Deep learning for radial SMS myocardial perfusion reconstruction using the 3D residual booster U-net

To develop an end-to-end deep learning solution for quickly reconstructing radial simultaneous multi-slice (SMS) myocardial perfusion datasets with comparable quality to the pixel tracking spatiotemporal constrained reconstruction (PT-STCR) method. Dynamic contrast enhanced (DCE) radial SMS myocardi...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance imaging Vol. 83; pp. 178 - 188
Main Authors Le, Johnathan, Tian, Ye, Mendes, Jason, Wilson, Brent, Ibrahim, Mark, DiBella, Edward, Adluru, Ganesh
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.11.2021
Subjects
Online AccessGet full text
ISSN0730-725X
1873-5894
1873-5894
DOI10.1016/j.mri.2021.08.007

Cover

Abstract To develop an end-to-end deep learning solution for quickly reconstructing radial simultaneous multi-slice (SMS) myocardial perfusion datasets with comparable quality to the pixel tracking spatiotemporal constrained reconstruction (PT-STCR) method. Dynamic contrast enhanced (DCE) radial SMS myocardial perfusion data were obtained from 20 subjects who were scanned at rest and/or stress with or without ECG gating using a saturation recovery radial CAIPI turboFLASH sequence. Input to the networks consisted of complex coil combined images reconstructed using the inverse Fourier transform of undersampled radial SMS k-space data. Ground truth images were reconstructed using the PT-STCR pipeline. The performance of the residual booster 3D U-Net was tested by comparing it to state-of-the-art network architectures including MoDL, CRNN-MRI, and other U-Net variants. Results demonstrate significant improvements in speed requiring approximately 8 seconds to reconstruct one radial SMS dataset which is approximately 200 times faster than the PT-STCR method. Images reconstructed with the residual booster 3D U-Net retain quality of ground truth PT-STCR images (0.963 SSIM/40.238 PSNR/0.147 NRMSE). The residual booster 3D U-Net has superior performance compared to existing network architectures in terms of image quality, temporal dynamics, and reconstruction time. Residual and booster learning combined with the 3D U-Net architecture was shown to be an effective network for reconstructing high-quality images from undersampled radial SMS datasets while bypassing the reconstruction time of the PT-STCR method.
AbstractList To develop an end-to-end deep learning solution for quickly reconstructing radial simultaneous multi-slice (SMS) myocardial perfusion datasets with comparable quality to the pixel tracking spatiotemporal constrained reconstruction (PT-STCR) method. Dynamic contrast enhanced (DCE) radial SMS myocardial perfusion data were obtained from 20 subjects who were scanned at rest and/or stress with or without ECG gating using a saturation recovery radial CAIPI turboFLASH sequence. Input to the networks consisted of complex coil combined images reconstructed using the inverse Fourier transform of undersampled radial SMS k-space data. Ground truth images were reconstructed using the PT-STCR pipeline. The performance of the residual booster 3D U-Net was tested by comparing it to state-of-the-art network architectures including MoDL, CRNN-MRI, and other U-Net variants. Results demonstrate significant improvements in speed requiring approximately 8 seconds to reconstruct one radial SMS dataset which is approximately 200 times faster than the PT-STCR method. Images reconstructed with the residual booster 3D U-Net retain quality of ground truth PT-STCR images (0.963 SSIM/40.238 PSNR/0.147 NRMSE). The residual booster 3D U-Net has superior performance compared to existing network architectures in terms of image quality, temporal dynamics, and reconstruction time. Residual and booster learning combined with the 3D U-Net architecture was shown to be an effective network for reconstructing high-quality images from undersampled radial SMS datasets while bypassing the reconstruction time of the PT-STCR method.
To develop an end-to-end deep learning solution for quickly reconstructing radial simultaneous multi-slice (SMS) myocardial perfusion datasets with comparable quality to the pixel tracking spatiotemporal constrained reconstruction (PT-STCR) method.PURPOSETo develop an end-to-end deep learning solution for quickly reconstructing radial simultaneous multi-slice (SMS) myocardial perfusion datasets with comparable quality to the pixel tracking spatiotemporal constrained reconstruction (PT-STCR) method.Dynamic contrast enhanced (DCE) radial SMS myocardial perfusion data were obtained from 20 subjects who were scanned at rest and/or stress with or without ECG gating using a saturation recovery radial CAIPI turboFLASH sequence. Input to the networks consisted of complex coil combined images reconstructed using the inverse Fourier transform of undersampled radial SMS k-space data. Ground truth images were reconstructed using the PT-STCR pipeline. The performance of the residual booster 3D U-Net was tested by comparing it to state-of-the-art network architectures including MoDL, CRNN-MRI, and other U-Net variants.METHODSDynamic contrast enhanced (DCE) radial SMS myocardial perfusion data were obtained from 20 subjects who were scanned at rest and/or stress with or without ECG gating using a saturation recovery radial CAIPI turboFLASH sequence. Input to the networks consisted of complex coil combined images reconstructed using the inverse Fourier transform of undersampled radial SMS k-space data. Ground truth images were reconstructed using the PT-STCR pipeline. The performance of the residual booster 3D U-Net was tested by comparing it to state-of-the-art network architectures including MoDL, CRNN-MRI, and other U-Net variants.Results demonstrate significant improvements in speed requiring approximately 8 seconds to reconstruct one radial SMS dataset which is approximately 200 times faster than the PT-STCR method. Images reconstructed with the residual booster 3D U-Net retain quality of ground truth PT-STCR images (0.963 SSIM/40.238 PSNR/0.147 NRMSE). The residual booster 3D U-Net has superior performance compared to existing network architectures in terms of image quality, temporal dynamics, and reconstruction time.RESULTSResults demonstrate significant improvements in speed requiring approximately 8 seconds to reconstruct one radial SMS dataset which is approximately 200 times faster than the PT-STCR method. Images reconstructed with the residual booster 3D U-Net retain quality of ground truth PT-STCR images (0.963 SSIM/40.238 PSNR/0.147 NRMSE). The residual booster 3D U-Net has superior performance compared to existing network architectures in terms of image quality, temporal dynamics, and reconstruction time.Residual and booster learning combined with the 3D U-Net architecture was shown to be an effective network for reconstructing high-quality images from undersampled radial SMS datasets while bypassing the reconstruction time of the PT-STCR method.CONCLUSIONResidual and booster learning combined with the 3D U-Net architecture was shown to be an effective network for reconstructing high-quality images from undersampled radial SMS datasets while bypassing the reconstruction time of the PT-STCR method.
Author Wilson, Brent
Mendes, Jason
Ibrahim, Mark
Le, Johnathan
Adluru, Ganesh
Tian, Ye
DiBella, Edward
AuthorAffiliation 3 Department of Physics and Astronomy, University of Utah, Salt Lake City, UT, USA
5 Department of Cardiology, University of Utah, Salt Lake City, UT, USA
1 Utah Center for Advanced Imaging Research (UCAIR), Department of Radiology and Imaging Sciences, University of Utah Salt Lake City, UT, USA
2 Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
4 Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, USA
AuthorAffiliation_xml – name: 5 Department of Cardiology, University of Utah, Salt Lake City, UT, USA
– name: 2 Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
– name: 3 Department of Physics and Astronomy, University of Utah, Salt Lake City, UT, USA
– name: 4 Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, USA
– name: 1 Utah Center for Advanced Imaging Research (UCAIR), Department of Radiology and Imaging Sciences, University of Utah Salt Lake City, UT, USA
Author_xml – sequence: 1
  givenname: Johnathan
  surname: Le
  fullname: Le, Johnathan
  organization: Utah Center for Advanced Imaging Research (UCAIR), Department of Radiology and Imaging Sciences, University of Utah Salt Lake City, UT, USA
– sequence: 2
  givenname: Ye
  surname: Tian
  fullname: Tian, Ye
  organization: Utah Center for Advanced Imaging Research (UCAIR), Department of Radiology and Imaging Sciences, University of Utah Salt Lake City, UT, USA
– sequence: 3
  givenname: Jason
  surname: Mendes
  fullname: Mendes, Jason
  organization: Utah Center for Advanced Imaging Research (UCAIR), Department of Radiology and Imaging Sciences, University of Utah Salt Lake City, UT, USA
– sequence: 4
  givenname: Brent
  surname: Wilson
  fullname: Wilson, Brent
  organization: Department of Cardiology, University of Utah, Salt Lake City, UT, USA
– sequence: 5
  givenname: Mark
  surname: Ibrahim
  fullname: Ibrahim, Mark
  organization: Department of Cardiology, University of Utah, Salt Lake City, UT, USA
– sequence: 6
  givenname: Edward
  surname: DiBella
  fullname: DiBella, Edward
  organization: Utah Center for Advanced Imaging Research (UCAIR), Department of Radiology and Imaging Sciences, University of Utah Salt Lake City, UT, USA
– sequence: 7
  givenname: Ganesh
  surname: Adluru
  fullname: Adluru, Ganesh
  email: ganeshsharma.adluru@hsc.utah.edu
  organization: Utah Center for Advanced Imaging Research (UCAIR), Department of Radiology and Imaging Sciences, University of Utah Salt Lake City, UT, USA
BookMark eNqNkU1v1DAQhi1URLeFH8AtRy5ZHH_EtpCQUFs-pCIOpRI3y-tMWi-OHWynaP89XrYSoofCyRrPPK88j0_QUYgBEHrZ4XWHu_71dj0ltyaYdGss1xiLJ2jVSUFbLhU7QissKG4F4d-O0UnOW4wxJ5Q_Q8eUMSJ5R1ZoOAeYGw8mBRdumjGmJpnBGd9cfb5qpl20Jv0uZ0jjkl0MTQIbQy5psWVf1ssKllto6HntZTcsdXwTYy6Qmus2QHmOno7GZ3hxf56i6_cXX88-tpdfPnw6e3fZWiZkaQeKDZWmV8IosSFGDJgwZShnSmEYpbKjIphxxnra100UkwJbQkYwAqAz9BSRQ-4SZrP7abzXc3KTSTvdYb1Xpre6KtN7ZRpLXZVV6O0BmpfNBIOFUJL5A0bj9N-d4G71TbzTkikquKwBr-4DUvyxQC56ctmC9yZAXLImvGdMsZ7zOioOozbFnBOM2rpi9hprsvOPvrJ7QP7PZm8ODFTndw6SztZBsDC4-odFD9E9SqsHtPUuOGv8d9j9g_0F8CfPdw
CitedBy_id crossref_primary_10_1007_s13534_024_00425_9
crossref_primary_10_1002_mrm_30364
crossref_primary_10_1002_jmri_29676
crossref_primary_10_1007_s00234_024_03282_6
crossref_primary_10_1002_mrm_29453
crossref_primary_10_1088_1361_6560_acc0cd
crossref_primary_10_3389_fcvm_2024_1350345
crossref_primary_10_3390_su14020861
crossref_primary_10_1088_1361_6560_ad1d6d
crossref_primary_10_1016_j_jocmr_2024_101127
crossref_primary_10_1186_s12859_022_05071_5
crossref_primary_10_1109_RBME_2024_3485022
crossref_primary_10_1148_radiol_231269
crossref_primary_10_1016_j_jmapro_2023_04_080
Cites_doi 10.1109/TMI.2018.2865356
10.1371/journal.pone.0211738
10.1002/mrm.27706
10.1109/TIP.2017.2662206
10.1002/mrm.22752
10.1002/mrm.21565
10.1002/mrm.27827
10.1002/nbm.4239
10.1109/TMI.2018.2863670
10.1002/mrm.24980
10.1007/s10554-017-1265-1
10.1016/j.jmr.2007.06.012
10.1002/mrm.28337
10.1002/mrm.26878
10.3414/ME13-01-0122
10.1002/mrm.27030
10.1016/j.mri.2016.07.015
10.1002/mrm.26977
10.1002/mrm.20787
10.1109/83.536892
10.1002/jmri.21585
10.1002/mrm.21248
10.1002/jmri.20756
10.1002/mrm.20401
10.1016/j.acra.2018.05.008
10.1002/mrm.21435
ContentType Journal Article
Copyright 2021 Elsevier Inc.
Copyright © 2021 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2021 Elsevier Inc.
– notice: Copyright © 2021 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
7X8
5PM
ADTOC
UNPAY
DOI 10.1016/j.mri.2021.08.007
DatabaseName CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1873-5894
EndPage 188
ExternalDocumentID oai:pubmedcentral.nih.gov:8493758
PMC8493758
10_1016_j_mri_2021_08_007
S0730725X21001375
GroupedDBID ---
--K
--M
.1-
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29M
3O-
4.4
457
4CK
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABDPE
ABFNM
ABGSF
ABJNI
ABMAC
ABMZM
ABNEU
ABOCM
ABUDA
ABWVN
ABXDB
ACDAQ
ACFVG
ACGFS
ACIEU
ACIUM
ACLOT
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADUVX
AEBSH
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFFNX
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AIVDX
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HEI
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OI~
OU0
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SSQ
SSU
SSZ
T5K
WUQ
XPP
Z5R
ZGI
ZMT
~G-
~HD
~S-
AACTN
AAIAV
ABLVK
ABYKQ
AFCTW
AFKWA
AJBFU
AJOXV
AMFUW
DOVZS
G8K
LCYCR
RIG
AAYXX
CITATION
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c478t-d30a38a697a97b2a7d0249a354990ef89cf920454463652394870c22fea7ee1a3
IEDL.DBID UNPAY
ISSN 0730-725X
1873-5894
IngestDate Sun Oct 26 03:52:16 EDT 2025
Tue Sep 30 17:19:11 EDT 2025
Thu Oct 02 11:39:40 EDT 2025
Thu Apr 24 23:08:24 EDT 2025
Thu Oct 16 04:44:05 EDT 2025
Fri Feb 23 02:43:54 EST 2024
Tue Oct 14 19:40:21 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords deep learning
radial simultaneous multi-slice
boosting
3D U-Net
Myocardial perfusion
residual learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c478t-d30a38a697a97b2a7d0249a354990ef89cf920454463652394870c22fea7ee1a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Jason Mendes: Conceptualization, Data Curation, Investigation, Writing – Review and Editing
Ganesh Adluru: Conceptualization, Investigation, Supervision, Project Administration, Resources, Funding Acquisition, Writing – Review and Editing
Johnathan Le: Conceptualization, Methodology, Software, Validation, Formal Analysis, Investigation, Data Curation, Writing – Original Draft, Writing – Review and Editing, Visualization
Edward DiBella: Conceptualization, Supervision, Project Administration, Resources, Funding Acquisition, Writing – Review and Editing
Author Statement
Mark Ibrahim: Resources
Ye Tian: Conceptualization, Data Curation, Investigation, Writing – Review and Editing
Brent Wilson: Resources
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/8493758
PMID 34428512
PQID 2564494655
PQPubID 23479
PageCount 11
ParticipantIDs unpaywall_primary_10_1016_j_mri_2021_08_007
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8493758
proquest_miscellaneous_2564494655
crossref_citationtrail_10_1016_j_mri_2021_08_007
crossref_primary_10_1016_j_mri_2021_08_007
elsevier_sciencedirect_doi_10_1016_j_mri_2021_08_007
elsevier_clinicalkey_doi_10_1016_j_mri_2021_08_007
PublicationCentury 2000
PublicationDate 2021-11-01
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-01
  day: 01
PublicationDecade 2020
PublicationTitle Magnetic resonance imaging
PublicationYear 2021
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Seiberlich, Breuer, Blaimer, Jakob, Griswold (bb0070) 2008; 59
Wang, Adluru, Chen, Kholmovski, Bangerter, DiBella (bb0030) 2016; 34
Adluru, McGann, Speier, Kholmovski, Shaaban, Dibella (bb0045) 2009; 29
Loffe, Szegedy (bb0160) 2015
Breuer, Blaimer, Heidemann, Mueller, Griswold, Jakob (bb0015) 2005; 53
Adluru, Awate, Tasdizen, Whitaker, Dibella (bb0050) 2007; 57
Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (bb0165) 2014; 15
Rosenzweig, Holme, Wilke, Voit, Frahm, Uecker (bb0055) 2018; 79
Hestenes, Eduard (bb0090) 1952
Biswas, Aggarwal, Jacob (bb0125) 2019; 82
Ma, Zhang, Chen, Yang (bb0005) 2019; 26
Adluru, DiBella, Schabel (bb0080) 2006; 24
Yutzy, Seiberlich, Duerk, Griswold (bb0025) 2011; 65
Cicek, Adbdulkadir, Lienkamp, Brox, Ronneberger (bb0135) 2016
Breuer, Blaimer, Mueller, Seiberlich, Heidemann, Griswold (bb0020) 2006; 55
Sharif, Motwani, Arsanjani, Dharmakumar, Fish, Germano (bb0010) 2018; 34
Boyd, Parikh, Chu, Peleato, Eckstein (bb0095) 2011
He, Zhang, Ren, Sun (bb0145) 2016
Zhang, Zuo, Chen, Meng, Zhang (bb0170) 2017; 26
Tian, Mendes, Pedgaonkar, Ibrahim, Jensen, Schroeder (bb0035) 2019; 14
Mayr, Binder, Gefeller, Schmid (bb0140) 2014; 53
Hu, Xiao, Pennington (bb0175) 2020
Benkert, Tian, Huang, DiBella, Chandarana, Feng (bb0060) 2018; 80
Channappayya, Bovik, Caramanis, Heath (bb0185) 2008
Qin, Schlemper, Caballero, Price, Hajnal, Rueckert (bb0130) 2017; 38
Bansal, Chen, Wang (bb0180) 2018
Hammernik, Klatzer, Kobler, Recht, Sodickson, Pock (bb0115) 2018; 79
Liu, Samsonov, Chen, Kijowski, Feng (bb0110) 2019; 82
Zhao, Gallo, Frosio, Kautz (bb0190) 2017; 3
Seiberlich, Breuer, Blaimer, Barkauskas, Jakob, Griswold (bb0065) 2007; 58
Christensen, Rabbitt, Miller (bb0085) 1996; 5
Fessler (bb0075) 2007; 188
Tian, Mendes, Wilson, Ross, Ranjan, DiBella (bb0040) 2020; 84
Simonyan, Zisserman (bb0195) 2015
Aggarwal, Mani, Jacob (bb0120) 2019; 38
Johnson, Alahi, Fei-Fei (bb0150) 2016
Fan, Shen, Haji-Valizadeh, Naresh, Carr, Freed (bb0105) 2020; 33
Feng, Grimm, Block, Chandarana, Kim, Xu (bb0155) 2014; 72
Ronneberger, Fischer, Brox (bb0100) 2015
Mayr (10.1016/j.mri.2021.08.007_bb0140) 2014; 53
Seiberlich (10.1016/j.mri.2021.08.007_bb0065) 2007; 58
Hestenes (10.1016/j.mri.2021.08.007_bb0090) 1952
Hammernik (10.1016/j.mri.2021.08.007_bb0115) 2018; 79
Aggarwal (10.1016/j.mri.2021.08.007_bb0120) 2019; 38
Zhao (10.1016/j.mri.2021.08.007_bb0190) 2017; 3
Yutzy (10.1016/j.mri.2021.08.007_bb0025) 2011; 65
Bansal (10.1016/j.mri.2021.08.007_bb0180) 2018
Feng (10.1016/j.mri.2021.08.007_bb0155) 2014; 72
Srivastava (10.1016/j.mri.2021.08.007_bb0165) 2014; 15
Benkert (10.1016/j.mri.2021.08.007_bb0060) 2018; 80
Boyd (10.1016/j.mri.2021.08.007_bb0095) 2011
Fan (10.1016/j.mri.2021.08.007_bb0105) 2020; 33
Qin (10.1016/j.mri.2021.08.007_bb0130) 2017; 38
Wang (10.1016/j.mri.2021.08.007_bb0030) 2016; 34
Channappayya (10.1016/j.mri.2021.08.007_bb0185) 2008
Simonyan (10.1016/j.mri.2021.08.007_bb0195) 2015
Christensen (10.1016/j.mri.2021.08.007_bb0085) 1996; 5
Johnson (10.1016/j.mri.2021.08.007_bb0150) 2016
Adluru (10.1016/j.mri.2021.08.007_bb0080) 2006; 24
Breuer (10.1016/j.mri.2021.08.007_bb0015) 2005; 53
Zhang (10.1016/j.mri.2021.08.007_bb0170) 2017; 26
Adluru (10.1016/j.mri.2021.08.007_bb0050) 2007; 57
Loffe (10.1016/j.mri.2021.08.007_bb0160) 2015
Cicek (10.1016/j.mri.2021.08.007_bb0135) 2016
Ronneberger (10.1016/j.mri.2021.08.007_bb0100) 2015
Hu (10.1016/j.mri.2021.08.007_bb0175) 2020
Tian (10.1016/j.mri.2021.08.007_bb0040) 2020; 84
Breuer (10.1016/j.mri.2021.08.007_bb0020) 2006; 55
He (10.1016/j.mri.2021.08.007_bb0145) 2016
Liu (10.1016/j.mri.2021.08.007_bb0110) 2019; 82
Fessler (10.1016/j.mri.2021.08.007_bb0075) 2007; 188
Adluru (10.1016/j.mri.2021.08.007_bb0045) 2009; 29
Biswas (10.1016/j.mri.2021.08.007_bb0125) 2019; 82
Sharif (10.1016/j.mri.2021.08.007_bb0010) 2018; 34
Tian (10.1016/j.mri.2021.08.007_bb0035) 2019; 14
Ma (10.1016/j.mri.2021.08.007_bb0005) 2019; 26
Rosenzweig (10.1016/j.mri.2021.08.007_bb0055) 2018; 79
Seiberlich (10.1016/j.mri.2021.08.007_bb0070) 2008; 59
References_xml – start-page: 49
  year: 1952
  ident: bb0090
  article-title: Methods of conjugate gradients for solving linear systems
  publication-title: J Res Natl Bur Stand
– year: 2020
  ident: bb0175
  article-title: Provable benefit of orthogonal initialization in optimizing deep linear networks
  publication-title: the proceedings of the 8th annual meeting of ICLR. Addis Ababa, Ethiopia
– year: 2018
  ident: bb0180
  article-title: Can we gain more from Orthogonality regularization in training deep CNNs?
  publication-title: the proceedings of the 32nd annual meeting of NeurIPS. Montreal, QC, Canada
– volume: 65
  start-page: 1630
  year: 2011
  end-page: 1637
  ident: bb0025
  article-title: Improvements in multislice parallel imaging using radial CAIPIRINHA
  publication-title: Magn Reson Med
– volume: 14
  year: 2019
  ident: bb0035
  article-title: Feasibility of multiple-view myocardial perfusion MRI using radial simultaneous multi-slice acquisitions
  publication-title: PLoS One
– volume: 53
  start-page: 419
  year: 2014
  end-page: 427
  ident: bb0140
  article-title: The evolution of boosting algorithms. From machine learning to statistical modelling
  publication-title: Methods Inf Med
– start-page: 770
  year: 2016
  end-page: 778
  ident: bb0145
  article-title: Deep residual learning for image recognition
  publication-title: IEEE Conference on computer vision and pattern recognition (CVPR)
– volume: 72
  start-page: 707
  year: 2014
  end-page: 717
  ident: bb0155
  article-title: Golden-angle radial sparse parallel MRI: combination of compressed sensing, parallel imaging, and golden-angle radial sampling for fast and flexible dynamic volumetric MRI
  publication-title: Magn Reson Med
– start-page: 3
  year: 2011
  ident: bb0095
  article-title: Distributed optimization and statistical learning via the alternating direction method of multipliers
  publication-title: Found Trends Machine Learn
– volume: 5
  start-page: 1435
  year: 1996
  end-page: 1447
  ident: bb0085
  article-title: Deformable templates using large deformation kinematics
  publication-title: IEEE Trans Image Process
– volume: 38
  start-page: 394
  year: 2019
  end-page: 405
  ident: bb0120
  article-title: MoDL: model based deep learning architecture for inverse problems
  publication-title: IEEE Trans Med Imag
– volume: 188
  start-page: 191
  year: 2007
  end-page: 195
  ident: bb0075
  article-title: On NUFFT-based gridding for non-Cartesian MRI
  publication-title: J Magn Reson
– volume: 55
  start-page: 549
  year: 2006
  end-page: 556
  ident: bb0020
  article-title: Controlled aliasing in volumetric parallel imaging (2D CAIPIRINHA)
  publication-title: Magn Reson Med
– start-page: 448
  year: 2015
  end-page: 456
  ident: bb0160
  article-title: Batch normalization: accelerating deep network training by reducing interval covariate shift
  publication-title: In the Proceedings of the 32nd Annual Meeting of ICML. 37. Lille, France
– volume: 82
  start-page: 485
  year: 2019
  end-page: 494
  ident: bb0125
  article-title: Dynamic MRI using model-based deep learning and SToRM priors: MoDL-SToRM
  publication-title: Magn Reson Med
– year: 2015
  ident: bb0195
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: the proceedings of the 3rd annual meeting of ICLR. San Diego, CA
– volume: 59
  start-page: 930
  year: 2008
  end-page: 935
  ident: bb0070
  article-title: Self-calibrating GRAPPA operator gridding for radial and spiral trajectories
  publication-title: Magn Reson Med
– volume: 34
  start-page: 661
  year: 2018
  end-page: 669
  ident: bb0010
  article-title: Impact of incomplete ventricular coverage on diagnostic performance of myocardial perfusion imaging
  publication-title: Int J Cardiovasc Imaging
– volume: 79
  start-page: 2057
  year: 2018
  end-page: 2066
  ident: bb0055
  article-title: Simultaneous multi-slice MRI using cartesian and radial FLASH and regularized nonlinear inversion: SMS-NLINV
  publication-title: Magn Reson Med
– volume: 33
  start-page: e4239
  year: 2020
  ident: bb0105
  article-title: Rapid dealiasing of undersampled, non-Cartesian cardiac perfusion images using U-net
  publication-title: NMR Biomed
– volume: 80
  start-page: 286
  year: 2018
  end-page: 293
  ident: bb0060
  article-title: Optimization and validation of accelerated golden-angle radial sparse MRI reconstruction with self-calibrating GRAPPA operator gridding
  publication-title: Magn Reson Med
– volume: 3
  start-page: 47
  year: 2017
  end-page: 57
  ident: bb0190
  article-title: Loss functions for image restoration with neural networks
  publication-title: IEEE Trans Comp Imag
– volume: 58
  start-page: 1257
  year: 2007
  end-page: 1265
  ident: bb0065
  article-title: Non-Cartesian data reconstruction using GRAPPA operator gridding (GROG)
  publication-title: Magn Reson Med
– volume: 38
  start-page: 280
  year: 2017
  end-page: 290
  ident: bb0130
  article-title: Convolutional recurrent neural networks for dynamic MR image reconstruction
  publication-title: IEEE Trans Med Imag
– volume: 34
  start-page: 1329
  year: 2016
  end-page: 1336
  ident: bb0030
  article-title: Radial simultaneous multi-slice CAIPI for ungated myocardial perfusion
  publication-title: Magn Reson Imaging
– volume: 29
  start-page: 466
  year: 2009
  end-page: 473
  ident: bb0045
  article-title: Acquisition and reconstruction of undersampled radial data for myocardial perfusion magnetic resonance imaging
  publication-title: J Magn Reson Imaging
– volume: 24
  start-page: 1062
  year: 2006
  end-page: 1070
  ident: bb0080
  article-title: Model-based registration for dynamic cardiac perfusion MRI
  publication-title: J Magn Reson Imaging
– year: 2016
  ident: bb0150
  article-title: Perceptual losses for real-time style transfer and super resolution
  publication-title: the Proceedings of the 14th Annual Meeting of ECCV. Amsterdam, The Netherlands
– volume: 26
  start-page: 519
  year: 2019
  end-page: 525
  ident: bb0005
  article-title: Whole left ventricular coverage versus conventional 3-slice myocardial perfusion magnetic resonance imaging for the detection of suspected coronary artery disease
  publication-title: Acad Radiol
– start-page: 234
  year: 2015
  end-page: 241
  ident: bb0100
  article-title: U-Net: convolutional networks for biomedical image segmentation
  publication-title: The Proceedings of the 18th Annual Meeting of MICCAI. Munich, Germany
– volume: 82
  start-page: 1890
  year: 2019
  end-page: 1904
  ident: bb0110
  article-title: SANTIS: sampling-augmented neural neTwork with incoherent structure for MR image reconstruction
  publication-title: Magn Reson Med
– volume: 79
  start-page: 3055
  year: 2018
  end-page: 3071
  ident: bb0115
  article-title: Learning a variational network for reconstruction of accelerated MRI data
  publication-title: Magn Reson Med
– start-page: 765
  year: 2008
  end-page: 768
  ident: bb0185
  article-title: SSIM-optimal linear image restoration
  publication-title: the proceedings of the 33rd Annual Meeting of ICASSP
– volume: 53
  start-page: 684
  year: 2005
  end-page: 691
  ident: bb0015
  article-title: Controlled aliasing in parallel imaging results in higher acceleration (CAIPIRINHA) for multi-slice imaging
  publication-title: Magn Reson Med
– start-page: 424
  year: 2016
  end-page: 432
  ident: bb0135
  article-title: 3D U-Net: learning dense volumetric segmentation from sparse annotation
  publication-title: the Proceedings of the 19th Annual Meeting of MICCAI. Athens, Greece
– volume: 84
  start-page: 3071
  year: 2020
  end-page: 3087
  ident: bb0040
  article-title: Whole-heart, ungated, free-breathing, cardiac-phase-resolved myocardial perfusion MRI by using continuous radial interleaved simultaneous multi-slice acquisitions at sPoiled steady-state (CRIMP)
  publication-title: Magn Reson Med
– volume: 26
  start-page: 3142
  year: 2017
  end-page: 3155
  ident: bb0170
  article-title: Beyond a Gaussian Denoiser: residual learning of deep CNN for image denoising
  publication-title: IEEE Trans Image Process
– volume: 57
  start-page: 1027
  year: 2007
  end-page: 1036
  ident: bb0050
  article-title: Temporally constrained reconstruction of dynamic cardiac perfusion MRI
  publication-title: Magn Reson Med
– volume: 15
  start-page: 1929
  year: 2014
  end-page: 1958
  ident: bb0165
  article-title: Dropout: a simple way to prevent neural networks from Overfitting
  publication-title: J Machine Learn Res
– volume: 38
  start-page: 394
  issue: 2
  year: 2019
  ident: 10.1016/j.mri.2021.08.007_bb0120
  article-title: MoDL: model based deep learning architecture for inverse problems
  publication-title: IEEE Trans Med Imag
  doi: 10.1109/TMI.2018.2865356
– volume: 14
  issue: 2
  year: 2019
  ident: 10.1016/j.mri.2021.08.007_bb0035
  article-title: Feasibility of multiple-view myocardial perfusion MRI using radial simultaneous multi-slice acquisitions
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0211738
– volume: 3
  start-page: 47
  issue: 1
  year: 2017
  ident: 10.1016/j.mri.2021.08.007_bb0190
  article-title: Loss functions for image restoration with neural networks
  publication-title: IEEE Trans Comp Imag
– volume: 82
  start-page: 485
  issue: 1
  year: 2019
  ident: 10.1016/j.mri.2021.08.007_bb0125
  article-title: Dynamic MRI using model-based deep learning and SToRM priors: MoDL-SToRM
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.27706
– volume: 26
  start-page: 3142
  issue: 7
  year: 2017
  ident: 10.1016/j.mri.2021.08.007_bb0170
  article-title: Beyond a Gaussian Denoiser: residual learning of deep CNN for image denoising
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2017.2662206
– volume: 65
  start-page: 1630
  issue: 6
  year: 2011
  ident: 10.1016/j.mri.2021.08.007_bb0025
  article-title: Improvements in multislice parallel imaging using radial CAIPIRINHA
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.22752
– volume: 59
  start-page: 930
  issue: 4
  year: 2008
  ident: 10.1016/j.mri.2021.08.007_bb0070
  article-title: Self-calibrating GRAPPA operator gridding for radial and spiral trajectories
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.21565
– start-page: 770
  year: 2016
  ident: 10.1016/j.mri.2021.08.007_bb0145
  article-title: Deep residual learning for image recognition
– year: 2020
  ident: 10.1016/j.mri.2021.08.007_bb0175
  article-title: Provable benefit of orthogonal initialization in optimizing deep linear networks
– volume: 82
  start-page: 1890
  issue: 5
  year: 2019
  ident: 10.1016/j.mri.2021.08.007_bb0110
  article-title: SANTIS: sampling-augmented neural neTwork with incoherent structure for MR image reconstruction
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.27827
– volume: 33
  start-page: e4239
  issue: 5
  year: 2020
  ident: 10.1016/j.mri.2021.08.007_bb0105
  article-title: Rapid dealiasing of undersampled, non-Cartesian cardiac perfusion images using U-net
  publication-title: NMR Biomed
  doi: 10.1002/nbm.4239
– volume: 38
  start-page: 280
  issue: 1
  year: 2017
  ident: 10.1016/j.mri.2021.08.007_bb0130
  article-title: Convolutional recurrent neural networks for dynamic MR image reconstruction
  publication-title: IEEE Trans Med Imag
  doi: 10.1109/TMI.2018.2863670
– volume: 72
  start-page: 707
  issue: 3
  year: 2014
  ident: 10.1016/j.mri.2021.08.007_bb0155
  article-title: Golden-angle radial sparse parallel MRI: combination of compressed sensing, parallel imaging, and golden-angle radial sampling for fast and flexible dynamic volumetric MRI
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.24980
– start-page: 765
  year: 2008
  ident: 10.1016/j.mri.2021.08.007_bb0185
  article-title: SSIM-optimal linear image restoration
– year: 2016
  ident: 10.1016/j.mri.2021.08.007_bb0150
  article-title: Perceptual losses for real-time style transfer and super resolution
– volume: 34
  start-page: 661
  issue: 4
  year: 2018
  ident: 10.1016/j.mri.2021.08.007_bb0010
  article-title: Impact of incomplete ventricular coverage on diagnostic performance of myocardial perfusion imaging
  publication-title: Int J Cardiovasc Imaging
  doi: 10.1007/s10554-017-1265-1
– volume: 188
  start-page: 191
  issue: 2
  year: 2007
  ident: 10.1016/j.mri.2021.08.007_bb0075
  article-title: On NUFFT-based gridding for non-Cartesian MRI
  publication-title: J Magn Reson
  doi: 10.1016/j.jmr.2007.06.012
– start-page: 234
  year: 2015
  ident: 10.1016/j.mri.2021.08.007_bb0100
  article-title: U-Net: convolutional networks for biomedical image segmentation
– year: 2018
  ident: 10.1016/j.mri.2021.08.007_bb0180
  article-title: Can we gain more from Orthogonality regularization in training deep CNNs?
– start-page: 424
  year: 2016
  ident: 10.1016/j.mri.2021.08.007_bb0135
  article-title: 3D U-Net: learning dense volumetric segmentation from sparse annotation
– start-page: 448
  year: 2015
  ident: 10.1016/j.mri.2021.08.007_bb0160
  article-title: Batch normalization: accelerating deep network training by reducing interval covariate shift
– volume: 84
  start-page: 3071
  issue: 6
  year: 2020
  ident: 10.1016/j.mri.2021.08.007_bb0040
  article-title: Whole-heart, ungated, free-breathing, cardiac-phase-resolved myocardial perfusion MRI by using continuous radial interleaved simultaneous multi-slice acquisitions at sPoiled steady-state (CRIMP)
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.28337
– volume: 79
  start-page: 2057
  issue: 4
  year: 2018
  ident: 10.1016/j.mri.2021.08.007_bb0055
  article-title: Simultaneous multi-slice MRI using cartesian and radial FLASH and regularized nonlinear inversion: SMS-NLINV
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.26878
– volume: 53
  start-page: 419
  issue: 6
  year: 2014
  ident: 10.1016/j.mri.2021.08.007_bb0140
  article-title: The evolution of boosting algorithms. From machine learning to statistical modelling
  publication-title: Methods Inf Med
  doi: 10.3414/ME13-01-0122
– volume: 80
  start-page: 286
  issue: 1
  year: 2018
  ident: 10.1016/j.mri.2021.08.007_bb0060
  article-title: Optimization and validation of accelerated golden-angle radial sparse MRI reconstruction with self-calibrating GRAPPA operator gridding
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.27030
– volume: 34
  start-page: 1329
  issue: 9
  year: 2016
  ident: 10.1016/j.mri.2021.08.007_bb0030
  article-title: Radial simultaneous multi-slice CAIPI for ungated myocardial perfusion
  publication-title: Magn Reson Imaging
  doi: 10.1016/j.mri.2016.07.015
– volume: 79
  start-page: 3055
  issue: 6
  year: 2018
  ident: 10.1016/j.mri.2021.08.007_bb0115
  article-title: Learning a variational network for reconstruction of accelerated MRI data
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.26977
– volume: 55
  start-page: 549
  issue: 3
  year: 2006
  ident: 10.1016/j.mri.2021.08.007_bb0020
  article-title: Controlled aliasing in volumetric parallel imaging (2D CAIPIRINHA)
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.20787
– volume: 15
  start-page: 1929
  year: 2014
  ident: 10.1016/j.mri.2021.08.007_bb0165
  article-title: Dropout: a simple way to prevent neural networks from Overfitting
  publication-title: J Machine Learn Res
– year: 2015
  ident: 10.1016/j.mri.2021.08.007_bb0195
  article-title: Very deep convolutional networks for large-scale image recognition
– volume: 5
  start-page: 1435
  issue: 10
  year: 1996
  ident: 10.1016/j.mri.2021.08.007_bb0085
  article-title: Deformable templates using large deformation kinematics
  publication-title: IEEE Trans Image Process
  doi: 10.1109/83.536892
– volume: 29
  start-page: 466
  issue: 2
  year: 2009
  ident: 10.1016/j.mri.2021.08.007_bb0045
  article-title: Acquisition and reconstruction of undersampled radial data for myocardial perfusion magnetic resonance imaging
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.21585
– start-page: 3
  issue: 1
  year: 2011
  ident: 10.1016/j.mri.2021.08.007_bb0095
  article-title: Distributed optimization and statistical learning via the alternating direction method of multipliers
  publication-title: Found Trends Machine Learn
– volume: 57
  start-page: 1027
  issue: 6
  year: 2007
  ident: 10.1016/j.mri.2021.08.007_bb0050
  article-title: Temporally constrained reconstruction of dynamic cardiac perfusion MRI
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.21248
– volume: 24
  start-page: 1062
  issue: 5
  year: 2006
  ident: 10.1016/j.mri.2021.08.007_bb0080
  article-title: Model-based registration for dynamic cardiac perfusion MRI
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.20756
– volume: 53
  start-page: 684
  issue: 3
  year: 2005
  ident: 10.1016/j.mri.2021.08.007_bb0015
  article-title: Controlled aliasing in parallel imaging results in higher acceleration (CAIPIRINHA) for multi-slice imaging
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.20401
– start-page: 49
  issue: 6
  year: 1952
  ident: 10.1016/j.mri.2021.08.007_bb0090
  article-title: Methods of conjugate gradients for solving linear systems
  publication-title: J Res Natl Bur Stand
– volume: 26
  start-page: 519
  issue: 4
  year: 2019
  ident: 10.1016/j.mri.2021.08.007_bb0005
  article-title: Whole left ventricular coverage versus conventional 3-slice myocardial perfusion magnetic resonance imaging for the detection of suspected coronary artery disease
  publication-title: Acad Radiol
  doi: 10.1016/j.acra.2018.05.008
– volume: 58
  start-page: 1257
  issue: 6
  year: 2007
  ident: 10.1016/j.mri.2021.08.007_bb0065
  article-title: Non-Cartesian data reconstruction using GRAPPA operator gridding (GROG)
  publication-title: Magn Reson Med
  doi: 10.1002/mrm.21435
SSID ssj0005235
Score 2.4299533
Snippet To develop an end-to-end deep learning solution for quickly reconstructing radial simultaneous multi-slice (SMS) myocardial perfusion datasets with comparable...
SourceID unpaywall
pubmedcentral
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 178
SubjectTerms 3D U-Net
boosting
deep learning
Myocardial perfusion
radial simultaneous multi-slice
residual learning
SummonAdditionalLinks – databaseName: ScienceDirect (Elsevier)
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA7Sg3oRn1hfRPCkrN1Hutk9SqsUoV5qwVuYbLO1UtelD6QXf7sz-6IVseBxNxnYJJPkm52Zbxi70to3USy15fiaUnJ8sLQmJ6_WEjyPOMXIo9t98jt98fjSfNlgrTIXhsIqi7M_P9Oz07p40yhms5GORo0eKad00dhyMnJMSjQXQlIVg9uv5TCPvMgmdraod-nZzGK83icjNBHdnMWTKsr-fjctYc-fkZNb8ySFxSeMx0vX0sMu2ynwJL_LP3mPbZhkn212C4_5ARu0jUl5URtiyBGi8gnREYx5r9vj7wu8yibZY2om8Zx-nfHMRq54ZTlFxg854kTutbFtmmVvcQTnRLHA-1ZiZoes_3D_3OpYRWUFKxIymFkDzwYvAD-UEErtghwQcyB4ZCzaJg7CKA6Jp14QnViTqqfjto5cNzYgjXHAO2K15CMxx4wHAhARBrEXOUaAG4UAgozMATh-KKRdZ3Y5pyoqaMep-sVYlfFlbwqXQdEyKKqIacs6u65E0pxz46_ObrlQqkwmxeNP4Y3wl5CohFa0bZ3YZakJCnchuVYgMR_zqULgKERIXHR1JldUpBoB8XivtiSj14zPOxCIEZtBnd1UyrR-3Cf_G8Ip26anPJvyjNVQmcw5wqqZvsj2zTeBjiCK
  priority: 102
  providerName: Elsevier
Title Deep learning for radial SMS myocardial perfusion reconstruction using the 3D residual booster U-net
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0730725X21001375
https://dx.doi.org/10.1016/j.mri.2021.08.007
https://www.proquest.com/docview/2564494655
https://pubmed.ncbi.nlm.nih.gov/PMC8493758
https://www.ncbi.nlm.nih.gov/pmc/articles/8493758
UnpaywallVersion submittedVersion
Volume 83
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-5894
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005235
  issn: 0730-725X
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-5894
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005235
  issn: 0730-725X
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-5894
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005235
  issn: 0730-725X
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1873-5894
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005235
  issn: 0730-725X
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-5894
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005235
  issn: 0730-725X
  databaseCode: AKRWK
  dateStart: 19820101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED_aBLa97Ls0-wga7GnDrm3JlvwY1pVsI2GsC2RPQlLkLqvjmjRhdA_726fzF20ZLX000j0cOul-57v7HcBbrRNrMq69MNHYkpMoT2tM8mrNFaXIKYYZ3ck0Gc_Y53k834Gw7YWpivaNXvpFvvKL5c-qtrJcmYO2TuxAMOdRY7EL_SR28LsH_dn06-hHRbdJA49H8RyDLMGpF4uUtZnMqqZrtV66kDCqWTtxguz_fdElrHm9UvL-tijVxW-V55fc0NEj-NYqUFefnPrbjfbNn2vcjnfS8DE8bEApGdVLT2DHFk_h3qRJuz-DxaG1JWkGTJwQh3PJGjkNcnI8OSarC-cP19VnadfZFv-_kSrQ7shpCZbXnxAHNgk9dGvnVQsYcQgfeRrIzCvs5jnMjj5-_zD2mvEMnmFcbLwFDRQVKkm5SrmOFF8g_aCiGHEGNhOpyVIku2fISRbjCHb3Npgoyqzi1oaK7kGvOCvsPhDBlIOVIqMmtExFJlWKYaS6UGGSMh4MIGgPSpqGuxxHaOSyLVL7Jd3ZSjxbiWM1Az6Ad51IWRN33LQ5ak9fth2p7g2Vzq3cJMQ6oQau1DDkNrE3rXlJd5UxP6MKe7Y9lw59MpYiod0A-BW76zRAMvCrK86CKlLwxmgG8L6z0Nv1fnGn3S_hAX7VnZivoOdsyL52kGyjh7Dr_w2H0B99-jKeDpsr-Q8PoThj
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED8VJo29TBsMUfZlpD0xZc2HEyePEx3qgPJSKvFmnVOndCohKq0QL_vbd5cvtdME0h4T-6TYPtu_y939DuCLMZFNM2UcLzKckhOhYww7eY1RGATMKcYe3eFlNBjLs-vwugMnTS4Mh1XWZ391ppendf2mV89mr5jNeiNWTuWTseWV5JjhFryQoa_YAvv2ez3Oo6qySb0d7t64Nssgr9vFjGxEv6Lx5JKy_76c1sDn36GTO6u8wMcHnM_X7qXTN_C6BpTie_XNb6Fj8114Oaxd5nsw6VtbiLo4xFQQRhUL5iOYi9FwJG4f6S5blI-FXWQr_ncmSiO5JZYVHBo_FQQURdCntvsyfUsQOmeOBTF2crt8B-PTH1cnA6cureCkUsVLZxK4GMQYJQoTZXxUE6YOxICtRddmcZJmCRPVS-YTC7l8Ou3r1Pczi8paD4N92M7vcnsAIpZIkDDOgtSzEv00QZRsZU7QixKp3C64zZzqtOYd5_IXc90EmP3StAyal0FzSUxXdeG4FSkq0o2nOvvNQukmm5TOP01XwlNCshXaULfnxI4aTdC0Ddm3grm9W91rQo5SJkxG1wW1oSLtCJjIe7Mln92UhN6xJJAYxl342irT8-M-_L8hfIadwdXwQl_8vDx_D6-4pUqt_ADbpFj2I2GspflU7qE_CUgjrQ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9swED66FLa-7Pdo1m1osKcNp7YlW_JjWVfKIGWsC2RPRlLkLq3jmjRhdH9972zLtGW09NFI93DopPvOd_cdwCdjUmcLaYIoNdSSk-rAGEryGiM158QpRhnd8VF6OBHfp8l0AyLfC9MU7VszH1XlYlTN_zS1lfXC7vo6sV0l0KMm6hFspgnC7wFsTo5-7P1u6DZ5GMg4mVKQpSQPEpUJn8lsaroWyzmGhHHL2kkTZP_vi65hzduVkk_WVa0v_-qyvOaGDp7BT69AW31yNlqvzMj-u8Xt-CANn8PTDpSyvXbpBWy46iU8Hndp91cw23euZt2AiROGOJctidOgZMfjY7a4RH-4bD5rtyzW9P-NNYF2T07LqLz-hCHYZHwf1y6aFjCGCJ94GtgkqNzqNUwOvv36ehh04xkCK6RaBTMeaq50mkmdSRNrOSP6Qc0p4gxdoTJbZER2L4iTLKER7Pg22DgunJbORZq_gUF1XrltYEpohJWq4DZyQsc201pQpDrTUZoJGQ4h9AeV2467nEZolLkvUjvN8WxzOtucxmqGcgife5G6Je64a3PsTz_3Han4huboVu4SEr1QB1daGHKf2EdvXjleZcrP6Mqdry9yRJ9CZERoNwR5w-56DYgM_OYKWlBDCt4ZzRC-9BZ6v95vH7R7B7boq-3EfAcDtCH3HiHZynzoLuEVEVU11w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning+for+Radial+SMS+Myocardial+Perfusion+Reconstruction+using+the+3D+Residual+Booster+U-Net&rft.jtitle=Magnetic+resonance+imaging&rft.au=Le%2C+Johnathan&rft.au=Tian%2C+Ye&rft.au=Mendes%2C+Jason&rft.au=Wilson%2C+Brent&rft.date=2021-11-01&rft.issn=0730-725X&rft.eissn=1873-5894&rft.volume=83&rft.spage=178&rft.epage=188&rft_id=info:doi/10.1016%2Fj.mri.2021.08.007&rft_id=info%3Apmid%2F34428512&rft.externalDocID=PMC8493758
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0730-725X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0730-725X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0730-725X&client=summon