Deep learning for radial SMS myocardial perfusion reconstruction using the 3D residual booster U-net
To develop an end-to-end deep learning solution for quickly reconstructing radial simultaneous multi-slice (SMS) myocardial perfusion datasets with comparable quality to the pixel tracking spatiotemporal constrained reconstruction (PT-STCR) method. Dynamic contrast enhanced (DCE) radial SMS myocardi...
Saved in:
| Published in | Magnetic resonance imaging Vol. 83; pp. 178 - 188 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Inc
01.11.2021
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0730-725X 1873-5894 1873-5894 |
| DOI | 10.1016/j.mri.2021.08.007 |
Cover
| Abstract | To develop an end-to-end deep learning solution for quickly reconstructing radial simultaneous multi-slice (SMS) myocardial perfusion datasets with comparable quality to the pixel tracking spatiotemporal constrained reconstruction (PT-STCR) method.
Dynamic contrast enhanced (DCE) radial SMS myocardial perfusion data were obtained from 20 subjects who were scanned at rest and/or stress with or without ECG gating using a saturation recovery radial CAIPI turboFLASH sequence. Input to the networks consisted of complex coil combined images reconstructed using the inverse Fourier transform of undersampled radial SMS k-space data. Ground truth images were reconstructed using the PT-STCR pipeline. The performance of the residual booster 3D U-Net was tested by comparing it to state-of-the-art network architectures including MoDL, CRNN-MRI, and other U-Net variants.
Results demonstrate significant improvements in speed requiring approximately 8 seconds to reconstruct one radial SMS dataset which is approximately 200 times faster than the PT-STCR method. Images reconstructed with the residual booster 3D U-Net retain quality of ground truth PT-STCR images (0.963 SSIM/40.238 PSNR/0.147 NRMSE). The residual booster 3D U-Net has superior performance compared to existing network architectures in terms of image quality, temporal dynamics, and reconstruction time.
Residual and booster learning combined with the 3D U-Net architecture was shown to be an effective network for reconstructing high-quality images from undersampled radial SMS datasets while bypassing the reconstruction time of the PT-STCR method. |
|---|---|
| AbstractList | To develop an end-to-end deep learning solution for quickly reconstructing radial simultaneous multi-slice (SMS) myocardial perfusion datasets with comparable quality to the pixel tracking spatiotemporal constrained reconstruction (PT-STCR) method.
Dynamic contrast enhanced (DCE) radial SMS myocardial perfusion data were obtained from 20 subjects who were scanned at rest and/or stress with or without ECG gating using a saturation recovery radial CAIPI turboFLASH sequence. Input to the networks consisted of complex coil combined images reconstructed using the inverse Fourier transform of undersampled radial SMS k-space data. Ground truth images were reconstructed using the PT-STCR pipeline. The performance of the residual booster 3D U-Net was tested by comparing it to state-of-the-art network architectures including MoDL, CRNN-MRI, and other U-Net variants.
Results demonstrate significant improvements in speed requiring approximately 8 seconds to reconstruct one radial SMS dataset which is approximately 200 times faster than the PT-STCR method. Images reconstructed with the residual booster 3D U-Net retain quality of ground truth PT-STCR images (0.963 SSIM/40.238 PSNR/0.147 NRMSE). The residual booster 3D U-Net has superior performance compared to existing network architectures in terms of image quality, temporal dynamics, and reconstruction time.
Residual and booster learning combined with the 3D U-Net architecture was shown to be an effective network for reconstructing high-quality images from undersampled radial SMS datasets while bypassing the reconstruction time of the PT-STCR method. To develop an end-to-end deep learning solution for quickly reconstructing radial simultaneous multi-slice (SMS) myocardial perfusion datasets with comparable quality to the pixel tracking spatiotemporal constrained reconstruction (PT-STCR) method.PURPOSETo develop an end-to-end deep learning solution for quickly reconstructing radial simultaneous multi-slice (SMS) myocardial perfusion datasets with comparable quality to the pixel tracking spatiotemporal constrained reconstruction (PT-STCR) method.Dynamic contrast enhanced (DCE) radial SMS myocardial perfusion data were obtained from 20 subjects who were scanned at rest and/or stress with or without ECG gating using a saturation recovery radial CAIPI turboFLASH sequence. Input to the networks consisted of complex coil combined images reconstructed using the inverse Fourier transform of undersampled radial SMS k-space data. Ground truth images were reconstructed using the PT-STCR pipeline. The performance of the residual booster 3D U-Net was tested by comparing it to state-of-the-art network architectures including MoDL, CRNN-MRI, and other U-Net variants.METHODSDynamic contrast enhanced (DCE) radial SMS myocardial perfusion data were obtained from 20 subjects who were scanned at rest and/or stress with or without ECG gating using a saturation recovery radial CAIPI turboFLASH sequence. Input to the networks consisted of complex coil combined images reconstructed using the inverse Fourier transform of undersampled radial SMS k-space data. Ground truth images were reconstructed using the PT-STCR pipeline. The performance of the residual booster 3D U-Net was tested by comparing it to state-of-the-art network architectures including MoDL, CRNN-MRI, and other U-Net variants.Results demonstrate significant improvements in speed requiring approximately 8 seconds to reconstruct one radial SMS dataset which is approximately 200 times faster than the PT-STCR method. Images reconstructed with the residual booster 3D U-Net retain quality of ground truth PT-STCR images (0.963 SSIM/40.238 PSNR/0.147 NRMSE). The residual booster 3D U-Net has superior performance compared to existing network architectures in terms of image quality, temporal dynamics, and reconstruction time.RESULTSResults demonstrate significant improvements in speed requiring approximately 8 seconds to reconstruct one radial SMS dataset which is approximately 200 times faster than the PT-STCR method. Images reconstructed with the residual booster 3D U-Net retain quality of ground truth PT-STCR images (0.963 SSIM/40.238 PSNR/0.147 NRMSE). The residual booster 3D U-Net has superior performance compared to existing network architectures in terms of image quality, temporal dynamics, and reconstruction time.Residual and booster learning combined with the 3D U-Net architecture was shown to be an effective network for reconstructing high-quality images from undersampled radial SMS datasets while bypassing the reconstruction time of the PT-STCR method.CONCLUSIONResidual and booster learning combined with the 3D U-Net architecture was shown to be an effective network for reconstructing high-quality images from undersampled radial SMS datasets while bypassing the reconstruction time of the PT-STCR method. |
| Author | Wilson, Brent Mendes, Jason Ibrahim, Mark Le, Johnathan Adluru, Ganesh Tian, Ye DiBella, Edward |
| AuthorAffiliation | 3 Department of Physics and Astronomy, University of Utah, Salt Lake City, UT, USA 5 Department of Cardiology, University of Utah, Salt Lake City, UT, USA 1 Utah Center for Advanced Imaging Research (UCAIR), Department of Radiology and Imaging Sciences, University of Utah Salt Lake City, UT, USA 2 Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA 4 Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, USA |
| AuthorAffiliation_xml | – name: 5 Department of Cardiology, University of Utah, Salt Lake City, UT, USA – name: 2 Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA – name: 3 Department of Physics and Astronomy, University of Utah, Salt Lake City, UT, USA – name: 4 Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, USA – name: 1 Utah Center for Advanced Imaging Research (UCAIR), Department of Radiology and Imaging Sciences, University of Utah Salt Lake City, UT, USA |
| Author_xml | – sequence: 1 givenname: Johnathan surname: Le fullname: Le, Johnathan organization: Utah Center for Advanced Imaging Research (UCAIR), Department of Radiology and Imaging Sciences, University of Utah Salt Lake City, UT, USA – sequence: 2 givenname: Ye surname: Tian fullname: Tian, Ye organization: Utah Center for Advanced Imaging Research (UCAIR), Department of Radiology and Imaging Sciences, University of Utah Salt Lake City, UT, USA – sequence: 3 givenname: Jason surname: Mendes fullname: Mendes, Jason organization: Utah Center for Advanced Imaging Research (UCAIR), Department of Radiology and Imaging Sciences, University of Utah Salt Lake City, UT, USA – sequence: 4 givenname: Brent surname: Wilson fullname: Wilson, Brent organization: Department of Cardiology, University of Utah, Salt Lake City, UT, USA – sequence: 5 givenname: Mark surname: Ibrahim fullname: Ibrahim, Mark organization: Department of Cardiology, University of Utah, Salt Lake City, UT, USA – sequence: 6 givenname: Edward surname: DiBella fullname: DiBella, Edward organization: Utah Center for Advanced Imaging Research (UCAIR), Department of Radiology and Imaging Sciences, University of Utah Salt Lake City, UT, USA – sequence: 7 givenname: Ganesh surname: Adluru fullname: Adluru, Ganesh email: ganeshsharma.adluru@hsc.utah.edu organization: Utah Center for Advanced Imaging Research (UCAIR), Department of Radiology and Imaging Sciences, University of Utah Salt Lake City, UT, USA |
| BookMark | eNqNkU1v1DAQhi1URLeFH8AtRy5ZHH_EtpCQUFs-pCIOpRI3y-tMWi-OHWynaP89XrYSoofCyRrPPK88j0_QUYgBEHrZ4XWHu_71dj0ltyaYdGss1xiLJ2jVSUFbLhU7QissKG4F4d-O0UnOW4wxJ5Q_Q8eUMSJ5R1ZoOAeYGw8mBRdumjGmJpnBGd9cfb5qpl20Jv0uZ0jjkl0MTQIbQy5psWVf1ssKllto6HntZTcsdXwTYy6Qmus2QHmOno7GZ3hxf56i6_cXX88-tpdfPnw6e3fZWiZkaQeKDZWmV8IosSFGDJgwZShnSmEYpbKjIphxxnra100UkwJbQkYwAqAz9BSRQ-4SZrP7abzXc3KTSTvdYb1Xpre6KtN7ZRpLXZVV6O0BmpfNBIOFUJL5A0bj9N-d4G71TbzTkikquKwBr-4DUvyxQC56ctmC9yZAXLImvGdMsZ7zOioOozbFnBOM2rpi9hprsvOPvrJ7QP7PZm8ODFTndw6SztZBsDC4-odFD9E9SqsHtPUuOGv8d9j9g_0F8CfPdw |
| CitedBy_id | crossref_primary_10_1007_s13534_024_00425_9 crossref_primary_10_1002_mrm_30364 crossref_primary_10_1002_jmri_29676 crossref_primary_10_1007_s00234_024_03282_6 crossref_primary_10_1002_mrm_29453 crossref_primary_10_1088_1361_6560_acc0cd crossref_primary_10_3389_fcvm_2024_1350345 crossref_primary_10_3390_su14020861 crossref_primary_10_1088_1361_6560_ad1d6d crossref_primary_10_1016_j_jocmr_2024_101127 crossref_primary_10_1186_s12859_022_05071_5 crossref_primary_10_1109_RBME_2024_3485022 crossref_primary_10_1148_radiol_231269 crossref_primary_10_1016_j_jmapro_2023_04_080 |
| Cites_doi | 10.1109/TMI.2018.2865356 10.1371/journal.pone.0211738 10.1002/mrm.27706 10.1109/TIP.2017.2662206 10.1002/mrm.22752 10.1002/mrm.21565 10.1002/mrm.27827 10.1002/nbm.4239 10.1109/TMI.2018.2863670 10.1002/mrm.24980 10.1007/s10554-017-1265-1 10.1016/j.jmr.2007.06.012 10.1002/mrm.28337 10.1002/mrm.26878 10.3414/ME13-01-0122 10.1002/mrm.27030 10.1016/j.mri.2016.07.015 10.1002/mrm.26977 10.1002/mrm.20787 10.1109/83.536892 10.1002/jmri.21585 10.1002/mrm.21248 10.1002/jmri.20756 10.1002/mrm.20401 10.1016/j.acra.2018.05.008 10.1002/mrm.21435 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier Inc. Copyright © 2021 Elsevier Inc. All rights reserved. |
| Copyright_xml | – notice: 2021 Elsevier Inc. – notice: Copyright © 2021 Elsevier Inc. All rights reserved. |
| DBID | AAYXX CITATION 7X8 5PM ADTOC UNPAY |
| DOI | 10.1016/j.mri.2021.08.007 |
| DatabaseName | CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1873-5894 |
| EndPage | 188 |
| ExternalDocumentID | oai:pubmedcentral.nih.gov:8493758 PMC8493758 10_1016_j_mri_2021_08_007 S0730725X21001375 |
| GroupedDBID | --- --K --M .1- .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29M 3O- 4.4 457 4CK 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM 9JN AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABBQC ABDPE ABFNM ABGSF ABJNI ABMAC ABMZM ABNEU ABOCM ABUDA ABWVN ABXDB ACDAQ ACFVG ACGFS ACIEU ACIUM ACLOT ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADUVX AEBSH AEHWI AEIPS AEKER AENEX AEUPX AEVXI AFFNX AFJKZ AFPUW AFRHN AFTJW AFXIZ AGHFR AGQPQ AGRDE AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AIVDX AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HEI HMK HMO HVGLF HZ~ IHE J1W KOM M29 M41 MO0 N9A O-L O9- OAUVE OGIMB OI~ OU0 OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SEL SES SEW SPC SPCBC SSH SSQ SSU SSZ T5K WUQ XPP Z5R ZGI ZMT ~G- ~HD ~S- AACTN AAIAV ABLVK ABYKQ AFCTW AFKWA AJBFU AJOXV AMFUW DOVZS G8K LCYCR RIG AAYXX CITATION 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c478t-d30a38a697a97b2a7d0249a354990ef89cf920454463652394870c22fea7ee1a3 |
| IEDL.DBID | UNPAY |
| ISSN | 0730-725X 1873-5894 |
| IngestDate | Sun Oct 26 03:52:16 EDT 2025 Tue Sep 30 17:19:11 EDT 2025 Thu Oct 02 11:39:40 EDT 2025 Thu Apr 24 23:08:24 EDT 2025 Thu Oct 16 04:44:05 EDT 2025 Fri Feb 23 02:43:54 EST 2024 Tue Oct 14 19:40:21 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | deep learning radial simultaneous multi-slice boosting 3D U-Net Myocardial perfusion residual learning |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c478t-d30a38a697a97b2a7d0249a354990ef89cf920454463652394870c22fea7ee1a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Jason Mendes: Conceptualization, Data Curation, Investigation, Writing – Review and Editing Ganesh Adluru: Conceptualization, Investigation, Supervision, Project Administration, Resources, Funding Acquisition, Writing – Review and Editing Johnathan Le: Conceptualization, Methodology, Software, Validation, Formal Analysis, Investigation, Data Curation, Writing – Original Draft, Writing – Review and Editing, Visualization Edward DiBella: Conceptualization, Supervision, Project Administration, Resources, Funding Acquisition, Writing – Review and Editing Author Statement Mark Ibrahim: Resources Ye Tian: Conceptualization, Data Curation, Investigation, Writing – Review and Editing Brent Wilson: Resources |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/8493758 |
| PMID | 34428512 |
| PQID | 2564494655 |
| PQPubID | 23479 |
| PageCount | 11 |
| ParticipantIDs | unpaywall_primary_10_1016_j_mri_2021_08_007 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8493758 proquest_miscellaneous_2564494655 crossref_citationtrail_10_1016_j_mri_2021_08_007 crossref_primary_10_1016_j_mri_2021_08_007 elsevier_sciencedirect_doi_10_1016_j_mri_2021_08_007 elsevier_clinicalkey_doi_10_1016_j_mri_2021_08_007 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-11-01 |
| PublicationDateYYYYMMDD | 2021-11-01 |
| PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Magnetic resonance imaging |
| PublicationYear | 2021 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Seiberlich, Breuer, Blaimer, Jakob, Griswold (bb0070) 2008; 59 Wang, Adluru, Chen, Kholmovski, Bangerter, DiBella (bb0030) 2016; 34 Adluru, McGann, Speier, Kholmovski, Shaaban, Dibella (bb0045) 2009; 29 Loffe, Szegedy (bb0160) 2015 Breuer, Blaimer, Heidemann, Mueller, Griswold, Jakob (bb0015) 2005; 53 Adluru, Awate, Tasdizen, Whitaker, Dibella (bb0050) 2007; 57 Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (bb0165) 2014; 15 Rosenzweig, Holme, Wilke, Voit, Frahm, Uecker (bb0055) 2018; 79 Hestenes, Eduard (bb0090) 1952 Biswas, Aggarwal, Jacob (bb0125) 2019; 82 Ma, Zhang, Chen, Yang (bb0005) 2019; 26 Adluru, DiBella, Schabel (bb0080) 2006; 24 Yutzy, Seiberlich, Duerk, Griswold (bb0025) 2011; 65 Cicek, Adbdulkadir, Lienkamp, Brox, Ronneberger (bb0135) 2016 Breuer, Blaimer, Mueller, Seiberlich, Heidemann, Griswold (bb0020) 2006; 55 Sharif, Motwani, Arsanjani, Dharmakumar, Fish, Germano (bb0010) 2018; 34 Boyd, Parikh, Chu, Peleato, Eckstein (bb0095) 2011 He, Zhang, Ren, Sun (bb0145) 2016 Zhang, Zuo, Chen, Meng, Zhang (bb0170) 2017; 26 Tian, Mendes, Pedgaonkar, Ibrahim, Jensen, Schroeder (bb0035) 2019; 14 Mayr, Binder, Gefeller, Schmid (bb0140) 2014; 53 Hu, Xiao, Pennington (bb0175) 2020 Benkert, Tian, Huang, DiBella, Chandarana, Feng (bb0060) 2018; 80 Channappayya, Bovik, Caramanis, Heath (bb0185) 2008 Qin, Schlemper, Caballero, Price, Hajnal, Rueckert (bb0130) 2017; 38 Bansal, Chen, Wang (bb0180) 2018 Hammernik, Klatzer, Kobler, Recht, Sodickson, Pock (bb0115) 2018; 79 Liu, Samsonov, Chen, Kijowski, Feng (bb0110) 2019; 82 Zhao, Gallo, Frosio, Kautz (bb0190) 2017; 3 Seiberlich, Breuer, Blaimer, Barkauskas, Jakob, Griswold (bb0065) 2007; 58 Christensen, Rabbitt, Miller (bb0085) 1996; 5 Fessler (bb0075) 2007; 188 Tian, Mendes, Wilson, Ross, Ranjan, DiBella (bb0040) 2020; 84 Simonyan, Zisserman (bb0195) 2015 Aggarwal, Mani, Jacob (bb0120) 2019; 38 Johnson, Alahi, Fei-Fei (bb0150) 2016 Fan, Shen, Haji-Valizadeh, Naresh, Carr, Freed (bb0105) 2020; 33 Feng, Grimm, Block, Chandarana, Kim, Xu (bb0155) 2014; 72 Ronneberger, Fischer, Brox (bb0100) 2015 Mayr (10.1016/j.mri.2021.08.007_bb0140) 2014; 53 Seiberlich (10.1016/j.mri.2021.08.007_bb0065) 2007; 58 Hestenes (10.1016/j.mri.2021.08.007_bb0090) 1952 Hammernik (10.1016/j.mri.2021.08.007_bb0115) 2018; 79 Aggarwal (10.1016/j.mri.2021.08.007_bb0120) 2019; 38 Zhao (10.1016/j.mri.2021.08.007_bb0190) 2017; 3 Yutzy (10.1016/j.mri.2021.08.007_bb0025) 2011; 65 Bansal (10.1016/j.mri.2021.08.007_bb0180) 2018 Feng (10.1016/j.mri.2021.08.007_bb0155) 2014; 72 Srivastava (10.1016/j.mri.2021.08.007_bb0165) 2014; 15 Benkert (10.1016/j.mri.2021.08.007_bb0060) 2018; 80 Boyd (10.1016/j.mri.2021.08.007_bb0095) 2011 Fan (10.1016/j.mri.2021.08.007_bb0105) 2020; 33 Qin (10.1016/j.mri.2021.08.007_bb0130) 2017; 38 Wang (10.1016/j.mri.2021.08.007_bb0030) 2016; 34 Channappayya (10.1016/j.mri.2021.08.007_bb0185) 2008 Simonyan (10.1016/j.mri.2021.08.007_bb0195) 2015 Christensen (10.1016/j.mri.2021.08.007_bb0085) 1996; 5 Johnson (10.1016/j.mri.2021.08.007_bb0150) 2016 Adluru (10.1016/j.mri.2021.08.007_bb0080) 2006; 24 Breuer (10.1016/j.mri.2021.08.007_bb0015) 2005; 53 Zhang (10.1016/j.mri.2021.08.007_bb0170) 2017; 26 Adluru (10.1016/j.mri.2021.08.007_bb0050) 2007; 57 Loffe (10.1016/j.mri.2021.08.007_bb0160) 2015 Cicek (10.1016/j.mri.2021.08.007_bb0135) 2016 Ronneberger (10.1016/j.mri.2021.08.007_bb0100) 2015 Hu (10.1016/j.mri.2021.08.007_bb0175) 2020 Tian (10.1016/j.mri.2021.08.007_bb0040) 2020; 84 Breuer (10.1016/j.mri.2021.08.007_bb0020) 2006; 55 He (10.1016/j.mri.2021.08.007_bb0145) 2016 Liu (10.1016/j.mri.2021.08.007_bb0110) 2019; 82 Fessler (10.1016/j.mri.2021.08.007_bb0075) 2007; 188 Adluru (10.1016/j.mri.2021.08.007_bb0045) 2009; 29 Biswas (10.1016/j.mri.2021.08.007_bb0125) 2019; 82 Sharif (10.1016/j.mri.2021.08.007_bb0010) 2018; 34 Tian (10.1016/j.mri.2021.08.007_bb0035) 2019; 14 Ma (10.1016/j.mri.2021.08.007_bb0005) 2019; 26 Rosenzweig (10.1016/j.mri.2021.08.007_bb0055) 2018; 79 Seiberlich (10.1016/j.mri.2021.08.007_bb0070) 2008; 59 |
| References_xml | – start-page: 49 year: 1952 ident: bb0090 article-title: Methods of conjugate gradients for solving linear systems publication-title: J Res Natl Bur Stand – year: 2020 ident: bb0175 article-title: Provable benefit of orthogonal initialization in optimizing deep linear networks publication-title: the proceedings of the 8th annual meeting of ICLR. Addis Ababa, Ethiopia – year: 2018 ident: bb0180 article-title: Can we gain more from Orthogonality regularization in training deep CNNs? publication-title: the proceedings of the 32nd annual meeting of NeurIPS. Montreal, QC, Canada – volume: 65 start-page: 1630 year: 2011 end-page: 1637 ident: bb0025 article-title: Improvements in multislice parallel imaging using radial CAIPIRINHA publication-title: Magn Reson Med – volume: 14 year: 2019 ident: bb0035 article-title: Feasibility of multiple-view myocardial perfusion MRI using radial simultaneous multi-slice acquisitions publication-title: PLoS One – volume: 53 start-page: 419 year: 2014 end-page: 427 ident: bb0140 article-title: The evolution of boosting algorithms. From machine learning to statistical modelling publication-title: Methods Inf Med – start-page: 770 year: 2016 end-page: 778 ident: bb0145 article-title: Deep residual learning for image recognition publication-title: IEEE Conference on computer vision and pattern recognition (CVPR) – volume: 72 start-page: 707 year: 2014 end-page: 717 ident: bb0155 article-title: Golden-angle radial sparse parallel MRI: combination of compressed sensing, parallel imaging, and golden-angle radial sampling for fast and flexible dynamic volumetric MRI publication-title: Magn Reson Med – start-page: 3 year: 2011 ident: bb0095 article-title: Distributed optimization and statistical learning via the alternating direction method of multipliers publication-title: Found Trends Machine Learn – volume: 5 start-page: 1435 year: 1996 end-page: 1447 ident: bb0085 article-title: Deformable templates using large deformation kinematics publication-title: IEEE Trans Image Process – volume: 38 start-page: 394 year: 2019 end-page: 405 ident: bb0120 article-title: MoDL: model based deep learning architecture for inverse problems publication-title: IEEE Trans Med Imag – volume: 188 start-page: 191 year: 2007 end-page: 195 ident: bb0075 article-title: On NUFFT-based gridding for non-Cartesian MRI publication-title: J Magn Reson – volume: 55 start-page: 549 year: 2006 end-page: 556 ident: bb0020 article-title: Controlled aliasing in volumetric parallel imaging (2D CAIPIRINHA) publication-title: Magn Reson Med – start-page: 448 year: 2015 end-page: 456 ident: bb0160 article-title: Batch normalization: accelerating deep network training by reducing interval covariate shift publication-title: In the Proceedings of the 32nd Annual Meeting of ICML. 37. Lille, France – volume: 82 start-page: 485 year: 2019 end-page: 494 ident: bb0125 article-title: Dynamic MRI using model-based deep learning and SToRM priors: MoDL-SToRM publication-title: Magn Reson Med – year: 2015 ident: bb0195 article-title: Very deep convolutional networks for large-scale image recognition publication-title: the proceedings of the 3rd annual meeting of ICLR. San Diego, CA – volume: 59 start-page: 930 year: 2008 end-page: 935 ident: bb0070 article-title: Self-calibrating GRAPPA operator gridding for radial and spiral trajectories publication-title: Magn Reson Med – volume: 34 start-page: 661 year: 2018 end-page: 669 ident: bb0010 article-title: Impact of incomplete ventricular coverage on diagnostic performance of myocardial perfusion imaging publication-title: Int J Cardiovasc Imaging – volume: 79 start-page: 2057 year: 2018 end-page: 2066 ident: bb0055 article-title: Simultaneous multi-slice MRI using cartesian and radial FLASH and regularized nonlinear inversion: SMS-NLINV publication-title: Magn Reson Med – volume: 33 start-page: e4239 year: 2020 ident: bb0105 article-title: Rapid dealiasing of undersampled, non-Cartesian cardiac perfusion images using U-net publication-title: NMR Biomed – volume: 80 start-page: 286 year: 2018 end-page: 293 ident: bb0060 article-title: Optimization and validation of accelerated golden-angle radial sparse MRI reconstruction with self-calibrating GRAPPA operator gridding publication-title: Magn Reson Med – volume: 3 start-page: 47 year: 2017 end-page: 57 ident: bb0190 article-title: Loss functions for image restoration with neural networks publication-title: IEEE Trans Comp Imag – volume: 58 start-page: 1257 year: 2007 end-page: 1265 ident: bb0065 article-title: Non-Cartesian data reconstruction using GRAPPA operator gridding (GROG) publication-title: Magn Reson Med – volume: 38 start-page: 280 year: 2017 end-page: 290 ident: bb0130 article-title: Convolutional recurrent neural networks for dynamic MR image reconstruction publication-title: IEEE Trans Med Imag – volume: 34 start-page: 1329 year: 2016 end-page: 1336 ident: bb0030 article-title: Radial simultaneous multi-slice CAIPI for ungated myocardial perfusion publication-title: Magn Reson Imaging – volume: 29 start-page: 466 year: 2009 end-page: 473 ident: bb0045 article-title: Acquisition and reconstruction of undersampled radial data for myocardial perfusion magnetic resonance imaging publication-title: J Magn Reson Imaging – volume: 24 start-page: 1062 year: 2006 end-page: 1070 ident: bb0080 article-title: Model-based registration for dynamic cardiac perfusion MRI publication-title: J Magn Reson Imaging – year: 2016 ident: bb0150 article-title: Perceptual losses for real-time style transfer and super resolution publication-title: the Proceedings of the 14th Annual Meeting of ECCV. Amsterdam, The Netherlands – volume: 26 start-page: 519 year: 2019 end-page: 525 ident: bb0005 article-title: Whole left ventricular coverage versus conventional 3-slice myocardial perfusion magnetic resonance imaging for the detection of suspected coronary artery disease publication-title: Acad Radiol – start-page: 234 year: 2015 end-page: 241 ident: bb0100 article-title: U-Net: convolutional networks for biomedical image segmentation publication-title: The Proceedings of the 18th Annual Meeting of MICCAI. Munich, Germany – volume: 82 start-page: 1890 year: 2019 end-page: 1904 ident: bb0110 article-title: SANTIS: sampling-augmented neural neTwork with incoherent structure for MR image reconstruction publication-title: Magn Reson Med – volume: 79 start-page: 3055 year: 2018 end-page: 3071 ident: bb0115 article-title: Learning a variational network for reconstruction of accelerated MRI data publication-title: Magn Reson Med – start-page: 765 year: 2008 end-page: 768 ident: bb0185 article-title: SSIM-optimal linear image restoration publication-title: the proceedings of the 33rd Annual Meeting of ICASSP – volume: 53 start-page: 684 year: 2005 end-page: 691 ident: bb0015 article-title: Controlled aliasing in parallel imaging results in higher acceleration (CAIPIRINHA) for multi-slice imaging publication-title: Magn Reson Med – start-page: 424 year: 2016 end-page: 432 ident: bb0135 article-title: 3D U-Net: learning dense volumetric segmentation from sparse annotation publication-title: the Proceedings of the 19th Annual Meeting of MICCAI. Athens, Greece – volume: 84 start-page: 3071 year: 2020 end-page: 3087 ident: bb0040 article-title: Whole-heart, ungated, free-breathing, cardiac-phase-resolved myocardial perfusion MRI by using continuous radial interleaved simultaneous multi-slice acquisitions at sPoiled steady-state (CRIMP) publication-title: Magn Reson Med – volume: 26 start-page: 3142 year: 2017 end-page: 3155 ident: bb0170 article-title: Beyond a Gaussian Denoiser: residual learning of deep CNN for image denoising publication-title: IEEE Trans Image Process – volume: 57 start-page: 1027 year: 2007 end-page: 1036 ident: bb0050 article-title: Temporally constrained reconstruction of dynamic cardiac perfusion MRI publication-title: Magn Reson Med – volume: 15 start-page: 1929 year: 2014 end-page: 1958 ident: bb0165 article-title: Dropout: a simple way to prevent neural networks from Overfitting publication-title: J Machine Learn Res – volume: 38 start-page: 394 issue: 2 year: 2019 ident: 10.1016/j.mri.2021.08.007_bb0120 article-title: MoDL: model based deep learning architecture for inverse problems publication-title: IEEE Trans Med Imag doi: 10.1109/TMI.2018.2865356 – volume: 14 issue: 2 year: 2019 ident: 10.1016/j.mri.2021.08.007_bb0035 article-title: Feasibility of multiple-view myocardial perfusion MRI using radial simultaneous multi-slice acquisitions publication-title: PLoS One doi: 10.1371/journal.pone.0211738 – volume: 3 start-page: 47 issue: 1 year: 2017 ident: 10.1016/j.mri.2021.08.007_bb0190 article-title: Loss functions for image restoration with neural networks publication-title: IEEE Trans Comp Imag – volume: 82 start-page: 485 issue: 1 year: 2019 ident: 10.1016/j.mri.2021.08.007_bb0125 article-title: Dynamic MRI using model-based deep learning and SToRM priors: MoDL-SToRM publication-title: Magn Reson Med doi: 10.1002/mrm.27706 – volume: 26 start-page: 3142 issue: 7 year: 2017 ident: 10.1016/j.mri.2021.08.007_bb0170 article-title: Beyond a Gaussian Denoiser: residual learning of deep CNN for image denoising publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2017.2662206 – volume: 65 start-page: 1630 issue: 6 year: 2011 ident: 10.1016/j.mri.2021.08.007_bb0025 article-title: Improvements in multislice parallel imaging using radial CAIPIRINHA publication-title: Magn Reson Med doi: 10.1002/mrm.22752 – volume: 59 start-page: 930 issue: 4 year: 2008 ident: 10.1016/j.mri.2021.08.007_bb0070 article-title: Self-calibrating GRAPPA operator gridding for radial and spiral trajectories publication-title: Magn Reson Med doi: 10.1002/mrm.21565 – start-page: 770 year: 2016 ident: 10.1016/j.mri.2021.08.007_bb0145 article-title: Deep residual learning for image recognition – year: 2020 ident: 10.1016/j.mri.2021.08.007_bb0175 article-title: Provable benefit of orthogonal initialization in optimizing deep linear networks – volume: 82 start-page: 1890 issue: 5 year: 2019 ident: 10.1016/j.mri.2021.08.007_bb0110 article-title: SANTIS: sampling-augmented neural neTwork with incoherent structure for MR image reconstruction publication-title: Magn Reson Med doi: 10.1002/mrm.27827 – volume: 33 start-page: e4239 issue: 5 year: 2020 ident: 10.1016/j.mri.2021.08.007_bb0105 article-title: Rapid dealiasing of undersampled, non-Cartesian cardiac perfusion images using U-net publication-title: NMR Biomed doi: 10.1002/nbm.4239 – volume: 38 start-page: 280 issue: 1 year: 2017 ident: 10.1016/j.mri.2021.08.007_bb0130 article-title: Convolutional recurrent neural networks for dynamic MR image reconstruction publication-title: IEEE Trans Med Imag doi: 10.1109/TMI.2018.2863670 – volume: 72 start-page: 707 issue: 3 year: 2014 ident: 10.1016/j.mri.2021.08.007_bb0155 article-title: Golden-angle radial sparse parallel MRI: combination of compressed sensing, parallel imaging, and golden-angle radial sampling for fast and flexible dynamic volumetric MRI publication-title: Magn Reson Med doi: 10.1002/mrm.24980 – start-page: 765 year: 2008 ident: 10.1016/j.mri.2021.08.007_bb0185 article-title: SSIM-optimal linear image restoration – year: 2016 ident: 10.1016/j.mri.2021.08.007_bb0150 article-title: Perceptual losses for real-time style transfer and super resolution – volume: 34 start-page: 661 issue: 4 year: 2018 ident: 10.1016/j.mri.2021.08.007_bb0010 article-title: Impact of incomplete ventricular coverage on diagnostic performance of myocardial perfusion imaging publication-title: Int J Cardiovasc Imaging doi: 10.1007/s10554-017-1265-1 – volume: 188 start-page: 191 issue: 2 year: 2007 ident: 10.1016/j.mri.2021.08.007_bb0075 article-title: On NUFFT-based gridding for non-Cartesian MRI publication-title: J Magn Reson doi: 10.1016/j.jmr.2007.06.012 – start-page: 234 year: 2015 ident: 10.1016/j.mri.2021.08.007_bb0100 article-title: U-Net: convolutional networks for biomedical image segmentation – year: 2018 ident: 10.1016/j.mri.2021.08.007_bb0180 article-title: Can we gain more from Orthogonality regularization in training deep CNNs? – start-page: 424 year: 2016 ident: 10.1016/j.mri.2021.08.007_bb0135 article-title: 3D U-Net: learning dense volumetric segmentation from sparse annotation – start-page: 448 year: 2015 ident: 10.1016/j.mri.2021.08.007_bb0160 article-title: Batch normalization: accelerating deep network training by reducing interval covariate shift – volume: 84 start-page: 3071 issue: 6 year: 2020 ident: 10.1016/j.mri.2021.08.007_bb0040 article-title: Whole-heart, ungated, free-breathing, cardiac-phase-resolved myocardial perfusion MRI by using continuous radial interleaved simultaneous multi-slice acquisitions at sPoiled steady-state (CRIMP) publication-title: Magn Reson Med doi: 10.1002/mrm.28337 – volume: 79 start-page: 2057 issue: 4 year: 2018 ident: 10.1016/j.mri.2021.08.007_bb0055 article-title: Simultaneous multi-slice MRI using cartesian and radial FLASH and regularized nonlinear inversion: SMS-NLINV publication-title: Magn Reson Med doi: 10.1002/mrm.26878 – volume: 53 start-page: 419 issue: 6 year: 2014 ident: 10.1016/j.mri.2021.08.007_bb0140 article-title: The evolution of boosting algorithms. From machine learning to statistical modelling publication-title: Methods Inf Med doi: 10.3414/ME13-01-0122 – volume: 80 start-page: 286 issue: 1 year: 2018 ident: 10.1016/j.mri.2021.08.007_bb0060 article-title: Optimization and validation of accelerated golden-angle radial sparse MRI reconstruction with self-calibrating GRAPPA operator gridding publication-title: Magn Reson Med doi: 10.1002/mrm.27030 – volume: 34 start-page: 1329 issue: 9 year: 2016 ident: 10.1016/j.mri.2021.08.007_bb0030 article-title: Radial simultaneous multi-slice CAIPI for ungated myocardial perfusion publication-title: Magn Reson Imaging doi: 10.1016/j.mri.2016.07.015 – volume: 79 start-page: 3055 issue: 6 year: 2018 ident: 10.1016/j.mri.2021.08.007_bb0115 article-title: Learning a variational network for reconstruction of accelerated MRI data publication-title: Magn Reson Med doi: 10.1002/mrm.26977 – volume: 55 start-page: 549 issue: 3 year: 2006 ident: 10.1016/j.mri.2021.08.007_bb0020 article-title: Controlled aliasing in volumetric parallel imaging (2D CAIPIRINHA) publication-title: Magn Reson Med doi: 10.1002/mrm.20787 – volume: 15 start-page: 1929 year: 2014 ident: 10.1016/j.mri.2021.08.007_bb0165 article-title: Dropout: a simple way to prevent neural networks from Overfitting publication-title: J Machine Learn Res – year: 2015 ident: 10.1016/j.mri.2021.08.007_bb0195 article-title: Very deep convolutional networks for large-scale image recognition – volume: 5 start-page: 1435 issue: 10 year: 1996 ident: 10.1016/j.mri.2021.08.007_bb0085 article-title: Deformable templates using large deformation kinematics publication-title: IEEE Trans Image Process doi: 10.1109/83.536892 – volume: 29 start-page: 466 issue: 2 year: 2009 ident: 10.1016/j.mri.2021.08.007_bb0045 article-title: Acquisition and reconstruction of undersampled radial data for myocardial perfusion magnetic resonance imaging publication-title: J Magn Reson Imaging doi: 10.1002/jmri.21585 – start-page: 3 issue: 1 year: 2011 ident: 10.1016/j.mri.2021.08.007_bb0095 article-title: Distributed optimization and statistical learning via the alternating direction method of multipliers publication-title: Found Trends Machine Learn – volume: 57 start-page: 1027 issue: 6 year: 2007 ident: 10.1016/j.mri.2021.08.007_bb0050 article-title: Temporally constrained reconstruction of dynamic cardiac perfusion MRI publication-title: Magn Reson Med doi: 10.1002/mrm.21248 – volume: 24 start-page: 1062 issue: 5 year: 2006 ident: 10.1016/j.mri.2021.08.007_bb0080 article-title: Model-based registration for dynamic cardiac perfusion MRI publication-title: J Magn Reson Imaging doi: 10.1002/jmri.20756 – volume: 53 start-page: 684 issue: 3 year: 2005 ident: 10.1016/j.mri.2021.08.007_bb0015 article-title: Controlled aliasing in parallel imaging results in higher acceleration (CAIPIRINHA) for multi-slice imaging publication-title: Magn Reson Med doi: 10.1002/mrm.20401 – start-page: 49 issue: 6 year: 1952 ident: 10.1016/j.mri.2021.08.007_bb0090 article-title: Methods of conjugate gradients for solving linear systems publication-title: J Res Natl Bur Stand – volume: 26 start-page: 519 issue: 4 year: 2019 ident: 10.1016/j.mri.2021.08.007_bb0005 article-title: Whole left ventricular coverage versus conventional 3-slice myocardial perfusion magnetic resonance imaging for the detection of suspected coronary artery disease publication-title: Acad Radiol doi: 10.1016/j.acra.2018.05.008 – volume: 58 start-page: 1257 issue: 6 year: 2007 ident: 10.1016/j.mri.2021.08.007_bb0065 article-title: Non-Cartesian data reconstruction using GRAPPA operator gridding (GROG) publication-title: Magn Reson Med doi: 10.1002/mrm.21435 |
| SSID | ssj0005235 |
| Score | 2.4299533 |
| Snippet | To develop an end-to-end deep learning solution for quickly reconstructing radial simultaneous multi-slice (SMS) myocardial perfusion datasets with comparable... |
| SourceID | unpaywall pubmedcentral proquest crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 178 |
| SubjectTerms | 3D U-Net boosting deep learning Myocardial perfusion radial simultaneous multi-slice residual learning |
| SummonAdditionalLinks | – databaseName: ScienceDirect (Elsevier) dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA7Sg3oRn1hfRPCkrN1Hutk9SqsUoV5qwVuYbLO1UtelD6QXf7sz-6IVseBxNxnYJJPkm52Zbxi70to3USy15fiaUnJ8sLQmJ6_WEjyPOMXIo9t98jt98fjSfNlgrTIXhsIqi7M_P9Oz07p40yhms5GORo0eKad00dhyMnJMSjQXQlIVg9uv5TCPvMgmdraod-nZzGK83icjNBHdnMWTKsr-fjctYc-fkZNb8ySFxSeMx0vX0sMu2ynwJL_LP3mPbZhkn212C4_5ARu0jUl5URtiyBGi8gnREYx5r9vj7wu8yibZY2om8Zx-nfHMRq54ZTlFxg854kTutbFtmmVvcQTnRLHA-1ZiZoes_3D_3OpYRWUFKxIymFkDzwYvAD-UEErtghwQcyB4ZCzaJg7CKA6Jp14QnViTqqfjto5cNzYgjXHAO2K15CMxx4wHAhARBrEXOUaAG4UAgozMATh-KKRdZ3Y5pyoqaMep-sVYlfFlbwqXQdEyKKqIacs6u65E0pxz46_ObrlQqkwmxeNP4Y3wl5CohFa0bZ3YZakJCnchuVYgMR_zqULgKERIXHR1JldUpBoB8XivtiSj14zPOxCIEZtBnd1UyrR-3Cf_G8Ip26anPJvyjNVQmcw5wqqZvsj2zTeBjiCK priority: 102 providerName: Elsevier |
| Title | Deep learning for radial SMS myocardial perfusion reconstruction using the 3D residual booster U-net |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0730725X21001375 https://dx.doi.org/10.1016/j.mri.2021.08.007 https://www.proquest.com/docview/2564494655 https://pubmed.ncbi.nlm.nih.gov/PMC8493758 https://www.ncbi.nlm.nih.gov/pmc/articles/8493758 |
| UnpaywallVersion | submittedVersion |
| Volume | 83 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-5894 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005235 issn: 0730-725X databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-5894 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005235 issn: 0730-725X databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-5894 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005235 issn: 0730-725X databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1873-5894 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005235 issn: 0730-725X databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-5894 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005235 issn: 0730-725X databaseCode: AKRWK dateStart: 19820101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED_aBLa97Ls0-wga7GnDrm3JlvwY1pVsI2GsC2RPQlLkLqvjmjRhdA_726fzF20ZLX000j0cOul-57v7HcBbrRNrMq69MNHYkpMoT2tM8mrNFaXIKYYZ3ck0Gc_Y53k834Gw7YWpivaNXvpFvvKL5c-qtrJcmYO2TuxAMOdRY7EL_SR28LsH_dn06-hHRbdJA49H8RyDLMGpF4uUtZnMqqZrtV66kDCqWTtxguz_fdElrHm9UvL-tijVxW-V55fc0NEj-NYqUFefnPrbjfbNn2vcjnfS8DE8bEApGdVLT2DHFk_h3qRJuz-DxaG1JWkGTJwQh3PJGjkNcnI8OSarC-cP19VnadfZFv-_kSrQ7shpCZbXnxAHNgk9dGvnVQsYcQgfeRrIzCvs5jnMjj5-_zD2mvEMnmFcbLwFDRQVKkm5SrmOFF8g_aCiGHEGNhOpyVIku2fISRbjCHb3Npgoyqzi1oaK7kGvOCvsPhDBlIOVIqMmtExFJlWKYaS6UGGSMh4MIGgPSpqGuxxHaOSyLVL7Jd3ZSjxbiWM1Az6Ad51IWRN33LQ5ak9fth2p7g2Vzq3cJMQ6oQau1DDkNrE3rXlJd5UxP6MKe7Y9lw59MpYiod0A-BW76zRAMvCrK86CKlLwxmgG8L6z0Nv1fnGn3S_hAX7VnZivoOdsyL52kGyjh7Dr_w2H0B99-jKeDpsr-Q8PoThj |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED8VJo29TBsMUfZlpD0xZc2HEyePEx3qgPJSKvFmnVOndCohKq0QL_vbd5cvtdME0h4T-6TYPtu_y939DuCLMZFNM2UcLzKckhOhYww7eY1RGATMKcYe3eFlNBjLs-vwugMnTS4Mh1XWZ391ppendf2mV89mr5jNeiNWTuWTseWV5JjhFryQoa_YAvv2ez3Oo6qySb0d7t64Nssgr9vFjGxEv6Lx5JKy_76c1sDn36GTO6u8wMcHnM_X7qXTN_C6BpTie_XNb6Fj8114Oaxd5nsw6VtbiLo4xFQQRhUL5iOYi9FwJG4f6S5blI-FXWQr_ncmSiO5JZYVHBo_FQQURdCntvsyfUsQOmeOBTF2crt8B-PTH1cnA6cureCkUsVLZxK4GMQYJQoTZXxUE6YOxICtRddmcZJmCRPVS-YTC7l8Ou3r1Pczi8paD4N92M7vcnsAIpZIkDDOgtSzEv00QZRsZU7QixKp3C64zZzqtOYd5_IXc90EmP3StAyal0FzSUxXdeG4FSkq0o2nOvvNQukmm5TOP01XwlNCshXaULfnxI4aTdC0Ddm3grm9W91rQo5SJkxG1wW1oSLtCJjIe7Mln92UhN6xJJAYxl342irT8-M-_L8hfIadwdXwQl_8vDx_D6-4pUqt_ADbpFj2I2GspflU7qE_CUgjrQ |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9swED66FLa-7Pdo1m1osKcNp7YlW_JjWVfKIGWsC2RPRlLkLq3jmjRhdH9972zLtGW09NFI93DopPvOd_cdwCdjUmcLaYIoNdSSk-rAGEryGiM158QpRhnd8VF6OBHfp8l0AyLfC9MU7VszH1XlYlTN_zS1lfXC7vo6sV0l0KMm6hFspgnC7wFsTo5-7P1u6DZ5GMg4mVKQpSQPEpUJn8lsaroWyzmGhHHL2kkTZP_vi65hzduVkk_WVa0v_-qyvOaGDp7BT69AW31yNlqvzMj-u8Xt-CANn8PTDpSyvXbpBWy46iU8Hndp91cw23euZt2AiROGOJctidOgZMfjY7a4RH-4bD5rtyzW9P-NNYF2T07LqLz-hCHYZHwf1y6aFjCGCJ94GtgkqNzqNUwOvv36ehh04xkCK6RaBTMeaq50mkmdSRNrOSP6Qc0p4gxdoTJbZER2L4iTLKER7Pg22DgunJbORZq_gUF1XrltYEpohJWq4DZyQsc201pQpDrTUZoJGQ4h9AeV2467nEZolLkvUjvN8WxzOtucxmqGcgife5G6Je64a3PsTz_3Han4huboVu4SEr1QB1daGHKf2EdvXjleZcrP6Mqdry9yRJ9CZERoNwR5w-56DYgM_OYKWlBDCt4ZzRC-9BZ6v95vH7R7B7boq-3EfAcDtCH3HiHZynzoLuEVEVU11w |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning+for+Radial+SMS+Myocardial+Perfusion+Reconstruction+using+the+3D+Residual+Booster+U-Net&rft.jtitle=Magnetic+resonance+imaging&rft.au=Le%2C+Johnathan&rft.au=Tian%2C+Ye&rft.au=Mendes%2C+Jason&rft.au=Wilson%2C+Brent&rft.date=2021-11-01&rft.issn=0730-725X&rft.eissn=1873-5894&rft.volume=83&rft.spage=178&rft.epage=188&rft_id=info:doi/10.1016%2Fj.mri.2021.08.007&rft_id=info%3Apmid%2F34428512&rft.externalDocID=PMC8493758 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0730-725X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0730-725X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0730-725X&client=summon |