Polymorphic Phases of Metal Chlorides in the Confined 2D Space of Bilayer Graphene
Unprecedented 2D metal chloride structures are grown between sheets of bilayer graphene through intercalation of metal and chlorine atoms. Numerous spatially confined 2D phases of AlCl3 and CuCl2 distinct from their typical bulk forms are found, and the transformations between these new phases under...
Saved in:
Published in | Advanced materials (Weinheim) Vol. 33; no. 52; pp. e2105898 - n/a |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
Wiley Subscription Services, Inc
01.12.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 0935-9648 1521-4095 1521-4095 |
DOI | 10.1002/adma.202105898 |
Cover
Abstract | Unprecedented 2D metal chloride structures are grown between sheets of bilayer graphene through intercalation of metal and chlorine atoms. Numerous spatially confined 2D phases of AlCl3 and CuCl2 distinct from their typical bulk forms are found, and the transformations between these new phases under the electron beam are directly observed by in situ scanning transmission electron microscopy (STEM). The density functional theory calculations confirm the metastability of the atomic structures derived from the STEM experiments and provide insights into the electronic properties of the phases, which range from insulators to semimetals. Additionally, the co‐intercalation of different metal chlorides is found to create completely new hybrid systems; in‐plane quasi‐1D AlCl3/CuCl2 heterostructures are obtained. The existence of polymorphic phases hints at the unique possibilities for fabricating new types of 2D materials with diverse electronic properties confined between graphene sheets.
Metal chlorides intercalated in the van der Waals gap of bilayer graphene are found to have polymorphic phases. New phases and phase transformation of AlCl3, as well as new hybrid alloy of quasi‐1D AlCl3 and CuCl2 are directly observed by scanning transmission electron microscopy. |
---|---|
AbstractList | Unprecedented 2D metal chloride structures are grown between sheets of bilayer graphene through intercalation of metal and chlorine atoms. Numerous spatially confined 2D phases of AlCl
and CuCl
distinct from their typical bulk forms are found, and the transformations between these new phases under the electron beam are directly observed by in situ scanning transmission electron microscopy (STEM). The density functional theory calculations confirm the metastability of the atomic structures derived from the STEM experiments and provide insights into the electronic properties of the phases, which range from insulators to semimetals. Additionally, the co-intercalation of different metal chlorides is found to create completely new hybrid systems; in-plane quasi-1D AlCl
/CuCl
heterostructures are obtained. The existence of polymorphic phases hints at the unique possibilities for fabricating new types of 2D materials with diverse electronic properties confined between graphene sheets. Unprecedented 2D metal chloride structures are grown between sheets of bilayer graphene through intercalation of metal and chlorine atoms. Numerous spatially confined 2D phases of AlCl3 and CuCl2 distinct from their typical bulk forms are found, and the transformations between these new phases under the electron beam are directly observed by in situ scanning transmission electron microscopy (STEM). The density functional theory calculations confirm the metastability of the atomic structures derived from the STEM experiments and provide insights into the electronic properties of the phases, which range from insulators to semimetals. Additionally, the co-intercalation of different metal chlorides is found to create completely new hybrid systems; in-plane quasi-1D AlCl3 /CuCl2 heterostructures are obtained. The existence of polymorphic phases hints at the unique possibilities for fabricating new types of 2D materials with diverse electronic properties confined between graphene sheets.Unprecedented 2D metal chloride structures are grown between sheets of bilayer graphene through intercalation of metal and chlorine atoms. Numerous spatially confined 2D phases of AlCl3 and CuCl2 distinct from their typical bulk forms are found, and the transformations between these new phases under the electron beam are directly observed by in situ scanning transmission electron microscopy (STEM). The density functional theory calculations confirm the metastability of the atomic structures derived from the STEM experiments and provide insights into the electronic properties of the phases, which range from insulators to semimetals. Additionally, the co-intercalation of different metal chlorides is found to create completely new hybrid systems; in-plane quasi-1D AlCl3 /CuCl2 heterostructures are obtained. The existence of polymorphic phases hints at the unique possibilities for fabricating new types of 2D materials with diverse electronic properties confined between graphene sheets. Unprecedented 2D metal chloride structures are grown between sheets of bilayer graphene through intercalation of metal and chlorine atoms. Numerous spatially confined 2D phases of AlCl3 and CuCl2 distinct from their typical bulk forms are found, and the transformations between these new phases under the electron beam are directly observed by in situ scanning transmission electron microscopy (STEM). The density functional theory calculations confirm the metastability of the atomic structures derived from the STEM experiments and provide insights into the electronic properties of the phases, which range from insulators to semimetals. Additionally, the co‐intercalation of different metal chlorides is found to create completely new hybrid systems; in‐plane quasi‐1D AlCl3/CuCl2 heterostructures are obtained. The existence of polymorphic phases hints at the unique possibilities for fabricating new types of 2D materials with diverse electronic properties confined between graphene sheets. Unprecedented 2D metal chloride structures are grown between sheets of bilayer graphene through intercalation of metal and chlorine atoms. Numerous spatially confined 2D phases of AlCl 3 and CuCl 2 distinct from their typical bulk forms are found, and the transformations between these new phases under the electron beam are directly observed by in situ scanning transmission electron microscopy (STEM). The density functional theory calculations confirm the metastability of the atomic structures derived from the STEM experiments and provide insights into the electronic properties of the phases, which range from insulators to semimetals. Additionally, the co‐intercalation of different metal chlorides is found to create completely new hybrid systems; in‐plane quasi‐1D AlCl 3 /CuCl 2 heterostructures are obtained. The existence of polymorphic phases hints at the unique possibilities for fabricating new types of 2D materials with diverse electronic properties confined between graphene sheets. Unprecedented 2D metal chloride structures are grown between sheets of bilayer graphene through intercalation of metal and chlorine atoms. Numerous spatially confined 2D phases of AlCl3 and CuCl2 distinct from their typical bulk forms are found, and the transformations between these new phases under the electron beam are directly observed by in situ scanning transmission electron microscopy (STEM). The density functional theory calculations confirm the metastability of the atomic structures derived from the STEM experiments and provide insights into the electronic properties of the phases, which range from insulators to semimetals. Additionally, the co‐intercalation of different metal chlorides is found to create completely new hybrid systems; in‐plane quasi‐1D AlCl3/CuCl2 heterostructures are obtained. The existence of polymorphic phases hints at the unique possibilities for fabricating new types of 2D materials with diverse electronic properties confined between graphene sheets. Metal chlorides intercalated in the van der Waals gap of bilayer graphene are found to have polymorphic phases. New phases and phase transformation of AlCl3, as well as new hybrid alloy of quasi‐1D AlCl3 and CuCl2 are directly observed by scanning transmission electron microscopy. |
Author | Ghaderzadeh, Sadegh Suenaga, Kazu Lin, Yung‐Chang Krasheninnikov, Arkady V. Ago, Hiroki Kretschmer, Silvan Motoyama, Amane Ghorbani‐Asl, Mahdi Araki, Yuji |
Author_xml | – sequence: 1 givenname: Yung‐Chang orcidid: 0000-0002-3968-7239 surname: Lin fullname: Lin, Yung‐Chang email: yc-lin@aist.go.jp organization: National Institute of Advanced Industrial Science and Technology (AIST) – sequence: 2 givenname: Amane surname: Motoyama fullname: Motoyama, Amane organization: Kyushu University – sequence: 3 givenname: Silvan orcidid: 0000-0002-5098-5763 surname: Kretschmer fullname: Kretschmer, Silvan organization: Helmholtz‐Zentrum Dresden‐Rossendorf – sequence: 4 givenname: Sadegh orcidid: 0000-0003-4416-7147 surname: Ghaderzadeh fullname: Ghaderzadeh, Sadegh organization: Helmholtz‐Zentrum Dresden‐Rossendorf – sequence: 5 givenname: Mahdi surname: Ghorbani‐Asl fullname: Ghorbani‐Asl, Mahdi organization: Helmholtz‐Zentrum Dresden‐Rossendorf – sequence: 6 givenname: Yuji surname: Araki fullname: Araki, Yuji organization: Kyushu University – sequence: 7 givenname: Arkady V. orcidid: 0000-0003-0074-7588 surname: Krasheninnikov fullname: Krasheninnikov, Arkady V. organization: Aalto University – sequence: 8 givenname: Hiroki orcidid: 0000-0003-0908-5883 surname: Ago fullname: Ago, Hiroki organization: Kyushu University – sequence: 9 givenname: Kazu orcidid: 0000-0002-6107-1123 surname: Suenaga fullname: Suenaga, Kazu email: suenaga-kazu@sanken.osaka-u.ac.jp organization: Osaka University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34610179$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1r3DAQhkVJaTZprz0WQS-9eCvJkmwdt5s2KSQ09OMsZHmMFWTJlbyE_ffVskkKgdLToOF5hhm9Z-gkxAAIvaVkTQlhH00_mTUjjBLRqvYFWlHBaMWJEidoRVQtKiV5e4rOcr4jhChJ5Ct0WnNJCW3UCn2_jX4_xTSPzuLb0WTIOA74Bhbj8Xb0Mbm-tFzAywh4G8PgAvSYXeAfs7FwYD85b_aQ8GUy8wgBXqOXg_EZ3jzUc_Try-ef26vq-tvl1-3murK8UW1lQQprGtP1RJDB1J1sZNm3a_nA-vI0gnPFG1Ccd0NXTmQGgBtue9r2A9j6HH04zp1T_L2DvOjJZQvemwBxlzUTjZJMSFkX9P0z9C7uUijbaSYpZ7RtZVOodw_Urpug13Nyk0l7_fhbBeBHwKaYc4JBW7eYxcWwJOO8pkQfQtGHUPRTKEVbP9MeJ_9TUEfh3nnY_4fWm4ubzV_3D-iinZc |
CitedBy_id | crossref_primary_10_1021_jacs_2c07372 crossref_primary_10_1038_s41427_024_00551_x crossref_primary_10_7209_tanso_2023_96 crossref_primary_10_1021_acsnano_4c16177 crossref_primary_10_1016_j_micron_2024_103706 crossref_primary_10_1080_14686996_2022_2062576 crossref_primary_10_1039_D4NR04636F crossref_primary_10_1038_s41467_023_44602_3 crossref_primary_10_1380_vss_65_177 crossref_primary_10_1002_cey2_600 crossref_primary_10_1021_acs_nanolett_1c03689 crossref_primary_10_1002_aelm_202200393 crossref_primary_10_1021_acsnano_2c03997 crossref_primary_10_1021_acsanm_4c05637 crossref_primary_10_1021_acs_chemrev_1c00735 crossref_primary_10_1063_5_0098517 |
Cites_doi | 10.1103/PhysRevB.54.11169 10.1126/science.290.5500.2280 10.1002/adfm.201000641 10.1038/nature14340 10.1002/adma.202004557 10.1080/00018738100101367 10.1063/1.4722817 10.1103/PhysRevLett.95.087003 10.1038/s41586-020-2241-9 10.1002/zaac.19261580122 10.1002/adma.201200489 10.1073/pnas.1619795114 10.1103/PhysRevLett.77.3865 10.1126/science.aaz2570 10.1002/9780470166024.ch2 10.1088/0034-4885/63/6/201 10.1103/PhysRevB.59.1758 10.1021/acsnano.9b04530 10.1038/s41586-018-0754-2 10.7209/tanso.1993.222 10.1038/s41563-019-0346-z 10.1038/nmat4069 10.1103/PhysRevB.85.085424 10.1038/nmat4091 10.1016/j.nanoen.2020.104927 10.1103/PhysRevMaterials.3.064004 10.1103/PhysRevLett.102.073005 10.1021/ic50168a024 10.1002/advs.201700146 10.1126/science.aao5360 10.1126/science.aac9439 10.1038/nnano.2008.67 10.1021/jz201098u 10.1038/nmat4064 10.1002/jemt.1060080206 10.1002/adma.201702141 10.1038/nphys0010 10.1109/IITC.2013.6615600 10.1038/nature11408 10.1039/C5CS00758E 10.1063/1.3630230 10.1039/C9CS00162J 10.1038/nature25155 10.1038/s41586-019-1013-x 10.1103/PhysRevLett.14.225 10.1063/1.3382344 10.1021/nl104228f 10.1071/CH9560184 10.1126/science.aat4749 10.1021/acs.chemmater.6b01137 10.1049/iet-cds.2015.0121 10.1038/s41535-019-0205-9 10.1021/acsnano.0c00645 10.1038/s41586-020-2098-y 10.1038/nature26160 10.1016/j.synthmet.2016.11.020 10.1016/0379-6779(91)91777-8 10.1016/S0968-4328(97)00018-8 10.1021/nl4040779 10.1073/pnas.1208889109 |
ContentType | Journal Article |
Copyright | 2021 Wiley‐VCH GmbH 2021 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2021 Wiley‐VCH GmbH – notice: 2021 Wiley-VCH GmbH. |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 |
DOI | 10.1002/adma.202105898 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic Materials Research Database CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1521-4095 |
EndPage | n/a |
ExternalDocumentID | 34610179 10_1002_adma_202105898 ADMA202105898 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: JST‐CREST program funderid: JPMJCR20B1; JMJCR20B5; JPMJCR1993 – fundername: JSPS A3 Foresight Program – fundername: JST‐CREST program funderid: JPMJCR20B1 – fundername: JSPS‐KAKENHI funderid: JP16H06333; 18K14119; 18H03864; 19K22113 – fundername: Japan Society for the Promotion of Science funderid: 19K22113 – fundername: Core Research for Evolutional Science and Technology funderid: JPMJCR1993 – fundername: Kazato Research Encouragement Prize – fundername: German Research Foundation funderid: KR 4866/2‐1 – fundername: JST-CREST program grantid: JMJCR20B5 – fundername: JSPS-KAKENHI grantid: JP16H06333 – fundername: JSPS-KAKENHI grantid: 18K14119 – fundername: JSPS-KAKENHI grantid: 18H03864 – fundername: Core Research for Evolutional Science and Technology grantid: JPMJCR1993 – fundername: JSPS-KAKENHI grantid: 19K22113 – fundername: German Research Foundation grantid: KR 4866/2-1 – fundername: Japan Society for the Promotion of Science grantid: 19K22113 – fundername: JST-CREST program grantid: JPMJCR1993 |
GroupedDBID | --- .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 23M 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABLJU ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HHZ HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K RNS ROL RWI RWM RX1 RYL SUPJJ TN5 UB1 UPT V2E W8V W99 WBKPD WFSAM WIB WIH WIK WJL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 YR2 ZZTAW ~02 ~IA ~WT .Y3 31~ 6TJ 8WZ A6W AANHP AASGY AAYOK AAYXX ABEML ACBWZ ACRPL ACSCC ACYXJ ADMLS ADNMO AETEA AEYWJ AFFNX AGHNM AGQPQ AGYGG ASPBG AVWKF AZFZN CITATION EJD FEDTE FOJGT HF~ HVGLF LW6 M6K NDZJH PALCI RIWAO RJQFR SAMSI WTY ZY4 ABTAH NPM 7SR 8BQ 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY JG9 7X8 |
ID | FETCH-LOGICAL-c4798-ce65ca7abd050fa3b676935b84f2da3ba544947e944bfb2022aee4a4cd18dfec3 |
IEDL.DBID | DR2 |
ISSN | 0935-9648 1521-4095 |
IngestDate | Fri Jul 11 03:23:35 EDT 2025 Mon Jul 14 08:22:22 EDT 2025 Wed Feb 19 02:28:29 EST 2025 Tue Jul 01 02:33:08 EDT 2025 Thu Apr 24 23:03:54 EDT 2025 Wed Jan 22 16:28:12 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 52 |
Keywords | graphene intercalation phase transitions metal chloride EELS |
Language | English |
License | 2021 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4798-ce65ca7abd050fa3b676935b84f2da3ba544947e944bfb2022aee4a4cd18dfec3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-0908-5883 0000-0002-3968-7239 0000-0002-5098-5763 0000-0003-4416-7147 0000-0003-0074-7588 0000-0002-6107-1123 |
OpenAccessLink | https://aaltodoc.aalto.fi/handle/123456789/113118 |
PMID | 34610179 |
PQID | 2614218867 |
PQPubID | 2045203 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2579625663 proquest_journals_2614218867 pubmed_primary_34610179 crossref_citationtrail_10_1002_adma_202105898 crossref_primary_10_1002_adma_202105898 wiley_primary_10_1002_adma_202105898_ADMA202105898 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-12-01 |
PublicationDateYYYYMMDD | 2021-12-01 |
PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany – name: Weinheim |
PublicationTitle | Advanced materials (Weinheim) |
PublicationTitleAlternate | Adv Mater |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2018; 361 2017; 4 1965; 14 2019; 13 2018; 564 2019; 567 2016; 222 2011; 11 2011; 99 2019; 18 2020; 14 2020; 367 2008; 3 2012; 488 1959; 1 2017; 114 2017; 357 2000; 290 1996; 77 2020; 5 2010; 20 2021; 33 1999; 59 1991; 40 2016; 353 2014; 14 2014; 13 2020; 579 2012; 24 1981; 30 1998; 10 2016; 45 2019; 3 2012; 100 2011; 2 2020; 581 2015; 520 1978; 95 2000; 63 1997; 28 2017; 29 2015; 9 1996; 54 2012; 109 2018; 359 2020; 75 2018; 556 1926; 158 1977; 16 2018; 553 1988; 8 2019; 48 2005; 95 2010; 132 1956; 9 2009; 102 2005; 1 2016; 28 1993; 159 2012; 85 e_1_2_8_28_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_62_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_32_1 e_1_2_8_55_1 Ohashi K. (e_1_2_8_39_1) 1978; 95 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 Manthiram A. (e_1_2_8_24_1) 1998; 10 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_18_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 Zhang Z. (e_1_2_8_6_1) 2017; 357 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
References_xml | – volume: 13 start-page: 1050 year: 2014 publication-title: Nat. Mater. – volume: 102 year: 2009 publication-title: Phys. Rev. Lett. – volume: 95 year: 2005 publication-title: Phys. Rev. Lett. – volume: 361 start-page: 263 year: 2018 publication-title: Science – volume: 2 start-page: 2577 year: 2011 publication-title: J. Phys. Chem. Lett. – volume: 63 start-page: 843 year: 2000 publication-title: Rep. Prog. Phys. – volume: 100 year: 2012 publication-title: Appl. Phys. Lett. – volume: 77 start-page: 3865 year: 1996 publication-title: Phys. Rev. Lett. – volume: 158 start-page: 249 year: 1926 publication-title: Z. Anorg. Allg. Chem. – volume: 367 start-page: 537 year: 2020 publication-title: Science – volume: 30 start-page: 139 year: 1981 publication-title: Adv. Phys. – volume: 45 start-page: 6742 year: 2016 publication-title: Chem. Soc. Rev. – volume: 14 start-page: 6834 year: 2020 publication-title: ACS Nano – volume: 13 start-page: 1096 year: 2014 publication-title: Nat. Mater. – volume: 159 start-page: 222 year: 1993 publication-title: Tanso – volume: 95 start-page: 154 year: 1978 publication-title: Tanso – volume: 75 year: 2020 publication-title: Nano Energy – volume: 9 start-page: 403 year: 2015 publication-title: IET Circuits, Devices Syst. – volume: 14 start-page: 225 year: 1965 publication-title: Phys. Rev. Lett. – volume: 567 start-page: 323 year: 2019 publication-title: Nature – volume: 1 start-page: 39 year: 2005 publication-title: Nat. Phys. – volume: 33 year: 2021 publication-title: Adv. Mater. – volume: 54 year: 1996 publication-title: Phys. Rev. B – volume: 3 year: 2019 publication-title: Phys. Rev. Mater. – volume: 9 start-page: 184 year: 1956 publication-title: Aust. J. Chem. – volume: 11 start-page: 860 year: 2011 publication-title: Nano Lett. – volume: 13 start-page: 1135 year: 2014 publication-title: Nat. Mater. – volume: 28 start-page: 313 year: 1997 publication-title: Micron – volume: 18 start-page: 448 year: 2019 publication-title: Nat. Mater. – volume: 581 start-page: 171 year: 2020 publication-title: Nature – volume: 1 start-page: 125 year: 1959 publication-title: Prog. Inorg. Chem. – volume: 109 year: 2012 publication-title: Proc. Natl. Acad. Sci. USA – volume: 29 year: 2017 publication-title: Adv. Mater. – volume: 20 start-page: 3504 year: 2010 publication-title: Adv. Funct. Mater. – volume: 40 start-page: 219 year: 1991 publication-title: Synth. Met. – volume: 553 start-page: 63 year: 2018 publication-title: Nature – volume: 114 start-page: 834 year: 2017 publication-title: Proc. Natl. Acad. Sci. USA – volume: 28 start-page: 4583 year: 2016 publication-title: Chem. Mater. – volume: 85 year: 2012 publication-title: Phys. Rev. B – volume: 24 start-page: 2844 year: 2012 publication-title: Adv. Mater. – volume: 13 start-page: 9541 year: 2019 publication-title: ACS Nano – volume: 3 start-page: 210 year: 2008 publication-title: Nat. Nanotechnol. – volume: 59 start-page: 1758 year: 1999 publication-title: Phys. Rev. B – volume: 10 start-page: 265 year: 1998 publication-title: Adv. Mater. – volume: 488 start-page: 627 year: 2012 publication-title: Nature – volume: 290 start-page: 2280 year: 2000 publication-title: Science – volume: 5 start-page: 4 year: 2020 publication-title: npj Quantum Mater. – volume: 48 start-page: 4655 year: 2019 publication-title: Chem. Soc. Rev. – volume: 357 start-page: 799 year: 2017 publication-title: Science – volume: 99 year: 2011 publication-title: Appl. Phys. Lett. – volume: 14 start-page: 1751 year: 2014 publication-title: Nano Lett. – volume: 520 start-page: 324 year: 2015 publication-title: Nature – volume: 222 start-page: 351 year: 2016 publication-title: Synth. Met. – volume: 353 year: 2016 publication-title: Science – volume: 4 year: 2017 publication-title: Adv. Sci. – volume: 16 start-page: 343 year: 1977 publication-title: Inorg. Chem. – volume: 359 start-page: 1131 year: 2018 publication-title: Science – volume: 579 start-page: 368 year: 2020 publication-title: Nature – volume: 556 start-page: 43 year: 2018 publication-title: Nature – volume: 564 start-page: 234 year: 2018 publication-title: Nature – volume: 8 start-page: 193 year: 1988 publication-title: J. Electron Microsc. Tech. – volume: 132 year: 2010 publication-title: J. Chem. Phys. – ident: e_1_2_8_59_1 doi: 10.1103/PhysRevB.54.11169 – volume: 95 start-page: 154 year: 1978 ident: e_1_2_8_39_1 publication-title: Tanso – ident: e_1_2_8_16_1 doi: 10.1126/science.290.5500.2280 – ident: e_1_2_8_53_1 doi: 10.1002/adfm.201000641 – volume: 10 start-page: 265 year: 1998 ident: e_1_2_8_24_1 publication-title: Adv. Mater. – ident: e_1_2_8_32_1 doi: 10.1038/nature14340 – ident: e_1_2_8_55_1 doi: 10.1002/adma.202004557 – ident: e_1_2_8_17_1 doi: 10.1080/00018738100101367 – ident: e_1_2_8_57_1 doi: 10.1063/1.4722817 – ident: e_1_2_8_27_1 doi: 10.1103/PhysRevLett.95.087003 – ident: e_1_2_8_19_1 doi: 10.1038/s41586-020-2241-9 – ident: e_1_2_8_21_1 doi: 10.1002/zaac.19261580122 – ident: e_1_2_8_30_1 doi: 10.1002/adma.201200489 – ident: e_1_2_8_33_1 doi: 10.1073/pnas.1619795114 – ident: e_1_2_8_61_1 doi: 10.1103/PhysRevLett.77.3865 – ident: e_1_2_8_9_1 doi: 10.1126/science.aaz2570 – ident: e_1_2_8_22_1 doi: 10.1002/9780470166024.ch2 – ident: e_1_2_8_42_1 doi: 10.1088/0034-4885/63/6/201 – ident: e_1_2_8_60_1 doi: 10.1103/PhysRevB.59.1758 – ident: e_1_2_8_15_1 doi: 10.1021/acsnano.9b04530 – ident: e_1_2_8_34_1 doi: 10.1038/s41586-018-0754-2 – ident: e_1_2_8_47_1 doi: 10.7209/tanso.1993.222 – ident: e_1_2_8_10_1 doi: 10.1038/s41563-019-0346-z – volume: 357 start-page: 799 year: 2017 ident: e_1_2_8_6_1 publication-title: Science – ident: e_1_2_8_40_1 doi: 10.1038/nmat4069 – ident: e_1_2_8_51_1 doi: 10.1103/PhysRevB.85.085424 – ident: e_1_2_8_2_1 doi: 10.1038/nmat4091 – ident: e_1_2_8_20_1 doi: 10.1016/j.nanoen.2020.104927 – ident: e_1_2_8_35_1 doi: 10.1103/PhysRevMaterials.3.064004 – ident: e_1_2_8_63_1 doi: 10.1103/PhysRevLett.102.073005 – ident: e_1_2_8_48_1 doi: 10.1021/ic50168a024 – ident: e_1_2_8_25_1 doi: 10.1002/advs.201700146 – ident: e_1_2_8_14_1 doi: 10.1126/science.aao5360 – ident: e_1_2_8_3_1 doi: 10.1126/science.aac9439 – ident: e_1_2_8_52_1 doi: 10.1038/nnano.2008.67 – ident: e_1_2_8_56_1 doi: 10.1021/jz201098u – ident: e_1_2_8_5_1 doi: 10.1038/nmat4064 – ident: e_1_2_8_44_1 doi: 10.1002/jemt.1060080206 – ident: e_1_2_8_38_1 doi: 10.1002/adma.201702141 – ident: e_1_2_8_28_1 doi: 10.1038/nphys0010 – ident: e_1_2_8_58_1 doi: 10.1109/IITC.2013.6615600 – ident: e_1_2_8_4_1 doi: 10.1038/nature11408 – ident: e_1_2_8_18_1 doi: 10.1039/C5CS00758E – ident: e_1_2_8_50_1 doi: 10.1063/1.3630230 – ident: e_1_2_8_54_1 doi: 10.1039/C9CS00162J – ident: e_1_2_8_7_1 doi: 10.1038/nature25155 – ident: e_1_2_8_1_1 doi: 10.1038/s41586-019-1013-x – ident: e_1_2_8_26_1 doi: 10.1103/PhysRevLett.14.225 – ident: e_1_2_8_62_1 doi: 10.1063/1.3382344 – ident: e_1_2_8_13_1 doi: 10.1021/nl104228f – ident: e_1_2_8_23_1 doi: 10.1071/CH9560184 – ident: e_1_2_8_41_1 doi: 10.1126/science.aat4749 – ident: e_1_2_8_36_1 doi: 10.1021/acs.chemmater.6b01137 – ident: e_1_2_8_31_1 doi: 10.1049/iet-cds.2015.0121 – ident: e_1_2_8_49_1 doi: 10.1038/s41535-019-0205-9 – ident: e_1_2_8_37_1 doi: 10.1021/acsnano.0c00645 – ident: e_1_2_8_8_1 doi: 10.1038/s41586-020-2098-y – ident: e_1_2_8_11_1 doi: 10.1038/nature26160 – ident: e_1_2_8_45_1 doi: 10.1016/j.synthmet.2016.11.020 – ident: e_1_2_8_46_1 doi: 10.1016/0379-6779(91)91777-8 – ident: e_1_2_8_43_1 doi: 10.1016/S0968-4328(97)00018-8 – ident: e_1_2_8_12_1 doi: 10.1021/nl4040779 – ident: e_1_2_8_29_1 doi: 10.1073/pnas.1208889109 |
SSID | ssj0009606 |
Score | 2.5012245 |
Snippet | Unprecedented 2D metal chloride structures are grown between sheets of bilayer graphene through intercalation of metal and chlorine atoms. Numerous spatially... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | e2105898 |
SubjectTerms | Aluminum chloride Bilayers Chlorine Copper chloride Density functional theory EELS Electron beams Graphene graphene intercalation Heterostructures Hybrid systems Insulators Intercalation Materials science metal chloride Metal chlorides Metalloids phase transitions Phases Scanning transmission electron microscopy Sheets Two dimensional materials |
Title | Polymorphic Phases of Metal Chlorides in the Confined 2D Space of Bilayer Graphene |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadma.202105898 https://www.ncbi.nlm.nih.gov/pubmed/34610179 https://www.proquest.com/docview/2614218867 https://www.proquest.com/docview/2579625663 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4huLSHtvSZFpArVerJkDjjxDkuLBShboWgSNwivyJW3SZVd_dQfj3jZDewVFUluMXJWLE9HvubZOYzwCefmMwq6XglHHLUKLnGLOYOpdSJ1V61juLoW3Z8gSeX8vJOFn_HD9F_cAuW0a7XwcC1me7dkoZq1_IGkcsiVRGyfZM0C-T5w7Nb_qgAz1uyvVTyIkO1ZG2Mxd5q9dVd6S-ouYpc263n6DnoZaO7iJMfu_OZ2bXX9_gcH9OrF_BsgUvZoJtIm7Dm65fw9A5b4Ss4O20mf342pJixZadXtP1NWVOxkSf8zg6uQiifo1vjmhGoZCGVkOo6JobsnBxzH2T3xxNNGJ99CTTZtMq-houjw-8Hx3xxJAO3mBeKW59Jq3NtXCzjSqemPUtRGoWkaypqiVhg7gtEUxnqh9De0wywLlGu8jZ9A-t1U_t3wCrvSD3ea2ELwnTKKGHySmGiK0Qt4gj4UiWlXfCVh2MzJmXHtCzKMFZlP1YRfO7lf3VMHf-U3FpquFxY7LQkTxIJ7qgsj-Bj_5hsLfxA0bVv5iQTEncJI2ZpBG-7mdG_Kg3E9bS6RSBa_f6nDeVgOBr0pfcPqfQBnoTrLrZmC9Znv-d-mxDSzOzABkl-Pd9preEGKlsH4g |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BOQAH3tBAASMhcXKbdcaJc1xaygLdqiqtxC3yK-qKbYLo7gF-PWNnk7IghARHO2PF9njsb-zxZ4CXfmRyq6TjtXDIUaPkGvOUO5RSj6z2KjqK08N8corvP8k-mjDchen4IYYNt2AZcb4OBh42pHcuWUO1i8RB5LNIVaqrcC0e0gVcdHzJIBUAeqTbyyQvc1Q9b2MqdtbLr69Lv4HNdewaF5_922D6ancxJ5-3lwuzbb__wuj4X-26A7dW0JSNu7F0F6745h7c_Imw8D4cH7Xzb-ct6WZm2dEZrYAXrK3Z1BOEZ7tnIZrPUdasYYQrWbhNSGUdE3vsI_nmPsi-ns01wXz2NjBl00T7AE7335zsTvjqVQZusSgVtz6XVhfauFSmtc5MfE5RGoWkbkpqiVhi4UtEUxtqh9De0yCwbqRc7W32EDaatvGbwGrvSD_ea2FLgnXKKGGKWuFI14hapAnwXieVXVGWh5cz5lVHtiyq0FfV0FcJvBrkv3RkHX-U3OpVXK2M9qIiZxIJ8ai8SODF8JnMLZyh6Ma3S5IJd3cJJuZZAo-6oTH8Kgvc9TTBJSCigv9Sh2q8Nx0Pqcf_Uug5XJ-cTA-qg3eHH57AjZDfhdpswcbi69I_JcC0MM-iSfwAY-oKbA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BkRAceBcCBYyExMlt1hknznHpspTHVqtCpd4iP9UVS1LR3QP8esbJbtoFISQ42hnLj_HY3zjjzwAv_cDkVknHg3DIUaPkGvOUO5RSD6z2qnUUJ4f5wTG-P5Enl27xd_wQ_YFbtIx2vY4GfubC3gVpqHYtbxC5LFKV6ipcoypEDOoaHV0QSEV83rLtZZKXOao1bWMq9jbLb25Lv2HNTeja7j3j26DXre5CTr7sLhdm1_74hdDxf7p1B26tgCkbdjPpLlzx9T24eYmu8D4cTZv5968NaWZm2fSU9r9z1gQ28QTg2f5pjOVzlDWrGaFKFu8SUlnHxIh9Is_cR9nXs7kmkM_eRp5sWmYfwPH4zef9A756k4FbLErFrc-l1YU2LpVp0JlpH1OURiEpm5JaIpZY-BLRBEP9ENp7mgLWDZQL3mbbsFU3tX8ELHhH6vFeC1sSqFNGCVMEhQMdELVIE-BrlVR2RVge382YVx3VsqjiWFX9WCXwqpc_66g6_ii5s9ZwtTLZ84pcSSS8o_IigRf9ZzK2-AdF175Zkky8uUsgMc8SeNjNjL6qLDLX0_KWgGj1-5c2VMPRZNinHv9LoedwfToaVx_fHX54AjdidhdnswNbi29L_5TQ0sI8aw3iJzKhCRs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Polymorphic+Phases+of+Metal+Chlorides+in+the+Confined+2D+Space+of+Bilayer+Graphene&rft.jtitle=Advanced+materials+%28Weinheim%29&rft.au=Lin%2C+Yung-Chang&rft.au=Motoyama%2C+Amane&rft.au=Kretschmer%2C+Silvan&rft.au=Ghaderzadeh%2C+Sadegh&rft.date=2021-12-01&rft.issn=1521-4095&rft.eissn=1521-4095&rft.volume=33&rft.issue=52&rft.spage=e2105898&rft_id=info:doi/10.1002%2Fadma.202105898&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0935-9648&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0935-9648&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0935-9648&client=summon |