Caveolin-1 Regulates Atherogenesis by Attenuating Low-Density Lipoprotein Transcytosis and Vascular Inflammation Independently of Endothelial Nitric Oxide Synthase Activation
BACKGROUND:Atherosclerosis is driven by synergistic interactions between pathological, biomechanical, inflammatory, and lipid metabolic factors. Our previous studies demonstrated that absence of caveolin-1 (Cav1)/caveolae in hyperlipidemic mice strongly inhibits atherosclerosis, which was attributed...
Saved in:
Published in | Circulation (New York, N.Y.) Vol. 140; no. 3; pp. 225 - 239 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
by the American College of Cardiology Foundation and the American Heart Association, Inc
16.07.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 0009-7322 1524-4539 1524-4539 |
DOI | 10.1161/CIRCULATIONAHA.118.038571 |
Cover
Abstract | BACKGROUND:Atherosclerosis is driven by synergistic interactions between pathological, biomechanical, inflammatory, and lipid metabolic factors. Our previous studies demonstrated that absence of caveolin-1 (Cav1)/caveolae in hyperlipidemic mice strongly inhibits atherosclerosis, which was attributed to activation of endothelial nitric oxide (NO) synthase (eNOS) and increased production of NO and reduced inflammation and low-density lipoprotein trafficking. However, the contribution of eNOS activation and NO production in the athero-protection of Cav1 and the exact mechanisms by which Cav1/caveolae control the pathogenesis of diet-induced atherosclerosis are still not clear.
METHODS:Triple-knockout mouse lacking expression of eNOS, Cav1, and Ldlr were generated to explore the role of NO production in Cav1-dependent athero-protective function. The effects of Cav1 on lipid trafficking, extracellular matrix remodeling, and vascular inflammation were studied both in vitro and in vivo with a mouse model of diet-induced atherosclerosis. The expression of Cav1 and distribution of caveolae regulated by flow were analyzed by immunofluorescence staining and transmission electron microscopy.
RESULTS:We found that absence of Cav1 significantly suppressed atherogenesis in LdlreNOS mice, demonstrating that athero-suppression is independent of increased NO production. Instead, we find that the absence of Cav1/caveolae inhibited low-density lipoprotein transport across the endothelium and proatherogenic fibronectin deposition and disturbed flow-mediated endothelial cell inflammation. Consistent with the idea that Cav1/caveolae may play a role in early flow-dependent inflammatory priming, distinct patterns of Cav1 expression and caveolae distribution were observed in athero-prone and athero-resistant areas of the aortic arch even in wild-type mice.
CONCLUSIONS:These findings support a role for Cav1/caveolae as a central regulator of atherosclerosis that links biomechanical, metabolic, and inflammatory pathways independently of endothelial eNOS activation and NO production. |
---|---|
AbstractList | BACKGROUND:Atherosclerosis is driven by synergistic interactions between pathological, biomechanical, inflammatory, and lipid metabolic factors. Our previous studies demonstrated that absence of caveolin-1 (Cav1)/caveolae in hyperlipidemic mice strongly inhibits atherosclerosis, which was attributed to activation of endothelial nitric oxide (NO) synthase (eNOS) and increased production of NO and reduced inflammation and low-density lipoprotein trafficking. However, the contribution of eNOS activation and NO production in the athero-protection of Cav1 and the exact mechanisms by which Cav1/caveolae control the pathogenesis of diet-induced atherosclerosis are still not clear.
METHODS:Triple-knockout mouse lacking expression of eNOS, Cav1, and Ldlr were generated to explore the role of NO production in Cav1-dependent athero-protective function. The effects of Cav1 on lipid trafficking, extracellular matrix remodeling, and vascular inflammation were studied both in vitro and in vivo with a mouse model of diet-induced atherosclerosis. The expression of Cav1 and distribution of caveolae regulated by flow were analyzed by immunofluorescence staining and transmission electron microscopy.
RESULTS:We found that absence of Cav1 significantly suppressed atherogenesis in LdlreNOS mice, demonstrating that athero-suppression is independent of increased NO production. Instead, we find that the absence of Cav1/caveolae inhibited low-density lipoprotein transport across the endothelium and proatherogenic fibronectin deposition and disturbed flow-mediated endothelial cell inflammation. Consistent with the idea that Cav1/caveolae may play a role in early flow-dependent inflammatory priming, distinct patterns of Cav1 expression and caveolae distribution were observed in athero-prone and athero-resistant areas of the aortic arch even in wild-type mice.
CONCLUSIONS:These findings support a role for Cav1/caveolae as a central regulator of atherosclerosis that links biomechanical, metabolic, and inflammatory pathways independently of endothelial eNOS activation and NO production. Atherosclerosis is driven by synergistic interactions between pathological, biomechanical, inflammatory, and lipid metabolic factors. Our previous studies demonstrated that absence of caveolin-1 (Cav1)/caveolae in hyperlipidemic mice strongly inhibits atherosclerosis, which was attributed to activation of endothelial nitric oxide (NO) synthase (eNOS) and increased production of NO and reduced inflammation and low-density lipoprotein trafficking. However, the contribution of eNOS activation and NO production in the athero-protection of Cav1 and the exact mechanisms by which Cav1/caveolae control the pathogenesis of diet-induced atherosclerosis are still not clear.BACKGROUNDAtherosclerosis is driven by synergistic interactions between pathological, biomechanical, inflammatory, and lipid metabolic factors. Our previous studies demonstrated that absence of caveolin-1 (Cav1)/caveolae in hyperlipidemic mice strongly inhibits atherosclerosis, which was attributed to activation of endothelial nitric oxide (NO) synthase (eNOS) and increased production of NO and reduced inflammation and low-density lipoprotein trafficking. However, the contribution of eNOS activation and NO production in the athero-protection of Cav1 and the exact mechanisms by which Cav1/caveolae control the pathogenesis of diet-induced atherosclerosis are still not clear.Triple-knockout mouse lacking expression of eNOS, Cav1, and Ldlr were generated to explore the role of NO production in Cav1-dependent athero-protective function. The effects of Cav1 on lipid trafficking, extracellular matrix remodeling, and vascular inflammation were studied both in vitro and in vivo with a mouse model of diet-induced atherosclerosis. The expression of Cav1 and distribution of caveolae regulated by flow were analyzed by immunofluorescence staining and transmission electron microscopy.METHODSTriple-knockout mouse lacking expression of eNOS, Cav1, and Ldlr were generated to explore the role of NO production in Cav1-dependent athero-protective function. The effects of Cav1 on lipid trafficking, extracellular matrix remodeling, and vascular inflammation were studied both in vitro and in vivo with a mouse model of diet-induced atherosclerosis. The expression of Cav1 and distribution of caveolae regulated by flow were analyzed by immunofluorescence staining and transmission electron microscopy.We found that absence of Cav1 significantly suppressed atherogenesis in Ldlr-/-eNOS-/- mice, demonstrating that athero-suppression is independent of increased NO production. Instead, we find that the absence of Cav1/caveolae inhibited low-density lipoprotein transport across the endothelium and proatherogenic fibronectin deposition and disturbed flow-mediated endothelial cell inflammation. Consistent with the idea that Cav1/caveolae may play a role in early flow-dependent inflammatory priming, distinct patterns of Cav1 expression and caveolae distribution were observed in athero-prone and athero-resistant areas of the aortic arch even in wild-type mice.RESULTSWe found that absence of Cav1 significantly suppressed atherogenesis in Ldlr-/-eNOS-/- mice, demonstrating that athero-suppression is independent of increased NO production. Instead, we find that the absence of Cav1/caveolae inhibited low-density lipoprotein transport across the endothelium and proatherogenic fibronectin deposition and disturbed flow-mediated endothelial cell inflammation. Consistent with the idea that Cav1/caveolae may play a role in early flow-dependent inflammatory priming, distinct patterns of Cav1 expression and caveolae distribution were observed in athero-prone and athero-resistant areas of the aortic arch even in wild-type mice.These findings support a role for Cav1/caveolae as a central regulator of atherosclerosis that links biomechanical, metabolic, and inflammatory pathways independently of endothelial eNOS activation and NO production.CONCLUSIONSThese findings support a role for Cav1/caveolae as a central regulator of atherosclerosis that links biomechanical, metabolic, and inflammatory pathways independently of endothelial eNOS activation and NO production. Atherosclerosis is driven by synergistic interactions between pathological, biomechanical, inflammatory, and lipid metabolic factors. Our previous studies demonstrated that absence of caveolin-1 (Cav1)/caveolae in hyperlipidemic mice strongly inhibits atherosclerosis, which was attributed to activation of endothelial nitric oxide (NO) synthase (eNOS) and increased production of NO and reduced inflammation and low-density lipoprotein trafficking. However, the contribution of eNOS activation and NO production in the athero-protection of Cav1 and the exact mechanisms by which Cav1/caveolae control the pathogenesis of diet-induced atherosclerosis are still not clear. Triple-knockout mouse lacking expression of eNOS, Cav1, and Ldlr were generated to explore the role of NO production in Cav1-dependent athero-protective function. The effects of Cav1 on lipid trafficking, extracellular matrix remodeling, and vascular inflammation were studied both in vitro and in vivo with a mouse model of diet-induced atherosclerosis. The expression of Cav1 and distribution of caveolae regulated by flow were analyzed by immunofluorescence staining and transmission electron microscopy. We found that absence of Cav1 significantly suppressed atherogenesis in Ldlr eNOS mice, demonstrating that athero-suppression is independent of increased NO production. Instead, we find that the absence of Cav1/caveolae inhibited low-density lipoprotein transport across the endothelium and proatherogenic fibronectin deposition and disturbed flow-mediated endothelial cell inflammation. Consistent with the idea that Cav1/caveolae may play a role in early flow-dependent inflammatory priming, distinct patterns of Cav1 expression and caveolae distribution were observed in athero-prone and athero-resistant areas of the aortic arch even in wild-type mice. These findings support a role for Cav1/caveolae as a central regulator of atherosclerosis that links biomechanical, metabolic, and inflammatory pathways independently of endothelial eNOS activation and NO production. |
Author | Lasunción, Miguel A. Suárez, Yajaira Zhang, Xinbo Liu, Xinran Aryal, Binod Rotllan, Noemi Ulrich, Victoria Lin, Chin Sheng Swirski, Filip K. Li, Guangxin Ramírez, Cristina M. Lee, Warren L. Kraehling, Jan R. Bandyopadhyay, Chirosree He, Shun Schwartz, Martin A. Sessa, William C. Tellides, George Fernández-Hernando, Carlos Velazquez, Heino Sugiyama, Michael G. |
Author_xml | – sequence: 1 givenname: Cristina surname: Ramírez middlename: M. fullname: Ramírez, Cristina M. – sequence: 2 givenname: Xinbo surname: Zhang fullname: Zhang, Xinbo – sequence: 3 givenname: Chirosree surname: Bandyopadhyay fullname: Bandyopadhyay, Chirosree – sequence: 4 givenname: Noemi surname: Rotllan fullname: Rotllan, Noemi – sequence: 5 givenname: Michael surname: Sugiyama middlename: G. fullname: Sugiyama, Michael G. – sequence: 6 givenname: Binod surname: Aryal fullname: Aryal, Binod – sequence: 7 givenname: Xinran surname: Liu fullname: Liu, Xinran – sequence: 8 givenname: Shun surname: He fullname: He, Shun – sequence: 9 givenname: Jan surname: Kraehling middlename: R. fullname: Kraehling, Jan R. – sequence: 10 givenname: Victoria surname: Ulrich fullname: Ulrich, Victoria – sequence: 11 givenname: Chin surname: Lin middlename: Sheng fullname: Lin, Chin Sheng – sequence: 12 givenname: Heino surname: Velazquez fullname: Velazquez, Heino – sequence: 13 givenname: Miguel surname: Lasunción middlename: A. fullname: Lasunción, Miguel A. – sequence: 14 givenname: Guangxin surname: Li fullname: Li, Guangxin – sequence: 15 givenname: Yajaira surname: Suárez fullname: Suárez, Yajaira – sequence: 16 givenname: George surname: Tellides fullname: Tellides, George – sequence: 17 givenname: Filip surname: Swirski middlename: K. fullname: Swirski, Filip K. – sequence: 18 givenname: Warren surname: Lee middlename: L. fullname: Lee, Warren L. – sequence: 19 givenname: Martin surname: Schwartz middlename: A. fullname: Schwartz, Martin A. – sequence: 20 givenname: William surname: Sessa middlename: C. fullname: Sessa, William C. – sequence: 21 givenname: Carlos surname: Fernández-Hernando fullname: Fernández-Hernando, Carlos |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31154825$$D View this record in MEDLINE/PubMed |
BookMark | eNqNUsFu1DAQtVAR3RZ-AZkblxQ7jhPnhKKl0JWirlS2XC1vMtk1eO3Fdrrkp_hGvN32ACcuHs3Te28083yBzqyzgNA7Sq4oLemH-eJuft82q8XytrlpEiauCBO8oi_QjPK8yArO6jM0I4TUWcXy_BxdhPA9tSWr-Ct0zijlhcj5DP2eqwdwRtuM4jvYjEZFCLiJW_BuAxaCDng9JSCCHVXUdoNbd8g-gQ06TrjVe7f3LoK2eOWVDd0U3VGjbI-_qdAlQ48XdjBqt0tyZ1PTwx7SY6OZsBvwte1dmme0MvhWR687vPyle8BfJxu3KgBuuqgfHtWv0ctBmQBvnuoluv98vZrfZO3yy2LetFlXVLXI1JoDGXjdq6ISVc5q3oNIh1BdvqZsoILUVVnWQEs18G7NgPeK1aIqqRiYGoBdovcn37TczxFClDsdOjBGWXBjkHnOikKUlLFEfftEHdc76OXe653yk3y-cSJ8PBE670LwMMhOx8dtolfaSErkMVX5d6oJE_KUanKo_3F4HvI_2uKkPTgTwYcfZjyAl1tQJm5l-hKEEVplOaE1qWhJsiMk2B8f7ryZ |
CitedBy_id | crossref_primary_10_1111_acel_14095 crossref_primary_10_1007_s00011_023_01817_w crossref_primary_10_1016_j_bbalip_2022_159258 crossref_primary_10_1111_nyas_14566 crossref_primary_10_17816_MAJ321958 crossref_primary_10_3389_fcvm_2022_994080 crossref_primary_10_3389_fgene_2021_796812 crossref_primary_10_1098_rsif_2023_0222 crossref_primary_10_1080_07853890_2025_2457526 crossref_primary_10_1111_bph_15272 crossref_primary_10_3390_cancers14081929 crossref_primary_10_1161_ATVBAHA_120_314291 crossref_primary_10_3390_cells11193044 crossref_primary_10_3390_ijms252312702 crossref_primary_10_3389_fphar_2019_01276 crossref_primary_10_3390_biom10091218 crossref_primary_10_1007_s11883_022_01023_9 crossref_primary_10_1161_ATVBAHA_123_320163 crossref_primary_10_3164_jcbn_24_30 crossref_primary_10_1016_j_phymed_2024_156055 crossref_primary_10_1016_j_freeradbiomed_2024_03_001 crossref_primary_10_1016_j_arr_2021_101332 crossref_primary_10_1161_ATVBAHA_124_321549 crossref_primary_10_3390_biom15040456 crossref_primary_10_1042_CS20191028 crossref_primary_10_1007_s11684_022_0931_4 crossref_primary_10_1038_s41598_021_85476_z crossref_primary_10_1016_j_clnu_2021_07_013 crossref_primary_10_1016_j_atherosclerosis_2020_09_020 crossref_primary_10_1161_CIRCRESAHA_121_320296 crossref_primary_10_3389_fimmu_2022_902907 crossref_primary_10_1161_ATVBAHA_120_315517 crossref_primary_10_1289_EHP9833 crossref_primary_10_1161_JAHA_124_037172 crossref_primary_10_1016_j_biopha_2023_115576 crossref_primary_10_3390_ijms24108869 crossref_primary_10_1016_j_freeradbiomed_2022_12_095 crossref_primary_10_1038_s44161_023_00276_0 crossref_primary_10_1016_j_gendis_2024_101250 crossref_primary_10_3389_fneur_2022_796339 crossref_primary_10_1016_j_addr_2022_114480 crossref_primary_10_1007_s12291_024_01264_2 crossref_primary_10_3390_ijms251910314 crossref_primary_10_1016_j_atherosclerosis_2023_03_004 crossref_primary_10_3390_ijms23063346 crossref_primary_10_1093_cvr_cvae240 crossref_primary_10_1155_2020_9761539 crossref_primary_10_3389_fbioe_2022_836680 crossref_primary_10_31083_j_rcm2503095 crossref_primary_10_1016_j_bbagrm_2023_194938 crossref_primary_10_1016_j_repbio_2022_100696 crossref_primary_10_1016_j_cca_2020_11_020 crossref_primary_10_1194_jlr_RA119000256 crossref_primary_10_3390_ijms25063206 crossref_primary_10_1093_cvr_cvad183 crossref_primary_10_31083_j_rcm2302067 crossref_primary_10_1186_s40168_023_01743_3 crossref_primary_10_1515_mr_2021_0005 crossref_primary_10_3389_fcell_2021_809955 crossref_primary_10_1016_j_atherosclerosis_2023_117278 crossref_primary_10_1016_j_cophys_2023_100701 crossref_primary_10_1161_HYPERTENSIONAHA_120_14777 crossref_primary_10_1016_j_phymed_2022_154242 crossref_primary_10_1097_MOL_0000000000000701 crossref_primary_10_17816_MAJ25755 crossref_primary_10_1111_bph_15069 crossref_primary_10_1161_ATVBAHA_122_318573 crossref_primary_10_1016_j_intimp_2022_108626 crossref_primary_10_1016_j_cellsig_2022_110399 crossref_primary_10_1002_cm_21652 crossref_primary_10_3390_molecules27092884 crossref_primary_10_1097_MOL_0000000000000655 crossref_primary_10_1093_eurheartj_ehz771 crossref_primary_10_3389_fcvm_2024_1337679 crossref_primary_10_1038_s41586_021_03392_8 crossref_primary_10_1093_rb_rbad047 crossref_primary_10_1016_j_tem_2024_11_004 crossref_primary_10_1074_jbc_RA120_015680 crossref_primary_10_1016_j_ceb_2020_10_008 crossref_primary_10_1007_s13659_021_00322_z crossref_primary_10_1016_j_chemosphere_2023_140237 crossref_primary_10_1186_s12915_022_01396_y crossref_primary_10_1096_fj_202400283R crossref_primary_10_1016_j_atherosclerosis_2025_119113 crossref_primary_10_1016_j_pharmthera_2022_108152 crossref_primary_10_1155_2022_2253478 crossref_primary_10_1016_j_heliyon_2023_e18653 crossref_primary_10_1016_j_metabol_2022_155274 crossref_primary_10_1007_s11883_023_01118_x crossref_primary_10_1007_s10753_023_01941_z crossref_primary_10_1016_j_biomaterials_2022_121734 crossref_primary_10_1016_j_jhazmat_2023_131697 crossref_primary_10_3390_nu15040902 crossref_primary_10_3390_cells12060942 crossref_primary_10_1111_obr_13403 crossref_primary_10_3389_fendo_2021_635923 crossref_primary_10_1016_j_jlr_2024_100665 crossref_primary_10_1038_s41440_023_01551_0 crossref_primary_10_1016_j_metabol_2022_155162 crossref_primary_10_2147_JIR_S355158 crossref_primary_10_1007_s11883_021_00934_3 crossref_primary_10_3390_ijms222111545 crossref_primary_10_1016_j_atherosclerosis_2023_04_002 crossref_primary_10_1161_ATVBAHA_123_319905 crossref_primary_10_1042_BST20200991 crossref_primary_10_1038_s42255_024_01015_w crossref_primary_10_3390_ijms22073513 crossref_primary_10_3390_ijms24076280 crossref_primary_10_1016_j_jphs_2025_03_008 crossref_primary_10_1186_s10020_023_00715_5 crossref_primary_10_1038_s44161_023_00266_2 crossref_primary_10_1016_j_vph_2021_106947 |
Cites_doi | 10.1152/ajpheart.01092.2005 10.1152/ajpheart.00344.2002 10.1016/j.cub.2017.07.047 10.1161/hc2901.091399 10.1161/CIRCULATIONAHA.104.475715 10.1073/pnas.0407224102 10.1002/emmm.201200237 10.1152/ajprenal.00419.2007 10.1074/jbc.M205411200 10.1172/JCI27100 10.1073/pnas.172360799 10.1152/ajpheart.00302.2003 10.1016/j.cmet.2009.06.003 10.1172/JCI44778 10.1074/jbc.M110970200 10.1074/jbc.M113.528695 10.1038/ncb3405 10.1007/s00441-008-0659-8 10.1161/CIRCRESAHA.109.216283 10.1152/ajpcell.00185.2008 10.1161/01.ATV.0000101182.89118.E5 10.1038/ng.511 10.2337/db10-0856 10.1016/S0002-9440(10)62346-2 10.1016/j.atherosclerosis.2016.01.008 10.3389/fphys.2017.00841 10.1096/fj.11-183350 10.1182/blood-2003-09-3363 10.1084/jem.20062340 10.1161/ATVBAHA.113.301826 10.2353/ajpath.2010.091287 10.1101/405506 10.1152/ajpcell.00006.2003 10.1172/JCI8376 10.1038/ng.2261 10.1161/ATVBAHA.114.303863 10.1016/0741-5214(89)90413-8 10.1093/cvr/cvv218 10.1083/jcb.200410073 10.1007/s00249-001-0195-x 10.1161/CIRCRESAHA.108.182097 10.1074/jbc.C100613200 10.1016/S0092-8674(01)00238-0 10.1258/ebm.2011.011072 10.1016/j.cell.2010.12.031 |
ContentType | Journal Article |
Copyright | 2019 by the American College of Cardiology Foundation and the American Heart Association, Inc. |
Copyright_xml | – notice: 2019 by the American College of Cardiology Foundation and the American Heart Association, Inc. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1161/CIRCULATIONAHA.118.038571 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 1524-4539 |
EndPage | 239 |
ExternalDocumentID | 31154825 10_1161_CIRCULATIONAHA_118_038571 00003017-201907160-00008 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NHLBI NIH HHS grantid: R01 HL135012 – fundername: NHLBI NIH HHS grantid: R01 HL105945 – fundername: NIDDK NIH HHS grantid: P30 DK045735 – fundername: NHLBI NIH HHS grantid: R35 HL135820 – fundername: NHLBI NIH HHS grantid: R01 HL075092 |
GroupedDBID | --- .-D .3C .XZ .Z2 01R 0R~ 0ZK 18M 1J1 29B 2FS 2WC 354 40H 4Q1 4Q2 4Q3 53G 5GY 5RE 5VS 6PF 71W 77Y 7O~ AAAAV AAAXR AAGIX AAHPQ AAIQE AAJCS AAMOA AAMTA AAQKA AARTV AASCR AASOK AASXQ AAUEB AAWTL AAXQO ABASU ABBUW ABDIG ABJNI ABOCM ABPMR ABPXF ABQRW ABVCZ ABXVJ ABXYN ABZAD ABZZY ACDDN ACDOF ACEWG ACGFO ACGFS ACILI ACLDA ACOAL ACRKK ACWDW ACWRI ACXJB ACXNZ ACZKN ADBBV ADCYY ADGGA ADHPY AE3 AE6 AEBDS AENEX AFBFQ AFCHL AFDTB AFEXH AFMBP AFNMH AFSOK AFUWQ AGINI AHMBA AHOMT AHQNM AHQVU AHRYX AHVBC AIJEX AINUH AJCLO AJIOK AJNWD AJZMW AKCTQ AKULP ALKUP ALMA_UNASSIGNED_HOLDINGS ALMTX AMJPA AMKUR AMNEI AOHHW AOQMC ASPBG AVWKF AYCSE AZFZN BAWUL BOYCO BQLVK BYPQX C45 CS3 DIK DIWNM DU5 E3Z EBS EEVPB EJD ERAAH EX3 F2K F2L F2M F2N F5P FCALG GNXGY GQDEL GX1 H0~ HLJTE HZ~ IKREB IKYAY IN~ IPNFZ JF9 JG8 JK3 K-A K-F K8S KD2 KMI KQ8 L-C L7B N9A N~7 N~B O9- OAG OAH OBH OCB ODMTH OGEVE OHH OHYEH OK1 OL1 OLB OLG OLH OLU OLV OLY OLZ OPUJH OVD OVDNE OVIDH OVLEI OVOZU OWBYB OWU OWV OWW OWX OWY OWZ OXXIT P2P PQQKQ RAH RIG RLZ S4R S4S T8P TEORI TR2 TSPGW UPT V2I VVN W2D W3M W8F WH7 WOQ WOW X3V X3W XXN XYM YFH YOC YSK YYM YZZ ZFV ZY1 ~H1 AAFWJ AAYXX CITATION ACIJW CGR CUY CVF ECM EIF NPM 7X8 ADKSD ADSXY |
ID | FETCH-LOGICAL-c4798-ab5e0f59da47872395de8732ac2b13f18097669e16af5cb3e5da3987618f3afe3 |
ISSN | 0009-7322 1524-4539 |
IngestDate | Sat Sep 27 20:04:43 EDT 2025 Thu Apr 03 06:58:31 EDT 2025 Tue Jul 01 04:15:24 EDT 2025 Thu Apr 24 23:10:12 EDT 2025 Fri May 16 03:42:07 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | atherosclerosis nitric oxide synthase type III fibronectins inflammation transcytosis caveolae extracellular matrix |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c4798-ab5e0f59da47872395de8732ac2b13f18097669e16af5cb3e5da3987618f3afe3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://www.ahajournals.org/doi/pdf/10.1161/CIRCULATIONAHA.118.038571 |
PMID | 31154825 |
PQID | 2234486133 |
PQPubID | 23479 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_2234486133 pubmed_primary_31154825 crossref_citationtrail_10_1161_CIRCULATIONAHA_118_038571 crossref_primary_10_1161_CIRCULATIONAHA_118_038571 wolterskluwer_health_00003017-201907160-00008 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-July-16 |
PublicationDateYYYYMMDD | 2019-07-16 |
PublicationDate_xml | – month: 07 year: 2019 text: 2019-July-16 day: 16 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Circulation (New York, N.Y.) |
PublicationTitleAlternate | Circulation |
PublicationYear | 2019 |
Publisher | by the American College of Cardiology Foundation and the American Heart Association, Inc |
Publisher_xml | – name: by the American College of Cardiology Foundation and the American Heart Association, Inc |
References | e_1_3_4_3_2 e_1_3_4_2_2 e_1_3_4_9_2 e_1_3_4_8_2 e_1_3_4_7_2 e_1_3_4_41_2 e_1_3_4_6_2 e_1_3_4_40_2 e_1_3_4_5_2 e_1_3_4_4_2 e_1_3_4_22_2 e_1_3_4_45_2 e_1_3_4_23_2 e_1_3_4_44_2 e_1_3_4_20_2 e_1_3_4_43_2 e_1_3_4_21_2 e_1_3_4_42_2 e_1_3_4_26_2 e_1_3_4_27_2 e_1_3_4_24_2 e_1_3_4_25_2 e_1_3_4_46_2 e_1_3_4_28_2 e_1_3_4_29_2 e_1_3_4_30_2 e_1_3_4_11_2 e_1_3_4_34_2 e_1_3_4_12_2 e_1_3_4_33_2 e_1_3_4_32_2 e_1_3_4_10_2 e_1_3_4_31_2 e_1_3_4_15_2 e_1_3_4_38_2 e_1_3_4_16_2 e_1_3_4_37_2 e_1_3_4_13_2 e_1_3_4_36_2 e_1_3_4_14_2 e_1_3_4_35_2 e_1_3_4_19_2 e_1_3_4_17_2 e_1_3_4_18_2 e_1_3_4_39_2 |
References_xml | – ident: e_1_3_4_10_2 doi: 10.1152/ajpheart.01092.2005 – ident: e_1_3_4_44_2 doi: 10.1152/ajpheart.00344.2002 – ident: e_1_3_4_41_2 doi: 10.1016/j.cub.2017.07.047 – ident: e_1_3_4_17_2 doi: 10.1161/hc2901.091399 – ident: e_1_3_4_32_2 doi: 10.1161/CIRCULATIONAHA.104.475715 – ident: e_1_3_4_15_2 doi: 10.1073/pnas.0407224102 – ident: e_1_3_4_35_2 doi: 10.1002/emmm.201200237 – ident: e_1_3_4_37_2 doi: 10.1152/ajprenal.00419.2007 – ident: e_1_3_4_43_2 doi: 10.1074/jbc.M205411200 – ident: e_1_3_4_46_2 doi: 10.1172/JCI27100 – ident: e_1_3_4_23_2 doi: 10.1073/pnas.172360799 – ident: e_1_3_4_42_2 doi: 10.1152/ajpheart.00302.2003 – ident: e_1_3_4_9_2 doi: 10.1016/j.cmet.2009.06.003 – ident: e_1_3_4_14_2 doi: 10.1172/JCI44778 – ident: e_1_3_4_28_2 doi: 10.1074/jbc.M110970200 – ident: e_1_3_4_25_2 doi: 10.1074/jbc.M113.528695 – ident: e_1_3_4_5_2 doi: 10.1038/ncb3405 – ident: e_1_3_4_18_2 doi: 10.1007/s00441-008-0659-8 – ident: e_1_3_4_3_2 doi: 10.1161/CIRCRESAHA.109.216283 – ident: e_1_3_4_30_2 doi: 10.1152/ajpcell.00185.2008 – ident: e_1_3_4_11_2 doi: 10.1161/01.ATV.0000101182.89118.E5 – ident: e_1_3_4_21_2 doi: 10.1038/ng.511 – ident: e_1_3_4_29_2 doi: 10.2337/db10-0856 – ident: e_1_3_4_34_2 doi: 10.1016/S0002-9440(10)62346-2 – ident: e_1_3_4_20_2 doi: 10.1016/j.atherosclerosis.2016.01.008 – ident: e_1_3_4_33_2 doi: 10.3389/fphys.2017.00841 – ident: e_1_3_4_39_2 doi: 10.1096/fj.11-183350 – ident: e_1_3_4_36_2 doi: 10.1182/blood-2003-09-3363 – ident: e_1_3_4_12_2 doi: 10.1084/jem.20062340 – ident: e_1_3_4_24_2 doi: 10.1161/ATVBAHA.113.301826 – ident: e_1_3_4_31_2 doi: 10.2353/ajpath.2010.091287 – ident: e_1_3_4_38_2 doi: 10.1101/405506 – ident: e_1_3_4_8_2 doi: 10.1152/ajpcell.00006.2003 – ident: e_1_3_4_16_2 doi: 10.1172/JCI8376 – ident: e_1_3_4_22_2 doi: 10.1038/ng.2261 – ident: e_1_3_4_6_2 doi: 10.1161/ATVBAHA.114.303863 – ident: e_1_3_4_26_2 doi: 10.1016/0741-5214(89)90413-8 – ident: e_1_3_4_13_2 doi: 10.1093/cvr/cvv218 – ident: e_1_3_4_4_2 doi: 10.1083/jcb.200410073 – ident: e_1_3_4_45_2 doi: 10.1007/s00249-001-0195-x – ident: e_1_3_4_7_2 doi: 10.1161/CIRCRESAHA.108.182097 – ident: e_1_3_4_19_2 doi: 10.1074/jbc.C100613200 – ident: e_1_3_4_2_2 doi: 10.1016/S0092-8674(01)00238-0 – ident: e_1_3_4_27_2 doi: 10.1258/ebm.2011.011072 – ident: e_1_3_4_40_2 doi: 10.1016/j.cell.2010.12.031 |
SSID | ssj0006375 |
Score | 2.6062093 |
Snippet | BACKGROUND:Atherosclerosis is driven by synergistic interactions between pathological, biomechanical, inflammatory, and lipid metabolic factors. Our previous... Atherosclerosis is driven by synergistic interactions between pathological, biomechanical, inflammatory, and lipid metabolic factors. Our previous studies... |
SourceID | proquest pubmed crossref wolterskluwer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 225 |
SubjectTerms | Animals Atherosclerosis - metabolism Atherosclerosis - pathology Atherosclerosis - prevention & control Caveolin 1 - physiology Cells, Cultured Dogs Endothelium, Vascular - metabolism Endothelium, Vascular - pathology Enzyme Activation - physiology Female Humans Lipoproteins, LDL - metabolism Male Mice Mice, Inbred C57BL Mice, Knockout Mice, Transgenic Nitric Oxide Synthase Type III - metabolism Transcytosis - physiology |
Title | Caveolin-1 Regulates Atherogenesis by Attenuating Low-Density Lipoprotein Transcytosis and Vascular Inflammation Independently of Endothelial Nitric Oxide Synthase Activation |
URI | https://ovidsp.ovid.com/ovidweb.cgi?T=JS&NEWS=n&CSC=Y&PAGE=fulltext&D=ovft&AN=00003017-201907160-00008 https://www.ncbi.nlm.nih.gov/pubmed/31154825 https://www.proquest.com/docview/2234486133 |
Volume | 140 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1tT9swEMctxiTENE0b7KF7kpGmvUGG5tl5WRUmmIBJDKa-i5zEHtEgqdow1n2ofaF9md3ZSeoOkNjeRG2qOFLvF-d8vvsfIe88V6XciSRTTpYyPwoVEzyIGbwrpcxUmHKOxcmHR-Heqf9xFIyWln5bWUuXdbqV_byxruR_rArnwK5YJfsPlu0GhRPwGewLR7AwHO9k46H4LrHpDnPgb9I95eV0c4AuXfUV57Biit7loAa_GBW9sZ6pumI7mLMOvvdBMa60TENRGo3zbFZXeA3G0r-0Gar7pQJoTIEjfGmb5tbnemt-t8yxhOsc4-5HBar9b376UeRy8_OsrM8Eqp5kbQM12w8eFpOsaRx2Uz8gKz5xDMTiZv7OxMS6h3pWKsU8jNvFvEe4VTUPzZb5rBqL_GwmTILxWQEewUR2JB9XNTwDpt6skheFHQDRNVfMaeSzm0nb9ZkfGFGkblY3KlANvp49R5tK6-vvjhDfHcP94-HpgVEi3hvAWb6Fm6emT4zF1PhCQ4ViRT43I_4l3N3-dI_cdyNw7LASfTTPPwq9KFghG82dt2-97ypZaUda9J2uLYgekIdXFeZYTL_pEgvLUTp5TB41Kxw6MLg-IUuyXCPrg1LU1cWMvqc651hv5qyRlcMmtWOd_JrDTDuY6QLMNJ1RC2ZqwUwtmKkNMwUMaAsztWGmCzDTSlELZmpgphpm2sJM5zA_Jacfdk-Ge6xpJsIyP4o5E2kg-yqIc4FyVK4XB7nkkeeKzE0dT6GMHRgplk4oVJClngxy4cXgKzhceUJJ7xlZLqtSviA0k6HjiH4g3Cz3cylioULlK-XJlAueBj3CWzMlWaO0jw1fzhO94g6dZNHYcI4nxtg94naXjo3czF0u2mhZSODlgDt-opTV5TQB39_3OXjsXo88N5B0w7ZQ9QhboCYxBdiYlYLhkojhMwcLkVArUPT5y1tHekVW58_na7JcTy7lG3DZ6_StRv8PJP3v0A |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Caveolin-1+Regulates+Atherogenesis+by+Attenuating+Low-Density+Lipoprotein+Transcytosis+and+Vascular+Inflammation+Independently+of+Endothelial+Nitric+Oxide+Synthase+Activation&rft.jtitle=Circulation+%28New+York%2C+N.Y.%29&rft.au=Ram%C3%ADrez%2C+Cristina+M&rft.au=Zhang%2C+Xinbo&rft.au=Bandyopadhyay%2C+Chirosree&rft.au=Rotllan%2C+Noemi&rft.date=2019-07-16&rft.eissn=1524-4539&rft.volume=140&rft.issue=3&rft.spage=225&rft_id=info:doi/10.1161%2FCIRCULATIONAHA.118.038571&rft_id=info%3Apmid%2F31154825&rft.externalDocID=31154825 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-7322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-7322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-7322&client=summon |