  article-title: Calculating the contrasts that retinal ganglion cells and LGN neurones encounter in natural scenes
  publication-title: Vision Res.
– volume: 24
  start-page: 999
  year: 2011
  end-page: 1007
  article-title: Efficient coding of natural images with a population of noisy Linear-Nonlinear neurons
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 38
  start-page: 195
  year: 2015
  end-page: 206
  article-title: The unsteady eye: An information-processing stage, not a bug
  publication-title: Trends Neurosci.
– volume: 50
  start-page: 735
  year: 2006
  end-page: 748
  article-title: Parallel processing in two transmitter microenvironments at the cone photoreceptor synapse
  publication-title: Neuron
– volume: 78
  start-page: 2048
  year: 1997
  end-page: 2060
  article-title: Mosaic arrangement of ganglion cell receptive fields in rabbit retina
  publication-title: J. Neurophysiol.
– volume: 5
  start-page: 583
  year: 1965
  end-page: 601
  article-title: Quantitative analysis of cat retinal ganglion cell response to visual stimuli
  publication-title: Vision Res.
– volume: 452
  start-page: 478
  year: 2008
  end-page: 482
  article-title: Molecular identification of a retinal cell type that responds to upward motion
  publication-title: Nature
– volume: 25
  start-page: 63
  year: 2014
  end-page: 69
  article-title: Insights from the retina into the diverse and general computations of adaptation, detection, and prediction
  publication-title: Curr. Opin. Neurobiol.
– ident: e_1_3_4_17_2
  doi: 10.1016/j.neuron.2018.06.001
– ident: e_1_3_4_2_2
  doi: 10.1038/nrn3171
– ident: e_1_3_4_8_2
  doi: 10.1038/381607a0
– ident: e_1_3_4_44_2
  doi: 10.1073/pnas.1506855112
– ident: e_1_3_4_20_2
  doi: 10.1073/pnas.1107994108
– ident: e_1_3_4_13_2
  doi: 10.1523/JNEUROSCI.5252-03.2004
– ident: e_1_3_4_26_2
  doi: 10.1523/JNEUROSCI.5662-10.2011
– ident: e_1_3_4_12_2
  doi: 10.1113/jphysiol.1991.sp018790
– ident: e_1_3_4_11_2
  doi: 10.1152/jn.1971.34.5.785
– ident: e_1_3_4_22_2
  doi: 10.1126/science.287.5456.1273
– ident: e_1_3_4_51_2
  doi: 10.1038/nn.2927
– ident: e_1_3_4_49_2
  doi: 10.1016/j.neuron.2006.04.034
– ident: e_1_3_4_35_2
  doi: 10.1073/pnas.1418092112
– ident: e_1_3_4_6_2
  doi: 10.1016/j.neuron.2009.12.009
– ident: e_1_3_4_41_2
  doi: 10.1515/znc-1981-9-1040
– ident: e_1_3_4_36_2
  doi: 10.1038/nature16468
– ident: e_1_3_4_38_2
  doi: 10.1162/neco.1992.4.5.691
– ident: e_1_3_4_3_2
  doi: 10.1113/jphysiol.1962.sp006837
– ident: e_1_3_4_16_2
  doi: 10.1523/ENEURO.0022-20.2020
– ident: e_1_3_4_32_2
  doi: 10.1523/JNEUROSCI.4206-07.2008
– ident: e_1_3_4_23_2
  doi: 10.1038/nn.2630
– ident: e_1_3_4_5_2
  doi: 10.1113/jphysiol.2011.209031
– ident: e_1_3_4_18_2
  doi: 10.1038/s41598-017-05543-2
– ident: e_1_3_4_30_2
  doi: 10.1152/jn.1997.78.4.2048
– ident: e_1_3_4_4_2
  doi: 10.1016/0042-6989(65)90033-7
– ident: e_1_3_4_25_2
  doi: 10.1038/333452a0
– ident: e_1_3_4_31_2
  doi: 10.1038/nature06739
– ident: e_1_3_4_42_2
  doi: 10.1038/nature01652
– ident: e_1_3_4_43_2
  doi: 10.1162/neco_a_01158
– ident: e_1_3_4_45_2
  doi: 10.1038/nature16442
– ident: e_1_3_4_1_2
  doi: 10.1038/nrn2338
– ident: e_1_3_4_37_2
  doi: 10.1016/j.tins.2004.02.004
– ident: e_1_3_4_50_2
  doi: 10.1016/S0042-6989(00)00166-8
– ident: e_1_3_4_9_2
  doi: 10.1162/neco.1990.2.3.308
– ident: e_1_3_4_10_2
  doi: 10.1016/0042-6989(93)90163-Q
– ident: e_1_3_4_24_2
  doi: 10.1073/pnas.0908926106
– ident: e_1_3_4_14_2
  doi: 10.1113/jphysiol.2005.083436
– ident: e_1_3_4_7_2
  doi: 10.1016/j.conb.2013.11.012
– ident: e_1_3_4_48_2
  doi: 10.1371/journal.pone.0020409
– ident: e_1_3_4_39_2
  doi: 10.1113/jphysiol.1957.sp005817
– ident: e_1_3_4_27_2
  doi: 10.1038/nn.2906
– ident: e_1_3_4_28_2
  doi: 10.1016/j.neuron.2012.10.002
– ident: e_1_3_4_40_2
  doi: 10.1016/j.tins.2015.01.005
– ident: e_1_3_4_21_2
  doi: 10.1523/JNEUROSCI.4036-12.2012
– ident: e_1_3_4_34_2
  doi: 10.1523/JNEUROSCI.1032-14.2014
– ident: e_1_3_4_15_2
  doi: 10.1113/jphysiol.2013.257352
– ident: e_1_3_4_47_2
  doi: 10.1080/713663221
– ident: e_1_3_4_33_2
  doi: 10.1103/PhysRevLett.108.228102
– ident: e_1_3_4_19_2
  doi: 10.1523/JNEUROSCI.0141-17.2018
– volume: 24
  start-page: 999
  year: 2011
  ident: e_1_3_4_29_2
  article-title: Efficient coding of natural images with a population of noisy Linear-Nonlinear neurons
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: e_1_3_4_46_2
  doi: 10.1038/nature03689
SSID ssj0009580
Score 2.4030807
Snippet Sensory receptive fields combine features that originate in different neural pathways. Retinal ganglion cell receptive fields compute intensity changes across...
SignificanceComplex connections in neural circuits make it difficult to quantitatively assign even the most basic neural computations to the actions of...
Complex connections in neural circuits make it difficult to quantitatively assign even the most basic neural computations to the actions of specific neurons....
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
pnas
jstor
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Algorithms
Amacrine cells
Amacrine Cells - metabolism
Biological Sciences
Circuits
Horizontal cells
Information processing
Interneurons
Interneurons - metabolism
Models, Biological
Neural coding
Neuroscience
Retina
Retina - physiology
Retinal ganglion cells
Retinal Ganglion Cells - metabolism
Retinal Horizontal Cells - metabolism
Synaptic Transmission
Temporal variations
Visual Pathways
Title Synchronous inhibitory pathways create both efficiency and diversity in the retina
URI https://www.jstor.org/stable/27117691
https://www.pnas.org/doi/10.1073/pnas.2116589119
https://www.ncbi.nlm.nih.gov/pubmed/35064086
https://www.proquest.com/docview/2624687933
https://www.proquest.com/docview/2622284101
https://pubmed.ncbi.nlm.nih.gov/PMC8795495
https://doi.org/10.1073/pnas.2116589119
UnpaywallVersion publishedVersion
Volume 119
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1091-6490
  dateEnd: 20250502
  omitProxy: true
  ssIdentifier: ssj0009580
  issn: 0027-8424
  databaseCode: HH5
  dateStart: 19150101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1091-6490
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009580
  issn: 0027-8424
  databaseCode: KQ8
  dateStart: 19150101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1091-6490
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009580
  issn: 0027-8424
  databaseCode: KQ8
  dateStart: 19150115
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1091-6490
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009580
  issn: 0027-8424
  databaseCode: DIK
  dateStart: 19150101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1091-6490
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009580
  issn: 0027-8424
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1091-6490
  dateEnd: 20250502
  omitProxy: true
  ssIdentifier: ssj0009580
  issn: 0027-8424
  databaseCode: RPM
  dateStart: 19150101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxEB7R9ACXQoHShVIZqYf2sGEfXj-OVUWJkKgQtFI4rWyvrUZEbtQkqtJfz3hfJRRUuOzF4115Z8b-rJn5BuAAEWsRqLhizRIR0zR1gfIWb602VdoUlWA1HcPnMza6oJ_GxbglSQq1MGvxe56_n3k1H2aBI0agW8oN2GQFgu4BbF6cfTn-3iRw4D5Lm_a1ePrFjMqkI_G5_4a186dJQQy8pij0J4x5P1Xy8dLP1OpGTae_nEOnT2HUraBJP_kxXC700Nz-Ru74D0t8BlstFiXHjfFswyPrn8N26-1zcthSUh-9gK_fVt4EGt2r5ZxM_OVET0JwnoR-xjdqNSc19rREo96JrVkpQkknUb4iVZf5gRMJwk0S6ia9egnnpx_OT0Zx240hNpTLRSxzhYqTmUVEoyXCSJdIU1Cdc60Sy7VQziCcE04Uyqjc0swxw4WthKsqQfMdGPgrb3eBIGjLK1dkiZOWojbx6RB5SKudYYmsIhh2KipNy1QeGmZMyzpizvMy_LLy7pdFcNhPmDUkHX8X3al13stlPE05k2kEB7Xog_P3OiMpW2_HYZZRJnCnyyN41w-jn4bgi_IWdRNkMoQCuANG8Kqxqf5beWANxLtlBHzN2nqBwAG-PuInlzUXeOgVj3fcCI56u3xoCa__Q_YNPMlCvUeSxlmxB4PF9dK-RRS20Puw8XGc7rd--BPBDCoX
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7B9gAXoEAhUJCRemgPWRLH8eNYIaoVEhWCViqnyHZsddWVu2J3VW1_fcd5wVJQ4ZKLx4mcmbE_a2a-AdhDxFpGKq7U8EymLM99pLzFW6vLtbFlLXlDx_D5mE9O2aez8qwjSYq1MBvxe1G8nwe9GNPIESPRLdV92OIlgu4RbJ0efzn83iZw4D7L2va1ePqlnKmsJ_G5_YaN86dNQYy8pij0J4x5O1XywSrM9fpKz2a_nENHj2HSr6BNP7kYr5ZmbK9_I3f8hyU-gUcdFiWHrfFswz0XnsJ25-0Lst9RUh88g6_f1sFGGt3L1YJMw_nUTGNwnsR-xld6vSAN9nTEoN6Ja1gpYkkn0aEmdZ_5gRMJwk0S6yaDfg4nRx9PPkzSrhtDaplQy1QVGhWnqENEYxTCSJ8pWzJTCKMzJ4zU3iKck16W2urCMeq5FdLV0te1ZMUOjMJlcC-BIGgral_SzCvHUJv49Ig8lDPe8kzVCYx7FVW2YyqPDTNmVRMxF0UVf1n185clsD9MmLckHX8X3Wl0PshRkeeCqzyBvUb0zvm7vZFUnbfjMKeMS9zpigTeDcPopzH4ooND3UQZilAAd8AEXrQ2NXyriKyBeLdMQGxY2yAQOcA3R8L0vOECj73i8Y6bwMFgl3ct4dV_yL6GhzTWe2R5SstdGC1_rNwbRGFL87bzwBvKOykm
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Synchronous+inhibitory+pathways+create+both+efficiency+and+diversity+in+the+retina&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Manu%2C+Mihai&rft.au=McIntosh%2C+Lane+T.&rft.au=Kastner%2C+David+B.&rft.au=Naecker%2C+Benjamin+N.&rft.date=2022-01-25&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=119&rft.issue=4&rft_id=info:doi/10.1073%2Fpnas.2116589119&rft.externalDocID=10.1073%2Fpnas.2116589119
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon