Polymorphic Phases of Metal Chlorides in the Confined 2D Space of Bilayer Graphene

Unprecedented 2D metal chloride structures are grown between sheets of bilayer graphene through intercalation of metal and chlorine atoms. Numerous spatially confined 2D phases of AlCl3 and CuCl2 distinct from their typical bulk forms are found, and the transformations between these new phases under...

Full description

Saved in:
Bibliographic Details
Published inAdvanced materials (Weinheim) Vol. 33; no. 52; pp. e2105898 - n/a
Main Authors Lin, Yung‐Chang, Motoyama, Amane, Kretschmer, Silvan, Ghaderzadeh, Sadegh, Ghorbani‐Asl, Mahdi, Araki, Yuji, Krasheninnikov, Arkady V., Ago, Hiroki, Suenaga, Kazu
Format Journal Article
LanguageEnglish
Published Germany Wiley Subscription Services, Inc 01.12.2021
Subjects
Online AccessGet full text
ISSN0935-9648
1521-4095
1521-4095
DOI10.1002/adma.202105898

Cover

Abstract Unprecedented 2D metal chloride structures are grown between sheets of bilayer graphene through intercalation of metal and chlorine atoms. Numerous spatially confined 2D phases of AlCl3 and CuCl2 distinct from their typical bulk forms are found, and the transformations between these new phases under the electron beam are directly observed by in situ scanning transmission electron microscopy (STEM). The density functional theory calculations confirm the metastability of the atomic structures derived from the STEM experiments and provide insights into the electronic properties of the phases, which range from insulators to semimetals. Additionally, the co‐intercalation of different metal chlorides is found to create completely new hybrid systems; in‐plane quasi‐1D AlCl3/CuCl2 heterostructures are obtained. The existence of polymorphic phases hints at the unique possibilities for fabricating new types of 2D materials with diverse electronic properties confined between graphene sheets. Metal chlorides intercalated in the van der Waals gap of bilayer graphene are found to have polymorphic phases. New phases and phase transformation of AlCl3, as well as new hybrid alloy of quasi‐1D AlCl3 and CuCl2 are directly observed by scanning transmission electron microscopy.
AbstractList Unprecedented 2D metal chloride structures are grown between sheets of bilayer graphene through intercalation of metal and chlorine atoms. Numerous spatially confined 2D phases of AlCl and CuCl distinct from their typical bulk forms are found, and the transformations between these new phases under the electron beam are directly observed by in situ scanning transmission electron microscopy (STEM). The density functional theory calculations confirm the metastability of the atomic structures derived from the STEM experiments and provide insights into the electronic properties of the phases, which range from insulators to semimetals. Additionally, the co-intercalation of different metal chlorides is found to create completely new hybrid systems; in-plane quasi-1D AlCl /CuCl heterostructures are obtained. The existence of polymorphic phases hints at the unique possibilities for fabricating new types of 2D materials with diverse electronic properties confined between graphene sheets.
Unprecedented 2D metal chloride structures are grown between sheets of bilayer graphene through intercalation of metal and chlorine atoms. Numerous spatially confined 2D phases of AlCl3 and CuCl2 distinct from their typical bulk forms are found, and the transformations between these new phases under the electron beam are directly observed by in situ scanning transmission electron microscopy (STEM). The density functional theory calculations confirm the metastability of the atomic structures derived from the STEM experiments and provide insights into the electronic properties of the phases, which range from insulators to semimetals. Additionally, the co-intercalation of different metal chlorides is found to create completely new hybrid systems; in-plane quasi-1D AlCl3 /CuCl2 heterostructures are obtained. The existence of polymorphic phases hints at the unique possibilities for fabricating new types of 2D materials with diverse electronic properties confined between graphene sheets.Unprecedented 2D metal chloride structures are grown between sheets of bilayer graphene through intercalation of metal and chlorine atoms. Numerous spatially confined 2D phases of AlCl3 and CuCl2 distinct from their typical bulk forms are found, and the transformations between these new phases under the electron beam are directly observed by in situ scanning transmission electron microscopy (STEM). The density functional theory calculations confirm the metastability of the atomic structures derived from the STEM experiments and provide insights into the electronic properties of the phases, which range from insulators to semimetals. Additionally, the co-intercalation of different metal chlorides is found to create completely new hybrid systems; in-plane quasi-1D AlCl3 /CuCl2 heterostructures are obtained. The existence of polymorphic phases hints at the unique possibilities for fabricating new types of 2D materials with diverse electronic properties confined between graphene sheets.
Unprecedented 2D metal chloride structures are grown between sheets of bilayer graphene through intercalation of metal and chlorine atoms. Numerous spatially confined 2D phases of AlCl3 and CuCl2 distinct from their typical bulk forms are found, and the transformations between these new phases under the electron beam are directly observed by in situ scanning transmission electron microscopy (STEM). The density functional theory calculations confirm the metastability of the atomic structures derived from the STEM experiments and provide insights into the electronic properties of the phases, which range from insulators to semimetals. Additionally, the co‐intercalation of different metal chlorides is found to create completely new hybrid systems; in‐plane quasi‐1D AlCl3/CuCl2 heterostructures are obtained. The existence of polymorphic phases hints at the unique possibilities for fabricating new types of 2D materials with diverse electronic properties confined between graphene sheets.
Unprecedented 2D metal chloride structures are grown between sheets of bilayer graphene through intercalation of metal and chlorine atoms. Numerous spatially confined 2D phases of AlCl 3 and CuCl 2 distinct from their typical bulk forms are found, and the transformations between these new phases under the electron beam are directly observed by in situ scanning transmission electron microscopy (STEM). The density functional theory calculations confirm the metastability of the atomic structures derived from the STEM experiments and provide insights into the electronic properties of the phases, which range from insulators to semimetals. Additionally, the co‐intercalation of different metal chlorides is found to create completely new hybrid systems; in‐plane quasi‐1D AlCl 3 /CuCl 2 heterostructures are obtained. The existence of polymorphic phases hints at the unique possibilities for fabricating new types of 2D materials with diverse electronic properties confined between graphene sheets.
Unprecedented 2D metal chloride structures are grown between sheets of bilayer graphene through intercalation of metal and chlorine atoms. Numerous spatially confined 2D phases of AlCl3 and CuCl2 distinct from their typical bulk forms are found, and the transformations between these new phases under the electron beam are directly observed by in situ scanning transmission electron microscopy (STEM). The density functional theory calculations confirm the metastability of the atomic structures derived from the STEM experiments and provide insights into the electronic properties of the phases, which range from insulators to semimetals. Additionally, the co‐intercalation of different metal chlorides is found to create completely new hybrid systems; in‐plane quasi‐1D AlCl3/CuCl2 heterostructures are obtained. The existence of polymorphic phases hints at the unique possibilities for fabricating new types of 2D materials with diverse electronic properties confined between graphene sheets. Metal chlorides intercalated in the van der Waals gap of bilayer graphene are found to have polymorphic phases. New phases and phase transformation of AlCl3, as well as new hybrid alloy of quasi‐1D AlCl3 and CuCl2 are directly observed by scanning transmission electron microscopy.
Author Ghaderzadeh, Sadegh
Suenaga, Kazu
Lin, Yung‐Chang
Krasheninnikov, Arkady V.
Ago, Hiroki
Kretschmer, Silvan
Motoyama, Amane
Ghorbani‐Asl, Mahdi
Araki, Yuji
Author_xml – sequence: 1
  givenname: Yung‐Chang
  orcidid: 0000-0002-3968-7239
  surname: Lin
  fullname: Lin, Yung‐Chang
  email: yc-lin@aist.go.jp
  organization: National Institute of Advanced Industrial Science and Technology (AIST)
– sequence: 2
  givenname: Amane
  surname: Motoyama
  fullname: Motoyama, Amane
  organization: Kyushu University
– sequence: 3
  givenname: Silvan
  orcidid: 0000-0002-5098-5763
  surname: Kretschmer
  fullname: Kretschmer, Silvan
  organization: Helmholtz‐Zentrum Dresden‐Rossendorf
– sequence: 4
  givenname: Sadegh
  orcidid: 0000-0003-4416-7147
  surname: Ghaderzadeh
  fullname: Ghaderzadeh, Sadegh
  organization: Helmholtz‐Zentrum Dresden‐Rossendorf
– sequence: 5
  givenname: Mahdi
  surname: Ghorbani‐Asl
  fullname: Ghorbani‐Asl, Mahdi
  organization: Helmholtz‐Zentrum Dresden‐Rossendorf
– sequence: 6
  givenname: Yuji
  surname: Araki
  fullname: Araki, Yuji
  organization: Kyushu University
– sequence: 7
  givenname: Arkady V.
  orcidid: 0000-0003-0074-7588
  surname: Krasheninnikov
  fullname: Krasheninnikov, Arkady V.
  organization: Aalto University
– sequence: 8
  givenname: Hiroki
  orcidid: 0000-0003-0908-5883
  surname: Ago
  fullname: Ago, Hiroki
  organization: Kyushu University
– sequence: 9
  givenname: Kazu
  orcidid: 0000-0002-6107-1123
  surname: Suenaga
  fullname: Suenaga, Kazu
  email: suenaga-kazu@sanken.osaka-u.ac.jp
  organization: Osaka University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34610179$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1r3DAQhkVJaTZprz0WQS-9eCvJkmwdt5s2KSQ09OMsZHmMFWTJlbyE_ffVskkKgdLToOF5hhm9Z-gkxAAIvaVkTQlhH00_mTUjjBLRqvYFWlHBaMWJEidoRVQtKiV5e4rOcr4jhChJ5Ct0WnNJCW3UCn2_jX4_xTSPzuLb0WTIOA74Bhbj8Xb0Mbm-tFzAywh4G8PgAvSYXeAfs7FwYD85b_aQ8GUy8wgBXqOXg_EZ3jzUc_Try-ef26vq-tvl1-3murK8UW1lQQprGtP1RJDB1J1sZNm3a_nA-vI0gnPFG1Ccd0NXTmQGgBtue9r2A9j6HH04zp1T_L2DvOjJZQvemwBxlzUTjZJMSFkX9P0z9C7uUijbaSYpZ7RtZVOodw_Urpug13Nyk0l7_fhbBeBHwKaYc4JBW7eYxcWwJOO8pkQfQtGHUPRTKEVbP9MeJ_9TUEfh3nnY_4fWm4ubzV_3D-iinZc
CitedBy_id crossref_primary_10_1021_jacs_2c07372
crossref_primary_10_1038_s41427_024_00551_x
crossref_primary_10_7209_tanso_2023_96
crossref_primary_10_1021_acsnano_4c16177
crossref_primary_10_1016_j_micron_2024_103706
crossref_primary_10_1080_14686996_2022_2062576
crossref_primary_10_1039_D4NR04636F
crossref_primary_10_1038_s41467_023_44602_3
crossref_primary_10_1380_vss_65_177
crossref_primary_10_1002_cey2_600
crossref_primary_10_1021_acs_nanolett_1c03689
crossref_primary_10_1002_aelm_202200393
crossref_primary_10_1021_acsnano_2c03997
crossref_primary_10_1021_acsanm_4c05637
crossref_primary_10_1021_acs_chemrev_1c00735
crossref_primary_10_1063_5_0098517
Cites_doi 10.1103/PhysRevB.54.11169
10.1126/science.290.5500.2280
10.1002/adfm.201000641
10.1038/nature14340
10.1002/adma.202004557
10.1080/00018738100101367
10.1063/1.4722817
10.1103/PhysRevLett.95.087003
10.1038/s41586-020-2241-9
10.1002/zaac.19261580122
10.1002/adma.201200489
10.1073/pnas.1619795114
10.1103/PhysRevLett.77.3865
10.1126/science.aaz2570
10.1002/9780470166024.ch2
10.1088/0034-4885/63/6/201
10.1103/PhysRevB.59.1758
10.1021/acsnano.9b04530
10.1038/s41586-018-0754-2
10.7209/tanso.1993.222
10.1038/s41563-019-0346-z
10.1038/nmat4069
10.1103/PhysRevB.85.085424
10.1038/nmat4091
10.1016/j.nanoen.2020.104927
10.1103/PhysRevMaterials.3.064004
10.1103/PhysRevLett.102.073005
10.1021/ic50168a024
10.1002/advs.201700146
10.1126/science.aao5360
10.1126/science.aac9439
10.1038/nnano.2008.67
10.1021/jz201098u
10.1038/nmat4064
10.1002/jemt.1060080206
10.1002/adma.201702141
10.1038/nphys0010
10.1109/IITC.2013.6615600
10.1038/nature11408
10.1039/C5CS00758E
10.1063/1.3630230
10.1039/C9CS00162J
10.1038/nature25155
10.1038/s41586-019-1013-x
10.1103/PhysRevLett.14.225
10.1063/1.3382344
10.1021/nl104228f
10.1071/CH9560184
10.1126/science.aat4749
10.1021/acs.chemmater.6b01137
10.1049/iet-cds.2015.0121
10.1038/s41535-019-0205-9
10.1021/acsnano.0c00645
10.1038/s41586-020-2098-y
10.1038/nature26160
10.1016/j.synthmet.2016.11.020
10.1016/0379-6779(91)91777-8
10.1016/S0968-4328(97)00018-8
10.1021/nl4040779
10.1073/pnas.1208889109
ContentType Journal Article
Copyright 2021 Wiley‐VCH GmbH
2021 Wiley-VCH GmbH.
Copyright_xml – notice: 2021 Wiley‐VCH GmbH
– notice: 2021 Wiley-VCH GmbH.
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
DOI 10.1002/adma.202105898
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic
Materials Research Database
CrossRef

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1521-4095
EndPage n/a
ExternalDocumentID 34610179
10_1002_adma_202105898
ADMA202105898
Genre article
Journal Article
GrantInformation_xml – fundername: JST‐CREST program
  funderid: JPMJCR20B1; JMJCR20B5; JPMJCR1993
– fundername: JSPS A3 Foresight Program
– fundername: JST‐CREST program
  funderid: JPMJCR20B1
– fundername: JSPS‐KAKENHI
  funderid: JP16H06333; 18K14119; 18H03864; 19K22113
– fundername: Japan Society for the Promotion of Science
  funderid: 19K22113
– fundername: Core Research for Evolutional Science and Technology
  funderid: JPMJCR1993
– fundername: Kazato Research Encouragement Prize
– fundername: German Research Foundation
  funderid: KR 4866/2‐1
– fundername: JST-CREST program
  grantid: JMJCR20B5
– fundername: JSPS-KAKENHI
  grantid: JP16H06333
– fundername: JSPS-KAKENHI
  grantid: 18K14119
– fundername: JSPS-KAKENHI
  grantid: 18H03864
– fundername: Core Research for Evolutional Science and Technology
  grantid: JPMJCR1993
– fundername: JSPS-KAKENHI
  grantid: 19K22113
– fundername: German Research Foundation
  grantid: KR 4866/2-1
– fundername: Japan Society for the Promotion of Science
  grantid: 19K22113
– fundername: JST-CREST program
  grantid: JPMJCR1993
GroupedDBID ---
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
23M
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
RNS
ROL
RWI
RWM
RX1
RYL
SUPJJ
TN5
UB1
UPT
V2E
W8V
W99
WBKPD
WFSAM
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YR2
ZZTAW
~02
~IA
~WT
.Y3
31~
6TJ
8WZ
A6W
AANHP
AASGY
AAYOK
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AETEA
AEYWJ
AFFNX
AGHNM
AGQPQ
AGYGG
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FOJGT
HF~
HVGLF
LW6
M6K
NDZJH
PALCI
RIWAO
RJQFR
SAMSI
WTY
ZY4
ABTAH
NPM
7SR
8BQ
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
JG9
7X8
ID FETCH-LOGICAL-c4798-ce65ca7abd050fa3b676935b84f2da3ba544947e944bfb2022aee4a4cd18dfec3
IEDL.DBID DR2
ISSN 0935-9648
1521-4095
IngestDate Fri Jul 11 03:23:35 EDT 2025
Mon Jul 14 08:22:22 EDT 2025
Wed Feb 19 02:28:29 EST 2025
Tue Jul 01 02:33:08 EDT 2025
Thu Apr 24 23:03:54 EDT 2025
Wed Jan 22 16:28:12 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 52
Keywords graphene intercalation
phase transitions
metal chloride
EELS
Language English
License 2021 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4798-ce65ca7abd050fa3b676935b84f2da3ba544947e944bfb2022aee4a4cd18dfec3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0908-5883
0000-0002-3968-7239
0000-0002-5098-5763
0000-0003-4416-7147
0000-0003-0074-7588
0000-0002-6107-1123
OpenAccessLink https://aaltodoc.aalto.fi/handle/123456789/113118
PMID 34610179
PQID 2614218867
PQPubID 2045203
PageCount 8
ParticipantIDs proquest_miscellaneous_2579625663
proquest_journals_2614218867
pubmed_primary_34610179
crossref_citationtrail_10_1002_adma_202105898
crossref_primary_10_1002_adma_202105898
wiley_primary_10_1002_adma_202105898_ADMA202105898
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-12-01
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
PublicationTitle Advanced materials (Weinheim)
PublicationTitleAlternate Adv Mater
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2018; 361
2017; 4
1965; 14
2019; 13
2018; 564
2019; 567
2016; 222
2011; 11
2011; 99
2019; 18
2020; 14
2020; 367
2008; 3
2012; 488
1959; 1
2017; 114
2017; 357
2000; 290
1996; 77
2020; 5
2010; 20
2021; 33
1999; 59
1991; 40
2016; 353
2014; 14
2014; 13
2020; 579
2012; 24
1981; 30
1998; 10
2016; 45
2019; 3
2012; 100
2011; 2
2020; 581
2015; 520
1978; 95
2000; 63
1997; 28
2017; 29
2015; 9
1996; 54
2012; 109
2018; 359
2020; 75
2018; 556
1926; 158
1977; 16
2018; 553
1988; 8
2019; 48
2005; 95
2010; 132
1956; 9
2009; 102
2005; 1
2016; 28
1993; 159
2012; 85
e_1_2_8_28_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
e_1_2_8_62_1
e_1_2_8_1_1
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_32_1
e_1_2_8_55_1
Ohashi K. (e_1_2_8_39_1) 1978; 95
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
Manthiram A. (e_1_2_8_24_1) 1998; 10
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_63_1
e_1_2_8_40_1
e_1_2_8_61_1
e_1_2_8_18_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
Zhang Z. (e_1_2_8_6_1) 2017; 357
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 13
  start-page: 1050
  year: 2014
  publication-title: Nat. Mater.
– volume: 102
  year: 2009
  publication-title: Phys. Rev. Lett.
– volume: 95
  year: 2005
  publication-title: Phys. Rev. Lett.
– volume: 361
  start-page: 263
  year: 2018
  publication-title: Science
– volume: 2
  start-page: 2577
  year: 2011
  publication-title: J. Phys. Chem. Lett.
– volume: 63
  start-page: 843
  year: 2000
  publication-title: Rep. Prog. Phys.
– volume: 100
  year: 2012
  publication-title: Appl. Phys. Lett.
– volume: 77
  start-page: 3865
  year: 1996
  publication-title: Phys. Rev. Lett.
– volume: 158
  start-page: 249
  year: 1926
  publication-title: Z. Anorg. Allg. Chem.
– volume: 367
  start-page: 537
  year: 2020
  publication-title: Science
– volume: 30
  start-page: 139
  year: 1981
  publication-title: Adv. Phys.
– volume: 45
  start-page: 6742
  year: 2016
  publication-title: Chem. Soc. Rev.
– volume: 14
  start-page: 6834
  year: 2020
  publication-title: ACS Nano
– volume: 13
  start-page: 1096
  year: 2014
  publication-title: Nat. Mater.
– volume: 159
  start-page: 222
  year: 1993
  publication-title: Tanso
– volume: 95
  start-page: 154
  year: 1978
  publication-title: Tanso
– volume: 75
  year: 2020
  publication-title: Nano Energy
– volume: 9
  start-page: 403
  year: 2015
  publication-title: IET Circuits, Devices Syst.
– volume: 14
  start-page: 225
  year: 1965
  publication-title: Phys. Rev. Lett.
– volume: 567
  start-page: 323
  year: 2019
  publication-title: Nature
– volume: 1
  start-page: 39
  year: 2005
  publication-title: Nat. Phys.
– volume: 33
  year: 2021
  publication-title: Adv. Mater.
– volume: 54
  year: 1996
  publication-title: Phys. Rev. B
– volume: 3
  year: 2019
  publication-title: Phys. Rev. Mater.
– volume: 9
  start-page: 184
  year: 1956
  publication-title: Aust. J. Chem.
– volume: 11
  start-page: 860
  year: 2011
  publication-title: Nano Lett.
– volume: 13
  start-page: 1135
  year: 2014
  publication-title: Nat. Mater.
– volume: 28
  start-page: 313
  year: 1997
  publication-title: Micron
– volume: 18
  start-page: 448
  year: 2019
  publication-title: Nat. Mater.
– volume: 581
  start-page: 171
  year: 2020
  publication-title: Nature
– volume: 1
  start-page: 125
  year: 1959
  publication-title: Prog. Inorg. Chem.
– volume: 109
  year: 2012
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 29
  year: 2017
  publication-title: Adv. Mater.
– volume: 20
  start-page: 3504
  year: 2010
  publication-title: Adv. Funct. Mater.
– volume: 40
  start-page: 219
  year: 1991
  publication-title: Synth. Met.
– volume: 553
  start-page: 63
  year: 2018
  publication-title: Nature
– volume: 114
  start-page: 834
  year: 2017
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 28
  start-page: 4583
  year: 2016
  publication-title: Chem. Mater.
– volume: 85
  year: 2012
  publication-title: Phys. Rev. B
– volume: 24
  start-page: 2844
  year: 2012
  publication-title: Adv. Mater.
– volume: 13
  start-page: 9541
  year: 2019
  publication-title: ACS Nano
– volume: 3
  start-page: 210
  year: 2008
  publication-title: Nat. Nanotechnol.
– volume: 59
  start-page: 1758
  year: 1999
  publication-title: Phys. Rev. B
– volume: 10
  start-page: 265
  year: 1998
  publication-title: Adv. Mater.
– volume: 488
  start-page: 627
  year: 2012
  publication-title: Nature
– volume: 290
  start-page: 2280
  year: 2000
  publication-title: Science
– volume: 5
  start-page: 4
  year: 2020
  publication-title: npj Quantum Mater.
– volume: 48
  start-page: 4655
  year: 2019
  publication-title: Chem. Soc. Rev.
– volume: 357
  start-page: 799
  year: 2017
  publication-title: Science
– volume: 99
  year: 2011
  publication-title: Appl. Phys. Lett.
– volume: 14
  start-page: 1751
  year: 2014
  publication-title: Nano Lett.
– volume: 520
  start-page: 324
  year: 2015
  publication-title: Nature
– volume: 222
  start-page: 351
  year: 2016
  publication-title: Synth. Met.
– volume: 353
  year: 2016
  publication-title: Science
– volume: 4
  year: 2017
  publication-title: Adv. Sci.
– volume: 16
  start-page: 343
  year: 1977
  publication-title: Inorg. Chem.
– volume: 359
  start-page: 1131
  year: 2018
  publication-title: Science
– volume: 579
  start-page: 368
  year: 2020
  publication-title: Nature
– volume: 556
  start-page: 43
  year: 2018
  publication-title: Nature
– volume: 564
  start-page: 234
  year: 2018
  publication-title: Nature
– volume: 8
  start-page: 193
  year: 1988
  publication-title: J. Electron Microsc. Tech.
– volume: 132
  year: 2010
  publication-title: J. Chem. Phys.
– ident: e_1_2_8_59_1
  doi: 10.1103/PhysRevB.54.11169
– volume: 95
  start-page: 154
  year: 1978
  ident: e_1_2_8_39_1
  publication-title: Tanso
– ident: e_1_2_8_16_1
  doi: 10.1126/science.290.5500.2280
– ident: e_1_2_8_53_1
  doi: 10.1002/adfm.201000641
– volume: 10
  start-page: 265
  year: 1998
  ident: e_1_2_8_24_1
  publication-title: Adv. Mater.
– ident: e_1_2_8_32_1
  doi: 10.1038/nature14340
– ident: e_1_2_8_55_1
  doi: 10.1002/adma.202004557
– ident: e_1_2_8_17_1
  doi: 10.1080/00018738100101367
– ident: e_1_2_8_57_1
  doi: 10.1063/1.4722817
– ident: e_1_2_8_27_1
  doi: 10.1103/PhysRevLett.95.087003
– ident: e_1_2_8_19_1
  doi: 10.1038/s41586-020-2241-9
– ident: e_1_2_8_21_1
  doi: 10.1002/zaac.19261580122
– ident: e_1_2_8_30_1
  doi: 10.1002/adma.201200489
– ident: e_1_2_8_33_1
  doi: 10.1073/pnas.1619795114
– ident: e_1_2_8_61_1
  doi: 10.1103/PhysRevLett.77.3865
– ident: e_1_2_8_9_1
  doi: 10.1126/science.aaz2570
– ident: e_1_2_8_22_1
  doi: 10.1002/9780470166024.ch2
– ident: e_1_2_8_42_1
  doi: 10.1088/0034-4885/63/6/201
– ident: e_1_2_8_60_1
  doi: 10.1103/PhysRevB.59.1758
– ident: e_1_2_8_15_1
  doi: 10.1021/acsnano.9b04530
– ident: e_1_2_8_34_1
  doi: 10.1038/s41586-018-0754-2
– ident: e_1_2_8_47_1
  doi: 10.7209/tanso.1993.222
– ident: e_1_2_8_10_1
  doi: 10.1038/s41563-019-0346-z
– volume: 357
  start-page: 799
  year: 2017
  ident: e_1_2_8_6_1
  publication-title: Science
– ident: e_1_2_8_40_1
  doi: 10.1038/nmat4069
– ident: e_1_2_8_51_1
  doi: 10.1103/PhysRevB.85.085424
– ident: e_1_2_8_2_1
  doi: 10.1038/nmat4091
– ident: e_1_2_8_20_1
  doi: 10.1016/j.nanoen.2020.104927
– ident: e_1_2_8_35_1
  doi: 10.1103/PhysRevMaterials.3.064004
– ident: e_1_2_8_63_1
  doi: 10.1103/PhysRevLett.102.073005
– ident: e_1_2_8_48_1
  doi: 10.1021/ic50168a024
– ident: e_1_2_8_25_1
  doi: 10.1002/advs.201700146
– ident: e_1_2_8_14_1
  doi: 10.1126/science.aao5360
– ident: e_1_2_8_3_1
  doi: 10.1126/science.aac9439
– ident: e_1_2_8_52_1
  doi: 10.1038/nnano.2008.67
– ident: e_1_2_8_56_1
  doi: 10.1021/jz201098u
– ident: e_1_2_8_5_1
  doi: 10.1038/nmat4064
– ident: e_1_2_8_44_1
  doi: 10.1002/jemt.1060080206
– ident: e_1_2_8_38_1
  doi: 10.1002/adma.201702141
– ident: e_1_2_8_28_1
  doi: 10.1038/nphys0010
– ident: e_1_2_8_58_1
  doi: 10.1109/IITC.2013.6615600
– ident: e_1_2_8_4_1
  doi: 10.1038/nature11408
– ident: e_1_2_8_18_1
  doi: 10.1039/C5CS00758E
– ident: e_1_2_8_50_1
  doi: 10.1063/1.3630230
– ident: e_1_2_8_54_1
  doi: 10.1039/C9CS00162J
– ident: e_1_2_8_7_1
  doi: 10.1038/nature25155
– ident: e_1_2_8_1_1
  doi: 10.1038/s41586-019-1013-x
– ident: e_1_2_8_26_1
  doi: 10.1103/PhysRevLett.14.225
– ident: e_1_2_8_62_1
  doi: 10.1063/1.3382344
– ident: e_1_2_8_13_1
  doi: 10.1021/nl104228f
– ident: e_1_2_8_23_1
  doi: 10.1071/CH9560184
– ident: e_1_2_8_41_1
  doi: 10.1126/science.aat4749
– ident: e_1_2_8_36_1
  doi: 10.1021/acs.chemmater.6b01137
– ident: e_1_2_8_31_1
  doi: 10.1049/iet-cds.2015.0121
– ident: e_1_2_8_49_1
  doi: 10.1038/s41535-019-0205-9
– ident: e_1_2_8_37_1
  doi: 10.1021/acsnano.0c00645
– ident: e_1_2_8_8_1
  doi: 10.1038/s41586-020-2098-y
– ident: e_1_2_8_11_1
  doi: 10.1038/nature26160
– ident: e_1_2_8_45_1
  doi: 10.1016/j.synthmet.2016.11.020
– ident: e_1_2_8_46_1
  doi: 10.1016/0379-6779(91)91777-8
– ident: e_1_2_8_43_1
  doi: 10.1016/S0968-4328(97)00018-8
– ident: e_1_2_8_12_1
  doi: 10.1021/nl4040779
– ident: e_1_2_8_29_1
  doi: 10.1073/pnas.1208889109
SSID ssj0009606
Score 2.5012245
Snippet Unprecedented 2D metal chloride structures are grown between sheets of bilayer graphene through intercalation of metal and chlorine atoms. Numerous spatially...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e2105898
SubjectTerms Aluminum chloride
Bilayers
Chlorine
Copper chloride
Density functional theory
EELS
Electron beams
Graphene
graphene intercalation
Heterostructures
Hybrid systems
Insulators
Intercalation
Materials science
metal chloride
Metal chlorides
Metalloids
phase transitions
Phases
Scanning transmission electron microscopy
Sheets
Two dimensional materials
Title Polymorphic Phases of Metal Chlorides in the Confined 2D Space of Bilayer Graphene
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202105898
https://www.ncbi.nlm.nih.gov/pubmed/34610179
https://www.proquest.com/docview/2614218867
https://www.proquest.com/docview/2579625663
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4huLSHtvSZFpArVerJkDjjxDkuLBShboWgSNwivyJW3SZVd_dQfj3jZDewVFUluMXJWLE9HvubZOYzwCefmMwq6XglHHLUKLnGLOYOpdSJ1V61juLoW3Z8gSeX8vJOFn_HD9F_cAuW0a7XwcC1me7dkoZq1_IGkcsiVRGyfZM0C-T5w7Nb_qgAz1uyvVTyIkO1ZG2Mxd5q9dVd6S-ouYpc263n6DnoZaO7iJMfu_OZ2bXX9_gcH9OrF_BsgUvZoJtIm7Dm65fw9A5b4Ss4O20mf342pJixZadXtP1NWVOxkSf8zg6uQiifo1vjmhGoZCGVkOo6JobsnBxzH2T3xxNNGJ99CTTZtMq-houjw-8Hx3xxJAO3mBeKW59Jq3NtXCzjSqemPUtRGoWkaypqiVhg7gtEUxnqh9De0wywLlGu8jZ9A-t1U_t3wCrvSD3ea2ELwnTKKGHySmGiK0Qt4gj4UiWlXfCVh2MzJmXHtCzKMFZlP1YRfO7lf3VMHf-U3FpquFxY7LQkTxIJ7qgsj-Bj_5hsLfxA0bVv5iQTEncJI2ZpBG-7mdG_Kg3E9bS6RSBa_f6nDeVgOBr0pfcPqfQBnoTrLrZmC9Znv-d-mxDSzOzABkl-Pd9preEGKlsH4g
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BOQAH3tBAASMhcXKbdcaJc1xaygLdqiqtxC3yK-qKbYLo7gF-PWNnk7IghARHO2PF9njsb-zxZ4CXfmRyq6TjtXDIUaPkGvOUO5RSj6z2KjqK08N8corvP8k-mjDchen4IYYNt2AZcb4OBh42pHcuWUO1i8RB5LNIVaqrcC0e0gVcdHzJIBUAeqTbyyQvc1Q9b2MqdtbLr69Lv4HNdewaF5_922D6ancxJ5-3lwuzbb__wuj4X-26A7dW0JSNu7F0F6745h7c_Imw8D4cH7Xzb-ct6WZm2dEZrYAXrK3Z1BOEZ7tnIZrPUdasYYQrWbhNSGUdE3vsI_nmPsi-ns01wXz2NjBl00T7AE7335zsTvjqVQZusSgVtz6XVhfauFSmtc5MfE5RGoWkbkpqiVhi4UtEUxtqh9De0yCwbqRc7W32EDaatvGbwGrvSD_ea2FLgnXKKGGKWuFI14hapAnwXieVXVGWh5cz5lVHtiyq0FfV0FcJvBrkv3RkHX-U3OpVXK2M9qIiZxIJ8ai8SODF8JnMLZyh6Ma3S5IJd3cJJuZZAo-6oTH8Kgvc9TTBJSCigv9Sh2q8Nx0Pqcf_Uug5XJ-cTA-qg3eHH57AjZDfhdpswcbi69I_JcC0MM-iSfwAY-oKbA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BkRAceBcCBYyExMlt1hknznHpspTHVqtCpd4iP9UVS1LR3QP8esbJbtoFISQ42hnLj_HY3zjjzwAv_cDkVknHg3DIUaPkGvOUO5RSD6z2qnUUJ4f5wTG-P5Enl27xd_wQ_YFbtIx2vY4GfubC3gVpqHYtbxC5LFKV6ipcoypEDOoaHV0QSEV83rLtZZKXOao1bWMq9jbLb25Lv2HNTeja7j3j26DXre5CTr7sLhdm1_74hdDxf7p1B26tgCkbdjPpLlzx9T24eYmu8D4cTZv5968NaWZm2fSU9r9z1gQ28QTg2f5pjOVzlDWrGaFKFu8SUlnHxIh9Is_cR9nXs7kmkM_eRp5sWmYfwPH4zef9A756k4FbLErFrc-l1YU2LpVp0JlpH1OURiEpm5JaIpZY-BLRBEP9ENp7mgLWDZQL3mbbsFU3tX8ELHhH6vFeC1sSqFNGCVMEhQMdELVIE-BrlVR2RVge382YVx3VsqjiWFX9WCXwqpc_66g6_ii5s9ZwtTLZ84pcSSS8o_IigRf9ZzK2-AdF175Zkky8uUsgMc8SeNjNjL6qLDLX0_KWgGj1-5c2VMPRZNinHv9LoedwfToaVx_fHX54AjdidhdnswNbi29L_5TQ0sI8aw3iJzKhCRs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Polymorphic+Phases+of+Metal+Chlorides+in+the+Confined+2D+Space+of+Bilayer+Graphene&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Lin%2C+Yung-Chang&rft.au=Motoyama%2C+Amane&rft.au=Kretschmer%2C+Silvan&rft.au=Ghaderzadeh%2C+Sadegh&rft.date=2021-12-01&rft.issn=1521-4095&rft.eissn=1521-4095&rft.volume=33&rft.issue=52&rft.spage=e2105898&rft_id=info:doi/10.1002%2Fadma.202105898&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon