Caveolin-1 Regulates Atherogenesis by Attenuating Low-Density Lipoprotein Transcytosis and Vascular Inflammation Independently of Endothelial Nitric Oxide Synthase Activation

BACKGROUND:Atherosclerosis is driven by synergistic interactions between pathological, biomechanical, inflammatory, and lipid metabolic factors. Our previous studies demonstrated that absence of caveolin-1 (Cav1)/caveolae in hyperlipidemic mice strongly inhibits atherosclerosis, which was attributed...

Full description

Saved in:
Bibliographic Details
Published inCirculation (New York, N.Y.) Vol. 140; no. 3; pp. 225 - 239
Main Authors Ramírez, Cristina M., Zhang, Xinbo, Bandyopadhyay, Chirosree, Rotllan, Noemi, Sugiyama, Michael G., Aryal, Binod, Liu, Xinran, He, Shun, Kraehling, Jan R., Ulrich, Victoria, Lin, Chin Sheng, Velazquez, Heino, Lasunción, Miguel A., Li, Guangxin, Suárez, Yajaira, Tellides, George, Swirski, Filip K., Lee, Warren L., Schwartz, Martin A., Sessa, William C., Fernández-Hernando, Carlos
Format Journal Article
LanguageEnglish
Published United States by the American College of Cardiology Foundation and the American Heart Association, Inc 16.07.2019
Subjects
Online AccessGet full text
ISSN0009-7322
1524-4539
1524-4539
DOI10.1161/CIRCULATIONAHA.118.038571

Cover

Abstract BACKGROUND:Atherosclerosis is driven by synergistic interactions between pathological, biomechanical, inflammatory, and lipid metabolic factors. Our previous studies demonstrated that absence of caveolin-1 (Cav1)/caveolae in hyperlipidemic mice strongly inhibits atherosclerosis, which was attributed to activation of endothelial nitric oxide (NO) synthase (eNOS) and increased production of NO and reduced inflammation and low-density lipoprotein trafficking. However, the contribution of eNOS activation and NO production in the athero-protection of Cav1 and the exact mechanisms by which Cav1/caveolae control the pathogenesis of diet-induced atherosclerosis are still not clear. METHODS:Triple-knockout mouse lacking expression of eNOS, Cav1, and Ldlr were generated to explore the role of NO production in Cav1-dependent athero-protective function. The effects of Cav1 on lipid trafficking, extracellular matrix remodeling, and vascular inflammation were studied both in vitro and in vivo with a mouse model of diet-induced atherosclerosis. The expression of Cav1 and distribution of caveolae regulated by flow were analyzed by immunofluorescence staining and transmission electron microscopy. RESULTS:We found that absence of Cav1 significantly suppressed atherogenesis in LdlreNOS mice, demonstrating that athero-suppression is independent of increased NO production. Instead, we find that the absence of Cav1/caveolae inhibited low-density lipoprotein transport across the endothelium and proatherogenic fibronectin deposition and disturbed flow-mediated endothelial cell inflammation. Consistent with the idea that Cav1/caveolae may play a role in early flow-dependent inflammatory priming, distinct patterns of Cav1 expression and caveolae distribution were observed in athero-prone and athero-resistant areas of the aortic arch even in wild-type mice. CONCLUSIONS:These findings support a role for Cav1/caveolae as a central regulator of atherosclerosis that links biomechanical, metabolic, and inflammatory pathways independently of endothelial eNOS activation and NO production.
AbstractList BACKGROUND:Atherosclerosis is driven by synergistic interactions between pathological, biomechanical, inflammatory, and lipid metabolic factors. Our previous studies demonstrated that absence of caveolin-1 (Cav1)/caveolae in hyperlipidemic mice strongly inhibits atherosclerosis, which was attributed to activation of endothelial nitric oxide (NO) synthase (eNOS) and increased production of NO and reduced inflammation and low-density lipoprotein trafficking. However, the contribution of eNOS activation and NO production in the athero-protection of Cav1 and the exact mechanisms by which Cav1/caveolae control the pathogenesis of diet-induced atherosclerosis are still not clear. METHODS:Triple-knockout mouse lacking expression of eNOS, Cav1, and Ldlr were generated to explore the role of NO production in Cav1-dependent athero-protective function. The effects of Cav1 on lipid trafficking, extracellular matrix remodeling, and vascular inflammation were studied both in vitro and in vivo with a mouse model of diet-induced atherosclerosis. The expression of Cav1 and distribution of caveolae regulated by flow were analyzed by immunofluorescence staining and transmission electron microscopy. RESULTS:We found that absence of Cav1 significantly suppressed atherogenesis in LdlreNOS mice, demonstrating that athero-suppression is independent of increased NO production. Instead, we find that the absence of Cav1/caveolae inhibited low-density lipoprotein transport across the endothelium and proatherogenic fibronectin deposition and disturbed flow-mediated endothelial cell inflammation. Consistent with the idea that Cav1/caveolae may play a role in early flow-dependent inflammatory priming, distinct patterns of Cav1 expression and caveolae distribution were observed in athero-prone and athero-resistant areas of the aortic arch even in wild-type mice. CONCLUSIONS:These findings support a role for Cav1/caveolae as a central regulator of atherosclerosis that links biomechanical, metabolic, and inflammatory pathways independently of endothelial eNOS activation and NO production.
Atherosclerosis is driven by synergistic interactions between pathological, biomechanical, inflammatory, and lipid metabolic factors. Our previous studies demonstrated that absence of caveolin-1 (Cav1)/caveolae in hyperlipidemic mice strongly inhibits atherosclerosis, which was attributed to activation of endothelial nitric oxide (NO) synthase (eNOS) and increased production of NO and reduced inflammation and low-density lipoprotein trafficking. However, the contribution of eNOS activation and NO production in the athero-protection of Cav1 and the exact mechanisms by which Cav1/caveolae control the pathogenesis of diet-induced atherosclerosis are still not clear.BACKGROUNDAtherosclerosis is driven by synergistic interactions between pathological, biomechanical, inflammatory, and lipid metabolic factors. Our previous studies demonstrated that absence of caveolin-1 (Cav1)/caveolae in hyperlipidemic mice strongly inhibits atherosclerosis, which was attributed to activation of endothelial nitric oxide (NO) synthase (eNOS) and increased production of NO and reduced inflammation and low-density lipoprotein trafficking. However, the contribution of eNOS activation and NO production in the athero-protection of Cav1 and the exact mechanisms by which Cav1/caveolae control the pathogenesis of diet-induced atherosclerosis are still not clear.Triple-knockout mouse lacking expression of eNOS, Cav1, and Ldlr were generated to explore the role of NO production in Cav1-dependent athero-protective function. The effects of Cav1 on lipid trafficking, extracellular matrix remodeling, and vascular inflammation were studied both in vitro and in vivo with a mouse model of diet-induced atherosclerosis. The expression of Cav1 and distribution of caveolae regulated by flow were analyzed by immunofluorescence staining and transmission electron microscopy.METHODSTriple-knockout mouse lacking expression of eNOS, Cav1, and Ldlr were generated to explore the role of NO production in Cav1-dependent athero-protective function. The effects of Cav1 on lipid trafficking, extracellular matrix remodeling, and vascular inflammation were studied both in vitro and in vivo with a mouse model of diet-induced atherosclerosis. The expression of Cav1 and distribution of caveolae regulated by flow were analyzed by immunofluorescence staining and transmission electron microscopy.We found that absence of Cav1 significantly suppressed atherogenesis in Ldlr-/-eNOS-/- mice, demonstrating that athero-suppression is independent of increased NO production. Instead, we find that the absence of Cav1/caveolae inhibited low-density lipoprotein transport across the endothelium and proatherogenic fibronectin deposition and disturbed flow-mediated endothelial cell inflammation. Consistent with the idea that Cav1/caveolae may play a role in early flow-dependent inflammatory priming, distinct patterns of Cav1 expression and caveolae distribution were observed in athero-prone and athero-resistant areas of the aortic arch even in wild-type mice.RESULTSWe found that absence of Cav1 significantly suppressed atherogenesis in Ldlr-/-eNOS-/- mice, demonstrating that athero-suppression is independent of increased NO production. Instead, we find that the absence of Cav1/caveolae inhibited low-density lipoprotein transport across the endothelium and proatherogenic fibronectin deposition and disturbed flow-mediated endothelial cell inflammation. Consistent with the idea that Cav1/caveolae may play a role in early flow-dependent inflammatory priming, distinct patterns of Cav1 expression and caveolae distribution were observed in athero-prone and athero-resistant areas of the aortic arch even in wild-type mice.These findings support a role for Cav1/caveolae as a central regulator of atherosclerosis that links biomechanical, metabolic, and inflammatory pathways independently of endothelial eNOS activation and NO production.CONCLUSIONSThese findings support a role for Cav1/caveolae as a central regulator of atherosclerosis that links biomechanical, metabolic, and inflammatory pathways independently of endothelial eNOS activation and NO production.
Atherosclerosis is driven by synergistic interactions between pathological, biomechanical, inflammatory, and lipid metabolic factors. Our previous studies demonstrated that absence of caveolin-1 (Cav1)/caveolae in hyperlipidemic mice strongly inhibits atherosclerosis, which was attributed to activation of endothelial nitric oxide (NO) synthase (eNOS) and increased production of NO and reduced inflammation and low-density lipoprotein trafficking. However, the contribution of eNOS activation and NO production in the athero-protection of Cav1 and the exact mechanisms by which Cav1/caveolae control the pathogenesis of diet-induced atherosclerosis are still not clear. Triple-knockout mouse lacking expression of eNOS, Cav1, and Ldlr were generated to explore the role of NO production in Cav1-dependent athero-protective function. The effects of Cav1 on lipid trafficking, extracellular matrix remodeling, and vascular inflammation were studied both in vitro and in vivo with a mouse model of diet-induced atherosclerosis. The expression of Cav1 and distribution of caveolae regulated by flow were analyzed by immunofluorescence staining and transmission electron microscopy. We found that absence of Cav1 significantly suppressed atherogenesis in Ldlr eNOS mice, demonstrating that athero-suppression is independent of increased NO production. Instead, we find that the absence of Cav1/caveolae inhibited low-density lipoprotein transport across the endothelium and proatherogenic fibronectin deposition and disturbed flow-mediated endothelial cell inflammation. Consistent with the idea that Cav1/caveolae may play a role in early flow-dependent inflammatory priming, distinct patterns of Cav1 expression and caveolae distribution were observed in athero-prone and athero-resistant areas of the aortic arch even in wild-type mice. These findings support a role for Cav1/caveolae as a central regulator of atherosclerosis that links biomechanical, metabolic, and inflammatory pathways independently of endothelial eNOS activation and NO production.
Author Lasunción, Miguel A.
Suárez, Yajaira
Zhang, Xinbo
Liu, Xinran
Aryal, Binod
Rotllan, Noemi
Ulrich, Victoria
Lin, Chin Sheng
Swirski, Filip K.
Li, Guangxin
Ramírez, Cristina M.
Lee, Warren L.
Kraehling, Jan R.
Bandyopadhyay, Chirosree
He, Shun
Schwartz, Martin A.
Sessa, William C.
Tellides, George
Fernández-Hernando, Carlos
Velazquez, Heino
Sugiyama, Michael G.
Author_xml – sequence: 1
  givenname: Cristina
  surname: Ramírez
  middlename: M.
  fullname: Ramírez, Cristina M.
– sequence: 2
  givenname: Xinbo
  surname: Zhang
  fullname: Zhang, Xinbo
– sequence: 3
  givenname: Chirosree
  surname: Bandyopadhyay
  fullname: Bandyopadhyay, Chirosree
– sequence: 4
  givenname: Noemi
  surname: Rotllan
  fullname: Rotllan, Noemi
– sequence: 5
  givenname: Michael
  surname: Sugiyama
  middlename: G.
  fullname: Sugiyama, Michael G.
– sequence: 6
  givenname: Binod
  surname: Aryal
  fullname: Aryal, Binod
– sequence: 7
  givenname: Xinran
  surname: Liu
  fullname: Liu, Xinran
– sequence: 8
  givenname: Shun
  surname: He
  fullname: He, Shun
– sequence: 9
  givenname: Jan
  surname: Kraehling
  middlename: R.
  fullname: Kraehling, Jan R.
– sequence: 10
  givenname: Victoria
  surname: Ulrich
  fullname: Ulrich, Victoria
– sequence: 11
  givenname: Chin
  surname: Lin
  middlename: Sheng
  fullname: Lin, Chin Sheng
– sequence: 12
  givenname: Heino
  surname: Velazquez
  fullname: Velazquez, Heino
– sequence: 13
  givenname: Miguel
  surname: Lasunción
  middlename: A.
  fullname: Lasunción, Miguel A.
– sequence: 14
  givenname: Guangxin
  surname: Li
  fullname: Li, Guangxin
– sequence: 15
  givenname: Yajaira
  surname: Suárez
  fullname: Suárez, Yajaira
– sequence: 16
  givenname: George
  surname: Tellides
  fullname: Tellides, George
– sequence: 17
  givenname: Filip
  surname: Swirski
  middlename: K.
  fullname: Swirski, Filip K.
– sequence: 18
  givenname: Warren
  surname: Lee
  middlename: L.
  fullname: Lee, Warren L.
– sequence: 19
  givenname: Martin
  surname: Schwartz
  middlename: A.
  fullname: Schwartz, Martin A.
– sequence: 20
  givenname: William
  surname: Sessa
  middlename: C.
  fullname: Sessa, William C.
– sequence: 21
  givenname: Carlos
  surname: Fernández-Hernando
  fullname: Fernández-Hernando, Carlos
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31154825$$D View this record in MEDLINE/PubMed
BookMark eNqNUsFu1DAQtVAR3RZ-AZkblxQ7jhPnhKKl0JWirlS2XC1vMtk1eO3Fdrrkp_hGvN32ACcuHs3Te28083yBzqyzgNA7Sq4oLemH-eJuft82q8XytrlpEiauCBO8oi_QjPK8yArO6jM0I4TUWcXy_BxdhPA9tSWr-Ct0zijlhcj5DP2eqwdwRtuM4jvYjEZFCLiJW_BuAxaCDng9JSCCHVXUdoNbd8g-gQ06TrjVe7f3LoK2eOWVDd0U3VGjbI-_qdAlQ48XdjBqt0tyZ1PTwx7SY6OZsBvwte1dmme0MvhWR687vPyle8BfJxu3KgBuuqgfHtWv0ctBmQBvnuoluv98vZrfZO3yy2LetFlXVLXI1JoDGXjdq6ISVc5q3oNIh1BdvqZsoILUVVnWQEs18G7NgPeK1aIqqRiYGoBdovcn37TczxFClDsdOjBGWXBjkHnOikKUlLFEfftEHdc76OXe653yk3y-cSJ8PBE670LwMMhOx8dtolfaSErkMVX5d6oJE_KUanKo_3F4HvI_2uKkPTgTwYcfZjyAl1tQJm5l-hKEEVplOaE1qWhJsiMk2B8f7ryZ
CitedBy_id crossref_primary_10_1111_acel_14095
crossref_primary_10_1007_s00011_023_01817_w
crossref_primary_10_1016_j_bbalip_2022_159258
crossref_primary_10_1111_nyas_14566
crossref_primary_10_17816_MAJ321958
crossref_primary_10_3389_fcvm_2022_994080
crossref_primary_10_3389_fgene_2021_796812
crossref_primary_10_1098_rsif_2023_0222
crossref_primary_10_1080_07853890_2025_2457526
crossref_primary_10_1111_bph_15272
crossref_primary_10_3390_cancers14081929
crossref_primary_10_1161_ATVBAHA_120_314291
crossref_primary_10_3390_cells11193044
crossref_primary_10_3390_ijms252312702
crossref_primary_10_3389_fphar_2019_01276
crossref_primary_10_3390_biom10091218
crossref_primary_10_1007_s11883_022_01023_9
crossref_primary_10_1161_ATVBAHA_123_320163
crossref_primary_10_3164_jcbn_24_30
crossref_primary_10_1016_j_phymed_2024_156055
crossref_primary_10_1016_j_freeradbiomed_2024_03_001
crossref_primary_10_1016_j_arr_2021_101332
crossref_primary_10_1161_ATVBAHA_124_321549
crossref_primary_10_3390_biom15040456
crossref_primary_10_1042_CS20191028
crossref_primary_10_1007_s11684_022_0931_4
crossref_primary_10_1038_s41598_021_85476_z
crossref_primary_10_1016_j_clnu_2021_07_013
crossref_primary_10_1016_j_atherosclerosis_2020_09_020
crossref_primary_10_1161_CIRCRESAHA_121_320296
crossref_primary_10_3389_fimmu_2022_902907
crossref_primary_10_1161_ATVBAHA_120_315517
crossref_primary_10_1289_EHP9833
crossref_primary_10_1161_JAHA_124_037172
crossref_primary_10_1016_j_biopha_2023_115576
crossref_primary_10_3390_ijms24108869
crossref_primary_10_1016_j_freeradbiomed_2022_12_095
crossref_primary_10_1038_s44161_023_00276_0
crossref_primary_10_1016_j_gendis_2024_101250
crossref_primary_10_3389_fneur_2022_796339
crossref_primary_10_1016_j_addr_2022_114480
crossref_primary_10_1007_s12291_024_01264_2
crossref_primary_10_3390_ijms251910314
crossref_primary_10_1016_j_atherosclerosis_2023_03_004
crossref_primary_10_3390_ijms23063346
crossref_primary_10_1093_cvr_cvae240
crossref_primary_10_1155_2020_9761539
crossref_primary_10_3389_fbioe_2022_836680
crossref_primary_10_31083_j_rcm2503095
crossref_primary_10_1016_j_bbagrm_2023_194938
crossref_primary_10_1016_j_repbio_2022_100696
crossref_primary_10_1016_j_cca_2020_11_020
crossref_primary_10_1194_jlr_RA119000256
crossref_primary_10_3390_ijms25063206
crossref_primary_10_1093_cvr_cvad183
crossref_primary_10_31083_j_rcm2302067
crossref_primary_10_1186_s40168_023_01743_3
crossref_primary_10_1515_mr_2021_0005
crossref_primary_10_3389_fcell_2021_809955
crossref_primary_10_1016_j_atherosclerosis_2023_117278
crossref_primary_10_1016_j_cophys_2023_100701
crossref_primary_10_1161_HYPERTENSIONAHA_120_14777
crossref_primary_10_1016_j_phymed_2022_154242
crossref_primary_10_1097_MOL_0000000000000701
crossref_primary_10_17816_MAJ25755
crossref_primary_10_1111_bph_15069
crossref_primary_10_1161_ATVBAHA_122_318573
crossref_primary_10_1016_j_intimp_2022_108626
crossref_primary_10_1016_j_cellsig_2022_110399
crossref_primary_10_1002_cm_21652
crossref_primary_10_3390_molecules27092884
crossref_primary_10_1097_MOL_0000000000000655
crossref_primary_10_1093_eurheartj_ehz771
crossref_primary_10_3389_fcvm_2024_1337679
crossref_primary_10_1038_s41586_021_03392_8
crossref_primary_10_1093_rb_rbad047
crossref_primary_10_1016_j_tem_2024_11_004
crossref_primary_10_1074_jbc_RA120_015680
crossref_primary_10_1016_j_ceb_2020_10_008
crossref_primary_10_1007_s13659_021_00322_z
crossref_primary_10_1016_j_chemosphere_2023_140237
crossref_primary_10_1186_s12915_022_01396_y
crossref_primary_10_1096_fj_202400283R
crossref_primary_10_1016_j_atherosclerosis_2025_119113
crossref_primary_10_1016_j_pharmthera_2022_108152
crossref_primary_10_1155_2022_2253478
crossref_primary_10_1016_j_heliyon_2023_e18653
crossref_primary_10_1016_j_metabol_2022_155274
crossref_primary_10_1007_s11883_023_01118_x
crossref_primary_10_1007_s10753_023_01941_z
crossref_primary_10_1016_j_biomaterials_2022_121734
crossref_primary_10_1016_j_jhazmat_2023_131697
crossref_primary_10_3390_nu15040902
crossref_primary_10_3390_cells12060942
crossref_primary_10_1111_obr_13403
crossref_primary_10_3389_fendo_2021_635923
crossref_primary_10_1016_j_jlr_2024_100665
crossref_primary_10_1038_s41440_023_01551_0
crossref_primary_10_1016_j_metabol_2022_155162
crossref_primary_10_2147_JIR_S355158
crossref_primary_10_1007_s11883_021_00934_3
crossref_primary_10_3390_ijms222111545
crossref_primary_10_1016_j_atherosclerosis_2023_04_002
crossref_primary_10_1161_ATVBAHA_123_319905
crossref_primary_10_1042_BST20200991
crossref_primary_10_1038_s42255_024_01015_w
crossref_primary_10_3390_ijms22073513
crossref_primary_10_3390_ijms24076280
crossref_primary_10_1016_j_jphs_2025_03_008
crossref_primary_10_1186_s10020_023_00715_5
crossref_primary_10_1038_s44161_023_00266_2
crossref_primary_10_1016_j_vph_2021_106947
Cites_doi 10.1152/ajpheart.01092.2005
10.1152/ajpheart.00344.2002
10.1016/j.cub.2017.07.047
10.1161/hc2901.091399
10.1161/CIRCULATIONAHA.104.475715
10.1073/pnas.0407224102
10.1002/emmm.201200237
10.1152/ajprenal.00419.2007
10.1074/jbc.M205411200
10.1172/JCI27100
10.1073/pnas.172360799
10.1152/ajpheart.00302.2003
10.1016/j.cmet.2009.06.003
10.1172/JCI44778
10.1074/jbc.M110970200
10.1074/jbc.M113.528695
10.1038/ncb3405
10.1007/s00441-008-0659-8
10.1161/CIRCRESAHA.109.216283
10.1152/ajpcell.00185.2008
10.1161/01.ATV.0000101182.89118.E5
10.1038/ng.511
10.2337/db10-0856
10.1016/S0002-9440(10)62346-2
10.1016/j.atherosclerosis.2016.01.008
10.3389/fphys.2017.00841
10.1096/fj.11-183350
10.1182/blood-2003-09-3363
10.1084/jem.20062340
10.1161/ATVBAHA.113.301826
10.2353/ajpath.2010.091287
10.1101/405506
10.1152/ajpcell.00006.2003
10.1172/JCI8376
10.1038/ng.2261
10.1161/ATVBAHA.114.303863
10.1016/0741-5214(89)90413-8
10.1093/cvr/cvv218
10.1083/jcb.200410073
10.1007/s00249-001-0195-x
10.1161/CIRCRESAHA.108.182097
10.1074/jbc.C100613200
10.1016/S0092-8674(01)00238-0
10.1258/ebm.2011.011072
10.1016/j.cell.2010.12.031
ContentType Journal Article
Copyright 2019 by the American College of Cardiology Foundation and the American Heart Association, Inc.
Copyright_xml – notice: 2019 by the American College of Cardiology Foundation and the American Heart Association, Inc.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1161/CIRCULATIONAHA.118.038571
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1524-4539
EndPage 239
ExternalDocumentID 31154825
10_1161_CIRCULATIONAHA_118_038571
00003017-201907160-00008
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: R01 HL135012
– fundername: NHLBI NIH HHS
  grantid: R01 HL105945
– fundername: NIDDK NIH HHS
  grantid: P30 DK045735
– fundername: NHLBI NIH HHS
  grantid: R35 HL135820
– fundername: NHLBI NIH HHS
  grantid: R01 HL075092
GroupedDBID ---
.-D
.3C
.XZ
.Z2
01R
0R~
0ZK
18M
1J1
29B
2FS
2WC
354
40H
4Q1
4Q2
4Q3
53G
5GY
5RE
5VS
6PF
71W
77Y
7O~
AAAAV
AAAXR
AAGIX
AAHPQ
AAIQE
AAJCS
AAMOA
AAMTA
AAQKA
AARTV
AASCR
AASOK
AASXQ
AAUEB
AAWTL
AAXQO
ABASU
ABBUW
ABDIG
ABJNI
ABOCM
ABPMR
ABPXF
ABQRW
ABVCZ
ABXVJ
ABXYN
ABZAD
ABZZY
ACDDN
ACDOF
ACEWG
ACGFO
ACGFS
ACILI
ACLDA
ACOAL
ACRKK
ACWDW
ACWRI
ACXJB
ACXNZ
ACZKN
ADBBV
ADCYY
ADGGA
ADHPY
AE3
AE6
AEBDS
AENEX
AFBFQ
AFCHL
AFDTB
AFEXH
AFMBP
AFNMH
AFSOK
AFUWQ
AGINI
AHMBA
AHOMT
AHQNM
AHQVU
AHRYX
AHVBC
AIJEX
AINUH
AJCLO
AJIOK
AJNWD
AJZMW
AKCTQ
AKULP
ALKUP
ALMA_UNASSIGNED_HOLDINGS
ALMTX
AMJPA
AMKUR
AMNEI
AOHHW
AOQMC
ASPBG
AVWKF
AYCSE
AZFZN
BAWUL
BOYCO
BQLVK
BYPQX
C45
CS3
DIK
DIWNM
DU5
E3Z
EBS
EEVPB
EJD
ERAAH
EX3
F2K
F2L
F2M
F2N
F5P
FCALG
GNXGY
GQDEL
GX1
H0~
HLJTE
HZ~
IKREB
IKYAY
IN~
IPNFZ
JF9
JG8
JK3
K-A
K-F
K8S
KD2
KMI
KQ8
L-C
L7B
N9A
N~7
N~B
O9-
OAG
OAH
OBH
OCB
ODMTH
OGEVE
OHH
OHYEH
OK1
OL1
OLB
OLG
OLH
OLU
OLV
OLY
OLZ
OPUJH
OVD
OVDNE
OVIDH
OVLEI
OVOZU
OWBYB
OWU
OWV
OWW
OWX
OWY
OWZ
OXXIT
P2P
PQQKQ
RAH
RIG
RLZ
S4R
S4S
T8P
TEORI
TR2
TSPGW
UPT
V2I
VVN
W2D
W3M
W8F
WH7
WOQ
WOW
X3V
X3W
XXN
XYM
YFH
YOC
YSK
YYM
YZZ
ZFV
ZY1
~H1
AAFWJ
AAYXX
CITATION
ACIJW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ADKSD
ADSXY
ID FETCH-LOGICAL-c4798-ab5e0f59da47872395de8732ac2b13f18097669e16af5cb3e5da3987618f3afe3
ISSN 0009-7322
1524-4539
IngestDate Sat Sep 27 20:04:43 EDT 2025
Thu Apr 03 06:58:31 EDT 2025
Tue Jul 01 04:15:24 EDT 2025
Thu Apr 24 23:10:12 EDT 2025
Fri May 16 03:42:07 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords atherosclerosis
nitric oxide synthase type III
fibronectins
inflammation
transcytosis
caveolae
extracellular matrix
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c4798-ab5e0f59da47872395de8732ac2b13f18097669e16af5cb3e5da3987618f3afe3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.ahajournals.org/doi/pdf/10.1161/CIRCULATIONAHA.118.038571
PMID 31154825
PQID 2234486133
PQPubID 23479
PageCount 15
ParticipantIDs proquest_miscellaneous_2234486133
pubmed_primary_31154825
crossref_citationtrail_10_1161_CIRCULATIONAHA_118_038571
crossref_primary_10_1161_CIRCULATIONAHA_118_038571
wolterskluwer_health_00003017-201907160-00008
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-July-16
PublicationDateYYYYMMDD 2019-07-16
PublicationDate_xml – month: 07
  year: 2019
  text: 2019-July-16
  day: 16
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Circulation (New York, N.Y.)
PublicationTitleAlternate Circulation
PublicationYear 2019
Publisher by the American College of Cardiology Foundation and the American Heart Association, Inc
Publisher_xml – name: by the American College of Cardiology Foundation and the American Heart Association, Inc
References e_1_3_4_3_2
e_1_3_4_2_2
e_1_3_4_9_2
e_1_3_4_8_2
e_1_3_4_7_2
e_1_3_4_41_2
e_1_3_4_6_2
e_1_3_4_40_2
e_1_3_4_5_2
e_1_3_4_4_2
e_1_3_4_22_2
e_1_3_4_45_2
e_1_3_4_23_2
e_1_3_4_44_2
e_1_3_4_20_2
e_1_3_4_43_2
e_1_3_4_21_2
e_1_3_4_42_2
e_1_3_4_26_2
e_1_3_4_27_2
e_1_3_4_24_2
e_1_3_4_25_2
e_1_3_4_46_2
e_1_3_4_28_2
e_1_3_4_29_2
e_1_3_4_30_2
e_1_3_4_11_2
e_1_3_4_34_2
e_1_3_4_12_2
e_1_3_4_33_2
e_1_3_4_32_2
e_1_3_4_10_2
e_1_3_4_31_2
e_1_3_4_15_2
e_1_3_4_38_2
e_1_3_4_16_2
e_1_3_4_37_2
e_1_3_4_13_2
e_1_3_4_36_2
e_1_3_4_14_2
e_1_3_4_35_2
e_1_3_4_19_2
e_1_3_4_17_2
e_1_3_4_18_2
e_1_3_4_39_2
References_xml – ident: e_1_3_4_10_2
  doi: 10.1152/ajpheart.01092.2005
– ident: e_1_3_4_44_2
  doi: 10.1152/ajpheart.00344.2002
– ident: e_1_3_4_41_2
  doi: 10.1016/j.cub.2017.07.047
– ident: e_1_3_4_17_2
  doi: 10.1161/hc2901.091399
– ident: e_1_3_4_32_2
  doi: 10.1161/CIRCULATIONAHA.104.475715
– ident: e_1_3_4_15_2
  doi: 10.1073/pnas.0407224102
– ident: e_1_3_4_35_2
  doi: 10.1002/emmm.201200237
– ident: e_1_3_4_37_2
  doi: 10.1152/ajprenal.00419.2007
– ident: e_1_3_4_43_2
  doi: 10.1074/jbc.M205411200
– ident: e_1_3_4_46_2
  doi: 10.1172/JCI27100
– ident: e_1_3_4_23_2
  doi: 10.1073/pnas.172360799
– ident: e_1_3_4_42_2
  doi: 10.1152/ajpheart.00302.2003
– ident: e_1_3_4_9_2
  doi: 10.1016/j.cmet.2009.06.003
– ident: e_1_3_4_14_2
  doi: 10.1172/JCI44778
– ident: e_1_3_4_28_2
  doi: 10.1074/jbc.M110970200
– ident: e_1_3_4_25_2
  doi: 10.1074/jbc.M113.528695
– ident: e_1_3_4_5_2
  doi: 10.1038/ncb3405
– ident: e_1_3_4_18_2
  doi: 10.1007/s00441-008-0659-8
– ident: e_1_3_4_3_2
  doi: 10.1161/CIRCRESAHA.109.216283
– ident: e_1_3_4_30_2
  doi: 10.1152/ajpcell.00185.2008
– ident: e_1_3_4_11_2
  doi: 10.1161/01.ATV.0000101182.89118.E5
– ident: e_1_3_4_21_2
  doi: 10.1038/ng.511
– ident: e_1_3_4_29_2
  doi: 10.2337/db10-0856
– ident: e_1_3_4_34_2
  doi: 10.1016/S0002-9440(10)62346-2
– ident: e_1_3_4_20_2
  doi: 10.1016/j.atherosclerosis.2016.01.008
– ident: e_1_3_4_33_2
  doi: 10.3389/fphys.2017.00841
– ident: e_1_3_4_39_2
  doi: 10.1096/fj.11-183350
– ident: e_1_3_4_36_2
  doi: 10.1182/blood-2003-09-3363
– ident: e_1_3_4_12_2
  doi: 10.1084/jem.20062340
– ident: e_1_3_4_24_2
  doi: 10.1161/ATVBAHA.113.301826
– ident: e_1_3_4_31_2
  doi: 10.2353/ajpath.2010.091287
– ident: e_1_3_4_38_2
  doi: 10.1101/405506
– ident: e_1_3_4_8_2
  doi: 10.1152/ajpcell.00006.2003
– ident: e_1_3_4_16_2
  doi: 10.1172/JCI8376
– ident: e_1_3_4_22_2
  doi: 10.1038/ng.2261
– ident: e_1_3_4_6_2
  doi: 10.1161/ATVBAHA.114.303863
– ident: e_1_3_4_26_2
  doi: 10.1016/0741-5214(89)90413-8
– ident: e_1_3_4_13_2
  doi: 10.1093/cvr/cvv218
– ident: e_1_3_4_4_2
  doi: 10.1083/jcb.200410073
– ident: e_1_3_4_45_2
  doi: 10.1007/s00249-001-0195-x
– ident: e_1_3_4_7_2
  doi: 10.1161/CIRCRESAHA.108.182097
– ident: e_1_3_4_19_2
  doi: 10.1074/jbc.C100613200
– ident: e_1_3_4_2_2
  doi: 10.1016/S0092-8674(01)00238-0
– ident: e_1_3_4_27_2
  doi: 10.1258/ebm.2011.011072
– ident: e_1_3_4_40_2
  doi: 10.1016/j.cell.2010.12.031
SSID ssj0006375
Score 2.6062093
Snippet BACKGROUND:Atherosclerosis is driven by synergistic interactions between pathological, biomechanical, inflammatory, and lipid metabolic factors. Our previous...
Atherosclerosis is driven by synergistic interactions between pathological, biomechanical, inflammatory, and lipid metabolic factors. Our previous studies...
SourceID proquest
pubmed
crossref
wolterskluwer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 225
SubjectTerms Animals
Atherosclerosis - metabolism
Atherosclerosis - pathology
Atherosclerosis - prevention & control
Caveolin 1 - physiology
Cells, Cultured
Dogs
Endothelium, Vascular - metabolism
Endothelium, Vascular - pathology
Enzyme Activation - physiology
Female
Humans
Lipoproteins, LDL - metabolism
Male
Mice
Mice, Inbred C57BL
Mice, Knockout
Mice, Transgenic
Nitric Oxide Synthase Type III - metabolism
Transcytosis - physiology
Title Caveolin-1 Regulates Atherogenesis by Attenuating Low-Density Lipoprotein Transcytosis and Vascular Inflammation Independently of Endothelial Nitric Oxide Synthase Activation
URI https://ovidsp.ovid.com/ovidweb.cgi?T=JS&NEWS=n&CSC=Y&PAGE=fulltext&D=ovft&AN=00003017-201907160-00008
https://www.ncbi.nlm.nih.gov/pubmed/31154825
https://www.proquest.com/docview/2234486133
Volume 140
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1tT9swEMctxiTENE0b7KF7kpGmvUGG5tl5WRUmmIBJDKa-i5zEHtEgqdow1n2ofaF9md3ZSeoOkNjeRG2qOFLvF-d8vvsfIe88V6XciSRTTpYyPwoVEzyIGbwrpcxUmHKOxcmHR-Heqf9xFIyWln5bWUuXdbqV_byxruR_rArnwK5YJfsPlu0GhRPwGewLR7AwHO9k46H4LrHpDnPgb9I95eV0c4AuXfUV57Biit7loAa_GBW9sZ6pumI7mLMOvvdBMa60TENRGo3zbFZXeA3G0r-0Gar7pQJoTIEjfGmb5tbnemt-t8yxhOsc4-5HBar9b376UeRy8_OsrM8Eqp5kbQM12w8eFpOsaRx2Uz8gKz5xDMTiZv7OxMS6h3pWKsU8jNvFvEe4VTUPzZb5rBqL_GwmTILxWQEewUR2JB9XNTwDpt6skheFHQDRNVfMaeSzm0nb9ZkfGFGkblY3KlANvp49R5tK6-vvjhDfHcP94-HpgVEi3hvAWb6Fm6emT4zF1PhCQ4ViRT43I_4l3N3-dI_cdyNw7LASfTTPPwq9KFghG82dt2-97ypZaUda9J2uLYgekIdXFeZYTL_pEgvLUTp5TB41Kxw6MLg-IUuyXCPrg1LU1cWMvqc651hv5qyRlcMmtWOd_JrDTDuY6QLMNJ1RC2ZqwUwtmKkNMwUMaAsztWGmCzDTSlELZmpgphpm2sJM5zA_Jacfdk-Ge6xpJsIyP4o5E2kg-yqIc4FyVK4XB7nkkeeKzE0dT6GMHRgplk4oVJClngxy4cXgKzhceUJJ7xlZLqtSviA0k6HjiH4g3Cz3cylioULlK-XJlAueBj3CWzMlWaO0jw1fzhO94g6dZNHYcI4nxtg94naXjo3czF0u2mhZSODlgDt-opTV5TQB39_3OXjsXo88N5B0w7ZQ9QhboCYxBdiYlYLhkojhMwcLkVArUPT5y1tHekVW58_na7JcTy7lG3DZ6_StRv8PJP3v0A
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Caveolin-1+Regulates+Atherogenesis+by+Attenuating+Low-Density+Lipoprotein+Transcytosis+and+Vascular+Inflammation+Independently+of+Endothelial+Nitric+Oxide+Synthase+Activation&rft.jtitle=Circulation+%28New+York%2C+N.Y.%29&rft.au=Ram%C3%ADrez%2C+Cristina+M&rft.au=Zhang%2C+Xinbo&rft.au=Bandyopadhyay%2C+Chirosree&rft.au=Rotllan%2C+Noemi&rft.date=2019-07-16&rft.eissn=1524-4539&rft.volume=140&rft.issue=3&rft.spage=225&rft_id=info:doi/10.1161%2FCIRCULATIONAHA.118.038571&rft_id=info%3Apmid%2F31154825&rft.externalDocID=31154825
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-7322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-7322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-7322&client=summon