From Visual Exploration to Storytelling and Back Again

The primary goal of visual data exploration tools is to enable the discovery of new insights. To justify and reproduce insights, the discovery process needs to be documented and communicated. A common approach to documenting and presenting findings is to capture visualizations as images or videos. I...

Full description

Saved in:
Bibliographic Details
Published inComputer graphics forum Vol. 35; no. 3; pp. 491 - 500
Main Authors Gratzl, S., Lex, A., Gehlenborg, N., Cosgrove, N., Streit, M.
Format Journal Article
LanguageEnglish
Published England Blackwell Publishing Ltd 01.06.2016
Subjects
Online AccessGet full text
ISSN0167-7055
1467-8659
DOI10.1111/cgf.12925

Cover

Abstract The primary goal of visual data exploration tools is to enable the discovery of new insights. To justify and reproduce insights, the discovery process needs to be documented and communicated. A common approach to documenting and presenting findings is to capture visualizations as images or videos. Images, however, are insufficient for telling the story of a visual discovery, as they lack full provenance information and context. Videos are difficult to produce and edit, particularly due to the non‐linear nature of the exploratory process. Most importantly, however, neither approach provides the opportunity to return to any point in the exploration in order to review the state of the visualization in detail or to conduct additional analyses. In this paper we present CLUE (Capture, Label, Understand, Explain), a model that tightly integrates data exploration and presentation of discoveries. Based on provenance data captured during the exploration process, users can extract key steps, add annotations, and author “Vistories”, visual stories based on the history of the exploration. These Vistories can be shared for others to view, but also to retrace and extend the original analysis. We discuss how the CLUE approach can be integrated into visualization tools and provide a prototype implementation. Finally, we demonstrate the general applicability of the model in two usage scenarios: a Gapminder‐inspired visualization to explore public health data and an example from molecular biology that illustrates how Vistories could be used in scientific journals.
AbstractList The primary goal of visual data exploration tools is to enable the discovery of new insights. To justify and reproduce insights, the discovery process needs to be documented and communicated. A common approach to documenting and presenting findings is to capture visualizations as images or videos. Images, however, are insufficient for telling the story of a visual discovery, as they lack full provenance information and context. Videos are difficult to produce and edit, particularly due to the non-linear nature of the exploratory process. Most importantly, however, neither approach provides the opportunity to return to any point in the exploration in order to review the state of the visualization in detail or to conduct additional analyses. In this paper we present CLUE (Capture, Label, Understand, Explain), a model that tightly integrates data exploration and presentation of discoveries. Based on provenance data captured during the exploration process, users can extract key steps, add annotations, and author "Vistories", visual stories based on the history of the exploration. These Vistories can be shared for others to view, but also to retrace and extend the original analysis. We discuss how the CLUE approach can be integrated into visualization tools and provide a prototype implementation. Finally, we demonstrate the general applicability of the model in two usage scenarios: a Gapminder-inspired visualization to explore public health data and an example from molecular biology that illustrates how Vistories could be used in scientific journals.
The primary goal of visual data exploration tools is to enable the discovery of new insights. To justify and reproduce insights, the discovery process needs to be documented and communicated. A common approach to documenting and presenting findings is to capture visualizations as images or videos. Images, however, are insufficient for telling the story of a visual discovery, as they lack full provenance information and context. Videos are difficult to produce and edit, particularly due to the non-linear nature of the exploratory process. Most importantly, however, neither approach provides the opportunity to return to any point in the exploration in order to review the state of the visualization in detail or to conduct additional analyses. In this paper we present CLUE (Capture, Label, Understand, Explain), a model that tightly integrates data exploration and presentation of discoveries. Based on provenance data captured during the exploration process, users can extract key steps, add annotations, and author "Vistories", visual stories based on the history of the exploration. These Vistories can be shared for others to view, but also to retrace and extend the original analysis. We discuss how the CLUE approach can be integrated into visualization tools and provide a prototype implementation. Finally, we demonstrate the general applicability of the model in two usage scenarios: a Gapminder-inspired visualization to explore public health data and an example from molecular biology that illustrates how Vistories could be used in scientific journals. (see Figure 1 for visual abstract).
