Myofibril orientation as a metric for characterizing heart disease

Myocyte disarray is a hallmark of many cardiac disorders. However, the relationship between alterations in the orientation of individual myofibrils and myofilaments to disease progression has been largely underexplored. This oversight has predominantly been because of a paucity of methods for object...

Full description

Saved in:
Bibliographic Details
Published inBiophysical journal Vol. 121; no. 4; pp. 565 - 574
Main Authors Ma, Weikang, Gong, Henry, Jani, Vivek, Lee, Kyoung Hwan, Landim-Vieira, Maicon, Papadaki, Maria, Pinto, Jose R., Aslam, M. Imran, Cammarato, Anthony, Irving, Thomas
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 15.02.2022
Elsevier
The Biophysical Society
Subjects
Online AccessGet full text
ISSN0006-3495
1542-0086
1542-0086
DOI10.1016/j.bpj.2022.01.009

Cover

Abstract Myocyte disarray is a hallmark of many cardiac disorders. However, the relationship between alterations in the orientation of individual myofibrils and myofilaments to disease progression has been largely underexplored. This oversight has predominantly been because of a paucity of methods for objective and quantitative analysis. Here, we introduce a novel, less-biased approach to quantify myofibrillar and myofilament orientation in cardiac muscle under near-physiological conditions and demonstrate its superiority as compared with conventional histological assessments. Using small-angle x-ray diffraction, we first investigated changes in myofibrillar orientation at increasing sarcomere lengths in permeabilized, relaxed, wild-type mouse myocardium from the left ventricle by assessing the angular spread of the 1,0 equatorial reflection (angle σ). At a sarcomere length of 1.9 μm, the angle σ was 0.23 ± 0.01 rad, decreased to 0.19 ± 0.01 rad at a sarcomere length of 2.1 μm, and further decreased to 0.15 ± 0.01 rad at a sarcomere length of 2.3 μm (p < 0.0001). Angle σ was significantly larger in R403Q, a MYH7 hypertrophic cardiomyopathy model, porcine myocardium (0.24 ± 0.01 rad) compared with wild-type myocardium (0.14 ± 0.005 rad; p < 0.0001), as well as in human heart failure tissue (0.19 ± 0.006 rad) when compared with nonfailing samples (0.17 ± 0.007 rad; p = 0.01). These data indicate that diseased myocardium suffers from greater myofibrillar disorientation compared with healthy controls. Finally, we showed that conventional, histology-based analysis of disarray can be subject to user bias and/or sampling error and lead to false positives. Our method for directly assessing myofibrillar orientation avoids the artifacts introduced by conventional histological approaches that assess myocyte orientation and only indirectly evaluate myofibrillar orientation, and provides a precise and objective metric for phenotypically characterizing myocardium. The ability to obtain excellent x-ray diffraction patterns from frozen human myocardium provides a new tool for investigating structural anomalies associated with cardiac diseases.
AbstractList Myocyte disarray is a hallmark of many cardiac disorders. However, the relationship between alterations in the orientation of individual myofibrils and myofilaments to disease progression has been largely underexplored. This oversight has predominantly been because of a paucity of methods for objective and quantitative analysis. Here, we introduce a novel, less-biased approach to quantify myofibrillar and myofilament orientation in cardiac muscle under near-physiological conditions and demonstrate its superiority as compared with conventional histological assessments. Using small-angle x-ray diffraction, we first investigated changes in myofibrillar orientation at increasing sarcomere lengths in permeabilized, relaxed, wild-type mouse myocardium from the left ventricle by assessing the angular spread of the 1,0 equatorial reflection (angle σ). At a sarcomere length of 1.9 μm, the angle σ was 0.23 ± 0.01 rad, decreased to 0.19 ± 0.01 rad at a sarcomere length of 2.1 μm, and further decreased to 0.15 ± 0.01 rad at a sarcomere length of 2.3 μm (p < 0.0001). Angle σ was significantly larger in R403Q, a MYH7 hypertrophic cardiomyopathy model, porcine myocardium (0.24 ± 0.01 rad) compared with wild-type myocardium (0.14 ± 0.005 rad; p < 0.0001), as well as in human heart failure tissue (0.19 ± 0.006 rad) when compared with nonfailing samples (0.17 ± 0.007 rad; p = 0.01). These data indicate that diseased myocardium suffers from greater myofibrillar disorientation compared with healthy controls. Finally, we showed that conventional, histology-based analysis of disarray can be subject to user bias and/or sampling error and lead to false positives. Our method for directly assessing myofibrillar orientation avoids the artifacts introduced by conventional histological approaches that assess myocyte orientation and only indirectly evaluate myofibrillar orientation, and provides a precise and objective metric for phenotypically characterizing myocardium. The ability to obtain excellent x-ray diffraction patterns from frozen human myocardium provides a new tool for investigating structural anomalies associated with cardiac diseases.
Myocyte disarray is a hallmark of many cardiac disorders. However, the relationship between alterations in the orientation of individual myofibrils and myofilaments to disease progression has been largely underexplored. This oversight has predominantly been because of a paucity of methods for objective and quantitative analysis. Here, we introduce a novel, less-biased approach to quantify myofibrillar and myofilament orientation in cardiac muscle under near-physiological conditions and demonstrate its superiority as compared with conventional histological assessments. Using small-angle x-ray diffraction, we first investigated changes in myofibrillar orientation at increasing sarcomere lengths in permeabilized, relaxed, wild-type mouse myocardium from the left ventricle by assessing the angular spread of the 1,0 equatorial reflection (angle σ). At a sarcomere length of 1.9 μm, the angle σ was 0.23 ± 0.01 rad, decreased to 0.19 ± 0.01 rad at a sarcomere length of 2.1 μm, and further decreased to 0.15 ± 0.01 rad at a sarcomere length of 2.3 μm (p < 0.0001). Angle σ was significantly larger in R403Q, a MYH7 hypertrophic cardiomyopathy model, porcine myocardium (0.24 ± 0.01 rad) compared with wild-type myocardium (0.14 ± 0.005 rad; p < 0.0001), as well as in human heart failure tissue (0.19 ± 0.006 rad) when compared with nonfailing samples (0.17 ± 0.007 rad; p = 0.01). These data indicate that diseased myocardium suffers from greater myofibrillar disorientation compared with healthy controls. Finally, we showed that conventional, histology-based analysis of disarray can be subject to user bias and/or sampling error and lead to false positives. Our method for directly assessing myofibrillar orientation avoids the artifacts introduced by conventional histological approaches that assess myocyte orientation and only indirectly evaluate myofibrillar orientation, and provides a precise and objective metric for phenotypically characterizing myocardium. The ability to obtain excellent x-ray diffraction patterns from frozen human myocardium provides a new tool for investigating structural anomalies associated with cardiac diseases.Myocyte disarray is a hallmark of many cardiac disorders. However, the relationship between alterations in the orientation of individual myofibrils and myofilaments to disease progression has been largely underexplored. This oversight has predominantly been because of a paucity of methods for objective and quantitative analysis. Here, we introduce a novel, less-biased approach to quantify myofibrillar and myofilament orientation in cardiac muscle under near-physiological conditions and demonstrate its superiority as compared with conventional histological assessments. Using small-angle x-ray diffraction, we first investigated changes in myofibrillar orientation at increasing sarcomere lengths in permeabilized, relaxed, wild-type mouse myocardium from the left ventricle by assessing the angular spread of the 1,0 equatorial reflection (angle σ). At a sarcomere length of 1.9 μm, the angle σ was 0.23 ± 0.01 rad, decreased to 0.19 ± 0.01 rad at a sarcomere length of 2.1 μm, and further decreased to 0.15 ± 0.01 rad at a sarcomere length of 2.3 μm (p < 0.0001). Angle σ was significantly larger in R403Q, a MYH7 hypertrophic cardiomyopathy model, porcine myocardium (0.24 ± 0.01 rad) compared with wild-type myocardium (0.14 ± 0.005 rad; p < 0.0001), as well as in human heart failure tissue (0.19 ± 0.006 rad) when compared with nonfailing samples (0.17 ± 0.007 rad; p = 0.01). These data indicate that diseased myocardium suffers from greater myofibrillar disorientation compared with healthy controls. Finally, we showed that conventional, histology-based analysis of disarray can be subject to user bias and/or sampling error and lead to false positives. Our method for directly assessing myofibrillar orientation avoids the artifacts introduced by conventional histological approaches that assess myocyte orientation and only indirectly evaluate myofibrillar orientation, and provides a precise and objective metric for phenotypically characterizing myocardium. The ability to obtain excellent x-ray diffraction patterns from frozen human myocardium provides a new tool for investigating structural anomalies associated with cardiac diseases.
Author Landim-Vieira, Maicon
Papadaki, Maria
Aslam, M. Imran
Irving, Thomas
Lee, Kyoung Hwan
Ma, Weikang
Gong, Henry
Pinto, Jose R.
Cammarato, Anthony
Jani, Vivek
Author_xml – sequence: 1
  givenname: Weikang
  orcidid: 0000-0001-9535-7114
  surname: Ma
  fullname: Ma, Weikang
  email: wma6@iit.edu
  organization: BioCAT, Department of Biology, Illinois Institute of Technology, Chicago, Illinois
– sequence: 2
  givenname: Henry
  surname: Gong
  fullname: Gong, Henry
  organization: BioCAT, Department of Biology, Illinois Institute of Technology, Chicago, Illinois
– sequence: 3
  givenname: Vivek
  orcidid: 0000-0002-3811-4973
  surname: Jani
  fullname: Jani, Vivek
  organization: Department of Biomedical Engineering, The Johns Hopkins School of Medicine, The Johns Hopkins University, Baltimore, Maryland
– sequence: 4
  givenname: Kyoung Hwan
  surname: Lee
  fullname: Lee, Kyoung Hwan
  organization: Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, Massachusetts
– sequence: 5
  givenname: Maicon
  orcidid: 0000-0002-6696-8888
  surname: Landim-Vieira
  fullname: Landim-Vieira, Maicon
  organization: Department of Biomedical Sciences, Florida State University, Tallahassee, Florida
– sequence: 6
  givenname: Maria
  orcidid: 0000-0001-8903-7085
  surname: Papadaki
  fullname: Papadaki, Maria
  organization: Department of Cell and Molecular Physiology, Loyola University Chicago, Chicago, Illinois
– sequence: 7
  givenname: Jose R.
  surname: Pinto
  fullname: Pinto, Jose R.
  organization: Department of Biomedical Sciences, Florida State University, Tallahassee, Florida
– sequence: 8
  givenname: M. Imran
  orcidid: 0000-0003-4560-8661
  surname: Aslam
  fullname: Aslam, M. Imran
  organization: Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
– sequence: 9
  givenname: Anthony
  surname: Cammarato
  fullname: Cammarato, Anthony
  organization: Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
– sequence: 10
  givenname: Thomas
  orcidid: 0000-0003-4848-3323
  surname: Irving
  fullname: Irving, Thomas
  organization: BioCAT, Department of Biology, Illinois Institute of Technology, Chicago, Illinois
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35032456$$D View this record in MEDLINE/PubMed
https://www.osti.gov/biblio/1842878$$D View this record in Osti.gov
BookMark eNp9kU9v1DAQxS1URLeFD8AFRZy4JIwdx3aEhFQq_klFXOBsOc6461XWXmxvpfLp8bKlAg49-TDvjd-b3xk5CTEgIc8pdBSoeL3ppt2mY8BYB7QDGB-RFR04awGUOCErABBtz8fhlJzlvAGgbAD6hJz2A_SMD2JF3n25jc5PyS9NTB5DMcXH0JjcmGaLJXnbuJgauzbJ2ILJ__ThulmjSaWZfUaT8Sl57MyS8dnde06-f3j_7fJTe_X14-fLi6vWcqlKiyNVPZ2FtRyo4pQZ6xQbGaLgwgxInXRcglMC0Dg7GTnxaZzlREcqx7nvz8nb497dftribGvYZBa9S35r0q2Oxut_J8Gv9XW80UpJDmyoC14eF8RcvM7WF7RrG0NAW3SNxJRUVfTq7pcUf-wxF7312eKymIBxnzUTrF4XqrpKX_wd6D7Jn-tWAT0KbIo5J3T3Egr6QFBvdCWoDwQ1UF0JVo_8z1Nz_oZSO_nlQeeboxMrhBuP6VARg8XZp0PDOfoH3L8AfXW1tw
CitedBy_id crossref_primary_10_1016_j_isci_2024_109954
crossref_primary_10_3390_ijms24108474
crossref_primary_10_1063_5_0096188
crossref_primary_10_1085_jgp_202313345
crossref_primary_10_1093_pnasnexus_pgae039
crossref_primary_10_1073_pnas_2209441119
crossref_primary_10_1085_jgp_202413545
crossref_primary_10_1073_pnas_2413883121
crossref_primary_10_3390_ijms23063052
crossref_primary_10_3390_ijms241914572
crossref_primary_10_1016_j_molmet_2024_102084
crossref_primary_10_1089_ten_tea_2022_0172
crossref_primary_10_3390_ijms232314517
crossref_primary_10_1073_pnas_2221244120
crossref_primary_10_1073_pnas_2314914121
crossref_primary_10_1085_jgp_202213213
Cites_doi 10.1016/j.yjmcc.2018.08.015
10.1007/s00424-019-02259-2
10.1016/S0008-6363(97)00275-7
10.1161/CIRCRESAHA.120.318647
10.1136/hrt.2003.025270
10.1126/sciadv.1601959
10.1073/pnas.2001692117
10.1016/S0006-3495(85)83921-7
10.1016/j.yexcr.2004.08.004
10.1085/jgp.201812196
10.1107/S0909049504016760
10.1073/pnas.0909468107
10.1093/eurheartj/suz212
10.1085/jgp.201812307
10.1083/jcb.96.2.562
10.1097/00003677-200304000-00004
10.1016/S0002-9149(01)01640-X
10.1073/pnas.1809540115
10.1038/s41598-020-76809-5
10.1161/CIRCRESAHA.117.311059
10.1161/01.CIR.60.3.685
10.21037/cdt.2019.02.01
10.1016/0022-2836(73)90222-2
10.1111/j.1365-2559.1995.tb00267.x
10.1038/s41591-018-0046-2
10.1016/j.jacbts.2020.05.014
10.1161/CIRCULATIONAHA.120.052414
10.1073/pnas.1920632117
10.1242/jeb.201.1.135
10.1001/jama.2020.10262
10.1161/CIRCRESAHA.111.300096
10.1016/j.yexcr.2007.03.033
10.1080/03008200390244005
10.1161/res.129.suppl_1.P505
10.1083/jcb.118.6.1411
10.3390/ijms19092643
10.1038/s41467-020-15922-5
10.1016/0092-8674(79)90218-6
10.1113/JP280402
10.1016/j.yjmcc.2015.10.035
10.1007/s00424-004-1354-6
10.1161/CIRCULATIONAHA.113.001878
10.1016/0092-8674(90)90274-I
10.1126/scitranslmed.aad2899
10.1073/pnas.1516732113
10.3389/fphys.2020.00092
10.1016/S0006-3495(85)83841-8
10.1146/annurev.bb.09.060180.000501
10.1016/S0006-3495(95)80278-X
10.1126/science.aad3456
10.4103/jomfp.JOMFP_125_15
ContentType Journal Article
Copyright 2022 Biophysical Society
Copyright © 2022 Biophysical Society. Published by Elsevier Inc. All rights reserved.
2022 Biophysical Society. 2022 Biophysical Society
Copyright_xml – notice: 2022 Biophysical Society
– notice: Copyright © 2022 Biophysical Society. Published by Elsevier Inc. All rights reserved.
– notice: 2022 Biophysical Society. 2022 Biophysical Society
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
OTOTI
5PM
DOI 10.1016/j.bpj.2022.01.009
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
OSTI.GOV
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1542-0086
EndPage 574
ExternalDocumentID PMC8874025
1842878
35032456
10_1016_j_bpj_2022_01_009
S0006349522000388
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: P30 GM138395
– fundername: NIGMS NIH HHS
  grantid: P41 GM103622
– fundername: NIGMS NIH HHS
  grantid: T32 GM136577
GroupedDBID ---
-DZ
-~X
.55
0R~
23N
2WC
4.4
457
5GY
5RE
62-
6I.
6J9
AACTN
AAEDW
AAFTH
AAIAV
AAKRW
AALRI
AAUCE
AAVLU
AAXUO
ABJNI
ABMAC
ABMWF
ABVKL
ACBEA
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACPRK
ADBBV
ADEZE
ADJPV
AENEX
AEXQZ
AFRAH
AFTJW
AGKMS
AHMBA
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
AYCSE
AZFZN
BAWUL
CS3
D0L
DIK
DU5
E3Z
EBS
EJD
F5P
FCP
FDB
FRP
HYE
IH2
IXB
JIG
KQ8
L7B
M41
N9A
O-L
O9-
OK1
P2P
RCE
RNS
ROL
RPM
RWL
SES
SSZ
TAE
TBP
TN5
WH7
WOQ
WOW
WQ6
X7M
YNY
YWH
ZA5
~02
--K
.GJ
3O-
53G
6TJ
7X2
7X7
88E
88I
8AF
8AO
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
AAEDT
AAIKJ
AAMRU
AAQXK
AAYWO
AAYXX
ABDGV
ABUWG
ABWVN
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
ADXHL
AEUPX
AEUYN
AFKRA
AFPUW
AGHFR
AGQPQ
AI.
AIGII
AITUG
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
ARAPS
ASPBG
ATCPS
AVWKF
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
CCPQU
CITATION
DWQXO
EFKBS
FEDTE
FGOYB
FYUFA
G-2
GNUQQ
GUQSH
GX1
H13
HCIFZ
HMCUK
HVGLF
HX~
HZ~
LK8
M0K
M1P
M2O
M2P
M2Q
M7P
MVM
OZT
P62
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PRG
PROAC
PSQYO
PUEGO
Q2X
R2-
S0X
UKHRP
UKR
VH1
YYP
ZGI
ZXP
~KM
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
7X8
OTOTI
5PM
ID FETCH-LOGICAL-c478t-e91831d6cc4018412acf8292ee646a5e1f7f470f860eafcba7b4b9d7b19179d33
IEDL.DBID IXB
ISSN 0006-3495
1542-0086
IngestDate Tue Sep 30 17:16:35 EDT 2025
Fri May 19 00:47:33 EDT 2023
Sun Sep 28 00:58:28 EDT 2025
Thu Apr 03 07:01:04 EDT 2025
Wed Oct 01 05:25:03 EDT 2025
Thu Apr 24 23:11:51 EDT 2025
Fri Feb 23 02:41:16 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License This is an open access article under the CC BY license.
Copyright © 2022 Biophysical Society. Published by Elsevier Inc. All rights reserved.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c478t-e91831d6cc4018412acf8292ee646a5e1f7f470f860eafcba7b4b9d7b19179d33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
USDOE
AC02-06CH11357; P41 GM103622
ORCID 0000-0002-3811-4973
0000-0002-6696-8888
0000-0001-8903-7085
0000-0003-4560-8661
0000-0001-9535-7114
0000-0003-4848-3323
0000000189037085
0000000266968888
0000000195357114
0000000348483323
0000000238114973
0000000345608661
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0006349522000388
PMID 35032456
PQID 2620080842
PQPubID 23479
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8874025
osti_scitechconnect_1842878
proquest_miscellaneous_2620080842
pubmed_primary_35032456
crossref_primary_10_1016_j_bpj_2022_01_009
crossref_citationtrail_10_1016_j_bpj_2022_01_009
elsevier_sciencedirect_doi_10_1016_j_bpj_2022_01_009
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-02-15
PublicationDateYYYYMMDD 2022-02-15
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-15
  day: 15
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Biophysical journal
PublicationTitleAlternate Biophys J
PublicationYear 2022
Publisher Elsevier Inc
Elsevier
The Biophysical Society
Publisher_xml – name: Elsevier Inc
– name: Elsevier
– name: The Biophysical Society
References Varnava, Elliott, McKenna (bib7) 2001; 88
Blair, Brundage, Campbell (bib28) 2020; 5
Jiratrakanvong, Shao, Irving (bib31) 2018
Mosterd, Hoes (bib12) 2007; 93
Brenner, Yu (bib19) 1985; 48
Paulin, Li (bib35) 2004; 301
Sheng, Feng, Jin (bib39) 2016; 99
Madan, Viswanathan, Cammarato (bib4) 2020; 117
Anderson, Trivedi, Spudich (bib25) 2018; 115
Danowski, Imanaka-Yoshida, Sanger (bib38) 1992; 118
Marian, Braunwald (bib10) 2017; 121
Kawana, Sarkar, Spudich (bib29) 2017; 3
Chen, Caporizzo, Prosser (bib26) 2018; 24
Purslow, Wess, Hukins (bib22) 1998; 201
Ma, Gong, Irving (bib16) 2018; 19
Granger, Lazarides (bib34) 1979; 18
Geisterfer-Lowrance, Kass, Seidman (bib23) 1990; 62
Novo Matos, Garcia-Canadilla, Luis Fuentes (bib8) 2020; 10
Bloch, Gonzalez-Serratos (bib37) 2003; 31
Gonzalez-Martinez, Johnston, Pinto (bib6) 2018; 123
Taqi, Sami, Zaki (bib51) 2018; 22
Granzier, Irving (bib32) 1995; 68
Spudich (bib48) 2019; 471
Irving, Craig (bib49) 2019; 151
Stewart, Franks-Skiba, Cooke (bib46) 2010; 107
Murphy, Ibrahim, Januzzi (bib13) 2020; 324
Viswanathan, Schmidt, Cammarato (bib5) 2020; 11
Matsubara (bib18) 1980; 9
Brunello, Fusi, Irving (bib3) 2020; 117
Seferovic, Polovina, Coats (bib11) 2019; 21
Kirk, Chakir, Kass (bib14) 2015; 7
Mollenhauer, Aurich, Irving (bib21) 2003; 44
Ma, Childers, Regnier (bib15) 2020; 598
Capetanaki, Bloch, Psarras (bib40) 2007; 313
Caremani, Pinzauti, Piazzesi (bib2) 2019; 151
Fukuda, Wu, Granzier (bib33) 2005; 449
Pitoulis, Terracciano (bib41) 2020; 11
Maron, Sato, Chandra (bib44) 1979; 60
Ait-Mou, Hsu, de Tombe (bib1) 2016; 113
Green, Wakimoto, Seidman (bib24) 2016; 351
Davies, McKenna (bib45) 1995; 26
Burchfield, Xie, Hill (bib43) 2013; 128
Wolf (bib9) 2019; 9
Yu, Steven, Naylor, Gamble, Podolsky (bib52) 1985; 47
Jani, Aslam, Hsu (bib50) 2021; 129
Wang, Ramirez-Mitchell (bib36) 1983; 96
Aslam, Hahn, Kass (bib27) 2021; 143
Fischetti, Stepanov, Bunker (bib30) 2004; 11
Ma, Henze, Irving (bib47) 2021; 129
Shirai, Schwenke, Pearson (bib20) 2013; 112
de Tombe (bib42) 1998; 37
Haselgrove, Huxley (bib17) 1973; 77
Sheng (10.1016/j.bpj.2022.01.009_bib39) 2016; 99
Blair (10.1016/j.bpj.2022.01.009_bib28) 2020; 5
Fischetti (10.1016/j.bpj.2022.01.009_bib30) 2004; 11
Jani (10.1016/j.bpj.2022.01.009_bib50) 2021; 129
Kawana (10.1016/j.bpj.2022.01.009_bib29) 2017; 3
Irving (10.1016/j.bpj.2022.01.009_bib49) 2019; 151
Murphy (10.1016/j.bpj.2022.01.009_bib13) 2020; 324
Ma (10.1016/j.bpj.2022.01.009_bib47) 2021; 129
Gonzalez-Martinez (10.1016/j.bpj.2022.01.009_bib6) 2018; 123
de Tombe (10.1016/j.bpj.2022.01.009_bib42) 1998; 37
Marian (10.1016/j.bpj.2022.01.009_bib10) 2017; 121
Mollenhauer (10.1016/j.bpj.2022.01.009_bib21) 2003; 44
Maron (10.1016/j.bpj.2022.01.009_bib44) 1979; 60
Caremani (10.1016/j.bpj.2022.01.009_bib2) 2019; 151
Shirai (10.1016/j.bpj.2022.01.009_bib20) 2013; 112
Geisterfer-Lowrance (10.1016/j.bpj.2022.01.009_bib23) 1990; 62
Jiratrakanvong (10.1016/j.bpj.2022.01.009_bib31)
Brunello (10.1016/j.bpj.2022.01.009_bib3) 2020; 117
Stewart (10.1016/j.bpj.2022.01.009_bib46) 2010; 107
Anderson (10.1016/j.bpj.2022.01.009_bib25) 2018; 115
Burchfield (10.1016/j.bpj.2022.01.009_bib43) 2013; 128
Ma (10.1016/j.bpj.2022.01.009_bib16) 2018; 19
Spudich (10.1016/j.bpj.2022.01.009_bib48) 2019; 471
Davies (10.1016/j.bpj.2022.01.009_bib45) 1995; 26
Varnava (10.1016/j.bpj.2022.01.009_bib7) 2001; 88
Madan (10.1016/j.bpj.2022.01.009_bib4) 2020; 117
Taqi (10.1016/j.bpj.2022.01.009_bib51) 2018; 22
Wang (10.1016/j.bpj.2022.01.009_bib36) 1983; 96
Green (10.1016/j.bpj.2022.01.009_bib24) 2016; 351
Matsubara (10.1016/j.bpj.2022.01.009_bib18) 1980; 9
Seferovic (10.1016/j.bpj.2022.01.009_bib11) 2019; 21
Mosterd (10.1016/j.bpj.2022.01.009_bib12) 2007; 93
Paulin (10.1016/j.bpj.2022.01.009_bib35) 2004; 301
Fukuda (10.1016/j.bpj.2022.01.009_bib33) 2005; 449
Novo Matos (10.1016/j.bpj.2022.01.009_bib8) 2020; 10
Chen (10.1016/j.bpj.2022.01.009_bib26) 2018; 24
Kirk (10.1016/j.bpj.2022.01.009_bib14) 2015; 7
Capetanaki (10.1016/j.bpj.2022.01.009_bib40) 2007; 313
Bloch (10.1016/j.bpj.2022.01.009_bib37) 2003; 31
Granger (10.1016/j.bpj.2022.01.009_bib34) 1979; 18
Granzier (10.1016/j.bpj.2022.01.009_bib32) 1995; 68
Haselgrove (10.1016/j.bpj.2022.01.009_bib17) 1973; 77
Danowski (10.1016/j.bpj.2022.01.009_bib38) 1992; 118
Purslow (10.1016/j.bpj.2022.01.009_bib22) 1998; 201
Aslam (10.1016/j.bpj.2022.01.009_bib27) 2021; 143
Ait-Mou (10.1016/j.bpj.2022.01.009_bib1) 2016; 113
Brenner (10.1016/j.bpj.2022.01.009_bib19) 1985; 48
Wolf (10.1016/j.bpj.2022.01.009_bib9) 2019; 9
Ma (10.1016/j.bpj.2022.01.009_bib15) 2020; 598
Yu (10.1016/j.bpj.2022.01.009_bib52) 1985; 47
Pitoulis (10.1016/j.bpj.2022.01.009_bib41) 2020; 11
Viswanathan (10.1016/j.bpj.2022.01.009_bib5) 2020; 11
References_xml – volume: 31
  start-page: 73
  year: 2003
  end-page: 78
  ident: bib37
  article-title: Lateral force transmission across costameres in skeletal muscle
  publication-title: Exerc. Sport Sci. Rev.
– volume: 117
  start-page: 8177
  year: 2020
  end-page: 8186
  ident: bib3
  article-title: Myosin filament-based regulation of the dynamics of contraction in heart muscle
  publication-title: Proc. Natl. Acad. Sci. U S A
– volume: 22
  start-page: 279
  year: 2018
  ident: bib51
  article-title: A review of artifacts in histopathology
  publication-title: J. Oral Maxillofac. Pathol.
– volume: 324
  start-page: 488
  year: 2020
  end-page: 504
  ident: bib13
  article-title: Heart failure with reduced ejection fraction: a review
  publication-title: JAMA
– volume: 18
  start-page: 1053
  year: 1979
  end-page: 1063
  ident: bib34
  article-title: Desmin and vimentin coexist at the periphery of the myofibril Z disc
  publication-title: Cell
– volume: 351
  start-page: 617
  year: 2016
  end-page: 621
  ident: bib24
  article-title: A small-molecule inhibitor of sarcomere contractility suppresses hypertrophic cardiomyopathy in mice
  publication-title: Science
– volume: 471
  start-page: 701
  year: 2019
  end-page: 717
  ident: bib48
  article-title: Three perspectives on the molecular basis of hypercontractility caused by hypertrophic cardiomyopathy mutations
  publication-title: Pflugers Arch.
– volume: 449
  start-page: 449
  year: 2005
  end-page: 457
  ident: bib33
  article-title: Titin-based modulation of active tension and interfilament lattice spacing in skinned rat cardiac muscle
  publication-title: Pflugers Arch.
– volume: 117
  start-page: 18822
  year: 2020
  end-page: 18831
  ident: bib4
  article-title: TNNT2 mutations in the tropomyosin binding region of TNT1 disrupt its role in contractile inhibition and stimulate cardiac dysfunction
  publication-title: Proc. Natl. Acad. Sci. U S A
– volume: 201
  start-page: 135
  year: 1998
  end-page: 142
  ident: bib22
  article-title: Collagen orientation and molecular spacing during creep and stress-relaxation in soft connective tissues
  publication-title: J. Exp. Biol.
– volume: 5
  start-page: 786
  year: 2020
  end-page: 798
  ident: bib28
  article-title: Heart failure in humans reduces contractile force in myocardium from both ventricles
  publication-title: JACC Basic Transl. Sci.
– volume: 21
  start-page: M40
  year: 2019
  end-page: M43
  ident: bib11
  article-title: Heart failure in dilated non-ischaemic cardiomyopathy
  publication-title: Eur. Heart J. Suppl.
– volume: 11
  start-page: 92
  year: 2020
  ident: bib41
  article-title: Heart plasticity in response to pressure- and volume-overload: a review of findings in compensated and decompensated phenotypes
  publication-title: Front. Physiol.
– volume: 128
  start-page: 388
  year: 2013
  end-page: 400
  ident: bib43
  article-title: Pathological ventricular remodeling: mechanisms: part 1 of 2
  publication-title: Circulation
– volume: 7
  start-page: 319ra207
  year: 2015
  ident: bib14
  article-title: Pacemaker-induced transient asynchrony suppresses heart failure progression
  publication-title: Sci. Transl. Med.
– volume: 9
  start-page: 81
  year: 1980
  end-page: 105
  ident: bib18
  article-title: X-ray diffraction studies of the heart
  publication-title: Annu. Rev. Biophys. Bioeng.
– volume: 123
  start-page: 26
  year: 2018
  end-page: 37
  ident: bib6
  article-title: Structural and functional impact of troponin C-mediated Ca(2+) sensitization on myofilament lattice spacing and cross-bridge mechanics in mouse cardiac muscle
  publication-title: J. Mol. Cell. Cardiol.
– volume: 301
  start-page: 1
  year: 2004
  end-page: 7
  ident: bib35
  article-title: Desmin: a major intermediate filament protein essential for the structural integrity and function of muscle
  publication-title: Exp. Cell Res.
– volume: 118
  start-page: 1411
  year: 1992
  end-page: 1420
  ident: bib38
  article-title: Costameres are sites of force transmission to the substratum in adult rat cardiomyocytes
  publication-title: J. Cell Biol.
– volume: 47
  start-page: 311
  year: 1985
  end-page: 321
  ident: bib52
  article-title: Distribution of mass in relaxed frog skeletal muscle and its redistribution upon activation
  publication-title: Biophys J
– volume: 60
  start-page: 685
  year: 1979
  end-page: 696
  ident: bib44
  article-title: Quantitative analysis of cardiac muscle cell disorganization in the ventricular septum. Comparison of fetuses and infants with and without congenital heart disease and patients with hypertrophic cardiomyopathy
  publication-title: Circulation
– volume: 93
  start-page: 1137
  year: 2007
  end-page: 1146
  ident: bib12
  article-title: Clinical epidemiology of heart failure
  publication-title: Heart
– volume: 24
  start-page: 1225
  year: 2018
  end-page: 1233
  ident: bib26
  article-title: Suppression of detyrosinated microtubules improves cardiomyocyte function in human heart failure
  publication-title: Nat. Med.
– volume: 151
  start-page: 610
  year: 2019
  end-page: 613
  ident: bib49
  article-title: Getting into the thick (and thin) of it
  publication-title: J. Gen. Physiol.
– volume: 107
  start-page: 430
  year: 2010
  end-page: 435
  ident: bib46
  article-title: Myosin ATP turnover rate is a mechanism involved in thermogenesis in resting skeletal muscle fibers
  publication-title: Proc. Natl. Acad. Sci. U S A
– volume: 121
  start-page: 749
  year: 2017
  end-page: 770
  ident: bib10
  article-title: Hypertrophic cardiomyopathy: genetics, pathogenesis, clinical manifestations, diagnosis, and therapy
  publication-title: Circ. Res.
– volume: 44
  start-page: 201
  year: 2003
  end-page: 207
  ident: bib21
  article-title: X-ray diffraction of the molecular substructure of human articular cartilage
  publication-title: Connect. Tissue Res.
– volume: 19
  start-page: 2643
  year: 2018
  ident: bib16
  article-title: Myosin head configurations in resting and contracting murine skeletal muscle
  publication-title: Int. J. Mol. Sci.
– volume: 88
  start-page: 275
  year: 2001
  end-page: 279
  ident: bib7
  article-title: Relation between myocyte disarray and outcome in hypertrophic cardiomyopathy
  publication-title: Am. J. Cardiol.
– volume: 9
  start-page: S388
  year: 2019
  end-page: S415
  ident: bib9
  article-title: Hypertrophic cardiomyopathy: genetics and clinical perspectives
  publication-title: Cardiovasc. Diagn. Ther.
– volume: 598
  start-page: 5165
  year: 2020
  end-page: 5182
  ident: bib15
  article-title: Myosin dynamics during relaxation in mouse soleus muscle and modulation by 2'-deoxy-ATP
  publication-title: J. Physiol.
– volume: 10
  start-page: 20169
  year: 2020
  ident: bib8
  article-title: Micro-computed tomography (micro-CT) for the assessment of myocardial disarray, fibrosis and ventricular mass in a feline model of hypertrophic cardiomyopathy
  publication-title: Sci. Rep.
– year: 2018
  ident: bib31
  article-title: MuscleX: software suite for diffraction X-ray imaging V1.13.1
– volume: 68
  start-page: 1027
  year: 1995
  end-page: 1044
  ident: bib32
  article-title: Passive tension in cardiac muscle: contribution of collagen, titin, microtubules, and intermediate filaments
  publication-title: Biophys. J.
– volume: 113
  start-page: 2306
  year: 2016
  end-page: 2311
  ident: bib1
  article-title: Titin strain contributes to the Frank-Starling law of the heart by structural rearrangements of both thin- and thick-filament proteins
  publication-title: Proc. Natl. Acad. Sci. U S A
– volume: 151
  start-page: 53
  year: 2019
  end-page: 65
  ident: bib2
  article-title: Inotropic interventions do not change the resting state of myosin motors during cardiac diastole
  publication-title: J. Gen. Physiol.
– volume: 3
  start-page: e1601959
  year: 2017
  ident: bib29
  article-title: Biophysical properties of human beta-cardiac myosin with converter mutations that cause hypertrophic cardiomyopathy
  publication-title: Sci. Adv.
– volume: 313
  start-page: 2063
  year: 2007
  end-page: 2076
  ident: bib40
  article-title: Muscle intermediate filaments and their links to membranes and membranous organelles
  publication-title: Exp. Cell Res.
– volume: 96
  start-page: 562
  year: 1983
  end-page: 570
  ident: bib36
  article-title: A network of transverse and longitudinal intermediate filaments is associated with sarcomeres of adult vertebrate skeletal muscle
  publication-title: J. Cell Biol.
– volume: 11
  start-page: 2417
  year: 2020
  ident: bib5
  article-title: A role for actin flexibility in thin filament-mediated contractile regulation and myopathy
  publication-title: Nat. Commun.
– volume: 143
  start-page: 965
  year: 2021
  end-page: 967
  ident: bib27
  article-title: Reduced right ventricular sarcomere contractility in heart failure with preserved ejection fraction and severe obesity
  publication-title: Circulation
– volume: 62
  start-page: 999
  year: 1990
  end-page: 1006
  ident: bib23
  article-title: A molecular basis for familial hypertrophic cardiomyopathy: a beta cardiac myosin heavy chain gene missense mutation
  publication-title: Cell
– volume: 129
  start-page: 617
  year: 2021
  end-page: 630
  ident: bib47
  article-title: The super-relaxed state and length dependent activation in porcine myocardium
  publication-title: Circ. Res.
– volume: 77
  start-page: 549
  year: 1973
  end-page: 568
  ident: bib17
  article-title: X-ray evidence for radial cross-bridge movement and for the sliding filament model in actively contracting skeletal muscle
  publication-title: J. Mol. Biol.
– volume: 99
  start-page: 218
  year: 2016
  end-page: 229
  ident: bib39
  article-title: Increases of desmin and alpha-actinin in mouse cardiac myofibrils as a response to diastolic dysfunction
  publication-title: J. Mol. Cell. Cardiol.
– volume: 37
  start-page: 367
  year: 1998
  end-page: 380
  ident: bib42
  article-title: Altered contractile function in heart failure
  publication-title: Cardiovasc. Res.
– volume: 129
  start-page: AP505
  year: 2021
  ident: bib50
  article-title: RV sarcomeres from LV-HFrEF patients with low PAPi have abnormal RV thick filament structure
  publication-title: Circ. Res.
– volume: 26
  start-page: 493
  year: 1995
  end-page: 500
  ident: bib45
  article-title: Hypertrophic cardiomyopathy--pathology and pathogenesis
  publication-title: Histopathology
– volume: 112
  start-page: 209
  year: 2013
  end-page: 221
  ident: bib20
  article-title: Synchrotron radiation imaging for advancing our understanding of cardiovascular function
  publication-title: Circ. Res.
– volume: 48
  start-page: 829
  year: 1985
  end-page: 834
  ident: bib19
  article-title: Equatorial x-ray diffraction from single skinned rabbit psoas fibers at various degrees of activation. Changes in intensities and lattice spacing
  publication-title: Biophys. J.
– volume: 115
  start-page: E8143
  year: 2018
  end-page: E8152
  ident: bib25
  article-title: Deciphering the super relaxed state of human beta-cardiac myosin and the mode of action of mavacamten from myosin molecules to muscle fibers
  publication-title: Proc. Natl. Acad. Sci. U S A
– volume: 11
  start-page: 399
  year: 2004
  end-page: 405
  ident: bib30
  article-title: The BioCAT undulator beamline 18ID: a facility for biological non-crystalline diffraction and X-ray absorption spectroscopy at the advanced photon source
  publication-title: J. Synchrotron Radiat.
– volume: 123
  start-page: 26
  year: 2018
  ident: 10.1016/j.bpj.2022.01.009_bib6
  article-title: Structural and functional impact of troponin C-mediated Ca(2+) sensitization on myofilament lattice spacing and cross-bridge mechanics in mouse cardiac muscle
  publication-title: J. Mol. Cell. Cardiol.
  doi: 10.1016/j.yjmcc.2018.08.015
– volume: 471
  start-page: 701
  year: 2019
  ident: 10.1016/j.bpj.2022.01.009_bib48
  article-title: Three perspectives on the molecular basis of hypercontractility caused by hypertrophic cardiomyopathy mutations
  publication-title: Pflugers Arch.
  doi: 10.1007/s00424-019-02259-2
– volume: 37
  start-page: 367
  year: 1998
  ident: 10.1016/j.bpj.2022.01.009_bib42
  article-title: Altered contractile function in heart failure
  publication-title: Cardiovasc. Res.
  doi: 10.1016/S0008-6363(97)00275-7
– volume: 129
  start-page: 617
  year: 2021
  ident: 10.1016/j.bpj.2022.01.009_bib47
  article-title: The super-relaxed state and length dependent activation in porcine myocardium
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.120.318647
– volume: 93
  start-page: 1137
  year: 2007
  ident: 10.1016/j.bpj.2022.01.009_bib12
  article-title: Clinical epidemiology of heart failure
  publication-title: Heart
  doi: 10.1136/hrt.2003.025270
– volume: 3
  start-page: e1601959
  year: 2017
  ident: 10.1016/j.bpj.2022.01.009_bib29
  article-title: Biophysical properties of human beta-cardiac myosin with converter mutations that cause hypertrophic cardiomyopathy
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1601959
– volume: 117
  start-page: 18822
  year: 2020
  ident: 10.1016/j.bpj.2022.01.009_bib4
  article-title: TNNT2 mutations in the tropomyosin binding region of TNT1 disrupt its role in contractile inhibition and stimulate cardiac dysfunction
  publication-title: Proc. Natl. Acad. Sci. U S A
  doi: 10.1073/pnas.2001692117
– volume: 47
  start-page: 311
  year: 1985
  ident: 10.1016/j.bpj.2022.01.009_bib52
  article-title: Distribution of mass in relaxed frog skeletal muscle and its redistribution upon activation
  publication-title: Biophys J
  doi: 10.1016/S0006-3495(85)83921-7
– volume: 301
  start-page: 1
  year: 2004
  ident: 10.1016/j.bpj.2022.01.009_bib35
  article-title: Desmin: a major intermediate filament protein essential for the structural integrity and function of muscle
  publication-title: Exp. Cell Res.
  doi: 10.1016/j.yexcr.2004.08.004
– volume: 151
  start-page: 53
  year: 2019
  ident: 10.1016/j.bpj.2022.01.009_bib2
  article-title: Inotropic interventions do not change the resting state of myosin motors during cardiac diastole
  publication-title: J. Gen. Physiol.
  doi: 10.1085/jgp.201812196
– volume: 11
  start-page: 399
  year: 2004
  ident: 10.1016/j.bpj.2022.01.009_bib30
  article-title: The BioCAT undulator beamline 18ID: a facility for biological non-crystalline diffraction and X-ray absorption spectroscopy at the advanced photon source
  publication-title: J. Synchrotron Radiat.
  doi: 10.1107/S0909049504016760
– volume: 107
  start-page: 430
  year: 2010
  ident: 10.1016/j.bpj.2022.01.009_bib46
  article-title: Myosin ATP turnover rate is a mechanism involved in thermogenesis in resting skeletal muscle fibers
  publication-title: Proc. Natl. Acad. Sci. U S A
  doi: 10.1073/pnas.0909468107
– volume: 21
  start-page: M40
  year: 2019
  ident: 10.1016/j.bpj.2022.01.009_bib11
  article-title: Heart failure in dilated non-ischaemic cardiomyopathy
  publication-title: Eur. Heart J. Suppl.
  doi: 10.1093/eurheartj/suz212
– volume: 151
  start-page: 610
  year: 2019
  ident: 10.1016/j.bpj.2022.01.009_bib49
  article-title: Getting into the thick (and thin) of it
  publication-title: J. Gen. Physiol.
  doi: 10.1085/jgp.201812307
– volume: 96
  start-page: 562
  year: 1983
  ident: 10.1016/j.bpj.2022.01.009_bib36
  article-title: A network of transverse and longitudinal intermediate filaments is associated with sarcomeres of adult vertebrate skeletal muscle
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.96.2.562
– volume: 31
  start-page: 73
  year: 2003
  ident: 10.1016/j.bpj.2022.01.009_bib37
  article-title: Lateral force transmission across costameres in skeletal muscle
  publication-title: Exerc. Sport Sci. Rev.
  doi: 10.1097/00003677-200304000-00004
– volume: 88
  start-page: 275
  year: 2001
  ident: 10.1016/j.bpj.2022.01.009_bib7
  article-title: Relation between myocyte disarray and outcome in hypertrophic cardiomyopathy
  publication-title: Am. J. Cardiol.
  doi: 10.1016/S0002-9149(01)01640-X
– volume: 115
  start-page: E8143
  year: 2018
  ident: 10.1016/j.bpj.2022.01.009_bib25
  article-title: Deciphering the super relaxed state of human beta-cardiac myosin and the mode of action of mavacamten from myosin molecules to muscle fibers
  publication-title: Proc. Natl. Acad. Sci. U S A
  doi: 10.1073/pnas.1809540115
– volume: 10
  start-page: 20169
  year: 2020
  ident: 10.1016/j.bpj.2022.01.009_bib8
  article-title: Micro-computed tomography (micro-CT) for the assessment of myocardial disarray, fibrosis and ventricular mass in a feline model of hypertrophic cardiomyopathy
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-76809-5
– volume: 121
  start-page: 749
  year: 2017
  ident: 10.1016/j.bpj.2022.01.009_bib10
  article-title: Hypertrophic cardiomyopathy: genetics, pathogenesis, clinical manifestations, diagnosis, and therapy
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.117.311059
– volume: 60
  start-page: 685
  year: 1979
  ident: 10.1016/j.bpj.2022.01.009_bib44
  article-title: Quantitative analysis of cardiac muscle cell disorganization in the ventricular septum. Comparison of fetuses and infants with and without congenital heart disease and patients with hypertrophic cardiomyopathy
  publication-title: Circulation
  doi: 10.1161/01.CIR.60.3.685
– volume: 9
  start-page: S388
  year: 2019
  ident: 10.1016/j.bpj.2022.01.009_bib9
  article-title: Hypertrophic cardiomyopathy: genetics and clinical perspectives
  publication-title: Cardiovasc. Diagn. Ther.
  doi: 10.21037/cdt.2019.02.01
– volume: 77
  start-page: 549
  year: 1973
  ident: 10.1016/j.bpj.2022.01.009_bib17
  article-title: X-ray evidence for radial cross-bridge movement and for the sliding filament model in actively contracting skeletal muscle
  publication-title: J. Mol. Biol.
  doi: 10.1016/0022-2836(73)90222-2
– volume: 26
  start-page: 493
  year: 1995
  ident: 10.1016/j.bpj.2022.01.009_bib45
  article-title: Hypertrophic cardiomyopathy--pathology and pathogenesis
  publication-title: Histopathology
  doi: 10.1111/j.1365-2559.1995.tb00267.x
– volume: 24
  start-page: 1225
  year: 2018
  ident: 10.1016/j.bpj.2022.01.009_bib26
  article-title: Suppression of detyrosinated microtubules improves cardiomyocyte function in human heart failure
  publication-title: Nat. Med.
  doi: 10.1038/s41591-018-0046-2
– volume: 5
  start-page: 786
  year: 2020
  ident: 10.1016/j.bpj.2022.01.009_bib28
  article-title: Heart failure in humans reduces contractile force in myocardium from both ventricles
  publication-title: JACC Basic Transl. Sci.
  doi: 10.1016/j.jacbts.2020.05.014
– volume: 143
  start-page: 965
  year: 2021
  ident: 10.1016/j.bpj.2022.01.009_bib27
  article-title: Reduced right ventricular sarcomere contractility in heart failure with preserved ejection fraction and severe obesity
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.120.052414
– volume: 117
  start-page: 8177
  year: 2020
  ident: 10.1016/j.bpj.2022.01.009_bib3
  article-title: Myosin filament-based regulation of the dynamics of contraction in heart muscle
  publication-title: Proc. Natl. Acad. Sci. U S A
  doi: 10.1073/pnas.1920632117
– volume: 201
  start-page: 135
  year: 1998
  ident: 10.1016/j.bpj.2022.01.009_bib22
  article-title: Collagen orientation and molecular spacing during creep and stress-relaxation in soft connective tissues
  publication-title: J. Exp. Biol.
  doi: 10.1242/jeb.201.1.135
– volume: 324
  start-page: 488
  year: 2020
  ident: 10.1016/j.bpj.2022.01.009_bib13
  article-title: Heart failure with reduced ejection fraction: a review
  publication-title: JAMA
  doi: 10.1001/jama.2020.10262
– volume: 112
  start-page: 209
  year: 2013
  ident: 10.1016/j.bpj.2022.01.009_bib20
  article-title: Synchrotron radiation imaging for advancing our understanding of cardiovascular function
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.111.300096
– volume: 313
  start-page: 2063
  year: 2007
  ident: 10.1016/j.bpj.2022.01.009_bib40
  article-title: Muscle intermediate filaments and their links to membranes and membranous organelles
  publication-title: Exp. Cell Res.
  doi: 10.1016/j.yexcr.2007.03.033
– volume: 44
  start-page: 201
  year: 2003
  ident: 10.1016/j.bpj.2022.01.009_bib21
  article-title: X-ray diffraction of the molecular substructure of human articular cartilage
  publication-title: Connect. Tissue Res.
  doi: 10.1080/03008200390244005
– volume: 129
  start-page: AP505
  year: 2021
  ident: 10.1016/j.bpj.2022.01.009_bib50
  article-title: RV sarcomeres from LV-HFrEF patients with low PAPi have abnormal RV thick filament structure
  publication-title: Circ. Res.
  doi: 10.1161/res.129.suppl_1.P505
– volume: 118
  start-page: 1411
  year: 1992
  ident: 10.1016/j.bpj.2022.01.009_bib38
  article-title: Costameres are sites of force transmission to the substratum in adult rat cardiomyocytes
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.118.6.1411
– volume: 19
  start-page: 2643
  year: 2018
  ident: 10.1016/j.bpj.2022.01.009_bib16
  article-title: Myosin head configurations in resting and contracting murine skeletal muscle
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms19092643
– volume: 11
  start-page: 2417
  year: 2020
  ident: 10.1016/j.bpj.2022.01.009_bib5
  article-title: A role for actin flexibility in thin filament-mediated contractile regulation and myopathy
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15922-5
– volume: 18
  start-page: 1053
  year: 1979
  ident: 10.1016/j.bpj.2022.01.009_bib34
  article-title: Desmin and vimentin coexist at the periphery of the myofibril Z disc
  publication-title: Cell
  doi: 10.1016/0092-8674(79)90218-6
– volume: 598
  start-page: 5165
  year: 2020
  ident: 10.1016/j.bpj.2022.01.009_bib15
  article-title: Myosin dynamics during relaxation in mouse soleus muscle and modulation by 2'-deoxy-ATP
  publication-title: J. Physiol.
  doi: 10.1113/JP280402
– volume: 99
  start-page: 218
  year: 2016
  ident: 10.1016/j.bpj.2022.01.009_bib39
  article-title: Increases of desmin and alpha-actinin in mouse cardiac myofibrils as a response to diastolic dysfunction
  publication-title: J. Mol. Cell. Cardiol.
  doi: 10.1016/j.yjmcc.2015.10.035
– volume: 449
  start-page: 449
  year: 2005
  ident: 10.1016/j.bpj.2022.01.009_bib33
  article-title: Titin-based modulation of active tension and interfilament lattice spacing in skinned rat cardiac muscle
  publication-title: Pflugers Arch.
  doi: 10.1007/s00424-004-1354-6
– volume: 128
  start-page: 388
  year: 2013
  ident: 10.1016/j.bpj.2022.01.009_bib43
  article-title: Pathological ventricular remodeling: mechanisms: part 1 of 2
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.113.001878
– volume: 62
  start-page: 999
  year: 1990
  ident: 10.1016/j.bpj.2022.01.009_bib23
  article-title: A molecular basis for familial hypertrophic cardiomyopathy: a beta cardiac myosin heavy chain gene missense mutation
  publication-title: Cell
  doi: 10.1016/0092-8674(90)90274-I
– ident: 10.1016/j.bpj.2022.01.009_bib31
– volume: 7
  start-page: 319ra207
  year: 2015
  ident: 10.1016/j.bpj.2022.01.009_bib14
  article-title: Pacemaker-induced transient asynchrony suppresses heart failure progression
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.aad2899
– volume: 113
  start-page: 2306
  year: 2016
  ident: 10.1016/j.bpj.2022.01.009_bib1
  article-title: Titin strain contributes to the Frank-Starling law of the heart by structural rearrangements of both thin- and thick-filament proteins
  publication-title: Proc. Natl. Acad. Sci. U S A
  doi: 10.1073/pnas.1516732113
– volume: 11
  start-page: 92
  year: 2020
  ident: 10.1016/j.bpj.2022.01.009_bib41
  article-title: Heart plasticity in response to pressure- and volume-overload: a review of findings in compensated and decompensated phenotypes
  publication-title: Front. Physiol.
  doi: 10.3389/fphys.2020.00092
– volume: 48
  start-page: 829
  year: 1985
  ident: 10.1016/j.bpj.2022.01.009_bib19
  article-title: Equatorial x-ray diffraction from single skinned rabbit psoas fibers at various degrees of activation. Changes in intensities and lattice spacing
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(85)83841-8
– volume: 9
  start-page: 81
  year: 1980
  ident: 10.1016/j.bpj.2022.01.009_bib18
  article-title: X-ray diffraction studies of the heart
  publication-title: Annu. Rev. Biophys. Bioeng.
  doi: 10.1146/annurev.bb.09.060180.000501
– volume: 68
  start-page: 1027
  year: 1995
  ident: 10.1016/j.bpj.2022.01.009_bib32
  article-title: Passive tension in cardiac muscle: contribution of collagen, titin, microtubules, and intermediate filaments
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(95)80278-X
– volume: 351
  start-page: 617
  year: 2016
  ident: 10.1016/j.bpj.2022.01.009_bib24
  article-title: A small-molecule inhibitor of sarcomere contractility suppresses hypertrophic cardiomyopathy in mice
  publication-title: Science
  doi: 10.1126/science.aad3456
– volume: 22
  start-page: 279
  year: 2018
  ident: 10.1016/j.bpj.2022.01.009_bib51
  article-title: A review of artifacts in histopathology
  publication-title: J. Oral Maxillofac. Pathol.
  doi: 10.4103/jomfp.JOMFP_125_15
SSID ssj0012501
Score 2.4794543
Snippet Myocyte disarray is a hallmark of many cardiac disorders. However, the relationship between alterations in the orientation of individual myofibrils and...
SourceID pubmedcentral
osti
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 565
SubjectTerms Animals
Cardiomyopathy, Hypertrophic
Heart Ventricles - pathology
Mice
Myocardial Contraction
Myocardium - pathology
Myofibrils
Sarcomeres
Swine
Title Myofibril orientation as a metric for characterizing heart disease
URI https://dx.doi.org/10.1016/j.bpj.2022.01.009
https://www.ncbi.nlm.nih.gov/pubmed/35032456
https://www.proquest.com/docview/2620080842
https://www.osti.gov/biblio/1842878
https://pubmed.ncbi.nlm.nih.gov/PMC8874025
Volume 121
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1542-0086
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0012501
  issn: 0006-3495
  databaseCode: KQ8
  dateStart: 19600901
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect Open Access Journals
  customDbUrl:
  eissn: 1542-0086
  dateEnd: 20241001
  omitProxy: true
  ssIdentifier: ssj0012501
  issn: 0006-3495
  databaseCode: IXB
  dateStart: 19600901
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1542-0086
  dateEnd: 20241001
  omitProxy: true
  ssIdentifier: ssj0012501
  issn: 0006-3495
  databaseCode: DIK
  dateStart: 19600101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1542-0086
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0012501
  issn: 0006-3495
  databaseCode: AKRWK
  dateStart: 19600901
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1542-0086
  dateEnd: 20241001
  omitProxy: true
  ssIdentifier: ssj0012501
  issn: 0006-3495
  databaseCode: RPM
  dateStart: 19600101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1NS91AcJAHBS-ltrZGW9lCT4Xg7mazmxxVKrbFnhTebcluNhixeY_n86C_3plkE3xFPPSYZAY2MztfzBfAN3QaQgi6Th2ai1TpINMydzytPReF4zXaCAoUL_7o8yv1a57Pt-B07IWhssqo-wed3mvr-OYoUvNo2bbU44vmFf17Kfv8FjX8Zsr0TXzzkymTgCY-bs3TKUGPmc2-xsstbzBElLKf3Ek1iS_bptkCxe0lF_TfSspnpunsHbyNPiU7Ho69A1uhew9vhi2TDx_g5OIBb5BbtbdssWpjr1HHqjtWsb-0UMsz9FyZn0Y3P6I5Y7Tpes1i_mYXrs5-XJ6ep3F1QuqVKdZpKFFURa29x_ipUEJWvikk8UUrXeVBNKZRhjeF5qFqvKuMU66sjaPwrayz7CPMukUX9oBpI6RHMRW1wVCtEUVdGh5CY7wzmQk6AT4Szfo4V5zWW9zasYDsxiKdLdHZcmGRzgl8n1CWw1CN14DVyAm7cTMsKv3X0A6Ia4RC03A9lQ0hDhIDY8Qiga8jMy3KEyVJqi4s7u8sDehHLxrBEvg0MHc6Y5bzjBLFCZgNtk8ANKt780vXXvczuwtafSjz_f_7mQPYpieqFhf5Z5itV_fhCzpDa3eIYcDP34f9nX8C6_sHlQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7Rrapyqeg7hbau1FOlCNtJbOdYUNHSspxA2psVO44aBNnVshzg13cmL7EIceg19kjOjOel-TwD8B2DhhCCKmOH7iJOVZBxnjkel54L43iJPoISxdmpmp6nv-fZfAsOh7cwBKvsbX9n01tr3X_Z77m5v6xreuOL7hXjeynb-pZ5Bs8xGuCE6zqeH4ylBPTx_dg8FdP2obTZgrzc8gJzRCnb1p0ESnzcOU0WqG-PxaAPoZT3fNPRDrzqg0r2szv3a9gKzRt40Y2ZvH0LB7NbvEJuVV-yxaruHxs1rLhmBbuiiVqeYejK_Ni7-Q79GaNR12vWF3DewfnRr7PDadzPToh9qs06DjnqqiiV95hAmVTIwldGkmBUqoosiEpXqeaVUTwUlXeFdqnLS-0of8vLJHkPk2bRhI_AlBbSo56KUmOuVglT5pqHUGnvdKKDioAPTLO-byxO8y0u7YAgu7DIZ0t8tlxY5HMEP0aSZddV46nN6SAJu3E1LFr9p8h2SWpEQu1wPeGGkAaZgUmiieDbIEyLCkVVkqIJi5trSx36MYzGbRF86IQ7njHJeEKV4gj0htjHDdSse3Olqf-2TbsNzT6U2af_-5mv8HJ6NjuxJ8enf3Zhm1YIOi6yPZisVzfhM0ZGa_elvfn_APsYCb0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Myofibril+orientation+as+a+metric+for+characterizing+heart+disease&rft.jtitle=Biophysical+journal&rft.au=Ma%2C+Weikang&rft.au=Gong%2C+Henry&rft.au=Jani%2C+Vivek&rft.au=Lee%2C+Kyoung+Hwan&rft.date=2022-02-15&rft.eissn=1542-0086&rft.volume=121&rft.issue=4&rft.spage=565&rft_id=info:doi/10.1016%2Fj.bpj.2022.01.009&rft_id=info%3Apmid%2F35032456&rft.externalDocID=35032456
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-3495&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-3495&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-3495&client=summon