Likelihood of climate change pathways under uncertainty on fossil fuel resource availability
Uncertainties concerning fossil fuel resource availability have traditionally been deemphasized in climate change research as global baseline emission scenarios ( i.e. , scenarios that do not consider additional climate policies) have been built on the assumption of abundant fossil fuel resources fo...
Saved in:
| Published in | Energy & environmental science Vol. 9; no. 8; pp. 2482 - 2496 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
01.08.2016
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1754-5692 1754-5706 1754-5706 |
| DOI | 10.1039/c6ee01008c |
Cover
| Abstract | Uncertainties concerning fossil fuel resource availability have traditionally been deemphasized in climate change research as global baseline emission scenarios (
i.e.
, scenarios that do not consider additional climate policies) have been built on the assumption of abundant fossil fuel resources for the 21st century. However, current estimates are subject to critical uncertainties and an emerging body of literature is providing revised estimates. Here we consider the entire range of revised estimates, applying an integrated assessment model to perform a likelihood analysis of climate change pathways. Our results show that, by the end of the century, the two highest emission pathways from the IPCC, the Representative Concentration Pathways RCP6 and RCP8.5, where the baseline scenarios currently lie, have probabilities of being surpassed of 42% and 12%, respectively. In terms of temperature change, the probability of exceeding the 2 °C level by 2100 remains very high (88%), confirming the need for urgent climate action. Coal resource uncertainty determines the uncertainty about the emission and radiative forcing pathways due to the poor quality of data. We also find that the depletion of fossil fuels is likely to occur during the second half of the century accelerating the transition to renewable energy sources in baseline scenarios. Accordingly, more investments may be required to enable the energy transition, while the additional mitigation measures would in turn necessitate a lower effort than currently estimated. Hence, the integrated analysis of resource availability and climate change is essential to obtain internally consistent climate pathways.
The consideration of the entire range of revised estimates of fossil fuels resources shows that their depletion is likely to occur during the 21st century accelerating the transition to renewable energy sources but not alleviating the need for urgent climate action. |
|---|---|
| AbstractList | Uncertainties concerning fossil fuel resource availability have traditionally been deemphasized in climate change research as global baseline emission scenarios (i.e., scenarios that do not consider additional climate policies) have been built on the assumption of abundant fossil fuel resources for the 21st century. However, current estimates are subject to critical uncertainties and an emerging body of literature is providing revised estimates. Here we consider the entire range of revised estimates, applying an integrated assessment model to perform a likelihood analysis of climate change pathways. Our results show that, by the end of the century, the two highest emission pathways from the IPCC, the Representative Concentration Pathways RCP6 and RCP8.5, where the baseline scenarios currently lie, have probabilities of being surpassed of 42% and 12%, respectively. In terms of temperature change, the probability of exceeding the 2 degree C level by 2100 remains very high (88%), confirming the need for urgent climate action. Coal resource uncertainty determines the uncertainty about the emission and radiative forcing pathways due to the poor quality of data. We also find that the depletion of fossil fuels is likely to occur during the second half of the century accelerating the transition to renewable energy sources in baseline scenarios. Accordingly, more investments may be required to enable the energy transition, while the additional mitigation measures would in turn necessitate a lower effort than currently estimated. Hence, the integrated analysis of resource availability and climate change is essential to obtain internally consistent climate pathways. Uncertainties concerning fossil fuel resource availability have traditionally been deemphasized in climate change research as global baseline emission scenarios ( i.e. , scenarios that do not consider additional climate policies) have been built on the assumption of abundant fossil fuel resources for the 21st century. However, current estimates are subject to critical uncertainties and an emerging body of literature is providing revised estimates. Here we consider the entire range of revised estimates, applying an integrated assessment model to perform a likelihood analysis of climate change pathways. Our results show that, by the end of the century, the two highest emission pathways from the IPCC, the Representative Concentration Pathways RCP6 and RCP8.5, where the baseline scenarios currently lie, have probabilities of being surpassed of 42% and 12%, respectively. In terms of temperature change, the probability of exceeding the 2 °C level by 2100 remains very high (88%), confirming the need for urgent climate action. Coal resource uncertainty determines the uncertainty about the emission and radiative forcing pathways due to the poor quality of data. We also find that the depletion of fossil fuels is likely to occur during the second half of the century accelerating the transition to renewable energy sources in baseline scenarios. Accordingly, more investments may be required to enable the energy transition, while the additional mitigation measures would in turn necessitate a lower effort than currently estimated. Hence, the integrated analysis of resource availability and climate change is essential to obtain internally consistent climate pathways. The consideration of the entire range of revised estimates of fossil fuels resources shows that their depletion is likely to occur during the 21st century accelerating the transition to renewable energy sources but not alleviating the need for urgent climate action. Uncertainties concerning fossil fuel resource availability have traditionally been deemphasized in climate change research as global baseline emission scenarios ( i.e. , scenarios that do not consider additional climate policies) have been built on the assumption of abundant fossil fuel resources for the 21st century. However, current estimates are subject to critical uncertainties and an emerging body of literature is providing revised estimates. Here we consider the entire range of revised estimates, applying an integrated assessment model to perform a likelihood analysis of climate change pathways. Our results show that, by the end of the century, the two highest emission pathways from the IPCC, the Representative Concentration Pathways RCP6 and RCP8.5, where the baseline scenarios currently lie, have probabilities of being surpassed of 42% and 12%, respectively. In terms of temperature change, the probability of exceeding the 2 °C level by 2100 remains very high (88%), confirming the need for urgent climate action. Coal resource uncertainty determines the uncertainty about the emission and radiative forcing pathways due to the poor quality of data. We also find that the depletion of fossil fuels is likely to occur during the second half of the century accelerating the transition to renewable energy sources in baseline scenarios. Accordingly, more investments may be required to enable the energy transition, while the additional mitigation measures would in turn necessitate a lower effort than currently estimated. Hence, the integrated analysis of resource availability and climate change is essential to obtain internally consistent climate pathways. |
| Author | Polanco-Martínez, Josué M González-Eguino, Mikel Arto, Iñaki Capellán-Pérez, Iñigo Neumann, Marc B |
| AuthorAffiliation | BC3 Low Carbon Programme IKERBASQUE University of Basque Country PSL Research University Laboratoire Paléoclimatologie et Paléoenvironnements Marins EPHE Basque Centre for Climate Change Instituto de Economía Pública Basque Foundation for Science Univ. Bordeaux. UMR CNRS 5805 EPOC |
| AuthorAffiliation_xml | – sequence: 0 name: Instituto de Economía Pública – sequence: 0 name: BC3 – sequence: 0 name: PSL Research University – sequence: 0 name: Low Carbon Programme – sequence: 0 name: University of Basque Country – sequence: 0 name: Laboratoire Paléoclimatologie et Paléoenvironnements Marins – sequence: 0 name: IKERBASQUE – sequence: 0 name: EPHE – sequence: 0 name: Basque Centre for Climate Change – sequence: 0 name: Univ. Bordeaux. UMR CNRS 5805 EPOC – sequence: 0 name: Basque Foundation for Science |
| Author_xml | – sequence: 1 givenname: Iñigo surname: Capellán-Pérez fullname: Capellán-Pérez, Iñigo – sequence: 2 givenname: Iñaki surname: Arto fullname: Arto, Iñaki – sequence: 3 givenname: Josué M surname: Polanco-Martínez fullname: Polanco-Martínez, Josué M – sequence: 4 givenname: Mikel surname: González-Eguino fullname: González-Eguino, Mikel – sequence: 5 givenname: Marc B surname: Neumann fullname: Neumann, Marc B |
| BookMark | eNqNkL1PHDEQxa2ISOEjTfpILhHowvh21_aW6HQhSCelgQ5p5Z0b5xyMfbG9Qfvfs8klAQUKmpkpfu9p3jtgeyEGYuyDgE8CqvYMJREIAI1v2L5QTT1rFMi9v7ds5-_YQc7fAeQcVLvPblbulrzbxLjm0XL07s4U4rgx4RvxrSmbezNmPoQ1pWkipWJcKCOPgduYs_PcDuR5ohyHhMTNT-O86Z13ZTxib63xmd7_2Yfs-vPyavFltvp6cbk4X82wVrrMUKGtG1H3LWggAdhUTV0D6hp1W0vb9-28l0qt19Rr0pYqaJWtKtODEGixOmSnO98hbM14b7zvtmkKksZOQPermO6xmIk-3tHbFH8MlEt35zKS9yZQHHIndNVICVrpV6BC6LZSQk3oyQ7FNNWSyD57YSGXy98vLCYY_oPRFVNcDCVN9b0s-biTpIz_rJ-kegDjBZza |
| CitedBy_id | crossref_primary_10_3390_electrochem2020017 crossref_primary_10_1002_slct_202400286 crossref_primary_10_1002_cssc_202202325 crossref_primary_10_1016_j_est_2024_113967 crossref_primary_10_1039_D3SE00496A crossref_primary_10_1002_mcda_1822 crossref_primary_10_1021_acssuschemeng_4c05566 crossref_primary_10_1007_s00382_020_05466_1 crossref_primary_10_1016_j_est_2023_110131 crossref_primary_10_1016_j_biombioe_2019_105380 crossref_primary_10_1002_cssc_201601778 crossref_primary_10_1016_j_energy_2023_126949 crossref_primary_10_3390_su132111827 crossref_primary_10_1016_j_rser_2024_114476 crossref_primary_10_1139_er_2023_0075 crossref_primary_10_3390_buildings14030562 crossref_primary_10_1016_j_jclepro_2021_126526 crossref_primary_10_1016_j_enconman_2024_119158 crossref_primary_10_1039_D2GC02726G crossref_primary_10_1016_j_apenergy_2019_05_007 crossref_primary_10_1002_ese3_1100 crossref_primary_10_3989_arbor_2023_807004 crossref_primary_10_1039_D1GC03715C crossref_primary_10_1088_1748_9326_ab7640 crossref_primary_10_3390_en17092216 crossref_primary_10_1016_j_esd_2022_03_010 crossref_primary_10_1016_j_erss_2020_101890 crossref_primary_10_3390_w13172354 crossref_primary_10_1016_j_apenergy_2024_124998 crossref_primary_10_1016_j_esr_2020_100543 crossref_primary_10_3390_f12070899 crossref_primary_10_1021_acs_jpca_9b06039 crossref_primary_10_1007_s41247_016_0013_9 crossref_primary_10_1016_j_apcatb_2022_121601 crossref_primary_10_1080_15732479_2022_2141269 crossref_primary_10_1021_acsami_6b12297 crossref_primary_10_1016_j_apenergy_2021_117210 crossref_primary_10_16993_tellusa_4068 crossref_primary_10_1038_s41467_020_17035_5 crossref_primary_10_1016_j_ijhydene_2024_05_136 crossref_primary_10_1016_j_memsci_2017_02_033 crossref_primary_10_1016_j_renene_2019_11_090 crossref_primary_10_1139_cjc_2023_0147 crossref_primary_10_1126_sciadv_1701356 crossref_primary_10_1007_s10584_021_03279_7 crossref_primary_10_1039_D3EE00772C crossref_primary_10_1002_cssc_202300208 crossref_primary_10_1016_j_renene_2022_05_031 crossref_primary_10_1039_D2EE00099G crossref_primary_10_1139_cjc_2017_0565 crossref_primary_10_1016_j_energy_2017_08_083 crossref_primary_10_1039_C9EE02627D crossref_primary_10_5194_gmd_16_2343_2023 crossref_primary_10_1016_j_esr_2019_100419 crossref_primary_10_2139_ssrn_3941687 crossref_primary_10_1039_D3EE00081H crossref_primary_10_3390_en11040839 crossref_primary_10_3389_fevo_2023_1038018 crossref_primary_10_1016_j_jece_2024_114287 crossref_primary_10_1021_acs_iecr_9b02502 crossref_primary_10_3390_w12113212 crossref_primary_10_1002_chem_202303436 crossref_primary_10_3390_su11133672 crossref_primary_10_1016_j_energy_2021_122197 crossref_primary_10_1016_j_seppur_2024_128795 crossref_primary_10_1016_j_enconman_2017_05_009 crossref_primary_10_1007_s11869_024_01674_4 crossref_primary_10_2478_oszn_2022_0010 crossref_primary_10_3389_ffgc_2023_1188094 crossref_primary_10_1002_adsu_201700113 crossref_primary_10_1016_j_apcata_2024_119591 crossref_primary_10_1016_j_rser_2020_109999 crossref_primary_10_1016_j_jallcom_2024_176166 crossref_primary_10_3390_en11092346 crossref_primary_10_1016_j_jcis_2019_09_037 |
| Cites_doi | 10.1016/j.enpol.2012.09.016 10.1175/1520-0442(2002)015<2945:RFLWPI>2.0.CO;2 10.1016/j.enpol.2011.12.039 10.3386/w21637 10.4102/sajs.v106i9/10.369 10.1016/j.fuel.2010.06.013 10.1016/j.anucene.2013.03.010 10.1038/nclimate2285 10.1073/pnas.0802416106 10.1016/j.energy.2012.07.048 10.1039/c1ee01249e 10.1038/nature08017 10.1038/ngeo337 10.1016/j.fuel.2014.10.030 10.1007/BF02551141 10.1016/j.enpol.2016.02.044 10.1016/j.energy.2013.01.048 10.1038/494307a 10.1029/2007GB003142 10.5194/acp-16-3761-2016 10.1371/journal.pone.0081648 10.1016/j.fuel.2009.01.032 10.1073/pnas.0805800106 10.1098/rsta.2012.0448 10.1038/35075167 10.1016/j.fuel.2012.03.021 10.1038/nclimate1385 10.1023/A:1014276210717 10.1016/j.envsci.2008.12.006 10.1016/j.enpol.2008.08.013 10.1073/pnas.0812355106 10.1007/s10584-011-0151-4 10.1126/science.1061604 10.1098/rsta.2012.0320 10.1016/j.enpol.2008.05.023 10.1111/risa.12117 10.1016/j.techfore.2013.08.025 10.1126/science.1094147 10.1038/357293a0 10.1016/j.enpol.2012.10.046 10.1038/nature11787 10.5194/acp-11-1417-2011 10.1016/j.energy.2013.07.031 10.1038/516028a 10.5194/hess-15-1879-2011 10.1016/j.enpol.2013.07.118 10.1016/j.enpol.2011.06.011 10.4236/ojg.2012.22006 10.1016/j.energy.2014.09.063 10.1016/S0921-8009(99)00098-1 10.1016/j.gloenvcha.2008.06.001 10.1016/j.eneco.2010.10.007 10.1007/s10584-013-0939-5 10.1007/s10584-011-0260-0 10.1016/0095-0696(90)90057-6 10.1007/s10584-011-0148-z 10.1073/pnas.0705414105 10.1038/468367a 10.1038/481433a 10.1016/j.enpol.2012.09.003 10.1002/qj.2165 10.1038/452531a 10.1038/nature14016 10.1016/j.coal.2010.10.012 10.1088/1748-9326/9/3/031003 10.1641/0006-3568(2002)052[0287:OPAS]2.0.CO;2 10.1098/rsta.2013.0179 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION 7ST C1K SOI 7SP 7TB 8FD FR3 L7M ADTOC UNPAY |
| DOI | 10.1039/c6ee01008c |
| DatabaseName | CrossRef Environment Abstracts Environmental Sciences and Pollution Management Environment Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Advanced Technologies Database with Aerospace Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Environment Abstracts Environmental Sciences and Pollution Management Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Environment Abstracts Engineering Research Database CrossRef |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1754-5706 |
| EndPage | 2496 |
| ExternalDocumentID | 10.1039/c6ee01008c 10_1039_C6EE01008C c6ee01008c |
| GroupedDBID | -JG 0-7 0R~ 29G 4.4 5GY 705 70~ 7~J AAEMU AAIWI AAJAE AANOJ AARTK AAWGC AAXHV AAXPP ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFO ACGFS ACIWK ACLDK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRAH AFVBQ AGEGJ AGRSR AGSTE AHGCF AKBGW ALMA_UNASSIGNED_HOLDINGS ANBJS ANUXI APEMP ASKNT AUDPV AUNWK AZFZN BLAPV BSQNT C6K CS3 EBS ECGLT EE0 EF- EJD GGIMP GNO H13 HZ~ H~N J3I M4U N9A O-G O9- P2P RAOCF RCNCU ROL RPMJG RRC RSCEA RVUXY SKA SLH TOV UCJ 53G AAYXX ABIQK ACRPL ADNMO AFRZK AGQPQ AHGXI AKMSF ALSGL ANLMG ASPBG AVWKF CAG CITATION COF FEDTE HVGLF J3G J3H L-8 R56 7ST C1K SOI 7SP 7TB 8FD FR3 L7M ADTOC UNPAY |
| ID | FETCH-LOGICAL-c478t-c7cf4514b9080e10c535440c84c8946fbb92b677ddeb8e8fe3097f33ab011cfc3 |
| IEDL.DBID | UNPAY |
| ISSN | 1754-5692 1754-5706 |
| IngestDate | Wed Oct 01 16:25:27 EDT 2025 Sun Sep 28 05:48:04 EDT 2025 Tue Oct 07 09:34:00 EDT 2025 Thu Apr 24 22:58:32 EDT 2025 Tue Jul 01 01:45:37 EDT 2025 Tue Dec 17 20:59:50 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| License | cc-by-nc |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c478t-c7cf4514b9080e10c535440c84c8946fbb92b677ddeb8e8fe3097f33ab011cfc3 |
| Notes | Electronic supplementary information (ESI) available. See DOI 10.1039/c6ee01008c ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-3098-8027 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://pubs.rsc.org/en/content/articlepdf/2016/ee/c6ee01008c |
| PQID | 1811893717 |
| PQPubID | 23462 |
| PageCount | 15 |
| ParticipantIDs | proquest_miscellaneous_1835660878 unpaywall_primary_10_1039_c6ee01008c crossref_citationtrail_10_1039_C6EE01008C crossref_primary_10_1039_C6EE01008C rsc_primary_c6ee01008c proquest_miscellaneous_1811893717 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2016-08-01 |
| PublicationDateYYYYMMDD | 2016-08-01 |
| PublicationDate_xml | – month: 08 year: 2016 text: 2016-08-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Energy & environmental science |
| PublicationYear | 2016 |
| References | McGlade (C6EE01008C-(cit20)/*[position()=1]) 2013; 55 Höök (C6EE01008C-(cit25)/*[position()=1]) 2010; 89 WEO (C6EE01008C-(cit63)/*[position()=1]) 2013 Wigley (C6EE01008C-(cit81)/*[position()=1]) 2002; 15 Hartnady (C6EE01008C-(cit54)/*[position()=1]) 2010; 106 Previdi (C6EE01008C-(cit74)/*[position()=1]) 2013; 139 Schneider (C6EE01008C-(cit101)/*[position()=1]) 2001; 411 Mohr (C6EE01008C-(cit17)/*[position()=1]) 2015; 141 Rutledge (C6EE01008C-(cit24)/*[position()=1]) 2011; 85 Dale (C6EE01008C-(cit40)/*[position()=1]) 2012; 43 US EIA (C6EE01008C-(cit65)/*[position()=1]) 2011 Aguilera (C6EE01008C-(cit71)/*[position()=1]) 2014; 64 IPCC SRES (C6EE01008C-(cit10)/*[position()=1]) 2000 Gabriel (C6EE01008C-(cit70)/*[position()=1]) 2013; 58 Lenton (C6EE01008C-(cit94)/*[position()=1]) 2008; 105 Thomson (C6EE01008C-(cit82)/*[position()=1]) 2011; 109 Chiari (C6EE01008C-(cit34)/*[position()=1]) 2011; 39 Brecha (C6EE01008C-(cit18)/*[position()=1]) 2008; 36 Hansen (C6EE01008C-(cit93)/*[position()=1]) 2013; 8 Murray (C6EE01008C-(cit62)/*[position()=1]) 2012; 481 Norgaard (C6EE01008C-(cit66)/*[position()=1]) 1990; 19 Jefferson (C6EE01008C-(cit46)/*[position()=1]) 2016; 5 Meinshausen (C6EE01008C-(cit76)/*[position()=1]) 2011; 11 Rogner (C6EE01008C-(cit61)/*[position()=1]) 2012 C6EE01008C-(cit83)/*[position()=1] Ward (C6EE01008C-(cit31)/*[position()=1]) 2012; 51 EWG (C6EE01008C-(cit58)/*[position()=1]) 2013 Kharecha (C6EE01008C-(cit30)/*[position()=1]) 2008; 22 McJeon (C6EE01008C-(cit88)/*[position()=1]) 2011; 33 Smith (C6EE01008C-(cit92)/*[position()=1]) 2009; 106 Hubbert (C6EE01008C-(cit64)/*[position()=1]) 1956 Brenkert (C6EE01008C-(cit77)/*[position()=1]) Jones (C6EE01008C-(cit29)/*[position()=1]) 2016; 93 Reynolds (C6EE01008C-(cit56)/*[position()=1]) 1999; 31 Ward (C6EE01008C-(cit35)/*[position()=1]) 2011; 15 Iyer (C6EE01008C-(cit96)/*[position()=1]) 2015; 90 Mohr (C6EE01008C-(cit49)/*[position()=1]) 2009; 88 NEA and IAEA (C6EE01008C-(cit69)/*[position()=1]) 2012 WEC (C6EE01008C-(cit53)/*[position()=1]) 2013 Mastrandrea (C6EE01008C-(cit9)/*[position()=1]) 2004; 304 Calvin (C6EE01008C-(cit36)/*[position()=1]) Remme (C6EE01008C-(cit73)/*[position()=1]) 2007 IEA (C6EE01008C-(cit100)/*[position()=1]) 2010 Malyshev (C6EE01008C-(cit50)/*[position()=1]) 2000; 36 Muggeridge (C6EE01008C-(cit45)/*[position()=1]) 2014; 372 BGR (C6EE01008C-(cit52)/*[position()=1]) 2013 Norgaard (C6EE01008C-(cit57)/*[position()=1]) 2002; 52 Wigley (C6EE01008C-(cit4)/*[position()=1]) 2001; 293 Laherrère (C6EE01008C-(cit51)/*[position()=1]) 2006 Armaroli (C6EE01008C-(cit99)/*[position()=1]) 2011; 4 EWG (C6EE01008C-(cit47)/*[position()=1]) 2007 Rogelj (C6EE01008C-(cit38)/*[position()=1]) 2014; 9 Heinberg (C6EE01008C-(cit23)/*[position()=1]) 2010; 468 EWG (C6EE01008C-(cit59)/*[position()=1]) 2008 Höök (C6EE01008C-(cit13)/*[position()=1]) 2013; 52 Doose (C6EE01008C-(cit32)/*[position()=1]) 2004 Pielke (C6EE01008C-(cit91)/*[position()=1]) 2008; 452 C6EE01008C-(cit84)/*[position()=1] Nel (C6EE01008C-(cit33)/*[position()=1]) 2009; 37 Hughes (C6EE01008C-(cit22)/*[position()=1]) 2013 Kim (C6EE01008C-(cit79)/*[position()=1]) 2006 Wigley (C6EE01008C-(cit80)/*[position()=1]) 1992; 357 Rogelj (C6EE01008C-(cit75)/*[position()=1]) 2012; 2 Hansen (C6EE01008C-(cit95)/*[position()=1]) 2016; 16 National Academy of Sciences (C6EE01008C-(cit26)/*[position()=1]) 2007 WEO (C6EE01008C-(cit67)/*[position()=1]) 2014 Rogner (C6EE01008C-(cit42)/*[position()=1]) 1997 USGS (C6EE01008C-(cit27)/*[position()=1]) 2009 USGS (C6EE01008C-(cit41)/*[position()=1]) 1980 MIT (C6EE01008C-(cit72)/*[position()=1]) 2010 Carbajales-Dale (C6EE01008C-(cit98)/*[position()=1]) 2014; 4 Anderson (C6EE01008C-(cit89)/*[position()=1]) 2014; 34 C6EE01008C-(cit86)/*[position()=1] Höök (C6EE01008C-(cit43)/*[position()=1]) 2014; 372 Rogner (C6EE01008C-(cit12)/*[position()=1]) 2012 Gillingham (C6EE01008C-(cit87)/*[position()=1]) 2015 C6EE01008C-(cit3)/*[position()=1] van Vuuren (C6EE01008C-(cit14)/*[position()=1]) 2011; 109 Zickfeld (C6EE01008C-(cit68)/*[position()=1]) 2009; 106 Schneider (C6EE01008C-(cit102)/*[position()=1]) 2002; 52 McGlade (C6EE01008C-(cit16)/*[position()=1]) 2015; 517 Maggio (C6EE01008C-(cit60)/*[position()=1]) 2012; 98 McCollum (C6EE01008C-(cit11)/*[position()=1]) 2014; 123 Brecha (C6EE01008C-(cit97)/*[position()=1]) 2012; 51 C6EE01008C-(cit37)/*[position()=1] Miller (C6EE01008C-(cit44)/*[position()=1]) 2014; 372 Thielemann (C6EE01008C-(cit55)/*[position()=1]) 2012; 2 Hughes (C6EE01008C-(cit19)/*[position()=1]) 2013; 494 Webster (C6EE01008C-(cit2)/*[position()=1]) 2012; 112 Schaeffer (C6EE01008C-(cit8)/*[position()=1]) 2008; 105 Inman (C6EE01008C-(cit21)/*[position()=1]) 2014; 516 McGlade (C6EE01008C-(cit39)/*[position()=1]) 2012; 47 Saltelli (C6EE01008C-(cit85)/*[position()=1]) 2004 Girod (C6EE01008C-(cit90)/*[position()=1]) 2009; 12 Wang (C6EE01008C-(cit48)/*[position()=1]) 2013; 60 Campbell (C6EE01008C-(cit28)/*[position()=1]) 1998 Rogelj (C6EE01008C-(cit1)/*[position()=1]) 2013; 493 Meinshausen (C6EE01008C-(cit5)/*[position()=1]) 2009; 458 Knutti (C6EE01008C-(cit7)/*[position()=1]) 2008; 1 Capellán-Pérez (C6EE01008C-(cit15)/*[position()=1]) 2014 van Vuuren (C6EE01008C-(cit6)/*[position()=1]) 2008; 18 Clarke (C6EE01008C-(cit78)/*[position()=1]) 2007 |
| References_xml | – issn: 1956 publication-title: Drilling and Production Practice doi: Hubbert – issn: 2009 publication-title: US Geol. Surv. Prof. Pap. 1625-F doi: USGS – issn: 2010 publication-title: The future of natural gas an interdisciplinary MIT study. doi: MIT – issn: 2007 publication-title: US Dep. Energy Publ. doi: Clarke Edmonds Jacoby Pitcher Reilly Richels – issn: 2006 end-page: p 63-91 publication-title: Energy J. Spec. Issue Hybrid Model. Energy-Environ. Policies Reconciling Bottom- Top-Down doi: Kim Edmonds Lurz Smith Wise – issn: 2013 publication-title: World Energy Outlook 2013 doi: WEO – issn: 2000 publication-title: Special report on emissions scenarios doi: IPCC SRES – issn: 1997 publication-title: SSRN ELibrary doi: Rogner – issn: 2011 publication-title: US Energy Inf. Adm. doi: US EIA – issn: 2008 publication-title: Crude Oil - The Supply Outlook doi: EWG – publication-title: Model Documentation for the MiniCAM doi: Brenkert Kim Smith Pitcher – issn: 2012 end-page: p 149-160 publication-title: Energy for Development doi: Rogner – issn: 2006 publication-title: Oil and gas, what future? doi: Laherrère – issn: 2004 publication-title: Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models doi: Saltelli Tarantola Campolongo Ratto – doi: Calvin Clarke Edmonds Eom Hejazi Kim Kyle Link Luckow Patel – issn: 2012 publication-title: Uranium 2011: Resources, Production and Demand doi: NEA and IAEA – issn: 2010 publication-title: Global gaps in clean energy RD&D: update and recommendations for international collaboration doi: IEA – issn: 2007 publication-title: Global resources and energy trade: An overview for coal, natural gas, oil and uranium doi: Remme Blesl Fahl – issn: 2013 publication-title: Energy Study 2013. Reserves, resources and availability of energy resources doi: BGR – issn: 2013 publication-title: World energy resources: 2013 survey doi: WEC – issn: 2007 publication-title: Coal: Research and Development to Support National Energy Policy doi: National Academy of Sciences – issn: 2004 end-page: p 187-195 publication-title: The Geochemical Society Special Publications doi: Doose – issn: 2012 end-page: p 423-512 publication-title: Global Energy Assessment - Toward a Sustainable Future doi: Rogner Aguilera Bertani Bhattacharya Dusseault Gagnon Haberl Hoogwijk Johnson Rogner Wagner Yakushev – issn: 2013 publication-title: Drill Baby Drill: Can Unconventional Fuels Usher in a New Era of Energy Abundance? doi: Hughes – issn: 2014 publication-title: World Energy Outlook 2014 doi: WEO – issn: 2015 publication-title: Modeling Uncertainty in Climate Change: A Multi-Model Comparison doi: Gillingham Nordhaus Anthoff Blanford Bosetti Christensen McJeon Reilly Sztorc – issn: 2007 publication-title: Coal: Resources and Future Production doi: EWG – issn: 2013 publication-title: Fossil and Nuclear Fuels - the Supply Outlook doi: EWG – issn: 1980 publication-title: Principles of a resource/reserve classification for minerals doi: USGS – volume: 51 start-page: 586 year: 2012 ident: C6EE01008C-(cit97)/*[position()=1] publication-title: Energy Policy doi: 10.1016/j.enpol.2012.09.016 – volume: 15 start-page: 2945 year: 2002 ident: C6EE01008C-(cit81)/*[position()=1] publication-title: J. Clim. doi: 10.1175/1520-0442(2002)015<2945:RFLWPI>2.0.CO;2 – volume: 43 start-page: 102 year: 2012 ident: C6EE01008C-(cit40)/*[position()=1] publication-title: Energy Policy doi: 10.1016/j.enpol.2011.12.039 – volume-title: Modeling Uncertainty in Climate Change: A Multi-Model Comparison year: 2015 ident: C6EE01008C-(cit87)/*[position()=1] doi: 10.3386/w21637 – volume-title: Principles of a resource/reserve classification for minerals year: 1980 ident: C6EE01008C-(cit41)/*[position()=1] – volume: 106 start-page: 1 year: 2010 ident: C6EE01008C-(cit54)/*[position()=1] publication-title: S. Afr. J. Sci. doi: 10.4102/sajs.v106i9/10.369 – volume-title: Drill Baby Drill: Can Unconventional Fuels Usher in a New Era of Energy Abundance? year: 2013 ident: C6EE01008C-(cit22)/*[position()=1] – volume-title: Uranium 2011: Resources, Production and Demand year: 2012 ident: C6EE01008C-(cit69)/*[position()=1] – volume: 89 start-page: 3546 year: 2010 ident: C6EE01008C-(cit25)/*[position()=1] publication-title: Fuel doi: 10.1016/j.fuel.2010.06.013 – volume: 58 start-page: 213 year: 2013 ident: C6EE01008C-(cit70)/*[position()=1] publication-title: Ann. Nucl. Energy doi: 10.1016/j.anucene.2013.03.010 – volume: 4 start-page: 524 year: 2014 ident: C6EE01008C-(cit98)/*[position()=1] publication-title: Nat. Clim. Change doi: 10.1038/nclimate2285 – volume: 105 start-page: 20621 year: 2008 ident: C6EE01008C-(cit8)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0802416106 – volume: 47 start-page: 262 year: 2012 ident: C6EE01008C-(cit39)/*[position()=1] publication-title: Energy doi: 10.1016/j.energy.2012.07.048 – volume-title: Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models year: 2004 ident: C6EE01008C-(cit85)/*[position()=1] – volume-title: Drilling and Production Practice year: 1956 ident: C6EE01008C-(cit64)/*[position()=1] – volume: 4 start-page: 3193 year: 2011 ident: C6EE01008C-(cit99)/*[position()=1] publication-title: Energy Environ. Sci. doi: 10.1039/c1ee01249e – volume: 458 start-page: 1158 year: 2009 ident: C6EE01008C-(cit5)/*[position()=1] publication-title: Nature doi: 10.1038/nature08017 – volume-title: US Energy Inf. Adm. year: 2011 ident: C6EE01008C-(cit65)/*[position()=1] – volume: 1 start-page: 735 year: 2008 ident: C6EE01008C-(cit7)/*[position()=1] publication-title: Nat. Geosci. doi: 10.1038/ngeo337 – volume: 141 start-page: 120 year: 2015 ident: C6EE01008C-(cit17)/*[position()=1] publication-title: Fuel doi: 10.1016/j.fuel.2014.10.030 – volume: 36 start-page: 57 year: 2000 ident: C6EE01008C-(cit50)/*[position()=1] publication-title: J. Min. Sci. doi: 10.1007/BF02551141 – ident: C6EE01008C-(cit86)/*[position()=1] – volume: 93 start-page: 206 year: 2016 ident: C6EE01008C-(cit29)/*[position()=1] publication-title: Energy Policy doi: 10.1016/j.enpol.2016.02.044 – volume-title: Global Energy Assessment - Toward a Sustainable Future year: 2012 ident: C6EE01008C-(cit12)/*[position()=1] – volume: 55 start-page: 571 year: 2013 ident: C6EE01008C-(cit20)/*[position()=1] publication-title: Energy doi: 10.1016/j.energy.2013.01.048 – volume: 5 start-page: 7 year: 2016 ident: C6EE01008C-(cit46)/*[position()=1] publication-title: Wiley Interdiscip. Rev.: Energy Environ. – volume: 494 start-page: 307 year: 2013 ident: C6EE01008C-(cit19)/*[position()=1] publication-title: Nature doi: 10.1038/494307a – volume-title: Special report on emissions scenarios year: 2000 ident: C6EE01008C-(cit10)/*[position()=1] – volume: 22 year: 2008 ident: C6EE01008C-(cit30)/*[position()=1] publication-title: Global Biogeochem. Cycles doi: 10.1029/2007GB003142 – ident: C6EE01008C-(cit3)/*[position()=1] – volume-title: US Geol. Surv. Prof. Pap. 1625–F year: 2009 ident: C6EE01008C-(cit27)/*[position()=1] – volume-title: Coal: Research and Development to Support National Energy Policy year: 2007 ident: C6EE01008C-(cit26)/*[position()=1] – volume: 16 start-page: 3761 year: 2016 ident: C6EE01008C-(cit95)/*[position()=1] publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-16-3761-2016 – volume: 8 start-page: e81648 year: 2013 ident: C6EE01008C-(cit93)/*[position()=1] publication-title: PLoS One doi: 10.1371/journal.pone.0081648 – volume: 88 start-page: 2059 year: 2009 ident: C6EE01008C-(cit49)/*[position()=1] publication-title: Fuel doi: 10.1016/j.fuel.2009.01.032 – volume: 106 start-page: 16129 year: 2009 ident: C6EE01008C-(cit68)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0805800106 – volume: 372 start-page: 20120448 year: 2014 ident: C6EE01008C-(cit43)/*[position()=1] publication-title: Philos. Trans. R. Soc. London, Ser. A doi: 10.1098/rsta.2012.0448 – volume-title: Crude Oil – The Supply Outlook year: 2008 ident: C6EE01008C-(cit59)/*[position()=1] – ident: C6EE01008C-(cit36)/*[position()=1] – volume-title: Oil and gas, what future? year: 2006 ident: C6EE01008C-(cit51)/*[position()=1] – volume: 411 start-page: 17 year: 2001 ident: C6EE01008C-(cit101)/*[position()=1] publication-title: Nature doi: 10.1038/35075167 – volume: 98 start-page: 111 year: 2012 ident: C6EE01008C-(cit60)/*[position()=1] publication-title: Fuel doi: 10.1016/j.fuel.2012.03.021 – volume: 2 start-page: 248 year: 2012 ident: C6EE01008C-(cit75)/*[position()=1] publication-title: Nat. Clim. Change doi: 10.1038/nclimate1385 – volume: 52 start-page: 441 year: 2002 ident: C6EE01008C-(cit102)/*[position()=1] publication-title: Clim. Change doi: 10.1023/A:1014276210717 – volume: 12 start-page: 103 year: 2009 ident: C6EE01008C-(cit90)/*[position()=1] publication-title: Environ. Sci. Policy doi: 10.1016/j.envsci.2008.12.006 – volume: 37 start-page: 166 year: 2009 ident: C6EE01008C-(cit33)/*[position()=1] publication-title: Energy Policy doi: 10.1016/j.enpol.2008.08.013 – ident: C6EE01008C-(cit84)/*[position()=1] – volume: 106 start-page: 4133 year: 2009 ident: C6EE01008C-(cit92)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0812355106 – volume: 109 start-page: 77 year: 2011 ident: C6EE01008C-(cit82)/*[position()=1] publication-title: Clim. Change doi: 10.1007/s10584-011-0151-4 – volume-title: World Energy Outlook 2013 year: 2013 ident: C6EE01008C-(cit63)/*[position()=1] – ident: C6EE01008C-(cit83)/*[position()=1] – volume: 293 start-page: 451 year: 2001 ident: C6EE01008C-(cit4)/*[position()=1] publication-title: Science doi: 10.1126/science.1061604 – volume: 372 start-page: 20120320 year: 2014 ident: C6EE01008C-(cit45)/*[position()=1] publication-title: Philos. Trans. R. Soc., A doi: 10.1098/rsta.2012.0320 – volume: 36 start-page: 3492 year: 2008 ident: C6EE01008C-(cit18)/*[position()=1] publication-title: Energy Policy doi: 10.1016/j.enpol.2008.05.023 – volume: 34 start-page: 271 year: 2014 ident: C6EE01008C-(cit89)/*[position()=1] publication-title: Risk Anal. doi: 10.1111/risa.12117 – volume-title: Energy Study 2013. Reserves, resources and availability of energy resources year: 2013 ident: C6EE01008C-(cit52)/*[position()=1] – volume: 90 start-page: 103 issue: Part A year: 2015 ident: C6EE01008C-(cit96)/*[position()=1] publication-title: Technol. Forecast. Soc. Change doi: 10.1016/j.techfore.2013.08.025 – volume: 304 start-page: 571 year: 2004 ident: C6EE01008C-(cit9)/*[position()=1] publication-title: Science doi: 10.1126/science.1094147 – volume: 357 start-page: 293 year: 1992 ident: C6EE01008C-(cit80)/*[position()=1] publication-title: Nature doi: 10.1038/357293a0 – start-page: 60 year: 1998 ident: C6EE01008C-(cit28)/*[position()=1] publication-title: Sci. Am. – ident: C6EE01008C-(cit37)/*[position()=1] – volume-title: The future of natural gas an interdisciplinary MIT study. year: 2010 ident: C6EE01008C-(cit72)/*[position()=1] – volume: 52 start-page: 797 year: 2013 ident: C6EE01008C-(cit13)/*[position()=1] publication-title: Energy Policy doi: 10.1016/j.enpol.2012.10.046 – volume: 493 start-page: 79 year: 2013 ident: C6EE01008C-(cit1)/*[position()=1] publication-title: Nature doi: 10.1038/nature11787 – volume: 11 start-page: 1417 year: 2011 ident: C6EE01008C-(cit76)/*[position()=1] publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-11-1417-2011 – volume: 60 start-page: 204 year: 2013 ident: C6EE01008C-(cit48)/*[position()=1] publication-title: Energy doi: 10.1016/j.energy.2013.07.031 – volume-title: The Geochemical Society Special Publications year: 2004 ident: C6EE01008C-(cit32)/*[position()=1] – volume-title: Energy for Development year: 2012 ident: C6EE01008C-(cit61)/*[position()=1] – volume: 516 start-page: 28 year: 2014 ident: C6EE01008C-(cit21)/*[position()=1] publication-title: Nature doi: 10.1038/516028a – volume: 15 start-page: 1879 year: 2011 ident: C6EE01008C-(cit35)/*[position()=1] publication-title: Hydrol. Earth Syst. Sci. doi: 10.5194/hess-15-1879-2011 – volume: 64 start-page: 134 year: 2014 ident: C6EE01008C-(cit71)/*[position()=1] publication-title: Energy Policy doi: 10.1016/j.enpol.2013.07.118 – volume: 39 start-page: 5026 year: 2011 ident: C6EE01008C-(cit34)/*[position()=1] publication-title: Energy Policy doi: 10.1016/j.enpol.2011.06.011 – volume: 2 start-page: 57 year: 2012 ident: C6EE01008C-(cit55)/*[position()=1] publication-title: Open J. Geol. doi: 10.4236/ojg.2012.22006 – volume-title: Global resources and energy trade: An overview for coal, natural gas, oil and uranium year: 2007 ident: C6EE01008C-(cit73)/*[position()=1] – volume-title: Model Documentation for the MiniCAM ident: C6EE01008C-(cit77)/*[position()=1] – volume-title: US Dep. Energy Publ. year: 2007 ident: C6EE01008C-(cit78)/*[position()=1] – start-page: 641 year: 2014 ident: C6EE01008C-(cit15)/*[position()=1] publication-title: Energy doi: 10.1016/j.energy.2014.09.063 – volume: 31 start-page: 155 year: 1999 ident: C6EE01008C-(cit56)/*[position()=1] publication-title: Ecol. Econ. doi: 10.1016/S0921-8009(99)00098-1 – volume: 18 start-page: 635 year: 2008 ident: C6EE01008C-(cit6)/*[position()=1] publication-title: Glob. Environ. Change doi: 10.1016/j.gloenvcha.2008.06.001 – volume-title: Coal: Resources and Future Production year: 2007 ident: C6EE01008C-(cit47)/*[position()=1] – volume: 33 start-page: 619 year: 2011 ident: C6EE01008C-(cit88)/*[position()=1] publication-title: Energy Econ. doi: 10.1016/j.eneco.2010.10.007 – volume: 123 start-page: 413 year: 2014 ident: C6EE01008C-(cit11)/*[position()=1] publication-title: Clim. Change doi: 10.1007/s10584-013-0939-5 – volume: 112 start-page: 569 year: 2012 ident: C6EE01008C-(cit2)/*[position()=1] publication-title: Clim. Change doi: 10.1007/s10584-011-0260-0 – volume-title: World Energy Outlook 2014 year: 2014 ident: C6EE01008C-(cit67)/*[position()=1] – volume: 19 start-page: 19 year: 1990 ident: C6EE01008C-(cit66)/*[position()=1] publication-title: J. Environ. Econ. Manag. doi: 10.1016/0095-0696(90)90057-6 – volume: 109 start-page: 5 year: 2011 ident: C6EE01008C-(cit14)/*[position()=1] publication-title: Clim. Change doi: 10.1007/s10584-011-0148-z – volume: 105 start-page: 1786 year: 2008 ident: C6EE01008C-(cit94)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0705414105 – volume-title: Energy J. Spec. Issue Hybrid Model. Energy-Environ. Policies Reconciling Bottom- Top-Down year: 2006 ident: C6EE01008C-(cit79)/*[position()=1] – volume-title: SSRN ELibrary year: 1997 ident: C6EE01008C-(cit42)/*[position()=1] – volume-title: Fossil and Nuclear Fuels – the Supply Outlook year: 2013 ident: C6EE01008C-(cit58)/*[position()=1] – volume: 468 start-page: 367 year: 2010 ident: C6EE01008C-(cit23)/*[position()=1] publication-title: Nature doi: 10.1038/468367a – volume-title: Global gaps in clean energy RD&D: update and recommendations for international collaboration year: 2010 ident: C6EE01008C-(cit100)/*[position()=1] – volume: 481 start-page: 433 year: 2012 ident: C6EE01008C-(cit62)/*[position()=1] publication-title: Nature doi: 10.1038/481433a – volume: 51 start-page: 598 year: 2012 ident: C6EE01008C-(cit31)/*[position()=1] publication-title: Energy Policy doi: 10.1016/j.enpol.2012.09.003 – volume: 139 start-page: 1121 year: 2013 ident: C6EE01008C-(cit74)/*[position()=1] publication-title: Q. J. R. Meteorol. Soc. doi: 10.1002/qj.2165 – volume: 452 start-page: 531 year: 2008 ident: C6EE01008C-(cit91)/*[position()=1] publication-title: Nature doi: 10.1038/452531a – volume-title: World energy resources: 2013 survey year: 2013 ident: C6EE01008C-(cit53)/*[position()=1] – volume: 517 start-page: 187 year: 2015 ident: C6EE01008C-(cit16)/*[position()=1] publication-title: Nature doi: 10.1038/nature14016 – volume: 85 start-page: 23 year: 2011 ident: C6EE01008C-(cit24)/*[position()=1] publication-title: Int. J. Coal Geol. doi: 10.1016/j.coal.2010.10.012 – volume: 9 start-page: 31003 year: 2014 ident: C6EE01008C-(cit38)/*[position()=1] publication-title: Environ. Res. Lett. doi: 10.1088/1748-9326/9/3/031003 – volume: 52 start-page: 287 year: 2002 ident: C6EE01008C-(cit57)/*[position()=1] publication-title: BioScience doi: 10.1641/0006-3568(2002)052[0287:OPAS]2.0.CO;2 – volume: 372 start-page: 20130179 year: 2014 ident: C6EE01008C-(cit44)/*[position()=1] publication-title: Philos. Trans. R. Soc. London, Ser. A doi: 10.1098/rsta.2013.0179 |
| SSID | ssj0062079 |
| Score | 2.4476984 |
| Snippet | Uncertainties concerning fossil fuel resource availability have traditionally been deemphasized in climate change research as global baseline emission... |
| SourceID | unpaywall proquest crossref rsc |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 2482 |
| SubjectTerms | Availability Climate Climate change Emission Estimates Fossil fuels Pathways Uncertainty |
| Title | Likelihood of climate change pathways under uncertainty on fossil fuel resource availability |
| URI | https://www.proquest.com/docview/1811893717 https://www.proquest.com/docview/1835660878 https://pubs.rsc.org/en/content/articlepdf/2016/ee/c6ee01008c |
| UnpaywallVersion | publishedVersion |
| Volume | 9 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAUL databaseName: Royal Society of Chemistry Gold Collection (IReL) customDbUrl: https://pubs.rsc.org eissn: 1754-5706 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0062079 issn: 1754-5692 databaseCode: AETIL dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.rsc.org/journals-books-databases/librarians-information/products-prices/#undefined providerName: Royal Society of Chemistry |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9tAEB4a-9Dm0HeI0zZsaS49yJayq13paIxDWkLoIYYUCmJ3NQIRIRtbanB_fWYl-dEHpfQiBBpJszuj1TfszDcAZ6HWVqM15LzcegKl9EyI6GmKNlD5aSCxYfu8lpcz8fk2vO1yc1wtDCmxGi5XLUUwUvjuOJrKatTN4yLNKFwP5AhxZCWi77hp7AH0ZUhQvAf92fWX8demCDIUXiibpsjtufLlhp6Ux3s3__xD2qHMA9LiEB7X5UKv73VR7P12Lp61vVUbhZtsk7thXZmh_fELl-N_j-g5PO0AKRu3ci_gEZYv4XCPpvAVfLvK77DIHQEym2fMFjnBXGRtzTBzPY3v9XrFXDnako62zTKo1mxesozGnBcsq7Fgy26rgOnvOi9agvD1a5hdTG8ml17XlcGzQkWVZ5XNBMEsExPYxMC3IQ-F8G0kbBQLmRkTnxupFK2bJsIoQ-7HKuNcG1pKbGb5EfTKeYnHwAKu6QqFqIYrEatzE9MD0IZpGqeEbNQAPm5Mk9iOstx1ziiSZuucx8lETqfNjE0G8GEru2iJOv4o9X5j4YS-I7c5okuc16uEkE7gsFug_ibDCf36kYoGcEQm3b5oZ7gBnG095jc9dmIn_yb2Bp4432gTDt9Cr1rW-I5AUGVOoT-e3ny6Ou1c_gGb_Qf1 |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBbN5tDm0HfIpg9UmksP3rUjWbKOYdkQSgk9dCGFgpHkEZgY77JrN2x_fUaW99EHpfRiDB7bI81Y_gbNfEPIWaq11WANOi-zEQchIpMCRBqjDZBxkQjo2D6vxdWMf7xJb_rcHF8Lg0qsRstVoAgGDN89R1PdjPt5XBQOw_VEjAHGVgDEnpvGHpBDkSIUH5DD2fXni69dEWTKo1R0TZHDuYzFhp6Uqb2bf_4h7VDmAWpxRB629UKv73RV7f12Lp-E3qqdwl22ye2obczI_viFy_G_R_SUPO4BKb0Ics_IA6ifk6M9msIX5Nun8haq0hMg07mjtioR5gINNcPU9zS-0-sV9eVoSzzakGXQrOm8pg7HXFbUtVDRZb9VQPV3XVaBIHz9kswup18mV1HflSGyXGZNZKV1HGGWUQg2IYltylLOY5txmykunDHq3Agpcd00GWQOWKykY0wbXEqss-yYDOp5DSeEJkzjFQxRDZNcyXOj8AFg06JQBSIbOSQfNqbJbU9Z7jtnVHm3dc5UPhHTaTdjkyF5v5VdBKKOP0q921g4x-_Ib47oGubtKkekk3jslsi_yTBEv3EmsyE5RpNuX7Qz3JCcbT3mNz12Yqf_JvaKPPK-ERIOX5NBs2zhDYKgxrztXf0eZJQGYw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Likelihood+of+climate+change+pathways+under+uncertainty+on+fossil+fuel+resource+availability&rft.jtitle=Energy+%26+environmental+science&rft.au=Capell%C3%A1n-P%C3%A9rez%2C+I%C3%B1igo&rft.au=Arto%2C+I%C3%B1aki&rft.au=Polanco-Mart%C3%ADnez%2C+Josu%C3%A9+M&rft.au=Gonz%C3%A1lez-Eguino%2C+Mikel&rft.date=2016-08-01&rft.issn=1754-5692&rft.eissn=1754-5706&rft.volume=9&rft.issue=8&rft.spage=2482&rft.epage=2496&rft_id=info:doi/10.1039%2Fc6ee01008c&rft.externalDocID=c6ee01008c |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1754-5692&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1754-5692&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1754-5692&client=summon |