The primary goal of visual data exploration tools is to enable the discovery of new insights. To justify and reproduce insights, the discovery process needs to be documented and communicated. A common approach to documenting and presenting findings is to capture visualizations as images or videos. Images, however, are insufficient for telling the story of a visual discovery, as they lack full provenance information and context. Videos are difficult to produce and edit, particularly due to the non-linear nature of the exploratory process. Most importantly, however, neither approach provides the opportunity to return to any point in the exploration in order to review the state of the visualization in detail or to conduct additional analyses. In this paper we present CLUE (Capture, Label, Understand, Explain), a model that tightly integrates data exploration and presentation of discoveries. Based on provenance data captured during the exploration process, users can extract key steps, add annotations, and author "Vistories", visual stories based on the history of the exploration. These Vistories can be shared for others to view, but also to retrace and extend the original analysis. We discuss how the CLUE approach can be integrated into visualization tools and provide a prototype implementation. Finally, we demonstrate the general applicability of the model in two usage scenarios: a Gapminder-inspired visualization to explore public health data and an example from molecular biology that illustrates how Vistories could be used in scientific journals. (see Figure 1 for visual abstract).The primary goal of visual data exploration tools is to enable the discovery of new insights. To justify and reproduce insights, the discovery process needs to be documented and communicated. A common approach to documenting and presenting findings is to capture visualizations as images or videos. Images, however, are insufficient for telling the story of a visual discovery, as they lack full provenance information and context. Videos are difficult to produce and edit, particularly due to the non-linear nature of the exploratory process. Most importantly, however, neither approach provides the opportunity to return to any point in the exploration in order to review the state of the visualization in detail or to conduct additional analyses. In this paper we present CLUE (Capture, Label, Understand, Explain), a model that tightly integrates data exploration and presentation of discoveries. Based on provenance data captured during the exploration process, users can extract key steps, add annotations, and author "Vistories", visual stories based on the history of the exploration. These Vistories can be shared for others to view, but also to retrace and extend the original analysis. We discuss how the CLUE approach can be integrated into visualization tools and provide a prototype implementation. Finally, we demonstrate the general applicability of the model in two usage scenarios: a Gapminder-inspired visualization to explore public health data and an example from molecular biology that illustrates how Vistories could be used in scientific journals. (see Figure 1 for visual abstract).
Author Lex, A.
Gehlenborg, N.
Streit, M.
Gratzl, S.
Cosgrove, N.
AuthorAffiliation 3 Harvard Medical School, United States of America
2 University of Utah, United States of America
1 Johannes Kepler University Linz, Austria
AuthorAffiliation_xml – name: 3 Harvard Medical School, United States of America
– name: 1 Johannes Kepler University Linz, Austria
– name: 2 University of Utah, United States of America
Author_xml – sequence: 1
  givenname: S.
  surname: Gratzl
  fullname: Gratzl, S.
  organization: Johannes Kepler University Linz, Austria
– sequence: 2
  givenname: A.
  surname: Lex
  fullname: Lex, A.
  organization: University of Utah, United States of America
– sequence: 3
  givenname: N.
  surname: Gehlenborg
  fullname: Gehlenborg, N.
  organization: Harvard Medical School, United States of America
– sequence: 4
  givenname: N.
  surname: Cosgrove
  fullname: Cosgrove, N.
  organization: Johannes Kepler University Linz, Austria
– sequence: 5
  givenname: M.
  surname: Streit
  fullname: Streit, M.
  organization: Johannes Kepler University Linz, Austria
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27942091$$D View this record in MEDLINE/PubMed
BookMark eNqNkUtvEzEUhS1URNPCgj-ARmIDi2n9fmyQ2qiZgioQ4rW0HI8nuJ3YqT0Dzb-vaZIKKpDwxpb8naN7zj0AeyEGB8BzBI9QOcd20R0hrDB7BCaIclFLztQemEBU3gIytg8Ocr6EEFLB2ROwj4WiGCo0AXyW4rL66vNo-ursZtXHZAYfQzXE6tMQ03pwfe_DojKhrU6NvapOFsaHp-BxZ_rsnm3vQ_BldvZ5el5ffGjeTk8uakuFYjVpCXeUIqmoQxIjqlo2t61kSBkyp7CznZWs5R1XgiikOoklsa5lnBnYUkQOwZuN72qcL11rXRiS6fUq-aVJax2N13_-BP9dL-IPzRBlWNBi8GprkOL16PKglz7bkskEF8eskWSY8wL-D4oZI7x0WNCXD9DLOKZQmigURCU7FKxQL34f_n7qXfsFON4ANsWck-u09cNd_SWL7zWC-td-ddmvvttvUbx-oNiZ_o3duv_0vVv_G9TTZrZT1BuFz4O7uVeYdKW5IILpb-8bfdoQSZuP77QityYzwJ0
CitedBy_id crossref_primary_10_1109_TVCG_2018_2865024
crossref_primary_10_1109_TVCG_2024_3456186
crossref_primary_10_1109_TVCG_2018_2889054
crossref_primary_10_1016_j_visinf_2018_09_003
crossref_primary_10_1016_j_cola_2022_101125
crossref_primary_10_1016_j_jmb_2018_11_008
crossref_primary_10_1016_j_visinf_2018_12_002
crossref_primary_10_1109_TVCG_2022_3156760
crossref_primary_10_1111_cgf_14035
crossref_primary_10_1109_TVCG_2023_3326525
crossref_primary_10_1007_s11042_019_07878_6
crossref_primary_10_1016_j_is_2020_101620
crossref_primary_10_1109_TVCG_2020_3030403
crossref_primary_10_1016_j_cola_2020_100961
crossref_primary_10_1109_TVCG_2017_2745180
crossref_primary_10_1109_TVCG_2021_3114802
crossref_primary_10_1177_14738716211032653
crossref_primary_10_1109_MCG_2019_2933419
crossref_primary_10_3390_info9030065
crossref_primary_10_1186_s12859_017_1813_7
crossref_primary_10_3390_app14041387
crossref_primary_10_1109_TVCG_2022_3146329
crossref_primary_10_1109_TVCG_2017_2745978
crossref_primary_10_1093_bioinformatics_btz009
crossref_primary_10_1109_TVCG_2020_3030430
crossref_primary_10_1109_TVCG_2023_3287585
crossref_primary_10_1109_TVCG_2023_3326514
crossref_primary_10_1109_TVCG_2021_3135697
crossref_primary_10_1177_14738716241270247
crossref_primary_10_1093_gigascience_giae040
crossref_primary_10_1109_TVCG_2021_3130670
crossref_primary_10_1111_cgf_13999
crossref_primary_10_1177_14738716211038604
crossref_primary_10_1186_s13059_018_1486_1
crossref_primary_10_1111_cgf_14528
crossref_primary_10_1109_TVCG_2020_3030356
crossref_primary_10_1515_opis_2022_0129
crossref_primary_10_1111_cgf_13717
crossref_primary_10_1109_TVCG_2024_3456315
crossref_primary_10_1109_TVCG_2024_3456359
Cites_doi 10.1111/cgf.12392
10.1109/VISUAL.2005.1532788
10.2312/SBM/SBM12/011-020
10.2312/VisSym/EuroVis07/091-098
10.1109/INFVIS.2004.2
10.1145/2207676.2208293
10.1109/IV.2014.79
10.1109/TVCG.2011.185
10.1111/j.1467-8659.2012.03110.x
10.1109/IV.2014.78
10.1038/nmeth.3088
10.1145/1357054.1357247
10.1145/2047196.2047213
10.1109/TVCG.2015.2467551
10.1145/22339.22342
10.1109/MC.2013.36
10.1109/TVCG.2011.108
10.1109/MCG.2015.99
10.1111/cgf.12106
10.1109/TVCG.2008.137
ContentType Journal Article
Copyright 2016 The Author(s) Computer Graphics Forum © 2016 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
2016 The Eurographics Association and John Wiley & Sons Ltd.
Copyright_xml – notice: 2016 The Author(s) Computer Graphics Forum © 2016 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
– notice: 2016 The Eurographics Association and John Wiley & Sons Ltd.
DBID BSCLL
AAYXX
CITATION
NPM
7SC
8FD
JQ2
L7M
L~C
L~D
F28
FR3
7X8
5PM
DOI 10.1111/cgf.12925
DatabaseName Istex
CrossRef
PubMed
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList Technology Research Database
PubMed
MEDLINE - Academic
CrossRef


Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Public Health
EISSN 1467-8659
EndPage 500
ExternalDocumentID PMC5145274
4107220531
27942091
10_1111_cgf_12925
CGF12925
ark_67375_WNG_BG384GQJ_9
Genre article
Journal Article
Feature
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: U01 CA198935
– fundername: Austrian Science Fund FWF
  grantid: P 27975
GroupedDBID .3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
15B
1OB
1OC
29F
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8VB
930
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEML
ABPVW
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFS
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AEMOZ
AENEX
AEUYR
AEYWJ
AFBPY
AFEBI
AFFNX
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHEFC
AHQJS
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CAG
COF
CS3
CWDTD
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBA
EBO
EBR
EBS
EBU
EDO
EJD
EMK
EST
ESX
F00
F01
F04
F5P
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QWB
R.K
RDJ
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TH9
TN5
TUS
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WXSBR
WYISQ
WZISG
XG1
ZL0
ZZTAW
~IA
~IF
~WT
AAYXX
CITATION
NPM
7SC
8FD
JQ2
L7M
L~C
L~D
F28
FR3
7X8
5PM
ID FETCH-LOGICAL-c4795-3d36e441894e182149d5bcd8519a3b40fcfc85d6f6973919f8283ced565a0d413
IEDL.DBID DR2
ISSN 0167-7055
IngestDate Tue Sep 30 17:00:47 EDT 2025
Thu Sep 04 16:34:47 EDT 2025
Thu Oct 02 09:50:06 EDT 2025
Fri Jul 25 04:57:09 EDT 2025
Mon Jul 21 06:01:43 EDT 2025
Thu Apr 24 23:01:30 EDT 2025
Wed Oct 01 03:05:04 EDT 2025
Sun Sep 21 06:19:21 EDT 2025
Sun Sep 21 06:19:54 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4795-3d36e441894e182149d5bcd8519a3b40fcfc85d6f6973919f8283ced565a0d413
Notes Supporting InformationSupporting Information
ark:/67375/WNG-BG384GQJ-9
istex:E3E16B4A357F968E72B36CCE74A29795E3902545
ArticleID:CGF12925
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 27942091
PQID 1801479075
PQPubID 30877
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5145274
proquest_miscellaneous_1852667434
proquest_miscellaneous_1825536047
proquest_journals_1801479075
pubmed_primary_27942091
crossref_citationtrail_10_1111_cgf_12925
crossref_primary_10_1111_cgf_12925
wiley_primary_10_1111_cgf_12925_CGF12925
istex_primary_ark_67375_WNG_BG384GQJ_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-06
June 2016
2016-06-00
2016-Jun
20160601
PublicationDateYYYYMMDD 2016-06-01
PublicationDate_xml – month: 06
  year: 2016
  text: 2016-06
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Oxford
PublicationTitle Computer graphics forum
PublicationTitleAlternate Computer Graphics Forum
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Heer J., Mackinlay J., Stolte C., Agrawala M.: Graphical Histories for Visualization: Supporting Analysis, Communication, and Evaluation. IEEE Transactions on Visualization and Computer Graphics (InfoVis '08) 14, 6 (2008), 1189-1196. doi: 10.1109/TVCG.2008.137. 3
Gamma E., Helm R., Johnson R., Vlissides J.: Design patterns: elements of reusable object-oriented software. Addison-Wesley Longman, 1995. 7
Hidayat A.: PhantomJS | PhantomJS, 2016. Accessed: 2016-03-10. URL:http://phantomjs.org/. 6
Lee B., Riche N., Isenberg P., Carpendale S.: More Than Telling a Story: Transforming Data into Visually Shared Stories. IEEE Computer Graphics and Applications 35, 5 (2015), 84-90. doi: 10.1109/MCG.2015.99. 2, 4, 8
Bostock M., Ogievetsky V., Heer J.: D3: Data-Driven Documents. IEEE Transactions on Visualization and Computer Graphics (InfoVis '11) 17, 12 (2011), 2301-2309. doi: 10.1109/TVCG.2011.185. 6
Kosara R., Mackinlay J.: Storytelling: The next step for visualization. Computer, 5 (2013), 44-50. doi: 10.1109/MC.2013.36. 3
Lex A., Streit M., Schulz H.-J., Partl C., Schmalstieg D., Park P.J., Gehlenborg N.: StratomeX: Visual Analysis of Large-Scale Heterogeneous Genomics Data for Cancer Subtype Characterization. Computer Graphics Forum (EuroVis '12) 31, 3 (2012), 1175-1184. doi: 10.1111/j.1467-8659.2012.03110.x. 8
Streit M., Lex A., Gratzl S., Partl C., Schmalstieg D., Pfister H., Park P.J., Gehlenborg N.: Guided visual exploration of genomic stratifications in cancer. Nature Methods 11, 9 (2014), 884-885. doi: 10.1038/nmeth.3088. 7, 8
Streit M., Schulz H.-J., Lex A., Schmalstieg D., Schumann H.: Model-Driven Design for the Visual Analysis of Heterogeneous Data. IEEE Transactions on Visualization and Computer Graphics 18, 6 (2012), 998-1010. doi: 10.1109/TVCG.2011.108. 3
Satyanarayan A., Heer J.: Authoring Narrative Visualizations with Ellipsis. Computer Graphics Forum 33, 3 (2014), 361-370. doi: 10.1111/cgf.12392. 3
Ragan E., Endert A., Sanyal J., Chen J.: Characterizing Provenance in Visualization and Data Analysis: An organizational Framework of Provenance Types and Purposes. IEEE Transactions on Visualization and Computer Graphics (VAST '15) 22, 1 (2016), 31-40. doi: 10.1109/TVCG.2015.2467551. 3
van den Elzen S., van Wijk J.J.: Small Multiples, Large Singles: A New Approach for Visual Data Exploration. Computer Graphics Forum (EuroVis '13) 32, 3pt2 (2013), 191-200. doi: 10.1111/cgf.12106. 3
2015; 35
2012
2011
2013; 32
2008; 14
1986
2008
2007
1995
2016
2005
2012; 18
2015
2004
2014
2011; 17
2013; 5
2012; 31
2014; 33
2014; 11
2016; 22
e_1_2_10_22_2
e_1_2_10_23_2
e_1_2_10_20_2
e_1_2_10_21_2
Gratzl S. (e_1_2_10_10_2) 2015
e_1_2_10_19_2
e_1_2_10_3_2
e_1_2_10_17_2
e_1_2_10_2_2
e_1_2_10_18_2
e_1_2_10_5_2
e_1_2_10_15_2
e_1_2_10_4_2
e_1_2_10_16_2
e_1_2_10_7_2
e_1_2_10_6_2
e_1_2_10_14_2
e_1_2_10_9_2
e_1_2_10_8_2
e_1_2_10_12_2
e_1_2_10_30_2
Gamma E. (e_1_2_10_11_2) 1995
Hidayat A. (e_1_2_10_13_2); 2016
e_1_2_10_28_2
e_1_2_10_29_2
e_1_2_10_26_2
e_1_2_10_27_2
e_1_2_10_24_2
e_1_2_10_25_2
References_xml – reference: Gamma E., Helm R., Johnson R., Vlissides J.: Design patterns: elements of reusable object-oriented software. Addison-Wesley Longman, 1995. 7
– reference: Hidayat A.: PhantomJS | PhantomJS, 2016. Accessed: 2016-03-10. URL:http://phantomjs.org/. 6
– reference: Ragan E., Endert A., Sanyal J., Chen J.: Characterizing Provenance in Visualization and Data Analysis: An organizational Framework of Provenance Types and Purposes. IEEE Transactions on Visualization and Computer Graphics (VAST '15) 22, 1 (2016), 31-40. doi: 10.1109/TVCG.2015.2467551. 3
– reference: van den Elzen S., van Wijk J.J.: Small Multiples, Large Singles: A New Approach for Visual Data Exploration. Computer Graphics Forum (EuroVis '13) 32, 3pt2 (2013), 191-200. doi: 10.1111/cgf.12106. 3
– reference: Heer J., Mackinlay J., Stolte C., Agrawala M.: Graphical Histories for Visualization: Supporting Analysis, Communication, and Evaluation. IEEE Transactions on Visualization and Computer Graphics (InfoVis '08) 14, 6 (2008), 1189-1196. doi: 10.1109/TVCG.2008.137. 3
– reference: Kosara R., Mackinlay J.: Storytelling: The next step for visualization. Computer, 5 (2013), 44-50. doi: 10.1109/MC.2013.36. 3
– reference: Streit M., Schulz H.-J., Lex A., Schmalstieg D., Schumann H.: Model-Driven Design for the Visual Analysis of Heterogeneous Data. IEEE Transactions on Visualization and Computer Graphics 18, 6 (2012), 998-1010. doi: 10.1109/TVCG.2011.108. 3
– reference: Satyanarayan A., Heer J.: Authoring Narrative Visualizations with Ellipsis. Computer Graphics Forum 33, 3 (2014), 361-370. doi: 10.1111/cgf.12392. 3
– reference: Streit M., Lex A., Gratzl S., Partl C., Schmalstieg D., Pfister H., Park P.J., Gehlenborg N.: Guided visual exploration of genomic stratifications in cancer. Nature Methods 11, 9 (2014), 884-885. doi: 10.1038/nmeth.3088. 7, 8
– reference: Lee B., Riche N., Isenberg P., Carpendale S.: More Than Telling a Story: Transforming Data into Visually Shared Stories. IEEE Computer Graphics and Applications 35, 5 (2015), 84-90. doi: 10.1109/MCG.2015.99. 2, 4, 8
– reference: Lex A., Streit M., Schulz H.-J., Partl C., Schmalstieg D., Park P.J., Gehlenborg N.: StratomeX: Visual Analysis of Large-Scale Heterogeneous Genomics Data for Cancer Subtype Characterization. Computer Graphics Forum (EuroVis '12) 31, 3 (2012), 1175-1184. doi: 10.1111/j.1467-8659.2012.03110.x. 8
– reference: Bostock M., Ogievetsky V., Heer J.: D3: Data-Driven Documents. IEEE Transactions on Visualization and Computer Graphics (InfoVis '11) 17, 12 (2011), 2301-2309. doi: 10.1109/TVCG.2011.185. 6
– start-page: 49
  year: 2004
  end-page: 56
– start-page: 46
  year: 2014
  end-page: 52
– start-page: 1237
  year: 2008
  end-page: 1246
– start-page: 18
  year: 2014
  end-page: 18
– volume: 22
  start-page: 31
  issue: 1
  year: 2016
  end-page: 40
  article-title: Characterizing Provenance in Visualization and Data Analysis: An organizational Framework of Provenance Types and Purposes
  publication-title: IEEE Transactions on Visualization and Computer Graphics (VAST ’15)
– start-page: 11
  year: 2012
  end-page: 20
– volume: 11
  start-page: 884
  issue: 9
  year: 2014
  end-page: 885
  article-title: Guided visual exploration of genomic stratifications in cancer
  publication-title: Nature Methods
– year: 2016
– volume: 17
  start-page: 2301
  issue: 12
  year: 2011
  end-page: 2309
  article-title: D3: Data‐Driven Documents
  publication-title: IEEE Transactions on Visualization and Computer Graphics (InfoVis ’11)
– year: 2014
– volume: 33
  start-page: 361
  issue: 3
  year: 2014
  end-page: 370
  article-title: Authoring Narrative Visualizations with Ellipsis
  publication-title: Computer Graphics Forum
– volume: 2016
  publication-title: PhantomJS | PhantomJS
– volume: 18
  start-page: 998
  issue: 6
  year: 2012
  end-page: 1010
  article-title: Model‐Driven Design for the Visual Analysis of Heterogeneous Data
  publication-title: IEEE Transactions on Visualization and Computer Graphics
– volume: 31
  start-page: 1175
  issue: 3
  year: 2012
  end-page: 1184
  article-title: StratomeX: Visual Analysis of Large‐Scale Heterogeneous Genomics Data for Cancer Subtype Characterization
  publication-title: Computer Graphics Forum (EuroVis ’12)
– volume: 14
  start-page: 1189
  issue: 6
  year: 2008
  end-page: 1196
  article-title: Graphical Histories for Visualization: Supporting Analysis, Communication, and Evaluation
  publication-title: IEEE Transactions on Visualization and Computer Graphics (InfoVis ’08)
– start-page: 135
  year: 2011
  end-page: 144
– volume: 5
  start-page: 44
  year: 2013
  end-page: 50
  article-title: Storytelling: The next step for visualization
  publication-title: Computer
– start-page: 1663
  year: 2012
  end-page: 1672
– year: 1995
– volume: 35
  start-page: 84
  issue: 5
  year: 2015
  end-page: 90
  article-title: More Than Telling a Story: Transforming Data into Visually Shared Stories
  publication-title: IEEE Computer Graphics and Applications
– start-page: 91
  year: 2007
  end-page: 98
– volume: 32
  start-page: 191
  issue: 3pt2
  year: 2013
  end-page: 200
  article-title: Small Multiples, Large Singles: A New Approach for Visual Data Exploration
  publication-title: Computer Graphics Forum (EuroVis ’13)
– start-page: 16
  year: 1986
  end-page: 23
– start-page: 135
  year: 2005
  end-page: 142
– year: 2015
– ident: e_1_2_10_24_2
  doi: 10.1111/cgf.12392
– volume: 2016
  ident: e_1_2_10_13_2
  publication-title: PhantomJS | PhantomJS
– ident: e_1_2_10_3_2
  doi: 10.1109/VISUAL.2005.1532788
– ident: e_1_2_10_6_2
– ident: e_1_2_10_12_2
– ident: e_1_2_10_18_2
  doi: 10.2312/SBM/SBM12/011-020
– ident: e_1_2_10_30_2
  doi: 10.2312/VisSym/EuroVis07/091-098
– ident: e_1_2_10_16_2
  doi: 10.1109/INFVIS.2004.2
– ident: e_1_2_10_17_2
– ident: e_1_2_10_5_2
  doi: 10.1145/2207676.2208293
– ident: e_1_2_10_8_2
  doi: 10.1109/IV.2014.79
– ident: e_1_2_10_4_2
  doi: 10.1109/TVCG.2011.185
– ident: e_1_2_10_20_2
  doi: 10.1111/j.1467-8659.2012.03110.x
– ident: e_1_2_10_7_2
  doi: 10.1109/IV.2014.78
– ident: e_1_2_10_2_2
– ident: e_1_2_10_25_2
  doi: 10.1038/nmeth.3088
– ident: e_1_2_10_27_2
  doi: 10.1145/1357054.1357247
– volume-title: Design patterns: elements of reusable object‐oriented software
  year: 1995
  ident: e_1_2_10_11_2
– ident: e_1_2_10_22_2
  doi: 10.1145/2047196.2047213
– ident: e_1_2_10_23_2
  doi: 10.1109/TVCG.2015.2467551
– ident: e_1_2_10_9_2
  doi: 10.1145/22339.22342
– ident: e_1_2_10_15_2
  doi: 10.1109/MC.2013.36
– ident: e_1_2_10_28_2
– ident: e_1_2_10_21_2
– ident: e_1_2_10_26_2
  doi: 10.1109/TVCG.2011.108
– ident: e_1_2_10_19_2
  doi: 10.1109/MCG.2015.99
– ident: e_1_2_10_29_2
  doi: 10.1111/cgf.12106
– ident: e_1_2_10_14_2
  doi: 10.1109/TVCG.2008.137
– volume-title: Poster Compendium of the IEEE Conference on Information Visualization (InfoVis ’15)
  year: 2015
  ident: e_1_2_10_10_2
SSID ssj0004765
Score 2.3964472
Snippet The primary goal of visual data exploration tools is to enable the discovery of new insights. To justify and reproduce insights, the discovery process needs to...
SourceID pubmedcentral
proquest
pubmed
crossref
wiley
istex
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 491
SubjectTerms Analysis
Categories and Subject Descriptors (according to ACM CCS)
Computer graphics
Data analysis
Exploration
H.5.2 [Information Systems]: Information Interfaces and Presentation-User Interfaces-Graphical user interfaces
Labels
Molecular biology
Nonlinearity
Public health
Studies
Visual
Visualization
Title From Visual Exploration to Storytelling and Back Again
URI https://api.istex.fr/ark:/67375/WNG-BG384GQJ-9/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcgf.12925
https://www.ncbi.nlm.nih.gov/pubmed/27942091
https://www.proquest.com/docview/1801479075
https://www.proquest.com/docview/1825536047
https://www.proquest.com/docview/1852667434
https://pubmed.ncbi.nlm.nih.gov/PMC5145274
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCO Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1467-8659
  dateEnd: 20241103
  omitProxy: true
  ssIdentifier: ssj0004765
  issn: 0167-7055
  databaseCode: ABDBF
  dateStart: 19980301
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1467-8659
  dateEnd: 20241103
  omitProxy: false
  ssIdentifier: ssj0004765
  issn: 0167-7055
  databaseCode: ADMLS
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0167-7055
  databaseCode: DR2
  dateStart: 19970101
  customDbUrl:
  isFulltext: true
  eissn: 1467-8659
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004765
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5V7QUOlDdpSxUQQr1ktYljOxan3UK2qkQlHoUekCzHjpfVttlqHxLi1zN2HuxCQYhbJH-JkvGM_U08_gzwIrZacFfnl9qMRciIWSRcjbspSUKzIo6ZXzF9e8ZOztPTC3qxBa_avTC1PkT3w81Fhh-vXYCrYrEW5HpsezhZJW6DeUyYT6fe_5SOSjmjra63U4xpVIVcFU9358ZctOPM-u0movl7veQ6j_UTUb4LX9pPqOtPpr3Vsujp77-oO_7nN96FOw1BDQe1R92DrbK6D7fXZAsfAMvns6vw02SxQmBdxOf7N1zOwg9u0d6rfFbjUFUmHCo9DQdjNakewnn-5uPxSdScvxDplAsaEUNYiXQpE2mJaQjmUoYW2iBHE4oUad9qqzNqmGWCExELi9kb0aVBjqj6BmfHR7BdzaryCYQ4bJDYMptwzL8QrPpKmH7h6BFXSPADOGp7QupGnNydkXEp2yQFTSG9KQJ43kGva0WOm0AvfXd2CDWfuhI2TuXns5EcjkiWjt6dShHAQdvfsonehYydpA4XyKYCeNY1Y9y5xRRVlbOVw2AyRhj62d8wFPkPcrQ0gMe1C3UvlOBAmCBZC4BvOFcHcLrfmy3V5KvX_0aOSxOOzzzyvvNnK8jjUe4v9v4dug-3kBOyuhruALaX81X5FHnXsjiEncHw9TA_9IH2A93cJig
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD4a2wPwwP2SMSAghPaSqkl8iSVetom2jK0SsLG9IMux41IVUtS10rRfv2PnQgsDId4i-UuUHJ9jf8c--QzwKrZacFfnR2zGImTELBKuxt0UaUKzPI6Z3zE9HLLBMdk_padr8Kb5F6bSh2gX3Fxk-PHaBbhbkF6Kcj2yHZytEnoNNgjDPMVRoo8_xaMIZ7RR9naaMbWukKvjaW9dmY02nGHPr6Kav1dMLjNZPxX1bsOX5iOqCpRJZzHPO_riF33H__3KO3Cr5qjhTuVUd2GtKO_BzSXlwvvAerPp9_Dz-GyBwKqOz3dxOJ-Gn9y-vRf6LEehKk24q_Qk3BmpcfkAjntvj_YGUX0EQ6QJFzRKTcoKZEyZIAVmIphOGZprgzRNqDQnXautzqhhlgmeilhYTOBSXRikiaprcIJ8COvltCweQ4gjRxpbZhOOKRiCVVcJ080dQ-IKOX4A201XSF3rk7tjMr7JJk9BU0hvigBettAflSjHVaDXvj9bhJpNXBUbp_Jk2Je7_TQj_Q_7UgSw1XS4rAP4TMZOVYcLJFQBvGibMfTcfooqi-nCYTAfSxk62t8wFCkQ0jQSwKPKh9oXSnAsTJCvBcBXvKsFOOnv1ZZy_NVLgCPNpQnHZ2575_mzFeRev-cvNv8d-hyuD44OD-TBu-H7J3ADKSKriuO2YH0-WxRPkYbN82c-2i4B_m8o1w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD4am4TggTssMCAghPaSqoljO5Z42YV0DKi4DfaCLMeOu6qQTl0rIX49x86FFgZCvEXKlyixz7G_E3_5DPAktlpwp_NLbcYiZMQsEk7jbkqS0KyIY-ZXTF8P2cFRenhMj9fgWfsvTO0P0X1wc5nhx2uX4OWpsUtZrke2h7NVQi_ARkpF5gR9--9-mkelnNHW2dt5xjS-Qk7H0126MhttuIb9dh7V_F0xucxk_VSUX4XP7UvUCpRJbzEvevr7L_6O__uW1-BKw1HDnTqorsNaWd2Ay0vOhTeB5bPp1_Dj-GyBwFrH57s4nE_D927d3ht9VqNQVSbcVXoS7ozUuLoFR_nzD3sHUbMFQ6RTLmhEDGElMqZMpCVWIlhOGVpogzRNKFKkfautzqhhlglORCwsFnBElwZpouobnCBvw3o1rcpNCHHkILFlNuFYgiFY9ZUw_cIxJK6Q4wew3XaF1I0_udsm44ts6xRsCumbIoDHHfS0NuU4D_TU92eHULOJU7FxKj8NB3J3QLJ08PZQigC22g6XTQKfydi56nCBhCqAR91pTD23nqKqcrpwGKzHCMNA-xuGIgVCmpYGcKeOoe6BEhwLE-RrAfCV6OoAzvp79Uw1PvEW4EhzacLxnts-eP7cCnJvkPuDu_8OfQgX3-zn8tWL4ct7cAkZIqu1cVuwPp8tyvvIwubFA59sPwBvBihb
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=From+Visual+Exploration+to+Storytelling+and+Back+Again&rft.jtitle=Computer+graphics+forum&rft.au=Gratzl%2C+S.&rft.au=Lex%2C+A.&rft.au=Gehlenborg%2C+N.&rft.au=Cosgrove%2C+N.&rft.date=2016-06-01&rft.issn=0167-7055&rft.eissn=1467-8659&rft.volume=35&rft.issue=3&rft.spage=491&rft.epage=500&rft_id=info:doi/10.1111%2Fcgf.12925&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_cgf_12925
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-7055&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-7055&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-7055&client=summon